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Abstract

We single out a large class of groups M for which the following unique prime factor-
ization result holds: if Γ1, . . . ,Γn ∈ M and Γ1 × · · · × Γn is measure equivalent to a
product Λ1 × · · · × Λm of infinite icc groups, then n ≥ m, and if n = m, then, after per-
mutation of the indices, Γi is measure equivalent to Λi, for all 1 ≤ i ≤ n. This provides
an analogue of Monod and Shalom’s theorem [Orbit equivalence rigidity and bounded
cohomology, Ann. of Math. 164 (2006), 825–878] for groups that belong to M. Class
M is constructed using groups whose von Neumann algebras admit an s-malleable
deformation in the sense of Sorin Popa and it contains all icc non-amenable groups
Γ for which either (i) Γ is an arbitrary wreath product group with amenable base or
(ii) Γ admits an unbounded 1-cocycle into its left regular representation. Consequently,
we derive several orbit equivalence rigidity results for actions of product groups that
belong to M. Finally, for groups Γ satisfying condition (ii), we show that all embeddings
of group von Neumann algebras of non-amenable inner amenable groups into L(Γ) are
‘rigid’. In particular, we provide an alternative solution to a question of Popa that was
recently answered by Ding, Kunnawalkam Elayavalli, and Peterson [Properly Proximal
von Neumann Algebras, Preprint (2022), arXiv:2204.00517].

1. Introduction

Classifying countable groups up to measure equivalence is a central topic in measured group
theory that has witnessed an explosion of activity for the last 25 years, see the surveys [Sha05,
Fur11, Gab10] and the introduction of [HHI21]. The notion of measure equivalence has been
introduced by Gromov [Gro93] as a measurable analogue to the geometric notion of quasi-
isometry between finitely generated groups. Specifically, two countable groups Γ and Λ are called
measure equivalent if there exist commuting free measure-preserving actions of Γ and Λ on a
standard measure space (Ω,m) such that the actions of Γ and Λ on (Ω,m) each admit a finite
measure fundamental domain. Natural examples of measure equivalent groups are two lattices
in a locally compact second countable group.

Measure equivalence can be studied through the lenses of orbit equivalence due to the
fundamental result that two countable groups are measure equivalent if and only if they
admit free ergodic probability measure-preserving (pmp) actions that are stably orbit
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equivalent [Fur99]. Recall that two pmp actions Γ � (X,μ) and Λ � (Y, ν) are called stably
orbit equivalent if there exist non-null subsets A ⊂ X,B ⊂ Y and a measure space isomorphism
θ : A→ B such that θ(Γx ∩A) = Λθ(x) ∩B, for almost every x ∈ A. If μ(A) = ν(B) = 1, then
the two actions are called orbit equivalent (OE).

The celebrated work of Ornstein and Weiss [OW80] (see also [Dye59, CFW81]) proves that
any two free ergodic pmp actions of infinite amenable groups are OE and, consequently, any two
infinite amenable groups are measure equivalent. In sharp contrast, classifying non-amenable
groups up to measure equivalence is a much more challenging task and it reveals a very strong
rigidity phenomenon. By building on Zimmer’s work [Zim84], Furman showed that any countable
group which is measure equivalent to a lattice in a higher rank simple Lie group is essentially
a lattice in the same Lie group [Fur99]. Then Kida showed that most mapping class groups
Mod(S) are measure-equivalent superrigid which means that any countable group that is measure
equivalent to Mod(S), must be virtually isomorphic to it [Kid10]. Subsequently, other such
measure-equivalent superrigid groups have been found and we refer the reader to the introduction
of [HH22] for more details.

There have been discovered several other remarkable instances where various aspects of the
group Γ can be recovered from its measure equivalence class or certain properties of the group
action Γ � (X,μ) are remembered by its associated orbit equivalence relation. We only highlight
the following developments in this direction and refer the reader to the surveys [Sha05, Fur11] for
more information. Gaboriau used the notion of cost to show that the rank of a free group Fn is an
invariant of the orbit equivalence relation of any of its free, ergodic, pmp actions [Gab00]. Then
his discovery that measure equivalent groups have proportional �2-Betti numbers [Gab02] led to
significant new progress in the classification problem of pmp actions up to OE, see the survey
[Gab10]. Using a completely different conceptual framework, Popa’s deformation rigidity/theory
[Pop07a] led to an unprecedented development in the theory of von Neumann algebras and
provided many other spectacular rigidity results in orbit equivalence, see the surveys [Vae10,
Ioa14, Ioa18].

In their breakthrough work [MS06], Monod and Shalom employed techniques from bounded
cohomology theory to obtain a series of OE rigidity results, including the following unique prime
factorization result: if Γ1 × · · · × Γn is a product of non-elementary torsion-free hyperbolic groups
(more generally, of groups belonging to class Creg; see [MS06, Notation 1.2]) that is measure
equivalent to a product Λ1 × · · · × Λm of torsion-free groups, then n ≥ m, and if n = m, then,
after permutation of the indices, Γi is measure equivalent to Λi, for all 1 ≤ i ≤ n. By building
upon C∗-algebraic methods from [Oza04, BO08], the above unique prime factorization result has
been extended by Sako [Sak09] to products of non-amenable bi-exact groups (see also [CS13]).

In our first main result of the paper, we use the powerful framework of Popa’s deformation/
rigidity theory to establish a general analogue of Monod and Shalom’s unique prime factorization
theorem, which applies, in particular, to product of groups with positive first �2-Betti number.
More generally, we obtain such a result for product of groups for which their von Neumann
algebras belong to a certain class M of II1 factors that admit an s-malleable deformation in
the sense of Popa [Pop06a, Pop06b] (see Definition 3.1). For simplicity, we say that a countable
group Γ belongs to M if its associated von Neumann algebra L(Γ) belongs to M. We refer the
reader to Definition 3.3 for the description of class M and to Example 1.1 for more concrete
examples of groups that belong to this class.

Theorem A. Let Γ1, . . . ,Γn be groups that belong to M. If Γ1 × · · · × Γn is measure equiv-
alent to a product Λ1 × · · · × Λm of infinite icc groups, then n ≥ m, and if n = m, then after
permutation of indices, Γi is measure equivalent to Λi, for any 1 ≤ i ≤ n.
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Example 1.1. A countable group Γ belongs to M whenever Γ is a non-amenable icc group that
satisfies one of the following conditions (see Proposition 3.5):

(1) Γ = Σ �G/H G is a generalized wreath product group with Σ amenable, G non-amenable and
H < G is an amenable almost malnormal subgroup;

(2) Γ admits an unbounded cocycle for some mixing representation π : Γ → O(HR) such that
π is weakly contained in the left regular representation of Γ;

(3) Γ = Γ1 ∗Σ Γ2 is an amalgamated free product group satisfying [Γ1 : Σ] ≥ 2 and [Γ2 : Σ] ≥ 3,
where Σ < Γ is an amenable almost malnormal1 subgroup.

We continue by making several remarks about Theorem A. First, note that the class Creg

considered by Monod and Shalom in their unique prime factorization result [MS06, Theorem 1.16]
does not contain groups that have infinite amenable normal subgroups [MS06, Corollary 1.19]
and, hence, the subclass of wreath product groups considered in Example 1.1(1) is disjoint from
Creg. Moreover, Example 1.1 provides a large class of groups that are not bi-exact [Sak09] since
any bi-exact group cannot contain an infinite subgroup with non-amenable centralizer.

Next, we contrast our result with the following corollary of Gaboriau’s work [Gab02]: if a
product Γ = Γ1 × · · · × Γn of n groups with positive first �2-Betti number is measure equiv-
alent to a product Λ = Λ1 × · · · × Λm of m infinite groups, then n ≥ m. Indeed, by [Gab02,
Théorème 6.3.] we have that the nth �2-Betti number of Γ vanishes if and only if the nth
�2-Betti number of Λ vanishes. On the other hand, the Künneth formula [Gab02,
Propriétés 1.5] implies that the nth �2-Betti number of Γ is positive, while if n < m, then the
nth �2-Betti number of Λ equals to 0. Theorem B strengthens this conclusion in two ways in the
case Γ,Λ are icc. First, if n = m we are able to recover the measure equivalence class of each Γi.
Second, since the groups with positive first �2-Betti number are precisely the non-amenable
groups that admit an unbounded cocycle into the left regular representation [PT11],
Example 1.1(2) extends the previous result of Gaboriau to the larger class of groups that admit
an unbounded cocycle for some mixing representation that is weakly contained in the left regular
representation.

Remark 1.2. Popa’s deformation/rigidity theory gave rise to a plethora of striking rigidity results
for von Neumann algebras of wreath product groups. Popa’s pioneering work [Pop06b, Pop06c]
allowed one to distinguish between the group von Neumann algebras of Z/2Z � Γ, as Γ is an infinite
property (T) group, while Ioana, Popa, and Vaes used a wreath product construction to obtain
the first class of groups that are entirely remembered by their von Neumann algebras [IPV13].
Subsequently, several other rigidity results have been obtained for von Neumann algebras of
wreath products including primeness, relative solidity, and product rigidity, see [Ioa07, Pop08,
CI10, Ioa11, IPV13, SW13, CPS12, BV14, IM19, Dri21, CDD21]. Theorem A establishes a
new general rigidity result for wreath product groups by showing that products of arbitrary
non-amenable wreath product groups with amenable base satisfy an analogue of Monod and
Shalom’s unique prime factorization result.

Theorem A follows from the following more general result in which we classify all tensor
product decompositions of L(Λ), whenever Λ is an icc group that is measure equivalent to a
finite product of groups that belong to M.

Theorem B. Let Γ = Γ1 × · · · × Γn be a product of groups that belong to M and let Λ be an
icc group that is measure equivalent to Γ. Assume L(Λ) = P1⊗̄ · · · ⊗̄Pm admits a tensor product
decompositions into II1 factors. Then n ≥ m and there exists a decomposition Λ = Λ1 × · · · × Λm

into infinite groups.

1 A subgroup H < G is called almost malnormal if gHg−1 ∩ H is finite for any g ∈ G\H.

2025

https://doi.org/10.1112/S0010437X2300739X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2300739X


D. Drimbe

Moreover, there exist a partition S1 � · · · � Sm = {1, . . . , n}, a decomposition L(Λ) =
P t1

1 ⊗̄ · · · ⊗̄P tm
m , for some t1, . . . , tm > 0 with t1 . . . tm = 1, and a unitary u ∈ L(Λ) such that

for any 1 ≤ j ≤ m:

(1) ×k∈SjΓk is measure equivalent to Λj ;

(2) P
tj
j = uL(Λj)u∗.

In particular, if n = m, then after permutation of indices, Γi is measure equivalent to Λi, for
any 1 ≤ i ≤ n.

We note that Theorem B provides a complement to [DHI16, Theorem C] where such a
classification result has been obtained by Hoff, Ioana, and the present author in the case the
groups Γi are hyperbolic. Although the proof of Theorem B is inspired by the strategy of the
proof of [DHI16, Theorem C], we implement quite differently some of the steps. In order to
effectively work with groups from M, which are defined by a property of their von Neumann
algebras, we are making use in an essential way of newer techniques from [BMO20, IM19, Dri21].
In particular, our proof uses a relative version of the flip automorphism method introduced by
Isono and Marrakchi in [IM19].

Another application of Theorem B is to the study of tensor product decompositions of von
Neumann algebras by providing new classes of prime II1 factors. Recall that a II1 factor is called
prime if it does not admit a tensor product decomposition into II1 factors. Popa discovered in
[Pop83] the first examples of prime II1 factors by showing that the free group factors L(FS),
with S uncountable, are prime. Then Ge showed in [Ge98] that the free group factors L(Fn), 2 ≤
n ≤ ∞, are prime, thus providing the first examples of separable prime II1 factors. Subsequently,
a large number of prime II1 factors have been discovered; see, for instance, the introduction of
[CDI22]. As a corollary of Theorem B, we obtain that if Γ is a countable group that belongs to
M and G = (×n

i=1Γ) � Z/nZ is the semidirect product group of the natural translation action
Z/nZ � ×n

i=1Γ, then L(G) is a prime II1 factor. In fact, a more general result holds and for
properly formulating it, we give the following notation. Let n be a positive integer, denote
by Sn the group of permutations of {1, . . . , n} and consider the permutation action of Sn on
{1, . . . , n}. For any subset J ⊂ {1, . . . , n} and subgroup K < Sn, we denote FixK(J) = {g ∈ K |
g · j = j, for any j ∈ J}.
Corollary C. Let Γ be a countable group that belongs to M. Let n be a positive integer
and let K be any subgroup of Sn. Consider the permutation action K � ×n

i=1Γ and denote
G = (×n

i=1Γ) �K.
Then L(G) is a prime II1 factor if and only if there exists no partition J1 � J2 = {1, . . . , n}

for which K = FixK(J1) × FixK(J2).

Note that Corollary C provides a large class of prime II1 factors which admit finite index
subfactors that are not prime. Additional such prime II1 factors have been obtained previously in
[DHI16, CD19] by replacing Γ in the statement of Corollary C by any non-elementary hyperbolic
group, see also [CDI22, § 5].

We continue by discussing some OE rigidity results for actions of product groups that belong
to class M. Furman discovered in [Fur99] the first class of group action Γ � (X,μ) that are OE
superrigid, that is, any free, ergodic, pmp action that is OE to Γ � (X,μ) must be virtually
conjugate2 to it. Subsequently, a large number of OE superrigidity results have been obtained,

2 Two pmp actions Γ � (X, μ) and Λ � (Y, ν) are virtually conjugate if there exist some finite normal subgroups
A < Γ and B < Λ such that the associated actions Γ/A � X/A and Λ/B � Y/B are induced from conjugate
actions.
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see the introduction of [DIP19]. By using part of the proof of Theorem B together with results
from measured group theory [HHI21], we derive the following OE superrigidity result within the
class of mildly mixing actions. Before stating the result, we recall some notions. A pmp action
Γ1 × . . .× Γn � (X,μ) is called irreducible if its restriction to any subgroup Γi is ergodic. A
pmp action Λ � (Y, ν) is called mildly mixing if whenever A ⊂ Y is measurable subset satisfying
lim infg→∞ ν(gAΔA) = 0, then ν(A) ∈ {0, 1}.

Theorem D. Let Γ = Γ1 × · · · × Γn be a product of n ≥ 2 groups that belong to M. Let
Γ � (X,μ) be a free, irreducible, pmp action that is OE to a free, mildly mixing, pmp action
Λ � (Y, ν).

Then Γ � (X,μ) and Λ � (Y, ν) are virtually conjugate.

Note that this type of superrigidity has been obtained by Monod and Shalom [MS06,
Theorem 1.9] for groups Γi that are torsion-free hyperbolic groups (more generally, groups that
belong to Creg). In Theorem D we extend this result to groups from M which are purely defined
by a property of their von Neumann algebra.

Finally, in the last part of this paper we discuss some structural results for II1 factors that
belong to a subclass of M. We say that a non-amenable tracial von Neumann algebra M belongs
to class M0 if there exists an s-malleable deformation (M̃, (αt)t∈R) of M satisfying:

• L2(M̃)  L2(M) is a mixing M -M -bimodule relative to C1;
• L2(M̃)  L2(M) is weakly contained in the coarse bimodule L2(M) ⊗ L2(M) as M -M -

bimodules.

We refer the reader to §§ 2.3 and 3.1 for the terminology used in defining the class M0 and
we note that any II1 factor from M0 belongs to M, see Definition 3.3.

In Theorem E we show that all embeddings of group von Neumann algebras of non-amenable
inner amenable groups in any II1 factor that belongs to M0 are rigid. A countable group Γ is
inner amenable if there exists an atomless mean on Γ which is invariant by the action of Γ on
itself by conjugation. Effros made in [Eff75] a connection of this group theoretic notion to von
Neumann algebras by showing that an icc group Γ is inner amenable whenever its group von
Neumann algebra has property Gamma. The converse is false as was shown by Vaes [Vae12].

Theorem E. Let M be a von Neumann algebra in M0 and let (M̃, (αt)t∈R) be the associ-
ated s-malleable deformation of M . Let Γ be a non-amenable inner amenable group satisfying
L(Γ) ⊂M .

Then L(Γ) is α-rigid, i.e. αt → id uniformly on the unit ball of L(Γ).

Note that von Neumann algebras with property Gamma exhibit strong structural results
(see, for instance, [Pet09, HU16, IS19]) that are enough for obtaining various rigidity results
via Popa’s deformation/rigidity theory. In order to work with the more general class of inner
amenable groups, we use an idea from [Tuc14, Theorem 11] on how to use Popa’s spectral gap
principle. An additional obstacle that arises here is the fact that EL(Γ)(αt(ug)) is not necessarily
a scalar multiple of ug, where g ∈ Γ; here, we denoted by {ug}g∈Γ the canonical unitaries that
generate L(Γ) and by EL(Γ) : M̃ → L(Γ) the canonical conditional expectation. We overcome
this difficulty by using an augmentation technique based on the comultiplication map associated
to L(Γ) (see [PV10]).

We continue by discussing several applications of Theorem E. Chifan and Sinclair
proved in [CS13] that any countable group Γ for which β

(2)
1 (Γ) > 0 is not inner amenable.

Theorem E recovers and strengthens this fact in the following way. While it is unknown that the
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non-vanishing of the first �2-Betti number is a group von Neumann algebra invariant, we derive
from Theorem E that any group that has isomorphic von Neumann algebra to L(Γ) is not inner
amenable as well.

Corollary E. Let Γ be any countable group for which β
(2)
1 (Γ) > 0. If Λ is any countable group

for which L(Γ) ∼= L(Λ), then Λ is not inner amenable.

To put Theorem E into a better perspective, we note that it provides an alternative solution
to a question of Popa. Since any non-amenable property Gamma von Neumann algebra cannot
embed into the free group factor L(Fn) (see [Oza04]), Popa asked in [Pop21] if it still true that
the group von Neumann algebra of a non-amenable inner amenable group cannot embed into
L(Fn). Recently, inspired by the notion of properly proximal groups [BIP21] (see also [IPR19]),
Ding, Kunnawalkam Elayavalli, and Peterson developed in [DKP22] subtle boundary techniques
to define a notion of proper proximality for tracial von Neumann algebras, and as a conse-
quence, they answered Popa’s question in a positive way. As a particular case of Theorem E,
we give a new proof for Popa’s question by using methods from Popa’s deformation/rigidity
theory.

Moreover, as a corollary of Theorem E we completely classify all embeddings of group
von Neumann algebras L(G) of non-amenable inner amenable groups in any free product
M = M1 ∗M2 of tracial von Neumann algebras by showing that L(G) ≺M Mi, for some i. Here,
≺M refers to Popa’s intertwining-by-bimodules technique, see § 2.2. Consequently, we obtain
a new class of examples for which the Kurosh-type rigidity results discovered in [Oza06] for
free products von Neumann algebras hold. Namely, Ozawa proved using C∗-algebraic techniques
that if there is an isomorphism θ : M1 ∗ · · · ∗Mm → N1 ∗ · · · ∗Nn, where all von Neumann alge-
bras Mi and Nj are non-amenable, semiexact, non-prime II1 factors, then m = n, and after
a permutation of indices, θ(Mi) is unitarily conjugate to Ni, for any i ∈ 1, n. By using Popa’s
deformation/rigidity theory, Ioana, Popa, and Peterson obtained the previous Kurosh-type rigid-
ity result for property (T) II1 factors [IPP08]. Shortly after, by developing a new approach rooted
on closable derivations, Peterson unified and generalized these Kurosh-type rigidity results by
covering L2-rigid II1 factors, which include all non-amenable non-prime, property (T), and prop-
erty Gamma II1 factors [Pet09]. By classifying certain amenable subalgebras of amalgamated free
product von Neumann algebras, Ioana then extended the previous Kurosh-type rigidity result
by covering non-amenable II1 factors that admit a Cartan subalgebra [Ioa15]. We also refer the
reader to [HU16] for certain Kurosh-type rigidity results for type III factors. As a corollary of
Theorem E, we extend the previous Kurosh-type rigidity results to the class of II1 factors of
non-amenable inner amenable groups, see Corollary 8.1.

2. Preliminaries

2.1 Terminology
Throughout the paper we consider tracial von Neumann algebras (M, τ), i.e. von Neumann
algebras M equipped with a faithful normal tracial state τ : M → C. This induces a norm on
M by the formula ‖x‖2 = τ(x∗x)1/2, for any x ∈M . We will always assume that M is separable,
i.e. the ‖ · ‖2-completion of M denoted by L2(M) is separable as a Hilbert space. We denote
by Z(M) the center of M and by U(M) its unitary group. For two von Neumann subalgebras
P1, P2 ⊂M , we denote by P1 ∨ P2 = W ∗(P1 ∪ P2) the von Neumann algebra generated by P1

and P2.
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All inclusions P ⊂M of von Neumann algebras are assumed unital. We denote by EP : M →
P the unique τ -preserving conditional expectation from M onto P , by eP : L2(M) → L2(P ) the
orthogonal projection onto L2(P ) and by 〈M, eP 〉 the Jones’ basic construction of P ⊂M . We
also denote by P ′ ∩M = {x ∈M | xy = yx, for all y ∈ P} the relative commutant of P in M
and by NM (P ) = {u ∈ U(M) | uPu∗ = P} the normalizer of P in M .

The amplification of a II1 factor (M, τ) by a number t > 0 is defined to be M t =
p(B(�2(Z))⊗̄M)p, for a projection p ∈ B(�2(Z))⊗̄M satisfying (Tr⊗τ)(p) = t. Here Tr denotes
the usual trace on B(�2(Z)). Since M is a II1 factor, M t is well defined. Note that if M = P1⊗̄P2,
for some II1 factors P1 and P2, then there is a natural isomorphism M = P t

1⊗̄P
1/t
2 , for any t > 0.

Finally, for a positive integer n, we denote by 1, n the set {1, . . . , n}. If S ⊂ 1, n we denote
its complement by Ŝ = 1, n \ S. In the case that S = {i}, we will simply write î instead of {̂i}. In
addition, given any product group Γ = Γ1 × · · · × Γn, we will denote their subproduct supported
on S by ΓS = ×i∈SΓi.

2.2 Intertwining-by-bimodules
We next recall from [Pop06b, Theorem 2.1 and Corollary 2.3] the powerful intertwining-by-
bimodules technique of Popa.

Theorem 2.1 [Pop06b]. Let (M, τ) be a tracial von Neumann algebra and P ⊂ pMp,Q ⊂ qMq
be von Neumann subalgebras. Let U ⊂ U(P ) be a subgroup such that U ′′ = P .

Then the following are equivalent.

(1) There exist projections p0 ∈ P, q0 ∈ Q, a ∗-homomorphism θ : p0Pp0 → q0Qq0 and a non-
zero partial isometry v ∈ q0Mp0 such that θ(x)v = vx, for all x ∈ p0Pp0.

(2) There is no sequence (un)n ⊂ U satisfying ‖EQ(xuny)‖2 → 0, for all x, y ∈M .

If one of the equivalent conditions of Theorem 2.1 holds true, we write P ≺M Q, and say that
a corner of P embeds into Q inside M . If Pp′ ≺M Q for any non-zero projection p′ ∈ P ′ ∩ pMp,
then we write P ≺s

M Q.

Lemma 2.2. Let Λ � B be a trace-preserving action and denote M = B � Λ. Let p ∈ B be a
non-zero projection and let A ⊂ pBp be a von Neumann subalgebra such that A′ ∩ pMp ⊂ A.

Let Λ0 < Λ be a subgroup and G ⊂ NpMp(A) a group of unitaries. If there is a projection
e ∈ G′ ∩ pMp satisfying G′′e ≺s

M B × Λ0, then there is a projection f ∈ (A ∪ G)′ ∩ pMp with
e ≤ f satisfying (A ∪ G)′′f ≺s

M B � Λ0.

Proof. Throughout the proof we use the terminology that a set F ⊂ Λ is said to be small relative
to {Λ0} if it is contained into a finite union of sΛ0t, where s, t ∈ Λ. For any F ⊂ Λ, let HF ⊂
L2(M) be the ‖ · ‖2-closed linear span of {Bvλ | λ ∈ F} and denote by PF : L2(M) → HF the
orthogonal projection onto HF . Let ε > 0 and denote T = EA′∩pMp(e). Note that T ∈ (A ∪ G)′ ∩
pMp ⊂ A and that T belongs to the ‖ · ‖2-closed convex hull of {aea∗ | a ∈ U(A)}. Thus, we can
take a1, . . . , an ∈ U(A) and α1, . . . , αn ∈ [0, 1] such that if we denote T0 =

∑n
i=1 αiaiea

∗
i , then

‖T − T0‖2 ≤ ε.
Since G′′e ≺s

M B × Λ0, it follows from [Vae13, Lemma 2.5] that there exists F ⊂ Λ that
is small relative to {Λ0} such that ‖we− PF (we)‖2 ≤ ε/n, for all w ∈ G. Hence, for all a ∈
U(A), w ∈ G, we have∥∥∥∥awT − αi

n∑
i=1

a(waiw
∗)PF (we)a∗i

∥∥∥∥
2

≤ ε+
n∑

i=1

αi‖aw(aiea
∗
i ) − a(waiw

∗)PF (we)a∗i ‖2 ≤ 2ε.

(2.1)
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Since A ⊂ pBp, we have a(waiw
∗)PF (we)a∗i ∈ HF and, hence, ‖awT − PF (awT )‖2 ≤ 2ε, for

all a ∈ U(A), w ∈ G. Therefore, there exists a sequence {Fn}n≥1 of subsets of Λ that are small
relative to {Λ0} such that ‖awT − PFn(awT )‖2 → 0 uniformly in a ∈ U(A), w ∈ G.

For every δ > 0 define the spectral projection qδ = χ(δ,∞)(T ) ∈ A and let Tδ ∈ A satisfy-
ing TTδ = qδ. If we denote by q0 the support projection of T , then ‖qδ − q0‖2 → 0 as δ → 0.
These altogether imply that ‖awqδ − PFn(awqδ)‖2 → 0 uniformly in a ∈ U(A), w ∈ G and, hence,
‖awq0 − PFn(awq0)‖2 → 0 uniformly in a ∈ U(A), w ∈ G. Finally, note that q0 ∈ (A ∪ G)′ ∩ pMp
and q0 ≥ e. This concludes the proof. �

The following proposition follows from [BMO20, IM19] and it is essentially contained in the
proof of [Dri21, Theorem 4.2]. We record it here for the convenience of the reader.

Proposition 2.3. Let M = P ⊗̄Q be a tensor product of II1 factors. Let Qn, n ≥ 1, be a
decreasing sequence of von Neumann subalgebras such that P ≺M

∨
n≥1(Q

′
n ∩M).

If P does not have property Gamma, then there exists m ≥ 1 such that P ≺M Q′
m ∩M.

Recall that a II1 factor (M, τ) has property Gamma if it admits a central sequence (xn)n ⊂
U(M) for which infn‖xn − τ(xn)1‖2 > 0.

2.3 Bimodules
Let M,N be tracial von Neumann algebras. An M -N bimodule MHN is a Hilbert space H
together with a ∗-homomorphism πH : M �Nop → B(H) that is normal on M and Nop, where
M �Nop is the algebraic tensor product between M and the opposite von Neumann algebra
Nop of N . Examples of bimodules include the trivial M -bimodule ML

2(M)M and the coarse
M -N -bimodule ML

2(M) ⊗ L2(N)N . For two M -N -bimodules MHN and MKN , we say that
MHN is weakly contained in MKN if ‖πH(x)‖ ≤ ‖πK(x)‖, for any x ∈M �Nop.

Let A ⊂M be an inclusion of tracial von Neumann algebras and let MHM be an
M -bimodule. We say that MHM is mixing relative to A if for any sequence (xn)n ⊂ (M)1
satisfying ‖EA(xuny)‖2 → 0, for all x, y ∈M , we have

lim
n→∞ sup

y∈(M)1

〈xnξy, η〉, for all ξ, η ∈ H.

2.4 Relative amenability
A tracial von Neumann algebra (M, τ) is amenable if there is a positive linear functional Φ :
B(L2(M)) → C such that Φ|M = τ and Φ is M -central, meaning Φ(xT ) = Φ(Tx), for all x ∈M
and T ∈ B(L2(M)). By Connes’ classification of amenable factors [Con76], it follows that M is
amenable if and only if M is approximately finite dimensional.

We continue by recalling the notion of relative amenability which is due to Ozawa and
Popa [OP10]. Fix a tracial von Neumann algebra (M, τ). Let p ∈M be a projection and P ⊂
pMp,Q ⊂M be von Neumann subalgebras. Following [OP10, Definition 2.2], we say that P is
amenable relative to Q inside M if there is a positive linear functional Φ : p〈M, eQ〉p→ C such
that Φ|pMp = τ and Φ is P -central. We say that P is strongly non-amenable relative to Q if Pp′

is non-amenable relative to Q for any non-zero projection p′ ∈ P ′ ∩ pMp (equivalently, for any
non-zero projection p′ ∈ NM (P )′ ∩ pMp by [DHI16, Lemma 2.6]).

Note that if P ⊂ pMp and Q ⊂M are tracial von Neumann algebras, then P ⊂ pMp is
amenable relative to Q if and only if PL

2(pM)M is weakly contained in PL
2(p〈M, eQ〉)M . We

also recall that ML
2(〈M, eQ〉)M

∼=M (L2(M) ⊗Q L2(M))M . It is clear that P is amenable relative
to C1 inside M if and only if P is amenable. The following lemma generalizes this fact and it is
inspired by the proof of [DHI16, Lemma 5.6]. For completeness, we provide all the details.
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Lemma 2.4. Let M0 and M ⊂ M̃ be some tracial von Neumann algebras and let Q ⊂
q(M0⊗̄M)q be a von Neumann subalgebra. The following hold.

(1) Assume thatQz̃ is amenable relative toM0 insideM0⊗̄M̃ , for a non-zero projection z̃ ∈ Q′ ∩
q(M0⊗̄M̃)q. Then Qz is amenable relative to M0 inside M0⊗̄M , where z ∈ Q′ ∩ q(M0⊗̄M)q
is the support projection of EM(z̃).

(2) If Q ≺M0⊗̄M̃ M0, then Q ≺M0⊗̄M M0.

Proof. (1) Let M = M0⊗̄M and M̃ = M0⊗̄M̃. The assumption implies that the bimodule
Qz̃L

2(z̃M̃)M̃ is weakly contained in Qz̃L
2(z̃〈M̃, eM0〉)M̃. If we denote by z ∈ Q′ ∩ q(M0⊗̄M)q)

the support projection of EM(z̃), we obtain that

QzL
2(zM)M is weakly contained in QzL

2(z〈M̃, eM0〉)M. (2.2)

Note that ML2(〈M̃, eM0〉)M ∼=M L2(M̃) ⊗ L2(M̃)M. Note also that ML2(M̃)M0 is weakly
contained in ML2(M)M0 and CL

2(M̃)M is weakly contained in CL
2(M)M .

These altogether imply that QzL
2(〈M̃, eM0〉)M is weakly contained in QzL

2(〈M, eM0〉)M.
Using (2.2) we deduce that QzL

2(zM)M is weakly contained in QzL
2(z〈M, eM0〉)M, which shows

that Qz is amenable relative to M0 inside M.
(2) By assuming the contrary, there exists a sequence un ∈ U(Q) such that

‖EM0(xuny)‖2 → 0, for all x, y ∈M0⊗̄M. (2.3)

We want to show that (2.3) holds for all x, y ∈M0⊗̄M̃, which will contradict the assumption.
Note that it is enough to consider x = 1 and y ∈ M̃ . In this case, by using (2.3) we obtain
EM0(uny) = EM0(EM0⊗̄M (uny)) = EM0(unEM0⊗̄M (y)), which goes to 0 in the ‖ · ‖2-norm. This
finishes the proof. �

3. Malleable deformations for von Neumann algebras: class M

3.1 Malleable deformations
Popa introduced in [Pop06a, Pop06b] the notion of an s-malleable deformation of a von Neumann
algebra. This notion has been successfully used in the framework of his deformation/rigidity
theory and led to a plethora of remarkable results in the theory of von Neumann algebras, see
the surveys [Pop07a, Vae10, Ioa14, Ioa18]. We also refer the reader to [dSHHS20] for recent
developments on s-malleable deformations.

Definition 3.1. Let (M, τ) be a tracial von Neumannn algebra. A pair (M̃, (αt)t∈R) is called
an s-malleable deformation of M if the following conditions hold:

• (M̃, τ̃) is a tracial von Neumann algebra such that M ⊂ M̃ and τ = τ̃|M ;
• (αt)t∈R ⊂ Aut(M̃, τ̃) is a 1-parameter group with limt→0 ‖αt(x) − x‖2 = 0, for any x ∈ M̃ ;
• there is β ∈ Aut(M̃, τ̃) satisfying β|M = IdM , β2 = IdM̃ and βαt = α−tβ, for any t ∈ R;
• αt does not converge uniformly to the identity on (M)1 as t→ 0.

For a subalgebra Q ⊂ qMq, we say that Q is α-rigid if αt converges uniformly to the
identity on (Q)1 as t→ 0. We will repeatedly use the following stability result for s-malleable
deformations.

Proposition 3.2 [Vae13, Proposition 3.4]. Let (M̃, (αt)t∈R) be an s-malleable deformation of
a tracial von Neumann algebra M . Let P ⊂ pMp be a subalgebra that is generated by a group
of unitaries G ⊂ U(P ). Assume that αt → id uniformly on rGr for a projection r ∈ pMp.

Then there is a projection z ∈ NpMp(P )′ ∩ pMp with r ≤ z such that Pz is α-rigid.

2031

https://doi.org/10.1112/S0010437X2300739X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2300739X


D. Drimbe

3.2 Definition of class M

We are now ready to define the class of II1 factors that is used in our main results stated in the
introduction.

Definition 3.3. We say that a non-amenable II1 factor M belongs to class M if there exists
an s-malleable deformation (M̃, (αt)t∈R) of M and an amenable subalgebra A ⊂M satisfying
L2(M̃)  L2(M) is a mixing M -M -bimodule relative to A, L2(M̃)  L2(M) is weakly con-
tained in the coarse bimodule L2(M) ⊗ L2(M) as M -M -bimodules and one of the following
holds:

(1) A = C1;
(2) if N is a tracial von Neumann algebra and P ⊂ p(M⊗̄N)p a subalgebra such that

P ≺M⊗N A⊗N and P ′ ∩ p(M⊗̄N)p is strongly non-amenable relative to 1 ⊗N , then
P ≺M⊗N 1 ⊗N.

As a consequence of Popa’s spectral gap principle [Pop07b], we continue with the following
remark.

Remark 3.4. Let M ∈ M be a II1 factor, denote by (M̃, (αt)t∈R) the associated s-malleable defor-
mation of M and let N be any tracial von Neumann algebra. If Q ⊂ q(M⊗̄N)q is a von Neumann
subalgebra which is strongly non-amenable relative to N , then Q′ ∩ q(M⊗̄N)q is (α⊗ id)-rigid.
This essentially follows from [Pop07b] (see, for instance, the proofs of [Ioa12, Lemma 2.2] or
[Dri21, Lemma 3.5]).

The following proposition provides concrete examples of group von Neumann algebras that
belong to M. The result is a consequence of Remark 3.4 and [Dri21, Proposition 3.4]).

Proposition 3.5. If Γ belongs to one of the three classes of groups mentioned in Example 1.1,
then L(Γ) belongs to M.

Next, we present a useful result for group von Neumann algebras L(Γ) that belong to M in
order to understand structural results of trace-preserving actions of Γ. In fact, this is a direct
consequence of Popa’s spectral gap principle [Pop07b].

Lemma 3.6. Let Γ � B be a trace-preserving action and denote M = B � Γ. We denote by
Ψ : M → M⊗̄L(Γ) the ∗-homomorphism given by Ψ(bug) = bug ⊗ ug, for all b ∈ B and g ∈ Γ.
Assume that L(Γ) belongs to M and let (M̃, (αt)t∈R) be the associated s-malleable deformation.

If P ⊂ pMp is a von Neumann subalgebra that is strongly non-amenable relative to B inside
M, then Ψ(P ′ ∩ pMp) is (id ⊗ α)-rigid. Moreover, if we also assume that P ′ ∩ pMp ⊀M B, then
Ψ(P ∨ (P ′ ∩ pMp)) is (id ⊗ α)-rigid.

Proof. Denote M = L(Γ). By applying [Dri20a, Lemma 2.10], we get that Ψ(P ) is strongly
non-amenable relative to M⊗̄1 inside M⊗̄M . Then Remark 3.4 implies that Ψ(P ′ ∩ pMp) is
(id ⊗ α)-rigid. For proving the second part, assume in addition that P ′ ∩ pMp ⊀M B and let
A ⊂M be an amenable subalgebra as given by the assumption that M belongs to M. By using
[Ioa12, Lemma 9.2(1)] we get Ψ(P ′ ∩ pMp) ⊀M⊗̄M M⊗ 1, and by assumption we must have
Ψ(P ′ ∩ pMp) ⊀M⊗̄M M⊗A. Hence, in combination with Ψ(P ′ ∩ pMp) being (id ⊗ α)-rigid and
the fact that L2(M⊗̄M̃)  L2(M⊗̄M) is a mixing M⊗̄M -bimodule relative to M⊗̄A, we get
from [dSHHS20, Corollary 6.7] that Ψ(P ∨ (P ′ ∩ pMp)) is (id ⊗ α)-rigid. �
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3.3 Measure equivalence and non-property Gamma for class M

In this subsection we show that the lack of property Gamma is preserved under measure
equivalence for finite products of groups whose von Neumann algebras belong to M, see
Proposition 3.8. For proving this result, we first establish the following notation that will be
assumed for Proposition 3.8, but will also be useful for the following sections.

Notation 3.7. Let Λ be a countable icc group that is measure equivalent to a product Γ =
Γ1 × · · · × Γn of n ≥ 1 groups. By using [Fur99, Lemma 3.2], there exist d ≥ 1, free ergodic pmp
actions Γ � (X,μ) and Λ � (Y, ν) such that

R(Λ � Y ) = R(Γ × Z/dZ � X × Z/dZ) ∩ (Y × Y ).

Here, we considered that Z/dZ � (Z/dZ, c) acts by addition and c is the counting measure.
We also identified Y as a measurable subset of X × Z/dZ and denote p = 1Y ∈ L∞(X × Z/dZ).
Note that L∞(Z/dZ) � Z/dZ = Md(C). Hence, by letting B = L∞(Y ), A = L∞(X) ⊗Md(C),
and M = A� Γ, we have pMp = B � Λ and B ⊂ pAp. Denote by {ug}g∈Γ and {vλ}λ∈Λ the
canonical unitaries implementing the actions Γ � A and Λ � B, respectively.

Following [PV10] we define the ∗-homomorphism Δ : pMp→ pMp⊗̄L(Λ) by Δ(bvλ) = bvλ ⊗
vλ, for all b ∈ B, λ ∈ Λ. One can extend Δ to a ∗-homomorphism Δ : M →M⊗̄L(Λ) and verify
that Δ(M)′ ∩M⊗̄L(Λ) = C1 since Λ is icc (see the first part of [DHI16, § 5] for more details).

For any i ∈ 1, n, let Ψi : M →M⊗̄L(Γi) be the ∗-homomorphism given by Ψi(xug) = xug ⊗
ug, for all x ∈ A� Γî, g ∈ Γi.

Proposition 3.8. Assume that L(Γi) belongs to M, for any 1 ≤ i ≤ n.
Then L(Λ) does not have property Gamma.

Proof. Let (M̃i, (αi
t)t∈R) be the associated s-malleable deformation of L(Γi) ∈ M. By assuming

that L(Λ) has property Gamma, we can use [HU16, Theorem 3.1] to obtain a decreasing sequence
of diffuse abelian von Neumann subalgebras Qn ⊂ L(Λ) with n ≥ 1 such that L(Λ) =

∨
n≥1(Q

′
n ∩

L(Λ)). Since Q1 is abelian, it follows that (Q′
1 ∩ pMp)′ ∩ pMp ⊂ Q′

1 ∩ pMp. Hence, for all k,
n ≥ 1, we have

Z(Q′
n ∩ pMp) ⊂ Q′

1 ∩ pMp ⊂ Q′
k ∩ pMp. (3.1)

Using Zorn’s lemma and a maximality argument, one can show that for any m ≥ 1, there
exist maximal projections r1m, . . . , r

n
m ∈ Q′

m ∩ pMp satisfying Qmr
i
m ⊀M A� Γî, for any i ∈ 1, n.

One can check that ri
m ∈ Z(Q′

m ∩ pMp) and Qm(p− ri
m) ≺s

M A� Γî, for any i ∈ 1, n (see the
proof of [DHI16, Lemma 2.4]).

Since Qm ⊀M A, [DHI16, Lemma 2.8(2)] implies that
∧n

i=1(p− ri
m) = 0, which proves that∨n

i=1 r
i
m = p. Hence, for any m ≥ 1 there is im ∈ 1, n such that τ(rim

m ) ≥ τ(p)/n. Up to passing
to a subsequence, we can assume that there is j ∈ 1, n such that im = j, for all m ≥ 1. Next, note
that (3.1) gives that rj

m ∈ Z(Q′
m ∩ pMp) ⊂ Q′

m−1 ∩ pMp. Since Qm−1r
j
m ⊀M A� Γĵ , it follows

from the choice of all the rj
m’s that {rj

m}m≥1 is a decreasing sequence of projections. If we let
rj =

∧
m≥1 r

j
m, we deduce that rj is a non-zero projection since τ(rj) ≥ τ(p)/n. For allm ≥ k ≥ 1,

since Qm ⊂ Qk we have that rj
m ∈ (Q′

k ∩ pMp)′ ∩ pMp. Consequently, by letting m→ ∞, we
deduce that rj ∈ (Q′

k ∩ pMp)′ ∩ pMp, for all k ≥ 1, which implies that rj ∈ L(Λ)′ ∩ pMp = Cp.
Since rj �= 0, we derive that rj = p and, therefore, we must have rj

m = p, for any m ≥ 1. This
implies that Qm ⊀M A� Γĵ , for any m ≥ 1.

Since Γj is non-amenable, it follows from [DHI16, Lemma 2.9] that L(Λ) is non-amenable
relative to A� Γĵ inside M . Since relative amenability is closed under inductive limits
(see [DHI16, Lemma 2.7]), there exists k ≥ 1 such that Q′

k ∩ pMp is non-amenable relative to
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A� Γĵ inside M . Using [DHI16, Lemma 2.6] there is a non-zero projection zj ∈ Z(Q′
k ∩ pMp)

such that

(Q′
k ∩ pMp)zj is strongly non-amenable relative to A� Γĵ inside M. (3.2)

This implies by Lemma 3.6 that Ψj(Qkz
j) is (id ⊗ αj)-rigid. Fix an arbitrary m ≥ k. Since Qm ⊂

Qk, we have zj ∈ Z(Q′
k ∩ pMp) ⊂ Q′

m ∩ pMp and

Ψj(Qmz
j) is (id ⊗ αj)-rigid and Qmz

j ⊀M A� Γĵ . (3.3)

Equation (3.2) also implies that

zj(Q′
m ∩ pMp)zj is strongly non-amenable relative to A� Γĵ inside M. (3.4)

By combining (3.3) and (3.4), it follows from the second part of Lemma 3.6 that Ψj(zj(Q′
m ∩

pMp)zj) is (id ⊗ αj)-rigid, for any m ≥ k. Note that (3.3) gives, in particular, that zj(Q′
m ∩

pMp)zj ⊀M A� Γĵ , for any m ≥ k. Therefore, we may apply [dSHHS20, Theorem 3.5] (see
also [Dri21, Theorem 3.2]) to deduce that Ψj(zj

∨
m≥k(Q

′
m ∩ pMp)zj) is (id ⊗ αj)-rigid. Using

[dSHHS20, Proposition 5.6] there exists a non-zero projection z̃j ∈ Z(
∨

m≥n(Q′
m ∩ pMp)) such

that Ψj(
∨

m≥k(Q
′
m ∩ pMp)z̃j) is (id ⊗ αj)-rigid. Note, however, that

∨
m≥k(Q

′
m ∩ pMp) is a fac-

tor since
∨

m≥k(Q
′
k ∩ L(Λ)) = L(Λ) and Λ is icc. In particular, Ψj(L(Λ)) is (id ⊗ αj)-rigid. Since

Ψj(B) ⊂M ⊗ 1, it follows that Ψj(M) is (id ⊗ αj)-rigid, which gives that L(Γj) is αj-rigid,
contradiction. This ends the proof of the proposition. �

4. Measure equivalence and tensor product decompositions for class M

In this section we establish the main ingredients needed for the proof of Theorem B by building
upon methods from [DHI16, IM19]. Throughout this section, we will use Notation 3.7 and the
following assumption.

Assumption 4.1. For any i ∈ 1, n, assume that L(Γi) belongs to M and denote by (M̃i, (αi
t)t∈R)

the associated s-malleable deformation of L(Γi).

4.1 Step 1
The main goal of this subsection is to prove the following theorem.

Theorem 4.2. Let L(Λ) = P1⊗̄P2 be a tensor product decomposition into II1 factors.
Then there is a partition S1 � S2 = {1, . . . , n} into non-empty sets such that Δ(A�

ΓSi) ≺s
M⊗̄L(Λ) M⊗̄Pi, for all i ∈ {1, 2}.

Before proceeding to the proof of Theorem 4.2, we make the following remark and prove two
lemmas.

Remark 4.3. In this remark we explain why the proof of Theorem 4.2 uses a relative version of
the flip automorphism method introduced by Isono and Marrakchi [IM19]. The conclusions (C1)
and (C2) of Theorems 4.2 and 4.6, respectively, assert that:

(C1) ∃ a partition S1 � S2 = {1, . . . , n} such that Δ(A� ΓSi) ≺s
M⊗̄L(Λ) M⊗̄Pi, for all i ∈ {1, 2};

(C2) ∃ a partition T1 � T2 = {1, . . . , n} such that Pi ≺s
M A� ΓTi , for all i ∈ {1, 2}.

Note that conclusion (C2) cannot be directly obtained by using Popa’s spectral gap arguments
(Lemma 3.6) since if P1 and P2 are both amenable relative to A� Γî for some i ∈ 1, n, one
cannot immediately derive a contradiction. To overcome this difficulty, we first show conclusion
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(C1) and use this result in order to prove conclusion (C2). Finally, note that since P1 and P2

do not hold any ‘relative solidity properties’, Lemma 3.6 cannot be directly applied for proving
conclusion (C1). Hence, we proceed by using the flip automorphism method [IM19] in order to
obtain a situation where Lemma 3.6 can actually be applied.

Lemma 4.4. Let L(Λ) = P1⊗̄P2 be a tensor product decomposition into II1 factors and denote
M = M⊗̄L(Λ).

Then there is a partition S1 � S2 = {1, . . . , n} and a projection 0 �= z ∈ Δ(L(Γ))′ ∩M such
that:

• Δ(L(Γi))z is strongly non-amenable relative to M⊗̄P1 inside M for all i ∈ S2;
• Δ(L(Γi))z is strongly non-amenable relative to M⊗̄P2 inside M for all i ∈ S1.

Proof. Let i ∈ {1, . . . , n}. Since Γi is non-amenable, by [KV15, Proposition 2.4] we get that
Δ(L(Γi)) is strongly non-amenable relative to M ⊗ 1 inside M. It follows that for every non-
zero projection z ∈ Δ(L(Γ))′ ∩M, there exist f(i, z) ∈ {1, 2} and a non-zero projection p(i, z) ∈
Δ(L(Γ))′ ∩M with p(i, z) ≤ z such that

Δ(L(Γi))p(i, z) is strongly non-amenable relative to M⊗̄Pf(i,z) inside M. (4.1)

Indeed, otherwise there exists a non-zero projection z ∈ Δ(L(Γ))′ ∩M such that for any
k ∈ {1, 2} and non-zero projection z0 ∈ Δ(L(Γ))′ ∩M with z0 ≤ z, there exists a non-zero pro-
jection z̃0 ∈ Δ(L(Γ))′ ∩M with z̃0 ≤ z0 for which Δ(L(Γi))z̃0 is amenable relative to M⊗̄Pk

inside M. By using [PV14, Proposition 2.7] we derive that there exists a non-zero projection
z̃1 ∈ Δ(L(Γ))′ ∩M with z̃1 ≤ z for which Δ(L(Γi))z̃1 is amenable relative to M⊗̄1 inside M,
contradiction.

By applying (4.1) finitely many times, the proof will be obtained as follows. Define z1 =
p(1, 1) and f(1) = f(1, 1). For any i ∈ {2, . . . , n} we recursively define zi = p(i, zi−1) and f(i) =
f(i, zi−1). Note that z1 ≥ z2 ≥ · · · ≥ zn are non-zero projections in Δ(L(Γ))′ ∩M. Hence, the
lemma follows by letting S1 = f−1(2), S2 = f−1(1), and z = zn. �

We continue with the following notation that will be used in the following lemma, but
also in the proof of Theorem 4.2. For any 1 ≤ j ≤ n, denote Ψj,4 = idM ⊗ idM ⊗ idM ⊗ Ψj and
αj,5 = idM ⊗ idM ⊗ idM ⊗ idM ⊗ αj . By letting M = M⊗̄L(Λ), note that Ψj(p) = p⊗ 1 and
Ψj,4(M⊗̄M) ⊂M⊗̄L(Λ)⊗̄M⊗̄pMp⊗̄L(Γj).

Lemma 4.5. Let σ ∈ Aut(M⊗̄M) be an automorphism for which σ|(M⊗1)⊗̄(M⊗1) =
id(M⊗1)⊗̄(M⊗1) and (1 ⊗ L(Λ))⊗̄(1 ⊗ L(Λ)) is σ-invariant. Then Ψj,4(σ(Δ(M)⊗̄Δ(M))z is not
αj,5-rigid, for all non-zero projections z ∈ Ψj,4(σ(Δ(M)⊗̄Δ(M))′ ∩M⊗̄L(Λ)⊗̄M⊗̄pMp⊗̄L(Γj)
and j ∈ 1, n.

Proof. By assuming the contrary, there exist j ∈ {1, . . . , n} and a projection z as in the statement
such that Ψj,4(σ(Δ(M)⊗̄Δ(M))z is αj,5-rigid. Hence, for any ε > 0, there is t0 > 0 such that

‖Ψj,4(σ(vg ⊗ vg ⊗ vh ⊗ vh))z − αj,5
t (Ψj,4(σ(vg ⊗ vg ⊗ vh ⊗ vh))z)‖2 ≤ ε,

for all g, h ∈ Λ and |t| ≤ t0. Since σ acts trivially on (M ⊗ 1)⊗̄(M ⊗ 1), we obtain that

‖Ψj,4(σ(1 ⊗ vg ⊗ 1 ⊗ vh))z − αj,5
t (Ψj,4(σ(1 ⊗ vg ⊗ 1 ⊗ vh))z)‖2 ≤ ε,

for all g, h ∈ Λ and |t| ≤ t0. If we let G = {Ψj,4(σ(1 ⊗ vg ⊗ 1 ⊗ vh))| g, h ∈ Λ}, we get that G′′ =
Ψj,4(1 ⊗ L(Λ) ⊗ 1⊗̄L(Λ)) = 1 ⊗ L(Λ) ⊗ 1⊗̄Ψj(L(Λ)) since (1 ⊗ L(Λ))⊗̄(1 ⊗ L(Λ)) is σ-invariant.
Note that NM⊗̄L(Λ)⊗̄M⊗̄pMp⊗̄L(Γj)(G′′) ⊂ 1 ⊗ 1 ⊗ 1 ⊗ (Ψj(L(Λ))′ ∩ (pMp⊗̄L(Γj))).
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By applying Proposition 3.2 we obtain a non-zero projection z0 ∈ Ψj(L(Λ))′ ∩ (pMp⊗̄L(Γj))
such that Ψj(L(Λ))z0 is (id ⊗ αj)-rigid. Since Ψj(B) = B ⊗ 1 and Ψj(pMp)′ ∩ (pMp⊗̄L(Γj)) =
C(p⊗ 1), it follows from Proposition 3.2 that Ψj(pMp) is (id ⊗ αj)-rigid, and hence, Ψj(M) is
(id ⊗ αj)-rigid. This shows that L(Γj) is αj-rigid: contradiction. �
Proof of Theorem 4.2. Denote M = M⊗̄L(Λ) and M̃ = M⊗̄M . For proving this theorem, we
use the following variation of the flip automorphism method from [IM19]. Namely, since
L(Λ) = P1⊗̄P2, we define σP1 ∈ Aut(M⊗̄M) by letting σP1(m⊗ p1 ⊗ p2 ⊗m′ ⊗ p′1 ⊗ p′2) = m⊗
p′1 ⊗ p2 ⊗m′ ⊗ p1 ⊗ p′2, for all m,m′ ∈M,p1, p

′
1 ∈ P1, p2, p

′
2 ∈ P2.

By applying Lemmas 4.4 and 2.4 we obtain a partition S1 � S2 = {1, . . . , n} and a non-zero
projection z ∈ Δ(L(Γ))′ ∩M such that

Δ(L(Γi))z ⊗ 1 is strongly non-amenable relative to (M⊗̄P2)⊗̄(M⊗̄P1) inside M⊗̄M,

1 ⊗ Δ(L(Γj))z is strongly non-amenable relative to (M⊗̄P2)⊗̄(M⊗̄P1) inside M⊗̄M,
(4.2)

for all i ∈ S1 and j ∈ S2. By applying the flip automorphism σP1 to (4.2), we derive that

σP1(Δ(L(Γi))z ⊗ 1) is strongly non-amenable relative to M⊗̄(M ⊗ 1) inside M⊗̄M,

σP1(1 ⊗ Δ(L(Γj))z) is strongly non-amenable relative to M⊗̄(M ⊗ 1) inside M⊗̄M,

for all i ∈ S1 and j ∈ S2. By using Lemma 2.4, we further deduce that

σP1(Δ(L(Γi))z ⊗ 1) is strongly non-amenable relative to M⊗̄(M ⊗ 1) inside M⊗̄M̃,

σP1(1 ⊗ Δ(L(Γj))z) is strongly non-amenable relative to M⊗̄(M ⊗ 1) inside M⊗̄M̃,
(4.3)

for all i ∈ S1 and j ∈ S2. Denote ẑ = σP1(z ⊗ z) ∈ σP1(Δ(L(Γ))⊗̄Δ(L(Γ)))′ ∩ (M⊗̄M) and
note that ẑ ≤ σP1(z ⊗ 1), ẑ ≤ σP1(1 ⊗ z). For ease of notation, we denote Qi = Δ(L(Γi)) ⊗ 1
and Ri = Δ(L(Γî)⊗̄Δ(L(Γ)), for all i ∈ S1. Similarly, denote Qj = 1 ⊗ Δ(L(Γj)) and Rj =
Δ(L(Γ))⊗̄Δ(L(Γĵ), for all j ∈ S2. Note thatQi ∨Ri = Δ(L(Γ))⊗̄Δ(L(Γ)), for any i ∈ {1, . . . , n}.

By applying a similar argument to that used in the proof of Lemma 4.4, we deduce from (4.3)
that there exist a non-zero projection z̃ ∈ σP1(Δ(L(Γ))⊗̄Δ(L(Γ)))′ ∩ (M⊗̄M̃) and a function
ϕ : {1, . . . , n} → {1, . . . , n} such that

σP1(Qi)z̃ is strongly non-amenable relative to M⊗̄M⊗̄(A� Γ
ϕ̂(i)

), (4.4)

for all i ∈ {1, . . . , n}. By Lemma 3.6, we get that for any i ∈ {1, . . . , n},
Ψϕ(i),4(σP1(Ri)z̃) is αϕ(i),5 -rigid. (4.5)

Next, we claim that the map ϕ is bijective. If this does not hold, it is easy to see that we
can deduce from (4.4) that there exists j ∈ {1, . . . , n} such that

Ψj,4(σP1(Δ(L(Γ))⊗̄Δ(L(Γ)))z̃) is αj,5-rigid. (4.6)

Using the position of B ⊂ A, and σP1(Δ(B)⊗̄Δ(B)) ⊂ M⊗̄(M ⊗ 1), we obtain that

Ψj,4(σP1(Δ(A)⊗̄Δ(A)) is αj,5-rigid. (4.7)

Relations (4.6) and (4.7) in combination with Proposition 3.2 gives a contradiction
to Lemma 4.5. This shows that ϕ is indeed bijective. Next, we claim that for all
i ∈ {1, . . . , n},

σP1(Ri)z̃ ≺s
M⊗̄M̃ M⊗̄M⊗̄(A� Γ

ĝ(i)
), (4.8)

Assume by contradiction that there is i ∈ {1, . . . , n} for which (4.8) does not hold. Then by using
[DHI16, Lemma 2.4(2)], it follows that, up to replacing z̃ by a smaller non-zero projection, we
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have σP1(Ri)z̃ ⊀M⊗̄M̃ M⊗̄M⊗̄(A� Γ
ĝ(i)

). Using (4.4) and (4.5) we may apply Lemma 3.6 to

deduce that Ψj,4(σP1(Δ(L(Γ))⊗̄Δ(L(Γ)))z̃) is αj,5-rigid. As before, Proposition 3.2 leads to a
contradiction.

Finally, by applying [DHI16, Lemma 2.8(2)] finitely many times, we deduce from (4.8) that

σP1(Δ(L(Γ
Ŝ1

))⊗̄Δ(L(Γ
Ŝ2

))) ≺M⊗̄M̃ M⊗̄(M ⊗ 1).

By applying Lemma 2.4 we further obtain that σP1(Δ(L(Γ
Ŝ1

))⊗̄Δ(L(Γ
Ŝ2

))) ≺M⊗̄M M⊗̄
(M ⊗ 1). By applying the flip automorphism σP1 to the previous intertwining relation, we
deduce that Δ(L(ΓSi)) ≺M M⊗̄Pi, for all i ∈ {1, 2}. Since Δ(A) ≺s

M B ⊗ 1, we may use [BV14,
Lemma 2.3] to get that Δ(A� ΓSi) ≺M M⊗̄Pi, for all i ∈ {1, 2}. Since NM(Δ(A� ΓSi))

′ ∩M ⊂
Δ(M)′ ∩M = C1, we obtain Δ(A� ΓSi) ≺s

M M⊗̄Pi, for all i ∈ {1, 2}.
For showing that S1 and S2 are non-empty sets, we suppose the contrary. Hence, without loss

of generality, assume that S2 is empty. This shows that Δ(M) ≺M M⊗̄P1, which implies from
[Ioa11, Lemma 9.2] that L(Λ) ≺L(Λ) P1. This shows that P2 is not diffuse: a contradiction. �

4.2 Step 2
By using Step 1, we obtain the following intertwining result. Recall that we are using Notation 3.7
and Assumption 4.1.

Theorem 4.6. Let L(Λ) = P1⊗̄P2 be a tensor product decomposition into II1 factors.
Then there is a partition T1 � T2 = {1, . . . , n} such that Pi ≺s

M A� ΓTi , for all i ∈ {1, 2}.

Throughout the proof we are using the following notation: if N is a tracial von Neumann
algebra and P ⊂ pNp and Q ⊂ qNq are von Neumann subalgebras, we denote P ≺s′

N Q if P ≺N

Qq′, for any non-zero projection q′ ∈ Q′ ∩ qNq.

Proof of Theorem 4.6. Theorem 4.2 implies that there exist projections r1 ∈ Δ(L(ΓS1)),
q1 ∈M⊗̄P1, a non-zero partial isometry w1 ∈ q1(M⊗̄M)r1 and a ∗-homomorphism ϕ1 :
r1Δ(L(ΓS1))r1 → q1(M⊗̄P1)q1 such that ϕ1(x)w1 = w1x, for all x ∈ r1Δ(L(ΓS1))r1. Fix an arbi-
trary j0 ∈ S1. Since L(Γj0) is a II1 factor we can apply [CdSS18, Lemma 4.5] and therefore
assume without loss of generality that r1 ∈ L(Γj0). In addition, we can assume that the sup-
port projection of EM⊗̄P1

(w1w
∗
1) equals q1. For any j ∈ S1, denote Qj

1 = ϕ1(r1Δ(L(Γj))r1) ⊂
q1(M⊗̄P1)q1 and let Q1 =

∨
j∈S1

Qj
1. Note that for any subset S ⊂ S1, we have Δ(L(ΓS)) ≺s′

M⊗̄P1∨
j∈S Q

j
1. Indeed, let S ⊂ S1 and consider a non-zero projection z ∈ Q′

1 ∩ q1(M⊗̄P1)q1. Note
that w̃1 := zw1 �= 0 since otherwise zEM⊗̄P1

(w1w
∗
1) = 0, which implies that z = 0, false. This

shows that the ∗-homomorphism ϕ̃1 : r1Δ(L(ΓS))r1 →
∨

j∈S Q
j
1z satisfies ϕ̃1(x)w̃1 = w̃1x, for

all x ∈ r1Δ(L(ΓS))r1. By replacing w̃1 by the partial isometry from its polar decomposi-
tion, we derive that Δ(L(ΓS)) ≺M⊗̄P1

∨
j∈S Q

j
1z. By using [DHI16, Lemma 2.4] it follows that

Δ(L(ΓS)) ≺s′
M⊗̄P1

∨
j∈S Q

j
1. By applying [Dri20b, Lemma 2.3], we derive that for any subset

S ⊂ S1,

Δ(L(ΓS)) ≺s′
M⊗̄M

∨
j∈S

Qj
1. (4.9)

The rest of the proof is divided between three claims. �

Claim 1. For any j ∈ S1 and non-zero projection z ∈ Q′
1 ∩ q1(M⊗̄P1)q1, there exist k ∈

{1, . . . , n} and a non-zero projection z0 ∈ Q′
1 ∩ q1(M⊗̄P1)q1 with z0 ≤ z such that Qj

1z0 is
strongly non-amenable relative to M⊗̄(A� Γ

k̂
) inside M⊗̄M .
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Proof of Claim 1. We assume by contradiction that there exist j ∈ S1 and a non-zero projection
z ∈ Q′

1 ∩ q1(M⊗̄P1)q1 such that Qj
1z is amenable relative to M⊗̄(A� Γ

k̂
), for all k ∈ {1, . . . , n}.

By applying [PV14, Proposition 2.7] we get that Qj
1z is amenable relative to M ⊗ 1 inside

M⊗̄M . Relation (4.9) implies that Δ(L(Γj)) ≺M⊗̄M Qj
1z. We can apply [DHI16, Lemma 2.4(3)

and Lemma 2.6(3)] and derive that there exists a non-zero projection r′ ∈ Δ(L(Γj))′ ∩M⊗̄M
such that Δ(L(Γj))r′ is amenable relative to Qj

1z ⊕ C(1 − z). Using [OP10, Proposition 2.4(3)]
we derive that Δ(L(Γj))r′ is amenable relative to M ⊗ 1. By using [IPV13, Lemma 10.2(5)] we
deduce that Γj is amenable: a contradiction. Thus, there exist k ∈ {1, . . . , n} such that Qj

1z is
non-amenable relative to M⊗̄(A� Γ

k̂
). By [DHI16, Lemma 2.6], there exists a non-zero pro-

jection z0 ∈ Nq1(M⊗̄M)q1
(Qj

1)
′ ∩ q1(M⊗̄M1)q1 ⊂ Q′

1 ∩ q1(M⊗̄P1)q1 with z0 ≤ z such that Qj
1z0 is

strongly non-amenable relative to M⊗̄(A� Γ
k̂
). �

By applying Claim 1 finitely many times and proceeding as in the proof of Lemma 4.4, there
exist a non-zero projection z ∈ Q′

1 ∩ q1(M⊗̄P1)q1 and a map 1, n � j → kj ∈ 1, n such that

Qj
1z is strongly non-amenable relative to M⊗̄(A� Γ

k̂j
), for any j ∈ 1, n. (4.10)

Claim 2. We claim that P2 ≺s
M A� Γ

k̂j
, for all j ∈ S1.

Proof of Claim 2. Fix an arbitrary j ∈ S1. We are in one of the following situations. First,
if we assume that (1 ⊗ P2)z ≺M⊗̄M M⊗̄(A� Γ

k̂j
), we get P2 ≺M A� Γ

k̂j
. Since NpMp(P2)′ ∩

pMp ⊂ L(Γ)′ ∩ pMp = Cp, the claim follows from [DHI16, Lemma 2.4(3)]. Second, assume
that (1 ⊗ P2)z ⊀M⊗̄M M⊗̄(A� Γ

k̂j
). Since Qj

1z ⊂ ((1 ⊗ P2)z)′ ∩ z(M⊗̄M)z, (4.10) implies that
((1 ⊗ P2)z)′ ∩ z(M⊗̄M)z is strongly non-amenable relative to M⊗̄(A� Γ

k̂j
). Altogether, we

can apply Lemma 3.6 to deduce that (1 ⊗ Ψkj )(z(M⊗̄L(Λ))z) is (id ⊗ id ⊗ αkj )-rigid. Since
M⊗̄L(Λ) is a II1 factor and (1 ⊗ Ψkj )(1 ⊗B) ⊂ 1 ⊗B ⊗ 1, it follows that (1 ⊗ Ψkj )(M⊗̄M)
is (id ⊗ id ⊗ αkj )-rigid, which implies that L(Γkj ) is αkj -rigid: a contradiction. This completes
the proof of the claim. �

Note thatQ1 and (1 ⊗ P2)q1 are commuting subalgebras of q1(M⊗̄M)q1 Thus, (4.10) together
with Lemma 3.6 imply that for any j ∈ S1 we have

(1 ⊗ Ψkj )
( ∨

i∈S1\{j}
Qi

1z ∨ (1 ⊗ P2)z
)

is (id ⊗ id ⊗ αkj )-rigid. (4.11)

We now ready to prove the following.

Claim 3. The map S1 � j → kj ∈ {1, . . . , n} is injective.

Proof of Claim 3. Assume by contradiction that there exist two distinct elements j1, j2 ∈ S1

such that k := kj1 = kj2 . Thus, (S1 \ {j1}) ∪ (S1 \ {j2}) = S1. Since the algebras Qj
1z, j ∈ S1, are

commuting, we deduce from (4.11) that (1 ⊗ Ψk)(Q1z) is (id ⊗ id ⊗ αk)-rigid. As in the proof
of Claim 1, we note that zw1 �= 0. Note also that Q1zw1 = zw1r1Δ(L(ΓS1))r1. By applying
Proposition 3.2 we obtain a non-zero projection e1 ∈ (1 ⊗ Ψk)(Δ(L(Γ)))′ ∩M⊗̄M⊗̄L(Γ) such
that

(1 ⊗ Ψk)(Δ(L(ΓS1)))e1 is (id ⊗ id ⊗ αk)-rigid. (4.12)

Since z ∈ q1(M⊗̄P1)q1 and M⊗̄P1 is a II1 factor, one can check that (4.11) implies

Ψk(P2) is (id ⊗ αk) -rigid. (4.13)
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Next, since Δ(L(ΓS2)) ≺s
M⊗̄L(Λ) M⊗̄P2, we obtain from [DHI16, Remark 2.2] that

(1 ⊗ Ψk)(Δ(L(ΓS2))) ≺s
M⊗̄M⊗̄L(Γk) M⊗̄Ψk(P2).

Therefore, (1 ⊗ Ψk)(Δ(L(ΓS2)))e1 ≺M⊗̄M⊗̄L(Γk) M⊗̄Ψ(P2), which implies by (4.13) that there is
a projection 0 �= e2 ∈ (1 ⊗ Ψk)(Δ(L(ΓS2)))

′ ∩ (M⊗̄M⊗̄L(Γk)) with e2 ≤ e1 such that

(1 ⊗ Ψk)(Δ(L(ΓS2)))e2 is (id ⊗ id ⊗ αk)-rigid. (4.14)

Note that (4.12) implies that e2(1 ⊗ Ψk)(Δ(L(ΓS1)))e2 is (id ⊗ id ⊗ αk)-rigid. Together with
(4.14) and the fact that Ψk(A) ⊂ A⊗ 1, we deduce from Proposition 3.2 that there exists a
non-zero projection e3 ∈ (1 ⊗ Ψk)(Δ(M))′ ∩M⊗̄M⊗̄L(Γk) such that

(1 ⊗ Ψk)(Δ(M))e3 is (id ⊗ id ⊗ αk)-rigid. (4.15)

This implies that for any ε > 0, there exists t0 > 0 such that for all |t| ≤ t0 and g ∈ Λ,

‖(1 ⊗ Ψk)(vg ⊗ vg)e3 − (id ⊗ id ⊗ αk
t )((1 ⊗ Ψk)(vg ⊗ vg)e3)‖2 ≤ ε,

and, therefore,

‖(1 ⊗ Ψk)(1 ⊗ vg)e3 − (id ⊗ id ⊗ αk
t )((1 ⊗ Ψ)(1 ⊗ vg)e3)‖2 ≤ ε.

Note that Ψk(B) ⊂ B ⊗ 1. By applying Proposition 3.2 we get that Ψk(M)e0 is (id ⊗ αk)-rigid for
a projection 0 �= e0 ∈ Ψk(M)′ ∩ (M⊗̄L(Γk)). Since Γk is icc, we get Ψk(M)′ ∩ (M⊗̄L(Γk)) = C1.
Thus, we obtain that L(Γk) is αk-rigid, contradiction.

Denote R1 = {kj | j ∈ S1} ⊂ {1, . . . , n}. Claim 3 implies that |S1| = |R1| while Claim 2
together with [DHI16, Lemma 2.8(2)] gives that P1 ≺s

M B � Λ
R̂1

. In a similar way, there
exists a subset R2 ⊂ {1, . . . , n} with |S2| = |R2| such that P2 ≺s

M A� Γ
R̂2

. By using [CDD21,
Proposition 4.4] we deduce that L(Γ) ≺s

M A� Γ
R̂1∪R̂2

. Using [BV14, Lemma 2.3] we get that

M ≺M A� Γ
R̂1∪R̂2

, which implies that R̂1 ∪ R̂2 = {1, . . . , n}.
Finally, we let T1 = R̂1 and T2 = R̂2. Since S1 � S2 = {1, . . . , n} is a partition, it follows that

T1 � T2 = {1, . . . , n} is a partition as well. This ends the proof. �

5. From unitary conjugacy of subalgebras to cohomologous cocycles

In this section we prove Proposition 5.1 which provides sufficient conditions at the von Neumann
algebra level for untwisting the underlying cocycle of an orbit equivalence of irreducible actions.

Throughout this section we will use the well-known fact that if Γ � (X,μ) and Λ � (Y, ν)
are free ergodic pmp actions such that there is a measure space isomorphism θ : X → Y with
θ(Γx) = Λθ(x), for almost every x ∈ X, then the induced isomorphism of von Neumann alge-
bras π : L∞(X) → L∞(Y ) given by π(a) = a ◦ θ−1 extends to an isomorphism π : L∞(X) � Γ →
L∞(Y ) � Λ satisfying π(ug) = vθ◦g◦θ−1 , for any g ∈ Γ. Here and throughout the section, we
denote by vφ ∈ U(L∞(Y ) � Λ) the associated unitary of φ ∈ [R(Λ � Y )]; see [AP10, § 1.5.2] for
more details.

Proposition 5.1. Let Γ = Γ1 × · · · × Γn � (X,μ) and Λ = Λ1 × · · · × Λn � (Y, ν) be free,
irreducible, pmp actions such that are OE via a map θ : X → Y . Denote by π : L∞(X) � Γ →
L∞(Y ) � Λ the ∗-isomorphism associated to θ and let c : Γ ×X → Λ be the Zimmer cocycle
associated to θ.

If there exist u1, . . . , un ∈ U(L∞(Y ) � Λ) such that π(L∞(X) � Γî) = ui(L∞(Y ) � Λî)u
∗
i , for

any i ∈ {1, . . . , n}, then c is cohomologous to a group isomorphism δ : Γ → Λ.
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We first need the following elementary result. For completeness, we provide a proof.

Lemma 5.2. Let Γ � (X,μ) and Λ � (Y, ν) be free, ergodic, pmp actions. For any 1 ≤ i ≤ 2,
assume that there exist a ∗-isomorphism πi : L∞(X) � Γ → L∞(Y ) � Λ such that πi(L∞(X)) =
L∞(Y ), let θi : X → Y be the measure space isomorphism defined by πi(a) = a ◦ θ−1

i , for any
a ∈ L∞(X), and let ci : Γ ×X → Λ be the Zimmer cocycle associated to θi.

If there exists ω ∈ U(L∞(Y ) � Λ) such that π2 = Ad(ω) ◦ π1, then the cocycles c1 and c2 are
cohomologous.

Proof. Since ω ∈ NL∞(Y )�Λ(L∞(Y )), we can write ω = bvϕ, for some b ∈ U(L∞(Y )) and ϕ ∈
[R(Λ � Y )] (see, for instance, [AP10, Lemma 12.1.16]). Take a measurable map ψ : Y → Λ
such that ϕ−1(y) = ψ(y)y, for almost every y ∈ Y . For any a ∈ L∞(X), we have a ◦ θ−1

2 = ω(a ◦
θ−1
1 )ω∗ = a ◦ θ−1

1 ◦ ϕ−1. This shows that θ2 = ϕ ◦ θ1. We will prove the lemma by showing that

c1(g, x)ψ(θ2(x)) = ψ(θ2(gx))c2(g, x), for all g ∈ Γ and almost every x ∈ X. (5.1)

To this end, fix an arbitrary g ∈ Γ. Define ψ̃ = ψ ◦ θ2. Since for almost every y ∈ Y and
i ∈ {1, 2}, we have (θi ◦ g ◦ θ−1

i )(y) = ci(g, θ−1
i (y))y, it follows that

c1(g−1, θ−1
2 (y))ψ̃(θ−1

2 (y))y = c1(g−1, θ−1
1 (ψ(y)y))ψ(y)y

= (θ1 ◦ g ◦ θ−1
1 )(ψ(y)y)) = (θ1 ◦ g ◦ θ−1

1 ◦ ϕ−1)(y)

= (ϕ−1 ◦ θ2 ◦ g ◦ θ−1
2 )(y) = ψ((θ2 ◦ g ◦ θ−1

2 )(y))(θ2 ◦ g ◦ θ−1
2 )(y)

= ψ̃(gθ−1
2 (y))c2(g, θ−1

2 (y))y.

Since Λ � Y is free, we obtain that (5.1) holds, thus proving the lemma. �
The following lemma is a particular case of [HHI21, Lemma 3.1] and it goes back to [MS06,

§ 5]. For the convenience of the reader, we provide a short proof for it using von Neumann
algebras.

Lemma 5.3 [HHI21]. Let Γ = Γ1 × Γ2
σ
� (X,μ) and Λ = Λ1 × Λ2

ρ
� (Y, ν) be free, ergodic, pmp

actions with Γ1 and Λ1 acting ergodically. Assume that there exists a measure space isomorphism
θ : X → Y such that θ(Γ · x) = Λ · θ(x) and θ(Γ1 · x) = Λ1 · θ(x) for almost every x ∈ X. Let c
be the Zimmer cocycle associated to θ.

Then there exists a group isomorphism δ2 : Γ2 → Λ2 such that c(g, x) ∈ Λ1δ2(g2) for every
g = (g1, g2) ∈ Γ and almost every x ∈ X.

Proof. Denote by π : L∞(X) � Γ → L∞(Y ) � Λ the ∗-isomorphism associated to θ. For ease of
notation, we suppress π. Recall that for each g ∈ Γ we can decompose

ug =
∑
λ∈Λ

1Yg,λ
vλ, (5.2)

where Yg,λ = {y ∈ Y | c(g−1, θ−1(y)) = λ−1}, as λ ∈ Λ. By assumption, c(g, x) ∈ Λ1, for any g ∈
Γ1 and almost every x ∈ X. Hence, we deduce N := L∞(X) � Γ1 = L∞(Y ) � Λ1.

Next, we fix g ∈ Γ2. Note that the actions σ|Γ2
and ρ|Λ2

extend in a natural way to actions
on N . We can write ug =

∑
λ∈Λ2

bgλvλ, with bgλ ∈ N , for all λ ∈ Λ2. Note that for any a ∈ N we
have bgλρλ(a) = σg(a)b

g
λ, for all λ ∈ Λ2. Thus, for any λ ∈ Λ2, we get (bgλ)∗bgλ ∈ N ′ ∩M = C1.

Assume by contradiction that there exist λ1 �= λ2 ∈ Λ2 such that bgλ1
and bgλ2

are non-zero. Thus,
there exist λ0 ∈ Λ2 \ {e} and a unitary c ∈ N such that ρλ0(a)c = ca, for all a ∈ N . By writing
c =

∑
λ∈Λ1

cλvλ, we have ρλ0λ−1(a)ρλ−1(cλ) = aρλ−1(cλ), for all a ∈ L∞(Y ) and λ ∈ Λ1. Since
λ0λ

−1 acts freely, we get that c = 0: a contradiction. Thus, we have shown that there exist a

2040

https://doi.org/10.1112/S0010437X2300739X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2300739X


Measure equivalence rigidity via s-malleable deformations

map δ2 : Γ2 → Λ2 and a unitary bg ∈ N , as g ∈ Γ2 satisfying

ug = bgvδ2(g). (5.3)

One immediately obtains that δ2 : Γ2 → Λ2 is a group homomorphism. In a similar way, we can
write vλ = b̃λuη2(λ) for some b̃λ ∈ N and a group homomorphism η2 : Λ2 → Γ2. It follows that
η2 ◦ δ2 = Id and δ2 ◦ η2 = Id, hence showing that δ2 is a group isomorphism.

Therefore, by combining (5.2) and (5.3), we deduce that for any g ∈ Γ2, we have that
μ(Yg,λ) = 0, for any λ /∈ Λ1δ2(g). This implies that c(g, x) ∈ Λ1δ2(g), for any g ∈ Γ2. Finally,
if g = (g1, g2) ∈ Γ, we get that c(g, x) = c(g1, g2x)c(g2, x) ∈ Λ1δ2(g2). This ends the proof of the
lemma. �

5.1 Proof of Proposition 5.1
Fix an arbitrary i ∈ 1, n. By Lemma 5.2 we get that the underlying Zimmer cocycle ci : Γ ×X →
Λ of the orbit equivalence θi : X → Y associated to πi := Ad(u∗i ) ◦ π : L∞(X) � Γ → L∞(Y ) � Λ
is cohomologous to c. Hence, there is a map ϕi : X → Λ such that c(g, x) = ϕi(gx)−1ci(g, x)ϕi(x),
for all g ∈ Γ and almost every x ∈ X. Note that Γî � X and Λî � Y are ergodic. Since
πi(L∞(X) � Γî) = L∞(Y ) � Λî, we get that θi(Γî · x) = Λî · θ(x), for almost every x ∈ X and,
hence, we obtain from Lemma 5.3 that there is a group isomorphism δi : Γi → Λi such that
ci(g, x) ∈ Λîδi(gi), for every g = (ĝi, gi) ∈ Γ = Γî × Γi and almost every x ∈ X.

Next, since Λ = Λ1 × · · · × Λn we decompose ϕi = ϕ1
i . . . ϕ

n
i and ci = c1i . . . c

n
i where ϕj

i and cji
are valued to Λj , for any j ∈ 1, n. By letting ϕ = ϕ1

1 . . . ϕ
n
n : X → Λ and c̃ : Γ ×X → Λ defined by

c̃(g, x) = ϕ(gx)c(g, x)ϕ(x)−1, we get c̃(g, x) = φ(gx)φi(gx)−1ci(g, x)φi(x)φ(x)−1, for all i ∈ 1, n,
g ∈ Γ and almost every x ∈ X. Consequently, we obtain that for every g = (ĝi, gi) ∈ Γ = Γî × Γi

and almost every x ∈ X, we have c̃i(g, x) = cii(g, x) = δi(gi); here, we denoted by c̃ = c̃1 . . . c̃n the
decomposition along Λ = Λ1 × · · · × Λn. We define the group isomorphism δ : Γ → Λ by letting
δ(g1 . . . gn) = δ1(g1) . . . δn(gn), for all g1 ∈ Γ1, . . . , gn ∈ Γn. This shows that c̃(g, x) = δ(g), for all
g ∈ Γ and almost every x ∈ X, which entails to c is cohomologous to the group isomorphism δ.

6. Proofs of Theorems A and B and Corollary C

In this section we prove the first three main results stated in the introduction. Towards this,
we first prove an abstract version of [DHI16, Lemma 5.10] in the sense that we only require the
lack of property Gamma instead of relative solidity assumptions. In order to properly state and
prove the result, we assume the terminology introduced in Notation 3.7.

Lemma 6.1. Let L(Λ) = P1⊗̄P2 be a tensor product decomposition into II1 factors.
Assume there exist two partitions T1 � T2 = S1 � S2 = {1, . . . , n} such that for any i ∈ {1, 2}

we have Pi ≺s
M A� ΓTi and Δ(A� ΓSi) ≺s

M⊗̄L(Λ) M⊗̄Pi.

If L(Λ) does not have property Gamma, then Ti = Si, for any i ∈ {1, 2}. Moreover, there
exist subgroups Σ1,Σ2 < Λ such that for all i ∈ {1, 2} we have:

(1) B � Σi ≺s
M A� ΓTi and A� ΓSi ≺s

M B � Σi;
(2) Pi ≺s

L(Λ) L(Σi) and L(Σi) ≺s
L(Λ) Pi.

Proof. (1) The assumption Δ(A� ΓS1) ≺s
M⊗̄L(Λ) M⊗̄P1 implies from [DHI16, Theorem 4.1]

(see also [Ioa12, Theorem 3.1] and [CdSS16, Theorem 3.3]) that there exists a decreas-
ing sequence of subgroups Ωk < Λ, k ≥ 1, such that A� ΓS1 ≺s

M B � Ωk, for any k ≥ 1 and
P2 ≺L(Λ) L(∪k≥1CΛ(Ωk)). Using Proposition 2.3, there is k ≥ 1 such that P2 ≺L(Λ) L(Ωk)′ ∩ L(Λ)
and using [Vae08, Lemma 3.5] we further derive that L(Ωk) ≺L(Λ) P1. By letting Σ1 = Ωk,
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we get
A� ΓS1 ≺s

M B � Σ1 and L(Σ1) ≺L(Λ) P1. (6.1)

We continue by showing that B � Σ1 ≺s
M A� ΓT1 . By applying [DHI16, Lemma 2.4], we

get from (6.1) a non-zero projection e ∈ L(Σ1)′ ∩ L(Λ) such that L(Σ1)e ≺s
L(Λ) P1. Since P1 ≺s

M

A� ΓT1 , we obtain from [Vae08, Lemma 3.7] that L(Σ1)e ≺s
M A� ΓT1 . By applying Lemma 2.2

there exists a projection f ∈ (B � Σ1)′ ∩ pMp ⊂ B with f ≥ e such that (B � Σ1)f ≺s
M A� ΓT1 .

Since f ∈ B, e ∈ L(Λ) and f ≥ e, we deduce that f = 1. Thus, B � Σ1 ≺s
M A� ΓT1 . Similarly,

there exists a subgroup Σ2 < Λ satisfying conclusion (1).
(2) This follows verbatim the proofs of Claims 2 and 3 from [DHI16, Lemma 5.10]. �

6.1 Proof of Theorem A
Assume Notation 3.7. Fix an arbitrary i ∈ 1,m. By applying Theorem 4.2 there is a partition
Si

1 � Si
2 = 1, n such that Δ(A� ΓSi

1
) ≺M⊗̄L(Λ) M⊗̄L(Λî) and Δ(A� ΓSi

2
) ≺M⊗̄L(Λ) M⊗̄L(Λi).

Standard arguments (see, for instance, the proof of [Ioa11, Lemma 9.2(1)]) imply that

A� ΓSi
1
≺s

M B � Λî and A� ΓSi
2
≺s

M B � Λi. (6.2)

Hence, Theorem 4.6 combined with [BV14, Lemma 2.3] gives that there is a partition T i
1 � T i

2 =
1, n such that

B � Λî ≺
s
M A� ΓT i

1
and B � Λi ≺s

M A� ΓT i
2
. (6.3)

By applying [Vae08, Lemma 3.7] we derive that Si
1 = T i

1, S
i
2 = T i

2. Consequently, by using rela-
tions (6.2) and (6.3), [DHI16, Proposition 3.1] implies that ΓT i

1
and Λî are measure equivalent

and ΓT i
2

and Λi are measure equivalent as well, for any i ∈ 1,m. The conclusion now follows by
a simple induction argument.

6.2 Proof of Theorem B
We first obtain the following classification of tensor product decompositions in the spirit of
[DHI16, Theorem C]. Theorem B will then follow by applying this result together with an
induction argument.

Theorem 6.2. Let Γ and Λ be countable icc groups that are measure equivalent. Assume L(Λ) =
P1⊗̄P2 and Γ = Γ1 × · · · × Γn is a product into icc groups such that L(Γi) belongs to M for any
i ∈ {1, . . . , n}.

Then there exist a direct product decomposition Λ = Λ1 × Λ2, a partition T1 � T2 =
{1, . . . , n}, a decomposition L(Λ) = P t1

1 ⊗̄P t2
2 , for some t1, t2 > 0 with t1t2 = 1, and a unitary

u ∈ L(Λ) such that:

(1) P t1
1 = uL(Λ1)u∗ and P t2

2 = uL(Λ2)u∗;
(2) Λ1 is measure equivalent to ×j∈T1Γj and Λ2 is measure equivalent to ×j∈T2Γj .

Proof. For the proof, we assume Notation 3.7. Using Proposition 3.8, we get that L(Γ) does
not have property Gamma. Next, by applying Theorems 4.2 and 4.6 and Lemma 6.1, we obtain
a partition T1 � T2 = {1, . . . , n} and some subgroups Σ1,Σ2 < Λ such that for all i ∈ {1, 2} we
have:

(1) B � Σi ≺s
M A� ΓTi and A� ΓSi ≺s

M B � Σi;
(2) Pi ≺s

L(Λ) L(Σi) and L(Σi) ≺s
L(Λ) Pi.

Part (2) together with [DHI16, Theorem 6.1] give a product decomposition Λ = Λ1 × Λ2, a
decomposition L(Λ) = P t1

1 ⊗̄P t2
2 , for some t1, t2 > 0 with t1t2 = 1, and a unitary u ∈ L(Λ) such
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that P t1
1 = uL(Λ1)u∗ and P t2

2 = uL(Λ2)u∗. In addition, we have that Λi is measure equivalent
to Σi, for any i ∈ {1, 2}.

Part (1) together with [DHI16, Proposition 3.1] implies that for any i ∈ {1, 2}, ΓTi is measure
equivalent to Σi and, hence, to Λi. �

6.3 Proof of Corollary C
Assume first that there exists a partition J1 � J2 = {1, . . . , n} for which K = FixK(J1) ×
FixK(J2). By letting G1 = (×i∈J1Γ) � FixK(J2) and G2 = (×i∈J2Γ) � FixK(J1), it follows that
G = G1 ×G2. This clearly shows that L(G) is not prime.

For proving the other implication, assume that L(G) = P1⊗̄P2 can be written as a tensor
product of diffuse factors. Using Theorem B and its proof, it follows that there exist a direct
product decomposition G = G1 ×G2 into infinite groups and a partition J1 � J2 = 1, n such that
L(Gi) ≺L(G) L(ΓJi), for any i ∈ 1, 2. By [CI18, Lemma 2.2] we get a finite index subgroup G0

i <
Gi such that G0

i < ΓJi , for any i ∈ 1, 2. By passing to relative commutants, we get that ΓJ2 <
G2 since G1 is icc. By passing again to relative commutants, we deduce that G1 < CG(ΓJ2) =
(×i∈J1Γ) � FixK(J2). Similarly, we get G2 < (×i∈J2Γ) � FixK(J1). This proves K = FixK(J1) ×
FixK(J2) which ends the proof.

7. Proof of Theorem D

7.1 OE rigidity for irreducible actions
An important ingredient for proving Theorem D is the following OE rigidity result for irreducible
actions of product group that belong to M.

Theorem 7.1. Let Γ = Γ1 × · · · × Γn be a product of n ≥ 2 groups that belong to M. Let
Λ = Λ1 × · · · × Λm be a product of m ≥ 2 infinite icc groups. Assume Γ � (X,μ) and Λ � (Y, ν)
are OE free, irreducible, pmp actions.

If m ≥ n, then m = n and Γ � (X,μ) and Λ � (Y, ν) are conjugate.

Proof. Theorem A implies that m ≥ n. For the remaining part of the proof, assume that m = n.
By assumption, we have the identification M := L∞(X) � Γ = L∞(Y ) � Λ with A := L∞(X) =
L∞(Y ). By proceeding as in the proof of Theorem A, it follows that for any i there is a partition
Si

1 � Si
2 = 1, n such that A� ΓSi

1
≺s

M A� Λî and A� Λî ≺s
M A� ΓSi

1
. Hence, by using [IPP08,

Lemma 8.4] there is ui ∈ U(M) such that ui(A� Λî)u
∗
i = A� ΓSi

1
. Theorem A implies that Si

1

has n− 1 elements. It is easy to see that there is a bijection ϕ of the set 1, n such that Si
1 = ϕ̂(i) for

any i. Thus, we can apply Proposition 5.1 and derive that the Zimmer cocycle associated to the
orbit equivalence between Γ � (X,μ) and Λ � (Y, ν) is cohomologous to a group isomorphism.
Hence, by applying [Vae07, Lemma 4.7] we get that Γ � (X,μ) and Λ � (Y, ν) are conjugate. �

7.2 Strongly cocycle rigidity
We start this subsection by recording the following particular case of [HHI21, Theorem 7.1]
which is inspired by several works [Fur99, MS06, Kid08]. For properly formulating the result we
introduce the following definition (see also [HHI21, § 7]). We say that a product group Γ = Γ1 ×
· · · × Γn is strongly cocycle rigid if given any two free, irreducible, pmp actions Γ � (X,μ) and
Γ � (Y, ν) that are OE, the underlying Zimmer cocycle is cohomologous to a group isomorphism.

Theorem 7.2 [HHI21]. Let Γ = Γ1 × · · · × Γn be an icc strongly cocycle rigid group. Assume
Γ � (X,μ) is a free, irreducible, pmp action that is OE to a free, mildly mixing, pmp action
Λ � (Y, ν).

Then Γ � (X,μ) and Λ � (Y, ν) are virtually conjugate.
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Corollary 7.3. If Γ1, . . . ,Γn are countable groups with L(Γi) ∈ M, for any i ∈ {1, . . . , n},
then Γ1 × · · · × Γn is strongly cocycle rigid.

Proof. Denote Γ = Γ1 × · · · × Γn and let Γ � (X,μ) and Γ � (Y, ν) be free, irreducible, pmp
actions that are OE. The proof of Theorem 7.1 gives, in particular, that the underlying Zimmer
cocycle is cohomologous to a group isomorphism. �

7.3 Proof of Theorem D
This is a direct consequence of Corollary 7.3 and Theorem 7.2.

8. Proofs of Theorem E and Corollary F

8.1 Proof of Theorem E
Let {ug}g∈Γ be the canonical unitaries that generate L(Γ). Denote M = M⊗̄L(Γ), M̃ =
M̃⊗̄L(Γ), and α̂t = αt ⊗ id ∈ Aut(M̃). Note that the ∗-homomorphism Δ : L(Γ) → L(Γ)⊗̄L(Γ)
defined by Δ(ug) = ug ⊗ ug, as g ∈ Γ (see [PV10]), naturally extends to a map Δ : �2(Γ) →
�2(Γ) ⊗ �2(Γ). By denoting ξ̂ = Δ(ξ), for any ξ ∈ �2(Γ), it follows that if ξ =

∑
g∈Γ ξgug ∈ �2(Γ)

and t ∈ R, then

‖α̂t(ξ̂) − ξ̂‖2
2 =

∑
g∈Γ

|ξg|2‖αt(ug) − ug‖2
2. (8.1)

Since Γ is inner amenable, there exists a sequence (ξn)n≥1 ⊂ �2(Γ) of unit vectors satisfying
‖ugξn − ξnug‖2 → 0, for all g ∈ Γ and ξn(g) → 0, for any g ∈ Γ. Let ω be a free ultrafilter on N.
The remaining part of the proof is divided between two claims.

Claim 1. We claim that limt→0(limn→ω ‖α̂t(ξ̂n) − ξ̂n‖) = 0.

Proof of Claim 1. We define the unitary representations π : Γ → U(L2(M̃)  L2(M)) by πg(ξ) =
ugξu

∗
g, for all g ∈ Γ, ξ ∈ L2(M̃)  L2(M) and d : Γ → U(�2(Γ)) by dg(x) = ugxu

∗
g, for all g ∈

Γ, x ∈ �2(Γ). Since L2(M̃)  L2(M) is weakly contained in the coarse bimodule L2(M) ⊗ L2(M)
as M -bimodules, we derive that L2(M̃)  L2(M) is weakly contained in the coarse bimodule
L2(L(Γ)) ⊗ L2(L(Γ)) as L(Γ)-bimodules. Therefore, π is weakly contained in the left regular
representation λΓ. Consequently, by applying [BdlHV08, Corollary E.2.6] we derive that π ⊗ d is
weakly contained in λΓ. Note that π̂ := π ⊗ d : Γ → U(L2(M̃)  L2(M)) is defined by π̂g(η) =
ûgηû

∗
g for all g ∈ Γ, η ∈ L2(M̃)  L2(M). Since Γ is non-amenable, it follows that the trivial

representation 1Γ is not weakly contained in π̂. This implies that for any ε > 0, there exist δ > 0
and a finite set F ⊂ Γ satisfying that for any unit vector η ∈ L2(M̃) for which ‖π̂g(η) − η‖2 ≤ δ,
as g ∈ F , we have

‖η − EM(η)‖2 ≤ ε. (8.2)

Since τ(α̂t(ûg)û∗h) = τ(αt(ug)u∗h)δg,h, we obtain that EΔ(L(Γ))(α̂t(ûg)) = τ(αt(ug)u∗g)ûg, for any
g ∈ Γ. This implies that for all g ∈ Γ and ξ ∈ �2(Γ), we have

‖α̂t(ûg)ξ̂ − ûg ξ̂‖2 = ‖αt(ug) − ug‖2‖ξ‖2 and ‖ξ̂α̂t(ûg) − ξ̂ûg‖2 = ‖αt(ug) − ug‖2‖ξ‖2. (8.3)

Let t0 > 0 such that ‖αt(ug) − ug‖2 ≤ δ/4, for all |t| < t0 and g ∈ F . Take also n0 ∈ N such that
‖ugξn − ξnug‖2 ≤ δ/2, for all g ∈ F and n ≥ n0. Together with (8.3) we obtain

‖α̂t(ûg)ξ̂n − ξ̂nα̂t(ûg)‖2 ≤ ‖α̂t(ûg)ξ̂n − ûg ξ̂n‖2 + ‖ugξn − ξnug‖2 + ‖ξ̂nûg − ξ̂nα̂t(ûg)‖2

≤ δ/2 + δ/4 + δ/2 = δ,
(8.4)
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for all g ∈ F, n ≥ n0 and |t| ≤ t0. By applying α̂−t in (8.4) and by replacing t by −t, we get
that ‖α̂t(ξ̂n)ûg − ûgα̂t(ξ̂n)‖2 ≤ δ, for all g ∈ F, n ≥ n0 and |t| ≤ t0. Using (8.2), we get ‖α̂t(ξ̂n) −
EM(α̂t(ξ̂n))‖2 ≤ ε, and by using Popa’s transversality property, see [Pop08, Lemma 2.1], we
further derive that ‖α̂2t(ξ̂n)) − ξ̂n‖2 ≤ 2ε, for all n ≥ n0 and |t| ≤ t0. This ends the proof of the
claim. �

For all t ∈ R and r > 0, we denote Bt
r = {g ∈ Γ | ‖αt(ug) − ug‖2 ≤ r}. We are now ready to

prove the following claim.

Claim 2. We claim that limt→0(supg∈Γ ‖αt(ug) − ug‖2) = 0.

Proof of Claim 2. To this end, fix some arbitrary ε > 0. Let t1 > 0 and n1 ∈ N such that
‖α̂t(ξ̂n) − ξ̂n‖2 ≤ ε/4, for all |t| ≤ t1 and n ≥ n1. Fix g ∈ Γ and |t| ≤ t1. We continue by showing
that there exists an unbounded sequence (kn)n ⊂ Γ such that kn, gkng

−1 ∈ Bt
ε/2, for any n ≥ 1.

Since ‖ûg ξ̂n − ξ̂nûg‖2 → 0, we get that there exists n2 ∈ N such that

‖α̂t(ξ̂n) − ξ̂n‖2
2 + ‖α̂t(ûg ξ̂nû

∗
g) − ûg ξ̂nû

∗
g‖2

2 ≤ ε2/4, for any n ≥ n2.

By writing ξn =
∑

g∈Γ ξn,gug ∈ �2(Γ) and using (8.1) we obtain that∑
h∈Γ

|ξn,h|2(‖αt(uh) − uh‖2
2 + ‖αt(ughg−1) − ughg−1‖2

2) ≤ ε2/4, for any n ≥ n2.

For any n ≥ n2, since
∑

h∈Γ |ξn,h|2 = 1, there exists kn ∈ Γ with ξn,kn �= 0 such that ‖αt(ukn) −
ukn‖2 ≤ ε/2 and ‖αt(ugkng−1) − ugkng−1‖2 ≤ ε/2. Since ξn,h → 0, for any h ∈ Γ, it follows that
kn can be chosen such that kn → ∞.

Next, we note that for any n ≥ n2, we have

‖αt(ugkng−1)ug − ugαt(ukn)‖2 ≤ ‖αt(ukn) − ukn‖2 + ‖αt(ugkng−1) − ugkng−1‖2 ≤ ε. (8.5)

By letting e : L2(M̃) → L2(M) be the orthogonal projection, we have vg,t := αt(ug) − e(αt(ug)) ∈
L2(M̃)  L2(M). By applying α−t to (8.5) and by projecting onto L2(M̃)  L2(M), we get

‖ugkng−1v−t,g − v−t,gukn‖2 ≤ ε, for all n ≥ n2. (8.6)

Since the M -bimodule L(M̃)  L2(M) is mixing and kn → ∞, we obtain that

lim
n→∞〈v−t,gukn , ugkng−1v−t,g〉 = 0. (8.7)

By combining (8.6) and (8.7), it follows that ‖v−t,g‖2 ≤ ε/
√

2. By using once again Popa’s
transversality property, see [Pop08, Lemma 2.1], we obtain ‖α−t(ug) − ug‖ ≤ ε

√
2. Since t was

arbitrary chosen such that |t| ≤ t1 and g ∈ Γ arbitrary, we get that limt→0(supg∈Γ ‖αt(ug) −
ug‖2) = 0.

Standard arguments now imply the conclusion. �

8.2 Proof of Corollary F
The proof follows directly from Theorem E.

8.3 Consequence to Kurosh-type rigidity results
We conclude our paper with the following rigidity result for tracial free product factors arising
from non-amenable inner amenable groups.

Corollary 8.1. Let M = L(Γ1) ∗ · · · ∗ L(Γm) = L(Λ1) ∗ · · · ∗ L(Λn), where all the groups Γi

and Λj are non-amenable inner amenable icc groups.
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Then m = n, and after a permutation of indices, L(Γi) is unitarily conjugate to L(Λi), for
any i ∈ 1, n.

Proof. Fix an arbitrary i ∈ 1,m. By decomposing M = L(Γ1 ∗ · · · ∗ Γn−1) ∗ L(Γn), we note
that M belongs to M and let (M̃, (αt)t∈R) be the associated s-malleable deformation of
M . Since Γi is non-amenable inner amenable group, Theorem E implies that L(Γi) is
α-rigid. By applying the main technical result of [IPP08] (see also [Ioa15, Theorem 2.11]),
we get that L(Γi) ≺M L(Γ1 ∗ · · · ∗ Γn−1) or L(Γi) ≺M L(Γn). By assuming the latter holds,
there exist projections p ∈ L(Γi), q ∈ L(Γn), a non-zero partial isometry v ∈ qMp and a
∗-homomorphism θ : pL(Γi)p→ qL(Γn)q satisfying θ(x)v = vx, for all x ∈ pL(Γi)p. Note that
[IPP08, Theorem 1.2.1] gives that vv∗ ∈ L(Γn) and, hence, vL(Γi)v∗ ⊂ L(Γn). Note that since
L(Γi)′ ∩M = C1 and v∗v ∈ p(L(Γi)′ ∩M)p, we get that v∗v = p. By letting u be a unitary
that extends v, we derive that upL(Γi)pu∗ ⊂ L(Γn). Since L(Γn) is a factor, after passing to
a new unitary u, one can replace p by its central support in L(Γi); therefore, we obtain that
uL(Γi)u∗ ⊂ L(Γn). Similarly, if L(Γi) ≺M L(Γ1 ∗ · · · ∗ Γn−1) holds, we obtain a unitary u ∈M
such that uL(Γi)u∗ ⊂ L(Γ1 ∗ · · · ∗ Γn−1). By repeating this argument finitely many times, we
conclude that there exists a map σ : 1,m→ 1, n such that for any i ∈ 1,m, there is a unitary
ui ∈M satisfying uiL(Γi)u∗i ⊂ L(Λσ(i)).

In a similar way, we obtain a map τ : 1, n→ 1,m and a unitary wj ∈M , for any j ∈ 1, n,
such that wjL(Λj)w∗

j ⊂ L(Γτ(j)), for any j ∈ 1, n. Thus, uτ(j)wjL(Λj)w∗
ju

∗
τ(j) ⊂ L(Λσ(τ(j))), for

any j ∈ 1, n. By applying [IPP08, Theorem 1.2.1] we deduce that σ ◦ τ = Id and uτ(j)wj ∈ L(Λj),
for any j ∈ 1, n. Similarly, we get τ ◦ σ = Id and wσ(i)ui ∈ L(Γi) for any i ∈ 1,m. In particular,
m = n and uiL(Γi)u∗i = L(Λσ(i)), for any i ∈ 1, n. �
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Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), 1–33.

Con76 A. Connes, Classification of injective factors, Ann. Math. 104 (1976), 73–115.
CFW81 A. Connes, J. Feldman and B. Weiss, An amenable equivalence relations is generated by a

single transformation, Ergodic Theory Dynam. Systems 1 (1981), 431–450.
dSHHS20 R. de Santiago, B. Hayes, D. Hoff and T. Sinclair, Maximal rigid subalgebras of deformations

and L2-cohomology, Anal. PDE, to appear. Preprint (2020).
DKP22 C. Ding, S. Kunnawalkam Elayavalli and J. Peterson, Properly Proximal von Neumann

Algebras, Preprint (2022), arXiv:2204.00517.
Dri20a D. Drimbe, Prime II1 factors arising from actions of product groups, J. Funct. Anal. 278

(2020), 108366.
Dri20b D. Drimbe, Orbit equivalence rigidity for product actions, Comm. Math. Phys. 379 (2020),

41–59.
Dri21 D. Drimbe, Product rigidity in von Neumann and C∗-algebras via s-malleable deformations,

Comm. Math. Phys. 388 (2021), 329–349.
DHI16 D. Drimbe, D. Hoff and A. Ioana, Prime II1 factors arising from irreducible lattices in prod-

uct of rank one simple Lie groups, J. Reine Angew. Math., to appear. Preprint (2016),
arXiv:1611.02209.

DIP19 D. Drimbe, A. Ioana and J. Peterson, Cocycle superrigidity for profinite actions of irreducible
lattices, Groups Geom. Dyn., to appear. Preprint (2019).

Dye59 H. Dye, On groups of measure preserving transformation. I, Amer. J. Math. 81 (1959),
119–159.

Eff75 E. G. Effros, Property Γ and inner amenability, Proc. Amer. Math. Soc. 47 (1975), 483–486.
Fur99 A. Furman, Orbit equivalence rigidity, Ann. of Math. (2) 150 (1999), 1083–1108.
Fur11 A. Furman, A survey of measured group theory, in Geometry, Rigidity, and Group Actions

(The University of Chicago Press, Chicago and London, 2011), 296–374.
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