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A Remark on Certain Integral Operators of
Fractional Type

Pablo Alejandro Rocha

Abstract. For m,n € N,1 < m < n, we write n = nj + -+ + n,, where {ny,...,n,} c N. Let
Ay, ..., Ap be n x n singular real matrices such that

m

@ N N;=R",

i=l1<jti<m
where N; = {x : Ajx = 0}, dim(N;) = n - nj, and Ay +--- + Ay is invertible. In this paper we
study integral operators of the form

Tf(x) = [ b= Ayl e Ay £ () dy,

i+ +ny,=mn, :—i == ﬁ—"‘ =r,0 < r <1, and the matrices A;’s are as above. We obtain the
HP(R") — L1(R") boundedness of T for 0 < p < % and é = % -

1 Introduction

For0 <« < mand m > 1, (m € N), let Ty, be the integral operator defined by

(L1) Tamf(x) = fR = A e = Ay () dys

where ay, . .., a,, are positive constants such that &y +---+a,, = a—n,and Ay, ..., A,
are n x n invertible matrices such that A; # A; if i # j. We observe that for the case
a>0,m =1,and A; = I, Ty, is the Riesz potential I,. Thus for 0 < « < n, the operator
T, m is a kind of generalization of the Riesz potential. The case « = 0 and m > 1 was
studied under the additional assumption that A; — A; are invertible if i # j. The
behavior of this class of operators and their generalizations on the spaces of functions
LP(R™), L?(w), H?(R"), and HZ , (w?) was studied in [1,2,4,5,7,8].

If 0 < &« < nand m > 1, then the operator T, , has the same behavior as the Riesz
potential on L? (R"). Indeed

Tamf N €Y [ 1475 =70 dy = € 3 LD (A7),
j=1 j=1

for all x € R". This pointwise inequality implies that T, ,, is a bounded operator from
LP(R™) into L9(R") for1< p < 2 and é = % — %, and it is of type weak (1,n/n - a).

It is well known that the Riesz potential I, is bounded from H? (R") into H?(R")
for0 < p<land % = % - = (see [3,11]). In [8], the author jointly with M. Utrciuolo
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proved the H? (R") - L1(R") boundedness of the operator T, and we also showed
that the H”(R) — H4(IR) boundedness does not hold for 0 < p < 11—, é = % — o and
Toym With 0 < & <1, m = 2, A; = 1, and A, = —1. This is a significant difference with
respect tothecase 0 <o <1, m=m =1,and A; = 1.

In this note we will prove that if we consider certain singular matrices in (1.1), then

such an operator is still bounded from H? into L1. More precisely, for m,n € N,

1 < m < n, we write n = ny + -+ + n,,, where {ny,...,n,} ¢ N. We also consider
n x n singular real matrices Ay, ..., A,, such that @72, Mi<jsicm Nj = R”, where N; =
{x:Ajx =0},dim(N;) = n—nj, Ay +--- + A, is invertible. Given 0 < r < 1 and
ny,..., 0, such that ny +--- + n, = n,let ay,. .., a, be positive constants such that
== ‘;‘—: = r. For such parameters we define the integral operator T, by

(12) T,f(x) = fR e = Ay = Ay T f (y) dys

where the matrices A; are as above.

We observe that the operator defined in (1.2) can be written as in (1.1), taking the
matrices A; there to be singular. In fact, T, = Tg,,, with B; = n; — a; for each i =
L,2,...,mand 8 = nr.

Our main result is the following theorem.

Theorem 1.1  Let T, be the integral operator defined in (1.2). f0 <r <1, 0< p < %,
and é = % — 1, then T, can be extended to an H? (R") — L1(R") bounded operator.

In Section 2 we state two auxiliary lemmas to get the main result in Section 3. We
conclude this note with an example in Section 4.

Throughout this paper, ¢ will denote a positive constant, not necessarily the same
at each occurrence. The symbol A < B stands for the inequality A < ¢B for some
constant c.

2 Preliminary Results

Let K beakernel in R" xR". We formally define the integral operator Tx by Tk f(x) =
Jan K(x,9) f(9) dy.

We start with the following lemma.

Lemma 2.1 Letn,me N, withl < m < n,andletny, ..., n, benatural numbers such
that ny+---+n, =n. Foreach i =1, ..., m let K; be non-negative kernels in R x R™
such that the operator Tx, is bounded from L? (R") into L1(R") with1< p < g < oo.
Then the operator Tk, e-sk,, is bounded from L (R") into L1(R").

Proof Since R” = R™ x---xR", letx = (x,...,x™) e R" x--- x R"". Now the
operator Tk, q--gK,, 1S given by

Taio-orf(¥) = [ Kl y) o K (" y") (5 y™) dyt e dy™,
Using that the kernels K; define bounded operators for 1 < i < m, the lemma follows
from an iterative argument and Minkowski’s inequality for integrals. |
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Lemma 2.2 Letm,n € N, withl < m < n, and let ny, ..., n,, be natural numbers
such that ny + -+ ny = n. If Ay,..., Am are n x n singular real matrices such that
@72 Mcjpizm Nj = R", whereNj = {x : Ajx = 0}, dim(N;) = n—nj, and Aj+---+A,,
is invertible, then there exist two n x n invertible matrices B and C such that B'A iCis
the canonical projection from R" on {0} x --- x R" x ---x {0} foreach j=1,...,m.

Proof Itis easy to check that

m

&) N N] =R" = D N N] = Nk.
i=l1<j#i<m 1<i#k<m 1<j#i<m

So

(2.1) Al NONj) =R(Ax), k=1...,m.

1<j#k<m

Since dim(Ny) = n = ng, dim(Migjzrem Nj) = dim(R(Ax)) = ng. Let {yf, ...,y }
be a basis of Migjzkem Nj. Thus {yl,...,y} ..., p{"s..., it }is a basis for R”. Let
C be the n x n matrix whose columns are the elements of the above basis. Since
Aj+---+ A, is invertible, we have that B = (A; + -+ + A,,)C is invertible. So (2.1)
gives that B™'A;C is the canonical projection from R” on {0} x --- x R™ x --- x {0}
foreachj=1,...,m. ]

3 The Main Result

Proof of Theorem 1.1 We begin by obtaining the L? — L? boundedness of the oper-

ator T, for1< p < % and é = % — 1, and then with this result we will prove the H? — L4
1

boundedness of T, for 0 < p <land ; = ; .

L? — L1 boundedness. If A is an n x n invertible matrix, we put f4(x) = f(A™'x).
Let B and C be the matrices give by Lemma 2.2. Then

(1,00l (2)
= [ B A B Ay () dy

~|det(©)] [ |BGx=BAICY)| ™ [B(x = B AWCH " () dy.

Since B is invertible, there exists a positive constant ¢ such that c|x| < |Bx]| for all
x € R". Thus

13, ()
§ [ e BACH™ ™ o B ALy () dy

S LRy Gy Ly

The second inequality follows from Lemma 2.2 and from that [x/ — y/| < |x - P}y,
where P; = B'A;C is the canonical projection from R” on {0} x --- x R™ x --- x {0}.
Since y(a;)~!x? — y/[7"*%, for an appropriate constant y(a;) (see [9, p. 117]), is
the kernel of the Riesz potential on R"/, then [9, Theorem 1] and Lemma 2.1 give the

L? — L1 boundedness of the operator T, for 1 < p < % and é = % —r.
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H? — L1 boundedness. Let 0 < p < 1. We recall that a p-atom is a measurable
function a supported on a ball B of R satisfying | a| .. < |B|™/? and [ y#a(y)dy =0
for every multiindex 8 with |8 < [n(p™ — 1) ], (| - | denotes the integer part).

Let0<r<1,0<p<1l<pg< %,andé = % - r. Given f € H?(R") n LP°(R"),
from [10, Theorem 2, p.107], we have that there exists a sequence of real numbers
{A;}321, a sequence of balls Bj = B(z;, §;) centered at z; with radius §; and p-atoms
a;j supported on B; satisfying

3.1 S Ile S 11
j=1
such that f can be decomposed as f = .77, A;a;, where the convergence is in H” and

L?o (for the convergence in L?°, see [6, Theorem 5]). So the H? — L1 boundedness of
T, will be proved if we show that there exists ¢ > 0 such that

(3.2) [ Traj| e <c,

with ¢ 1ndependent of the p-atom a;. Indeed, since f = 372 Aja; in LP* and T, is an
LPo — L7 bounded operator, we have that | T, f (x)| < Z] 1 |A ||Tyaj(x)| for almost
all x; this pointwise inequality, the inequality in (3.2), together with the inequality

(Smeo) = < (S
j=1 j=1

and (3.1) allow us to conclude that | T, f |4 < c| f|ne, for all f € HP(R") n LP°(R").
So the theorem follows from the density of H? (R") n LP*(R") in H? (R").

We will prove the estimate in (3.2). We define D = maxicj<m max|y—; |A4;(y)].
Let a; be a p-atom supported on a ball B; = B(zj,d;), and for each 1 < i < m let
Bj; = B(Aiz;,4D9;). Since T, is bounded from LP*(R") into L (R") for 1 < po < :

and % = ;Tlo — r, the Holder inequality gives

(3.3) f Traj(x)[?dx < > [ |Tra;j(x)|Tdx

1<x<m ], 1<i<m

_nq
<c ), IB}Z-I_%IITra;\IqoSCﬁ " Jla;l3,

1<i<m
p _nqg nq
/ |a; |”° b <l q°6 o =
We denote k(x,y) = |x — Ay " - |x — Apy| " * %, and we put N - 1 =

|n(p~"' —1)]. In view of the moment condition of a; we have, for x € R” \ (U, B%),
that

Traj(x)=f3‘k(x,y)aj(y) dy:fBl(k(x,y)—QN,j(x,y))aj(y)dy,

where gy, j is the degree N—1Taylor polynomial of the function y — k(x, y) expanded
around z;. By the standard estimate of the remainder term in the Taylor expansion,
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there exists & between y and z; such that
aN

k() = ansonl sly=5l" 3 [t k(8
ki+-+k,=N 0); "'ayn

Szl (- A ) (D=4
i= 1=1

Now we decompose the set R; := R" \ (U[; B;) by R; = UiL, Rjx where

Rjx={x€Rj:|x - Axzj| <|x - Ajzj|forall i # k}.

If x € Rj, then [x — A;zj| > 4D§;, for all i = 1,2, ..., m. Since & € Bj, it follows that
|A,'Zj —Ai£| < D(Sj < i|x —A,'Zj|, SO

3
|X - Ai£| = |X _Aizj +AiZj —A,‘E| > |X —A,‘Zj| - |A,‘Zj —Aif| > Z|X —AiZj|.
If x € Rj, then x € Rj; for some k. Since }°}%, (—n; + a;) = —n(1 - r), we obtain
N( 1T —ni+a; - -n\\N
[k(x, y) = an,j(x, ¥)| S Iy = 2| (Hl|x—AiZj| ) (- Azl ™)
i= 1=1

S b= 2l - Az 70,

if x € Rj; and y € B;. This inequality gives
Gy [ | [ ke )a()dy|" d
= [ 1 k) = ane )las () o]
j
Bj

m
—-n(l-r)- q
s [ -zl - A0 Na(7)]dy) * dx
k=17 Rjk ~JB;j

q & —n(ler)a—
([ 1r-2las(r)] dy) kzlfw = AN gy
j = ik

8{#"‘”%*’”“1 /00 t—q(n(l—r)+N)+n—1 dt<c
4D3;

N

J

with ¢ independent of the p-atom aj, since —g(n(1-r) + N) + n < 0. Finally R" =
" B;i U R}, so the inequality in (3.2) follows from (3.3) and (3.4). [ |

4 An Example

For n = m =3, n; = ny = n3 = 1, we consider the following 3 x 3 singular matrices

4 4 -1 1 -1 0 1 0 -1
A=l o o o, A=l -2 2 0] 4-=|-3 0 3
-4 -4 1 0 0 O -1 0 1
It is clear that
6 3 -2
A1+A2+A3: -5 2 3
-5 -4 2
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is invertible. For each j =1,2,3,let N; = {x ¢ R* : Ajx = 0}. A computation gives
N = ((1,0,4), (0,1,4)), N = ((1,1,0), (0,0,1)), and N3 = ((1,0,1), (0,1,0)). One
can check that Nl n NZ = <(1, 1, 8)), Nl n Ng, = ((4, -3, 4)), and NZ N N3 = ((1, 1, 1))

We observe that Ny n N, @ N; n N3 @ N, n N3 = R®. Asin the proof of Lemma 2.2,
we define the matrices C and B by

1 4 1 7 7 =7
c=|l1 -3 1|, B=(A1+4,+45)C=| 0 -14 21
1 4 8 -7 0 7
Both matrices are invertible with
2 1 1
21 21 2
-1 1 1
B = ; 0 7
2 1 2
21 21 21
Now it is easy to check that
1 0 0 0 0 O 0 0 O
B'ac=l 0 0 0|, B'4,c=| 0 1 0|, B'AsC=| 0 0
0 0 O 0 0 O 0 0 1

So, from Theorem 1.1, it follows that the operator T, defined by

Trf(x) = fRs e = Ay x = Agy[ T x - Asy T f (y) dy,

with 0 < r < 1, is a bounded operator from H? (R?) into L1(IR?®) for 0 < p < 1/r and
1_1

L=2-7

9 P
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