Bull. Aust. Math. Soc. **108** (2023), 133–141 doi:10.1017/S0004972722001071

MULTIPLIERS ON THE SECOND DUAL OF ABSTRACT SEGAL ALGEBRAS

MEHDI NEMATI^{®™} and ZHILA SOHAEI[®]

(Received 9 August 2022; accepted 24 August 2022; first published online 6 October 2022)

Abstract

We characterise the existence of certain (weakly) compact multipliers of the second dual of symmetric abstract Segal algebras in both the group algebra $L^1(G)$ and the Fourier algebra A(G) of a locally compact group G.

2020 *Mathematics subject classification*: primary 43A07; secondary 43A20, 46H10, 46H20. *Keywords and phrases*: abstract Segal algebra, topologically invariant φ -mean, multiplier.

1. Introduction

Let *G* be a locally compact group. By a classical result of Sakai [14], *G* is compact if and only if the group algebra $L^1(G)$ has a nonzero (weakly) compact right multiplier. In [10], Lau showed that an analogous result is true on the dual side, that is, *G* is discrete if and only if its Fourier algebra A(G) has a nonzero (weakly) compact multiplier. Along this line of research, Ghahramani and Lau proved that *G* is compact if and only if any symmetric Segal algebra $S^1(G)$ of $L^1(G)$ has a nonzero (weakly) compact right or left multiplier [6].

Moreover, it was shown in [4] that *G* is amenable if and only if $L^{\infty}(G)^* = L^1(G)^{**}$, the second dual of $L^1(G)$ equipped with the first Arens product, has a nonzero (weakly) compact right multiplier. Along the way, Ghahramani and Lau proved that *G* is compact if and only if $L^1(G)^{**}$ has a (weakly) compact left multiplier *T* with $\langle T(n), 1 \rangle \neq 0$ for some $n \in L^1(G)^{**}$ [5]. Dually, *G* is discrete if and only if $A(G)^{**}$ has a (weakly) compact left multiplier *T* with $\langle T(n), 1 \rangle \neq 0$ for some $n \in A(G)^{**}$.

It is thus natural to try to determine when the second dual of a symmetric abstract Segal algebra of $L^1(G)$ or A(G) has a nonzero (weakly) compact left or right multiplier. We answer this question by proving that if \mathcal{B} is a symmetric abstract Segal algebra of a Banach algebra \mathcal{A} and φ is a nonzero character on \mathcal{A} , then the existence of a

The research of the first author was in part supported by a grant from IPM (No. 1401170411).

[©] The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

(weakly) compact left or right multiplier on \mathcal{B} is equivalent to the existence of the same multiplier on \mathcal{A} .

For a symmetric Segal algebra $S^1(G)$ of the group algebra $L^1(G)$, we denote by K the set of all right multipliers T on $S^1(G)^{**}$ with rank one such that $\langle T(n), \varphi_1 \rangle = 1$ whenever $\langle n, \varphi_1 \rangle = 1$, where φ_1 is the nonzero character on $L^1(G)$ defined by $\varphi_1(f) = \int_G f(x) dx$ for all $f \in L^1(G)$. We prove that if G is amenable and noncompact and d(G) is the smallest possible cardinality of a covering of G by compact sets, then $|K| \ge 2^{2^{d(G)}}$.

2. Preliminaries

We shall now fix some notation. We denote the closed linear span by $\langle \cdot \rangle$. Let \mathcal{A} be a Banach algebra. Then \mathcal{A}^* is naturally a Banach \mathcal{A} -bimodule with the actions

$$\langle f \cdot a, b \rangle = \langle f, ab \rangle, \quad \langle a \cdot f, b \rangle = \langle f, ba \rangle,$$

for all $f \in \mathcal{A}^*$ and $a, b \in \mathcal{A}$. It is known that there is a multiplication \Box on the second dual \mathcal{A}^{**} of \mathcal{A} , extending the multiplication on \mathcal{A} . The first Arens product in \mathcal{A}^{**} is given as follows. For $m, n \in \mathcal{A}^{**}$, $f \in \mathcal{A}^*$ and $a \in \mathcal{A}$,

$$\langle m \Box n, f \rangle = \langle m, n \cdot f \rangle, \quad \langle n \cdot f, a \rangle = \langle n, f \cdot a \rangle.$$

If \mathcal{A} is a Banach algebra, then a linear mapping $T : \mathcal{A} \to \mathcal{A}$ is a right (respectively left) multiplier if T(ab) = aT(b) (respectively T(ab) = T(a)b) for all $a, b \in \mathcal{A}$. In particular, for each $a \in \mathcal{A}$, the multiplication operators $\lambda_a : \mathcal{A} \to \mathcal{A}$ and $\rho_a : \mathcal{A} \to \mathcal{A}$ defined by $\lambda_a(b) = ab$ and $\rho_a(b) = ba$ are respectively left and right multipliers on \mathcal{A} . We also denote by $\Delta(\mathcal{A})$ the set of all nonzero characters on \mathcal{A} .

We recall from Burnham [2] that a Banach algebra \mathcal{B} is an *abstract Segal algebra* of \mathcal{A} if:

(i) \mathcal{B} is a dense left ideal in \mathcal{A} ;

(ii) there exists M > 0 such that $||b||_{\mathcal{A}} \le M ||b||_{\mathcal{B}}$ for each $b \in \mathcal{B}$;

(iii) there exists C > 0 such that $||ab||_{\mathcal{B}} \le C ||a||_{\mathcal{A}} ||b||_{\mathcal{B}}$ for each $a, b \in \mathcal{B}$.

We further say that \mathcal{B} is symmetric if it is also a two-sided dense ideal in \mathcal{A} and for each $a, b \in \mathcal{B}$,

$$\|ba\|_{\mathcal{B}} \le C \|a\|_{\mathcal{A}} \|b\|_{\mathcal{B}}$$

In this case, by [2, Theorem 2.1], $\Delta(\mathcal{A})$ and $\Delta(\mathcal{B})$ are homeomorphic.

Throughout this paper, we assume that *G* is a locally compact group with a fixed left Haar measure and let $L^1(G)$ be the group algebra of *G*. Then $L^1(G)$ is a Banach algebra with the convolution product defined by

$$(f * g)(x) = \int_G f(y)g(y^{-1}x) \, dy \quad (f, g \in L^1(G)).$$

A linear subspace $S^1(G)$ of $L^1(G)$ is called a Segal algebra, if:

- (i) $S^1(G)$ is dense in $L^1(G)$;
- (ii) $S^1(G)$ is a Banach space under some norm $\|\cdot\|_S$ and $\|f\|_1 \le \|f\|_S$ for all $f \in S^1(G)$;

- (iii) $S^1(G)$ is left translation invariant and the map $x \mapsto l_x f$ of G into $S^1(G)$ is continuous;
- (iv) $||l_x f||_S = ||f||_S$, for all $x \in G$ and $f \in S^1(G)$.

We note that every Segal algebra is an abstract Segal algebra of $L^1(G)$ by [13, Proposition 1]. A Segal algebra $S^1(G)$ is symmetric if it is right translation invariant, $||r_x f||_S = ||f||_S$ and the map $x \mapsto r_x f$ from G into $S^1(G)$ is continuous for all $x \in G$ and $f \in S^1(G)$. Note that every symmetric Segal algebra is a two-sided ideal of $L^1(G)$ and has an approximate identity in which each term has norm one in $L^1(G)$ (see [13, Section 8, Proposition 1]).

3. Multipliers on the second dual

Let \mathcal{B} be a symmetric abstract Segal algebra of a Banach algebra \mathcal{A} . We note that for every $f \in \mathcal{B}^*$, $a \in \mathcal{A}$ and $b \in \mathcal{B}$, we can define $f \bullet b \in \mathcal{A}^*$ by

$$\langle f \bullet b, a \rangle = \langle f, ba \rangle.$$

Hence, for every $m \in \mathcal{R}^{**}$ and $f \in \mathcal{B}^*$, we may define the functional $m \bullet f \in \mathcal{B}^*$ by

$$\langle m \bullet f, b \rangle = \langle m, f \bullet b \rangle \quad (b \in \mathcal{B}).$$

Thus, for every $m \in \mathcal{A}^{**}$ and $n \in \mathcal{B}^{**}$, we can define the functional $n \odot m \in \mathcal{B}^{**}$ by

 $\langle n \odot m, f \rangle = \langle n, m \bullet f \rangle \quad (f \in \mathcal{B}^*).$

For $f \in \mathcal{B}^*$ and $a \in \mathcal{A}$, we also can define $f \bullet a \in \mathcal{B}^*$ by

$$\langle f \bullet a, b \rangle = \langle f, ab \rangle.$$

Thus for $n \in \mathcal{B}^{**}$ and $f \in \mathcal{B}^{*}$, we may define the functional $n \bullet f \in \mathcal{A}^{*}$ by

$$\langle n \bullet f, a \rangle = \langle n, f \bullet a \rangle \quad (a \in \mathcal{A}).$$

Therefore, for $m \in \mathcal{A}^{**}$ and $n \in \mathcal{B}^{**}$, we can define the functional $m \odot n \in \mathcal{B}^{**}$ by

$$\langle m \odot n, f \rangle = \langle m, n \bullet f \rangle \quad (f \in \mathcal{B}^*).$$

Let $\iota : \mathcal{B} \to \mathcal{A}$ be the inclusion map. Then ι is an injective Banach \mathcal{A} -bimodule morphism. Consider the adjoints $\iota^* : \mathcal{A}^* \to \mathcal{B}^*$ and $\iota^{**} : \mathcal{B}^{**} \to \mathcal{A}^{**}$ of ι . Since ι has a dense range, ι^* is injective. It is not hard to see that ι^* is in fact the restriction map. The following lemma will prove useful.

LEMMA 3.1. Let \mathcal{B} be a symmetric abstract Segal algebra of \mathcal{A} . Then for every $m \in \mathcal{A}^{**}$ and $n, p \in \mathcal{B}^{**}$, the following statements hold:

- (i) $||n \odot m|| \le C||n|| ||m||;$
- (ii) $\iota^{**}(n \odot m) = \iota^{**}(n) \Box m;$
- (iii) $p \odot (m \Box \iota^{**}(n)) = (p \odot m) \Box n;$
- (iv) $||m \odot n|| \le C||n|| ||m||;$

[3]

(v) $\iota^{**}(m \odot n) = m \Box \iota^{**}(n);$ (vi) $(\iota^{**}(n) \Box m) \odot p = n \Box (m \odot p).$

PROOF. The proofs of (i), (ii), (iv) and (v) are straightforward. (iii) For $f \in \mathcal{B}^*$, $b \in \mathcal{B}$ and $a \in \mathcal{A}$,

$$\langle \iota^{**}(n) \cdot (f \bullet b), a \rangle = \langle \iota^{**}(n), f \bullet ba \rangle = \langle n, \iota^{*}(f \bullet ba) \rangle = \langle n, f \cdot ba \rangle = \langle n \cdot f, ba \rangle = \langle (n \cdot f) \bullet b, a \rangle.$$

Therefore,

136

$$\langle (m\Box\iota^{**}(n)) \bullet f), b \rangle = \langle m\Box\iota^{**}(n), f \bullet b \rangle = \langle m, \iota^{**}(n) \cdot (f \bullet b) \rangle$$
$$= \langle m, (n \cdot f) \bullet b \rangle = \langle m \bullet (n \cdot f), b \rangle.$$

Thus,

$$\langle p \odot (m \Box \iota^{**}(n)), f \rangle = \langle p, (m \Box \iota^{**}(n)) \bullet f \rangle = \langle p, m \bullet (n \cdot f) \rangle$$

= $\langle p \odot m, n \cdot f \rangle = \langle (p \odot m) \Box n, f \rangle.$

Hence, we obtain $p \odot (m \Box \iota^{**}(n)) = (p \odot m) \Box n$, as required.

(vi) Let $f \in \mathcal{B}^*$, $b \in \mathcal{B}$ and $a \in \mathcal{A}$. Then

$$\langle (p \bullet f) \cdot b, a \rangle = \langle p \bullet f, ba \rangle = \langle p, f \cdot ba \rangle \\ = \langle p, (f \cdot b) \bullet a \rangle = \langle p \bullet (f \cdot b), a \rangle.$$

Therefore,

$$\langle m \cdot (p \bullet f), b \rangle = \langle m, (p \bullet f) \cdot b \rangle = \langle m, p \bullet (f \cdot b) \rangle$$

= $\langle m \odot p, f \cdot b \rangle = \langle (m \odot p) \cdot f, b \rangle.$

Thus,

$$\begin{split} \langle (\iota^{**}(n)\Box m) \odot p, f \rangle &= \langle \iota^{**}(n)\Box m, p \bullet f \rangle = \langle \iota^{**}(n), m \cdot (p \bullet f) \rangle \\ &= \langle n, \iota^{*}(m \cdot (p \bullet f)) \rangle = \langle n, m \cdot (p \bullet f)|_{\mathcal{B}} \rangle \\ &= \langle n, (m \odot p) \cdot f \rangle = \langle n\Box(m \odot p), f \rangle. \end{split}$$

Hence, $(\iota^{**}(n) \Box m) \odot p = n \Box (m \odot p)$ and the proof is complete.

THEOREM 3.2. Let \mathcal{B} be a symmetric abstract Segal algebra of \mathcal{A} and let $\varphi \in \Delta(\mathcal{A})$. Then the following statements are equivalent:

- (i) there is a compact (weakly compact) left (right) multiplier T of \mathcal{B}^{**} such that $\langle T(n), \varphi \rangle \neq 0$ for some $n \in \mathcal{B}^{**}$;
- (ii) there is a compact (weakly compact) left (right) multiplier T of \mathcal{A}^{**} such that $\langle T(m), \varphi \rangle \neq 0$ for some $m \in \mathcal{A}^{**}$.

PROOF. Suppose that *T* is a compact (weakly compact) left multiplier of \mathcal{B}^{**} with $\langle T(n), \varphi \rangle \neq 0$ for some $n \in \mathcal{B}^{**}$. Putting p = T(n) makes $\lambda_p = T \circ \lambda_n$ a compact (weakly compact) left multiplier of \mathcal{B}^{**} . Now for each $n \in \mathcal{B}^{**}$, consider the continuous linear map $l_n : \mathcal{A}^{**} \to \mathcal{B}^{**}$ defined by $l_n(m) = n \odot m$ for all $m \in \mathcal{A}^{**}$. Since

 $\iota^{**} \circ \lambda_p = \lambda_{\iota^{**}(p)} \circ \iota^{**}$, by using Lemma 3.1(ii), $\lambda_{\iota^{**}(p^2)} = \lambda_{\iota^{**}(p)} \circ \iota^{**} \circ l_p = \iota^{**} \circ \lambda_p \circ l_p$ is a compact (weakly compact) left multiplier of \mathcal{A}^{**} such that

$$\langle \lambda_{\iota^{**}(p^2)}(\iota^{**}(p)), \varphi \rangle = \langle \iota^{**}(p^3), \varphi \rangle = \langle p^3, \varphi \rangle = \langle p, \varphi \rangle^3 \neq 0.$$

Conversely, suppose that *T* is a compact (weakly compact) left multiplier of \mathcal{A}^{**} such that $\langle T(m), \varphi \rangle \neq 0$ for some $m \in \mathcal{A}^{**}$. Then λ_p is a compact (weakly compact) left multiplier on \mathcal{A}^{**} , where p = T(m). Choose $n_0 \in \mathcal{B}$ with $n_0(\varphi) = 1$. Using Lemma 3.1(iii), $n_0 \odot (p \Box \iota^{**}(n)) = (n_0 \odot p) \Box n$ for all $n \in \mathcal{B}^{**}$. Then the map $\lambda_{n_0 \odot p} = l_{n_0} \circ \lambda_p \circ \iota^{**}$ is a compact (weakly compact) left multiplier of \mathcal{B}^{**} such that

$$\langle \lambda_{n_0 \odot p}(n_0), \varphi \rangle = \langle p, \varphi \rangle \neq 0,$$

as required. The result for a right multiplier *T* can be proved similarly.

From [4, Theorem 2.1] and the above theorem, we obtain the following corollary.

COROLLARY 3.3. Let S(G) be a symmetric abstract Segal algebra of $L^1(G)$. Then G is amenable if and only if there is a compact (weakly compact) right multiplier T of $S(G)^{**}$ such that $\langle T(n), \varphi_1 \rangle \neq 0$ for some $n \in L^1(G)^{**}$.

From [5, Theorem 4.1] and Theorem 3.2, we also obtain the following result.

COROLLARY 3.4. Let S(G) be a symmetric abstract Segal algebra of $L^1(G)$. Then G is compact if and only if there is a compact (weakly compact) left multiplier T of $S(G)^{**}$ such that $\langle T(n), \varphi_1 \rangle \neq 0$ for some $n \in S(G)^{**}$.

To state the next corollary, let A(G) be the Fourier algebra of a locally compact group G as defined in [3]. Combining Theorem 3.2 with [5, Theorem 4.3], we obtain the following characterisation of discrete groups.

COROLLARY 3.5. Let SA(G) be an abstract Segal algebra of the Fourier algebra A(G). Then G is discrete if and only if there is a compact (weakly compact) left multiplier T of $SA(G)^{**}$ such that $\langle T(n), 1 \rangle \neq 0$ for some $n \in SA(G)^{**}$.

4. Multipliers with rank one

Let \mathcal{A} be a Banach algebra and let $\varphi \in \Delta(\mathcal{A})$. Following [8], we call an element $m \in \mathcal{A}^{**}$ a topologically left invariant φ -mean if $m(\varphi) = 1$ and $m(f \cdot a) = \varphi(a)m(f)$ for every $f \in \mathcal{A}^*$ and $a \in \mathcal{A}$, or equivalently $a \Box m = \varphi(a)m$. We denote the set of all topologically left invariant φ -means on \mathcal{A}^* by $TLI_{\varphi}(\mathcal{A}^{**})$. We also put $I_{\varphi} := \{a \in \mathcal{A} : \varphi(a) = 0\}$ which is a co-dimension one closed ideal in \mathcal{A} . Recall that a locally compact group G is called amenable if there exists a *topologically left invariant mean* m on $L^{\infty}(G)$, that is, a bounded linear functional with ||m|| = m(1) = 1 such that $m(f \cdot a) = a(1)m(f)$ for all $f \in L^{\infty}(G)$ and $a \in L^1(\mathbb{G})$. Topologically right invariant means and (two-sided) invariant means on $L^{\infty}(G)$ are defined similarly. It is known that the existence of a topologically right invariant mean and the existence of a topologically right invariant mean beth equivalent to G being amenable.

M. Nemati and Z. Sohaei

A standard argument, used in the proof of [11, Theorem 4.1] on F-algebras, a class of Banach algebras including group algebras, shows that amenability of G is equivalent to the existence of a topologically left invariant φ_1 -mean on $L^{\infty}(G)$ (see also [7, Remark 1.3]).

THEOREM 4.1. Let S(G) be an abstract Segal algebra of $L^1(G)$. Then G is amenable if and only if there is a nonzero idempotent $m \in S(G)^{**}$ such that ρ_m has rank one.

PROOF. Suppose that *G* is amenable. Then by [1, Corollary 3.4], there is a topologically left invariant φ_1 -mean *m* on $S(G)^*$. It is clear that *m* is a nonzero idempotent and the map ρ_m on $S(G)^{**}$, defined by $\rho_m(n) = n \Box m = \langle n, \varphi_1 \rangle m$ for all $n \in S(G)^{**}$, has rank one.

Conversely, let $m \in S(G)^{**}$ be a nonzero idempotent such that ρ_m on $S(G)^{**}$ has rank one. Then there is a functional $\varphi \in S(G)^{***}$ such that $n \Box m = \varphi(n)m$ for all $n \in S(G)^{**}$. Since *m* is a nonzero idempotent, we obtain $\varphi(m) = 1$. Moreover,

$$\varphi(a * b)m = (a * b)\Box m = a\Box(b\Box m)$$
$$= a\Box(\varphi(b)m) = \varphi(b)a\Box m$$
$$= \varphi(b)\varphi(a)m,$$

for all $a, b \in S(G)$. This implies that $\varphi(a * b) = \varphi(a)\varphi(b)$ for all $a, b \in S(G)$. Since the map $n \mapsto n \Box m$ on $S(G)^{**}$ is weak*-weak* continuous and $\varphi(m) = 1$, it follows that $\varphi \in \Delta(S(G)) = \Delta(L^1(G))$. This shows that *m* is a topologically left invariant φ -mean on $S(G)^*$. Hence, *G* is amenable by [1, Corollary 3.4].

LEMMA 4.2. Let $S^1(G)$ be a symmetric Segal algebra of $L^1(G)$ and let $\varphi \in \Delta(L^1(G))$. Then there is a one-one correspondence between the set of topologically left invariant φ -means on $S^1(G)^*$ and on $L^{\infty}(G)$.

PROOF. Let $\iota: S^1(G) \to L^1(G)$ be the inclusion map. Consider the map $\iota^{**}: TLI_{\varphi}(S^1(G)^{**}) \to L^{\infty}(G)^*$. Let $n \in TLI_{\varphi}(S^1(G)^{**})$ and $m = \iota^{**}(n)$. It is clear that $m(\varphi) = 1$. Moreover, for every $a \in L^1(G)$, there is a sequence (a_i) in $S^1(G)$ such that $||a_i - a||_1 \to 0$. Since $\Delta(S^1(G)) = \Delta(L^1(G))$, we have

$$a\Box m = \lim_{i} (a_i \Box \iota^{**}(n)) = \lim_{i} \iota^{**}(a_i \Box n)$$
$$= \lim_{i} \varphi(a_i) \iota^{**}(n) = \varphi(a) \iota^{**}(n) = \varphi(a) m.$$

Therefore, $\iota^{**}(TLI_{\varphi}(S^1(G)^{**})) \subseteq TLI_{\varphi}(L^{\infty}(G)^*)$. We next show that

$$\iota^{**}: TLI_{\varphi}(S^1(G)^{**}) \to TLI_{\varphi}(L^{\infty}(G)^{*})$$

is injective. In fact, suppose that $m, n \in TLI_{\varphi}(S^1(G)^{**})$ with $m \neq n$. Then there exists $f \in S^1(G)^*$ such that $m(f) \neq n(f)$. Let $b_0 \in S^1(G)$ be such that $\varphi(b_0) = 1$. Then $m(f \cdot b_0) = m(f) \neq n(f) = n(f \cdot b_0)$. It follows that

$$\langle \iota^{**}(m), f \bullet b_0 \rangle = \langle m, f \cdot b_0 \rangle \neq \langle n, f \cdot b_0 \rangle = \langle \iota^{**}(n), f \bullet b_0 \rangle.$$

139

Therefore, $\iota^{**}(m) \neq \iota^{**}(n)$. We now prove that ι^{**} is surjective. Suppose that $m \in TLI_{\varphi}(L^{\infty}(G)^*)$. Then for each $f \in S^1(G)^*$ and $a, b \in S^1(G)$, we have

$$\langle m \bullet f, a * b \rangle = \langle m, f \bullet a * b \rangle = \langle m, (f \bullet a) \cdot b \rangle = \varphi(b) \langle m \bullet f, a \rangle.$$

Thus, for $b \in I_{\varphi}$, we have

$$\langle m \bullet f, a * b \rangle = 0$$

Since $S^1(G)$ has an approximate identity (not necessarily bounded), it follows that $\overline{\langle S^1(G) * I_{\varphi} \rangle} = I_{\varphi}$. Thus $(m \bullet f)|_{I_{\varphi}} = 0$. As $a * b - b * a \in I_{\varphi}$, we obtain

$$\langle m, f \bullet (a * b) \rangle = \langle m, f \bullet (b * a) \rangle$$

Let $\varphi(b_0) = 1$ for some $b_0 \in S^1(G)$ and consider the functional $\tilde{m} \in S^1(G)^{**}$ defined by

$$\tilde{m}(f) = \langle m, f \bullet b_0 \rangle, \quad f \in S^1(G)^*.$$

Then for each $b \in S^1(G)$ and $f \in S^1(G)^*$, we have

$$\begin{split} \tilde{m}(f \cdot b) &= \langle m, (f \cdot b) \bullet b_0 \rangle = \langle m, f \bullet (b * b_0) \rangle \\ &= \langle m, f \bullet (b_0 * b) \rangle = \langle m, (f \bullet b_0) \cdot b) \rangle \\ &= \varphi(b) \langle m, f \bullet b_0 \rangle = \varphi(b) \tilde{m}(f). \end{split}$$

Furthermore, it is obvious that $\tilde{m}(\varphi) = 1$. Hence, $\tilde{m} \in TLI_{\varphi}(S^1(G)^{**})$. We have to show that $\iota^{**}(\tilde{m}) = m$. In fact, for every $g \in L^{\infty}(G)$, we have

$$\langle \iota^{**}(\tilde{m}), g \rangle = \langle \tilde{m}, \iota^{*}(g) \rangle = \langle m, \iota^{*}(g) \bullet b_{0} \rangle - \langle m, g \cdot b_{0} \rangle = \langle m, g \rangle,$$

and the proof is complete.

Before giving the next result, recall that the compactness of G is equivalent to the existence of a topologically invariant mean in $L^1(G)$. The following theorem is inspired by [4, Theorem 2.15].

THEOREM 4.3. Let $S^1(G)$ be a symmetric Segal algebra of $L^1(G)$ and K be the set of all right multipliers T of $S^1(G)^{**}$ with rank one such that $\langle T(n), \varphi_1 \rangle = 1$ whenever $\langle n, \varphi_1 \rangle = 1$ for $n \in S^1(G)^{**}$. Then the following statements hold:

- (i) $K \neq \emptyset$ if and only if G is amenable;
- (ii) |K| = 1 if and only if G is compact;
- (iii) if G is amenable and noncompact and d(G) is the smallest possible cardinality of a covering of G by compact sets, then $|K| \ge 2^{2^{d(G)}}$.

PROOF. (i) Suppose that *G* is amenable. Then by [1, Corollary 3.4], there is a topologically left invariant φ_1 -mean *m* on $S^1(G)^*$. Since $\rho_m(n) = n \Box m = \langle n, \varphi_1 \rangle m$ for all $n \in S^1(G)^{**}$, it follows that ρ_m belongs to *K*.

Conversely, suppose that $T \in K$ and $\langle n, \varphi_1 \rangle = 1$ for some $n \in S^1(G)^{**}$. Putting m = T(n), we have $\langle m, \varphi_1 \rangle = 1$. By the same argument as that used in the proof of Theorem 4.1, it is easy to show that *m* is a topologically left invariant φ_1 -mean on $S^1(G)^*$. Thus, *G* is amenable by [1, Corollary 3.4].

(ii) Let $T \in K$ and $n \in TLI_{\varphi_1}(S^1(G)^{**})$. Putting m = T(n), by (i), *m* is a topologically left invariant φ_1 -mean on $S^1(G)^*$. In particular, for each $p \in S(G)^{**}$ with $\langle p, \varphi_1 \rangle = 1$, we obtain $p \Box m = m$. Thus,

$$\rho_m(p) = p \Box m = m = T(p).$$

By linearity, we conclude that $\rho_m = T$ and so there is a one-one correspondence between *K* and $TLI_{\varphi_1}(S^1(G)^{**})$. By Lemma 4.2, $|K| = |TLI_{\varphi_1}(L^{\infty}(G)^*)|$.

Now suppose that *G* is compact. Then there is a topologically invariant mean *m* in $L^1(G)$. Thus, for each $n \in TLI_{\omega_1}(L^{\infty}(G)^*)$, we have

$$m = n(\varphi_1)m = m\Box n = m(\varphi_1)n = n.$$

This shows that $|K| = |TLI_{\varphi_1}(L^{\infty}(G)^*)| = 1$.

Conversely, suppose that |K| = 1. Then $|TLI_{\varphi_1}(L^{\infty}(G)^*)| = 1$. Therefore, there is a unique topologically left invariant φ_1 -mean m on $L^{\infty}(G)$. It follows that m belongs to $L^1(G)$ (see [9]), whence G is compact.

(iii) Suppose that *G* is noncompact. Then by [12, Theorem 1], the cardinality of $TLI_{\varphi_1}(L^{\infty}(G)^*)$ is at least $2^{2^{d(G)}}$. Therefore, $|K| = |TLI_{\varphi_1}(L^{\infty}(G)^*)| \ge 2^{2^{d(G)}}$.

Acknowledgement

The authors would like to sincerely thank the referee for a careful reading of the paper.

References

- M. Alaghmandan, R. Nasr-Isfahani and M. Nemati, 'Character amenability and contractibility of abstract Segal algebras', *Bull. Aust. Math. Soc.* 82 (2010), 274–281.
- [2] J. T. Burnham, 'Closed ideals in subalgebras of Banach algebras. I', Proc. Amer. Math. Soc. 32 (1972), 551–555.
- [3] P. Eymard, 'L'algèbre de Fourier d'un groupe localement compact', Bull. Soc. Math. France 92 (1964), 181–236.
- [4] F. Ghahramani and A. T.-M. Lau, 'Multipliers and ideals in second conjugate algebras related to locally compact groups', J. Funct. Anal. 132 (1995), 170–191.
- [5] F. Ghahramani and A. T.-M. Lau, 'Multipliers and modulus on Banach algebras related to locally compact groups', J. Funct. Anal. 150 (1997), 478–497.
- [6] F. Ghahramani and A. T.-M. Lau, 'Approximate weak amenability, derivations and Arens regularity of Segal algebras', *Studia Math.* 169 (2005), 189–205.
- [7] E. Kaniuth, A. T.-M. Lau and J. Pym, 'On φ-amenability of Banach algebras', Math. Proc. Cambridge Philos. Soc. 144 (2008), 85–96.
- [8] E. Kaniuth, A. T.-M. Lau and J. Pym, 'On character amenability of Banach algebras', J. Math. Anal. Appl. 344 (2008), 942–955.
- [9] M. Klawe, 'On the dimension of left invariant means and left thick subsets', *Trans. Amer. Math. Soc.* 231 (1977), 507–518.
- [10] A. T.-M. Lau, 'Uniformly continuous functionals on the Fourier algebra of any locally compact group', *Trans. Amer. Math. Soc.* 251 (1979), 39–59.
- [11] A. T.-M. Lau, 'Analysis on a class of Banach algebras with application to harmonic analysis on locally compact groups and semigroups', *Fund. Math.* 118 (1983), 161–175.

Multipliers for Segal algebras

- [12] A. T.-M. Lau and A. L. T. Paterson, 'The exact cardinality of the set of topological left invariant means on an amenable locally compact group', *Proc. Amer. Math. Soc.* 98 (1986), 75–80.
- [13] H. Reiter, L¹-algebras and Segal Algebras, Lecture Notes in Mathematics, 231 (Springer, Berlin, 1971).
- [14] S. Sakai, 'Weakly compact operators on operator algebras', Pacific J. Math. 14 (1964), 659-664.

MEHDI NEMATI, Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran e-mail: m.nemati@iut.ac.ir

ZHILA SOHAEI, Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran e-mail: j.sohaei@math.iut.ac.ir

[9]