
Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1–51, 2024

DOI:10.1017/prm.2024.102

On Riemann–Hilbert problem and multiple
high-order pole solutions to the cubic
Camassa–Holm equation

Wen-Yu Zhou
School of Mathematics, China University of Mining and Technology,
Xuzhou 221116, People’s Republic of China (wenyuzhou@cumt.edu.cn)

Shou-Fu Tian
School of Mathematics, China University of Mining and Technology,
Xuzhou 221116, People’s Republic of China (sftian@cumt.edu.cn,
shoufu2006@126.com) (corresponding author)

Zhi-Qiang Li
School of Mathematics, China University of Mining and Technology,
Xuzhou 221116, People’s Republic of China (zqli@cumt.edu.cn)

(Received 13 November 2023; revised 20 July 2024; accepted 26 August 2024)

In this work, the Riemann–Hilbert (RH) problem is employed to study the multiple
high-order pole solutions of the cubic Camassa–Holm (cCH) equation with the term
characterizing the effect of linear dispersion under zero boundary conditions and
nonzero boundary conditions. Under the reflectionless situation, we generalize the
residue theorem and obtain the multiple high-order pole solutions of cCH equation
by solving an algebraic system. During the process of establishing the solution of RH
problem, to simplify the calculations involving the implicitly expressed of variables
(x, t) in the solution, we introduce a new scale (y, t) to ensure the solution of RH
problem is explicitly expressed with respect to it. Finally, the exact solutions are
obtained for cases involving one high-order pole and N high-order poles.
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1. Introduction

It is widely recognized that the Camassa–Holm (CH) equation

ut − utxx + 3uux = 2uxuxx + uuxxx, (1.1)
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is derived by Camassa and Holm [8] through an asymptotic expansion of the
Hamiltonian for Euler equation in the shallow water regime. This equation has
garnered considerable interest among scholars due to its ability to describe var-
ious physical phenomena. As a model of shallow water waves, the CH equation
(Equation 1.1) possesses an integrable infinite dimensional bi-Hamiltonian struc-
ture [11, 16], which is a generalization of the Korteweg–de Vries (KdV) equation
[39]. In addition to this, it is also provided with an infinite hierarchy of local conser-
vation laws [3, 13, 35, 42] and the peaked solitons [12, 37]. As research on the CH
equation continues to advance, numerous generalized forms of the equation have
been proposed and classified [32]. A modified Camassa–Holm (mCH) equation was
firstly defined with the method of geometric by Górka and Reyes [18]. The local
well-posedness for the Cauchy problem of this equation has been investigated [27].
The Fokas–Olver–Rosenau–Qiao equation which is also known as the mCH equa-
tion with cubic nonlinearity has sparked wide research. For convenience, due to
the cubic nonlinearity of the model, we call this equation the cubic Camassa–Holm
(cCH) equation to distinguish the already existing mCH equation [18] throughout
the article.

The cCH equation takes on the form

mt + ((u2 − u2x)m)x = 0, m = u− uxx. (1.2)

It was discovered by Fokas [14], Olver and Rosenau [33] and derived by Fuchssterner
[17], Qiao [36], and Novikov [32]. It is derived as an integrable system by a con-
ventional method of the tri-Hamiltonian duality [14, 17]. This allows for a deeper
understanding of its integrability and mathematical properties. For instance, it is
completely integrable and admits a Lax pair [6, 7, 34]. It is worth mentioning
that the multiple soliton solutions of cCH equation with the solution approach-
ing a nonzero constant at both infinities of the space variable has been solved
by Riemann–Hilbert (RH) method [5, 43]. The smooth and singular multisoliton
solutions of cCH equation with linear dispersion were solved in [31] by the bilinear
transformation method under the rapidly decreasing boundary condition. The inte-
grable semi-discretization problem and the N -soliton solutions of this equation also
have been investigated in [38] through Hirota’s bilinear approach. In addition, the
peaked soliton solutions, kink-peakon interactional solutions, and weak kink solu-
tions have been studied [21, 22, 26, 44]. Furthermore, the multi-soliton solutions
of the cCH equation have been calculated by the Darboux transformation [45] and
the RH approach has been developed for studying the cCH equation with step-like
initial data [25]. Based on its physical background, plenty of important results have
been given by scholars [9, 15, 19, 23, 30].

In this work, our focus is on the cCH equation including a linear dispersion term{
mt + ((u2 − u2x)m)x + νux = 0, m = u− uxx,

u(x, 0) = u0(x),
(1.3)

with zero boundary conditions (ZBCs)

lim
x→±∞

u0(x) = 0, (1.4)
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and nonzero boundary conditions (NZBCs)

lim
x→±∞

u0(x) = u±, u± > 0. (1.5)

For convince, we assume that u± = 1. ν is a positive constant which characterizes
the effect of the linear dispersion and the function u = u(x, t) is a function of time
variable t and spatial variable x. The subscripts x and t appended to the functions
m and u mean the partial differentiation of them.

Equation (Equation 1.3) was initially introduced by Fokas [14]. Later on, the
Lax integrability bi-Hamiltonian structure and conservation laws of it was firstly
proposed by Qiao, Xia, and Li [44]. Subsequently, Wang and Qiao [43] established
the RH problem of the FQXL model

mt =
1
2k1
[
m
(
u2 − u2x

)]
x
+ 1

2k2 (2mux +mxu) , m = u− uxx, (1.6)

which is in fact equivalent to Eq. (Equation 1.3) when letting k1 = −2 and
k2 = 0. The RH problem with some important properties of the cCH equation has
been investigated in references [46, 48], then by adopting nonlinear steepest descent
method and ∂̄ steepest descent method, the long-time asymptotic behaviours of
the solution with Schwartz initial data and weighted Sobolev initial data have been
studied respectively. In an effort to obtain more properties of soliton solutions, this
article goes deeply into the high-order pole solutions for the cCH equation based on
the RH problem constructed in these two references. Due to the high-order negative
powers at the poles, particularly for negative order equations, it can be challenging
to construct solutions using general residue conditions. So this issue has not yet been
fully resolved. Additionally, studying high-order solitons and high-order dispersion
in relation to the cCH equation can lead to the discovery of new phenomena and
important properties, making it a research area of great significance.

The inverse scattering transform (IST) method was introduced as a specialized
calculation adapted to the initial-value problem for the KdV equation [10]. Through
extended by some researchers, it can be used to solve the Fourier transform [2, 20,
49]. This method has been recognized as an important tool for solving various
problems in mathematics, physics, and other fields. Meanwhile, it is particularly
useful in obtaining the exact solutions for nonlinear wave equations by performing
a series of linear computations. The RH problem, as a simplified modern version of
IST, is a forceful tool to deal with the initial-boundary value problems of integrable
systems. Its characteristic is that the solution of the corresponding RH problem
can recover the reconstruction formula of the solution to the differential equation.
There are numerous equations solved by RH approach when the space variable of
solutions approach to zero or nonzero constant at infinities. Such as, the nonlinear
Schrödinger (NLS) equation [4, 40, 47], the coupled modified KdV equation [24, 28,
41], the derivative NLS equation [51], the nonlocal reverse-space-time NLS equation
[1], and the nonlocal real reverse-space-time mKdV equation [29].

The production and propagation of solitons play a crucial role in optical fiber
communication. It is well-known that high-order soliton solutions are primarily
obtained from high-order poles. The high-order soliton can be applied to describe
a weak bound state of solitons and may appear in the study of train propagation of
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solitons with almost equivalent velocities and amplitudes. Therefore, studying high-
order solitons and high-order dispersion is of utmost importance in this field. Taking
advantage the RH method, through a standard dressing procedure, the soliton
matrices of the high-order poles for the third-order flow Gerdjikov–Ivanov equation
are constructed in [52]. Nevertheless, when dealing with the RH problem with N -
order poles, it is necessary to clearly give the corresponding residue conditions
which are very complex and difficulty.

Recently, a new method can solve the RH problem with high-order poles are
developed [50]. By using Laurent expansion and Taylor series, we generalize the
residue theorem and get out of the complicated calculations, then the multiple
high-order pole solitons are established. Hence, comparing to the work of [43], we
not only provide the multi-soliton solutions of (Equation 1.3) but also consider
the multiple high-order pole solutions with both ZBCs and NZBCs. In addition to
study Ablowitz-Kaup-Newell-Suger (AKNS) hierarchy, we extend the RH method
to study the non-AKNS-type integrable cCH equation with ZBCs and NZBCs and
give the exact expressions of soliton solutions with one high-order pole and multiple
high-order poles. We generalize the results presented in [5] after taking into account
the impact of additional a linear dispersion term νux. The Lax pair in [5] is the
simplest special case of our Lax pair. When the parameter ν is equal to zero and
the orders of the poles are all equal to one, the solutions we obtained under NZBCs
can degenerate into the solution in [5]. These distinctions make our work more
general and involve more complex analysis. It is worth noting that there are some
differences from that on cCH equation (Equation 1.2) as mentioned in the following
aspects.

(I) Since the cCH equation we have researched has a linear dispersion term
νux, the Lax pair has a more complex form regarding the negative power
of spectral parameter. Especially for the NZBCs, due to the deformation
of the potential function, the Lax pair undergoes corresponding defor-
mation as well. Then the suitable uniformization variable µ should be
introduced. This gives rise to new spectral singularities that pose challenges
for subsequent analysis.

(II) The cCH equation belongs to the family of negative-order equations and
the uniformization variable µ is introduced, there are some singularities
in the Lax pair. Under ZBCs, the cCH equation exhibits singularities at
points µ=0, µ = ∞ and branch cut points µ = ±i. Under NZBCs, new
singularities arise at points µ = ±1. Analysing the asymptotic properties
of these points is crucial because they significantly impact the construction
of the RH problem.

(III) Under NZBCs, based on the relationship y(x, t) = x−
∫ +∞
x

(m̂(ξ, t)− 1)dξ

between variables x and y and considering the condition X̂0(x, t,±i) ≡ 0,
we study the scattering data a(µ) and b(µ) about the above relationship.
Then the implicit expression of the potential function u is given by the
solution of RH problem.

(IV) Under NZBCs, in order to give the explicit expression of the potential
function u of cCH equation, we need to use the compatibility condition
Ũt − Ṽy + [Ũ , Ṽ ] = 0 and expand Ũ , Ṽ at singular points.
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(V) The function a(µ) is a Wronskian of analytic Jost solutions, which vanishes
to N -order at the N -order zero points, we obtain a linear expression for
the N th derivative of Jost solutions. Then by utilizing Laurent expansion
of e±2itθ(µ), the multiple high-order pole solutions of cCH equation under
ZBCs and NZBCs are established.

The outline of this work is arranged as follows. In §2, the spectrum problem
of the cCH equation with ZBCs is analysed in detail. By introducing the Jost
solutions, the analytical, asymptotic, and symmetric properties are gained. The
cCH equation has singularities at points µ=0, µ = ∞, and µ = ±i, through
introducing suitable transformations to research these singularities, we can con-
struct RH problem by a new scale (y, t) and recover the potential function at point
µ = i. Then, the expression of the solution with one N -order pole and multiple
N -order poles are given, respectively. Finally, we give some examples analysing the
dynamic behaviours of one-soliton solutions and two-order pole solutions. We com-
pare the solution obtained by the RH method and the bilinear method, providing
the expression for the solutions, and analysing them in conjunction with the figures.

In §3, by the same processing method, the RH problem of the cCH equation with
NZBCs is established. Note that in addition to the above singularities, the points
µ = ±1 also are singularities, we need to consider the asymptotic properties of the
eigenfunctions and scattering data at points µ = ±1. After that, the uniqueness of
the solution about cCH equation with the new scale (y, t) is given. On the basis of
proving the theory that the data of the RH problem are independent of some spe-
cific initial data of the cCH equation, we give the parametric representation of the
solution. Finally, the expression of the solutions with one N -order pole and multi-
ple N -order poles are derived, respectively. Furthermore, we analyse the dynamic
behaviours of solutions by selecting special parameters.

2. RH problem and high-order pole under ZBCs

2.1. Spectral analysis

It is well-known that cCH equation (Equation 1.3) admits the following Lax
pair

φx = Uφ, φt = V φ, (2.1)

where U = U(x, t;λ) and V = V (x, t;λ) are 2× 2 matrices defined by

U =

(
−Q

2
λm
2

−λm
2

Q
2

)
, V =

(
Q

λ2
+ QR

2 −u−Qux
λ − λRm

2
u+Qux

λ + λRm
2 − Q

λ2
− QR

2

)
, (2.2)

with

Q = Q(ν, λ) =

√
1− νλ2

2
, R = u2 − u2x. (2.3)
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It can be seen that under the following transformations

x = x̃, t =
2

ν
t̃, u(x, t) =

√
ν

2
ũ(x̃, t̃), (2.4)

Eq. (Equation 1.3) turns to

m̃t̃ + (m̃R̃)x̃ + 2ũx̃ = 0, m̃ = ũ− ũx̃x̃, R̃ = ũ2 − ũ2x̃. (2.5)

Without loss of generality, we pick ν=2. To get rid of the multi-value problem of
square roots, we introduce a new transformation

Q =
i

2
(µ− 1

µ
), λ =

1

2
(µ+

1

µ
). (2.6)

After doing a gauge transformation

ψ = P−1φeJ , (2.7)

with

P = P (x, t) =

√
q + 1

2q

(
1 − im

q+1

− im
q+1 1

)
, (2.8)

δ = x−
∫ +∞

x

(q − 1)dy − 2t

λ2
, q =

√
m2 + 1, (2.9)

where we define J = 1
2Qδσ3. The asymptotic condition is shown as follows

ψ(x, t, µ) ∼ I, x→ ±∞.

Equation (Equation 1.3) has the following form Lax pair

ψx + [Jx, ψ] = Xψ, (2.10a)

ψt + [Jt, ψ] = Tψ, (2.10b)

where

X =
imx

2q2
σ1 +

m

2µq

(
−im 1

−1 im

)
,

T =
imt

2q2
σ1 −

mR

2µq

(
−im 1

−1 im

)
+

(µ2 − 1)ux
µ2 + 1

σ1 −
2µu

(µ2 + 1)q

(
−im 1

−1 im

)

+
2iµ(µ2 − 1)

(µ2 + 1)2

(
1
q − 1 − im

q
im
q 1− 1

q

)
,
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there [A,B] = AB − BA and the notations J = J(x, t, µ), X = X(x, t, µ), T =
T (x, t, µ) are 2×2 matrices. The σ1 is Pauli matrix and the Pauli matrices are that

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
.

The two Jost solutions of (Equation 2.10a) are completely determined by Volterra
integrable equations

ψ±(x, t, µ) = I +

∫ x

±∞
e
− i

4 (µ−
1
µ )

∫ x
y qdτσ̂3 [X(y, t, µ)ψ±(y, t, µ)] dy, (2.11)

where eAσ̂3B = eAσ3Be−Aσ3 . They have the analytic properties, symmetry
properties, and asymptotic properties shown in the following three propositions.

Proposition 2.1. Providing that u0(x) ∈ L1(R±), the Jost eigenfunctions
ψ±(x, t, µ) have the following analytic properties, that is, ψ−,1(x, t, µ) and
ψ+,2(x, t, µ) are analytic in C+, ψ+,1(x, t, µ) and ψ−,2(x, t, µ) are analytic in C−,
there ψ±,j(x, t, µ) (j = 1, 2) represent the j-th column of ψ±(x, t, µ), C+ = {µ ∈
C|Imµ > 0} and C− = {µ ∈ C|Imµ < 0}.

Proposition 2.2. The Jost eigenfunctions ψ±(x, t, µ) have the following symme-
try conditions

ψ±(µ) = σ1ψ
∗
±(−

1

µ∗ )σ1 = σ2ψ
∗
±(µ

∗)σ2 =
1

P 2
σ2ψ±(−

1

µ
)σ2. (2.12)

Proposition 2.3. The Jost eigenfunctions ψ±(x, t, µ) possess asymptotic
behaviour in the µ-plane

ψ±(x, t, µ) = I +O(
1

µ
), µ→ ±∞, (2.13)

and according to the symmetry relations of ψ±(x, t, µ), there are the same relations
when µ→ 0.

It can be seen that φ±(x, t, µ) are two fundamental matrix solutions of Lax
pair (Equation 2.1). As a result, there exists a matrix S(µ) which independent of
variables x and t satisfies

φ−(x, t, µ) = φ+(x, t, µ)S(µ), (2.14)

then on the basis of transformation (Equation 2.7), the relation (Equation 2.14)
can be written in the following form

ψ−(x, t, µ)e
−J(x,t,µ) = ψ+(x, t, µ)e

−J(x,t,µ)S(µ), (2.15)
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where S(µ) is a 2×2 matrix. We can derive the symmetries of S(µ) from proposition
2.2 as follows

S(µ) = S∗(
1

µ∗ ) = σ3S(−
1

µ
)σ3 = σ2S

∗(µ∗)σ2. (2.16)

According to symmetry relation (Equation 2.12), we can define the matrix S(µ) as
the following form

S(µ) =

(
a(µ) −b∗(µ∗)

b(µ) a∗(µ∗)

)
. (2.17)

Because tr(U) = 0, based on Abel theorem, we have det(ψ±) = 1, then det(S(µ)) =
1. By directly calculating Eq. (Equation 2.15), a(µ) and b(µ) can be expressed as

a(µ) =Wr(ψ−1, ψ+2), b(µ) =Wr(ψ+1, ψ−1). (2.18)

We define the reflection coefficient

ρ(µ) =
b(µ)

a(µ)
. (2.19)

Taking into account the properties of the Jost eigenfunctions ψ±(x, t, µ), we
obtain the corresponding properties to the elements a(µ) and b(µ) of the scattering
matrix S(µ) as follows.

Proposition 2.4. The scattering data a(µ) and b(µ) satisfy the following proper-
ties

(i) a(µ) can be analytically continued in C+, and b(µ) is continuous in R;
(ii) a(µ) = 1+O( 1µ ) and b(µ) → 0 as µ→ ∞, and from the symmetry relations

of ψ±(x, t, µ), there are the same relations when µ→ 0;
(iii) the reflection coefficient ρ(µ) possesses the symmetry relations

ρ(µ) = ρ∗(
1

µ∗ ) = −ρ(− 1

µ
) = −ρ∗(−µ∗). (2.20)

It is noticed that, since the branch cut points µ = ±i exist in the extended
complex µ-plane, the asymptotic behaviour of eigenfunctions ψ±(x, t, µ) ought to
be considered as µ→ ±i. Introducing a new Jost function

ψ̃±(x, t, µ) = φ±(x, t, µ)e
(
Q
2 x−

Q

λ2
t)σ3 , (2.21)

then we have

ψ̃±(x, t, µ) ∼ I, x→ ±∞. (2.22)

The Lax pair (Equation 2.1) can be converted to
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(ψ̃±)x = −Q
2
[σ3, ψ̃±] + X̃ψ̃±, (2.23a)

(ψ̃±)t =
Q

λ2
[σ3, ψ̃±] + T̃ ψ̃±, (2.23b)

with

X̃ =

(
0 λm

2

−λm
2 0

)
,

T̃ =
R

2

(
Q −λm
λm −Q

)
+
u−Qux

λ

(
0 −1

1 0

)
.

Taking into account the asymptotic expansion of ψ̃ at µ→ i, we have

ψ̃ = I + ψ̃1(µ− i) +O((µ− i)2), µ→ i, (2.24)

with

ψ̃1 =

(
0 −1

2 (u+ ux)

−1
2 (u− ux) 0

)
. (2.25)

According to the transformations (Equation 2.7) and (Equation 2.21), we have

ψ±(x, t, µ) = P−1(x, t)ψ̃±(x, t, µ)e
1
2Q(µ)

∫ x
±∞(q−1)dy. (2.26)

Taking the limits of (Equation 2.26) as µ→ i, we obtain the asymptotic of a(µ)

a(µ) = e
−1

2

∫+∞
−∞ (q−1)dx

(1 +O((µ− i)2)), µ→ i. (2.27)

The analytic properties of ψ±(x, t, µ) stated above allow rewriting the rela-
tion (Equation 2.15) as a sectionally meromorphic matrix.

2.2. RH problem

Define a piecewise meromorphic 2× 2-matrix valued function

M(µ) =M(x, t;µ) :=


(
ψ−,1(x,t;µ)

a(µ) , ψ+,2(x, t;µ)
)
, as µ ∈ C+,(

ψ+,1(x, t;µ),
ψ−,2(x,t;µ)
a∗(µ∗)

)
, as µ ∈ C−.

(2.28)

RHP 2.5. Find a matrix M(µ) =M(x, t, µ) satisfies the following conditions

(i) Analyticity: the matrix M(µ) is a meromorphic function in C\R.

https://doi.org/10.1017/prm.2024.102 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.102
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(ii) Asymptotic behaviour:

M(µ) = I +O(
1

µ
), µ→ ∞, (2.29)

M(µ) = P−1[I + ψ̃1(µ− i)]e
1
2

∫ x
+∞(q−1)dyσ3 +O((µ− i)2), µ→ i.

(2.30)

(iii) Jump condition:

M+(µ) =M−(µ)G(µ), µ ∈ R, (2.31)

where

G(µ) =

(
1 + |ρ(µ)|2 e−Qδρ∗(µ)

eQδρ(µ) 1

)
. (2.32)

(iv) Symmetries:
M(µ) = σ3M

∗(−µ∗)σ3=σ2M
∗(µ∗)σ2 = P−2σ1M

∗(− 1
µ∗ )σ1.

Since the function δ(x, t, µ) has integral term, which directly lead to the difficulty
to solve Eq. (Equation 1.3), a new space variable is introduced as follows

y(x, t) = x−
∫ +∞

x

(q(s, t)− 1)ds. (2.33)

Defining the function M̃(µ) and phase function θ(µ) on the new scale y(x, t)

M̃(µ) = M̃(y, t, µ) =M(x(y, t), t, µ), (2.34)

θ(µ) =
1

2
iQ(µ)

(
y

t
− 2

λ2(µ)

)
, (2.35)

then, the RH problem 2.5 is transformed as follows.

RHP 2.6. Find a matrix M̃(µ) = M̃(y, t, µ) satisfies the following conditions

(i) Analyticity: the matrix M̃(µ) is a meromorphic function in C\R.
(ii) Asymptotic behaviour:

M̃(µ) = I +O(
1

µ
), µ→ ∞, (2.36)

M̃(µ) = P−1[I + ψ̃1(µ− i)]e
1
2

∫ x
+∞(q−1)dyσ3 +O((µ− i)2), µ→ i.

(2.37)
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(iii) Jump condition:

M̃+(µ) = M̃−(µ)V (µ), µ ∈ R, (2.38)

where

V (µ) =

(
1 + |ρ(µ)|2 e2itθ(µ)ρ∗(µ)

e−2itθ(µ)ρ(µ) 1

)
. (2.39)

(iv) Symmetries:
M̃(µ) = σ3M̃

∗(−µ∗)σ3=σ2M̃
∗(µ∗)σ2 = P−2σ1M̃

∗(− 1
µ∗ )σ1.

Using the asymptotic property of function M̃(µ) as µ → i, the relationship
between the solution of cCH equation and the RH problem is obtained

u(x, t) = lim
µ→i

1

µ− i

(
1− (M̃11(µ) + M̃21(µ))(M̃12(µ) + M̃22(µ))

(M̃11(i) + M̃21(i))(M̃12(i) + M̃22(i))

)
, (2.40)

with

x(y, t) = y − ln

(
M̃12(i) + M̃22(i)

M̃11(i) + M̃21(i)

)
, (2.41)

where M̃ij(µ) (i, j = 1, 2) represents the element in raw i and column j of M̃(µ).

2.3. Single high-order pole solutions

In order to obtain a pure soliton solution, this section we will consider the reflec-
tionless situation, i.e., b(µ) = 0. Then V (µ) = 0 for µ ∈ R. We assume that
µ0 ∈ C+ is the only one N -order zero point of the scattering data a(µ), then the

N -order zero points
{
−µ∗

0,− 1
µ0
, 1
µ∗0

}
∈ C+ are also obtained from the symmetry

of a(µ). Additionally,
{
µ∗
0,−µ0,− 1

µ∗0
, 1
µ0

}
∈ C− are the N -order zero points of the

scattering data a∗(µ∗).

The discrete spectrum is the set Z =
{
±µ0,±µ∗

0,± 1
µ0
,± 1

µ∗0

}
, which can be

shown in Figure 1. After taking v1 = µ0, v2 = 1
µ∗0

, the scattering data a(µ) can be

expressed as

a(µ) =
2∏
j=1

(µ− vj)
N (µ+ v∗j )

Na0(µ), (2.42)

where a0(µ) 6= 0 for all µ ∈ C+. Therefore, from the definition of M̃(y, t, µ), it
can be seen that µ = vj and µ = −v∗j (j = 1, 2) are N -order pole points of M̃11.

Simultaneously, µ = v∗j and µ = −vj (j = 1, 2) are N -order pole points of M̃12.
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Reµ

Imµ

µ0

µ∗
0

− 1
µ0

− 1
µ∗

0

1
µ∗

0

1
µ0

−µ∗
0

−µ0

Figure 1. Distribution of the discrete spectrum µ.

Based on the definitions of (Equation 2.14) and (Equation 2.15), under the new

scale y(x, t), we define φ̆±(y, t, µ) = φ±(x, t, µ) and ψ̆±(y, t, µ) = ψ±(x, t, µ) and
obtain the following relationships

φ̆−(y, t, µ) = φ̆+(y, t, µ)S(µ), (2.43)

and

ψ̆−(y, t, µ)e
itθ(µ)σ3 = ψ̆+(y, t, µ)e

itθ(µ)σ3S(µ), (2.44)

where θ(µ) is defined in (Equation 2.35). Under the assumption that µ = vj (j =
1, 2) are N -order zero points of a(µ), from the following two relations, a(µ) can be
represented as a Wronskian of analytic Jost solutions

a(µ) =Wr(φ̆−1, φ̆+2), (2.45)

then at zero points vj (j = 1, 2), a(µ) vanishes to N -order, there exist complex
constants bj,s (j = 1, 2) (s = 1, 2, · · · , N) satisfy the follows

∂m[φ̆+(y, t, vj)]2
∂µm

=
m∑
l=0

(
m

l

)
bj,m−l+1

∂l[φ̆−(y, t, vj)]1
∂µl

, (2.46)

and

∂m[ψ̆+(y, t, vj)]2
∂µm

=
m∑
l=0

(
m

l

)
bj,m−l+1

∂l[ψ̆−(y, t, vj)]1e
2itθ(vj)

∂µl
, (2.47)

with m = 0, 1, · · · , N − 1.
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On the basis of the definition of M(µ) defined by (Equation 2.28) and the
asymptotic behaviour in RH problem 2.6, we set

M̃11(y, t, µ) = 1 +
2∑
j=1

N∑
s=1

(
1

(µ− vj)s
+

(−1)s

(µ+ v∗j )
s

)
Fj,s(y, t), (2.48a)

M̃12(y, t, µ) =
2∑
j=1

N∑
s=1

(
1

(µ− v∗j )
s
+

(−1)s+1

(µ+ vj)s

)
Gj,s(y, t), (2.48b)

where Fj,s(y, t) and Gj,s(y, t) are undetermined functions. Making use of Taylor
series expansion, one can obtain the following relationships

e−2itθ(µ) =
+∞∑
l=0

ζj,l(y, t)(µ− vj)
l, e2itθ(µ) =

+∞∑
l=0

ζ∗j,l(y, t)(µ− v∗j )
l, (2.49)

where the element ζj,l(y, t) is

ζj,l(y, t) = lim
µ→vj

1

l!

∂l

∂µl
e−2itθ(µ), ζ∗j,l(y, t) = lim

µ→v∗
j

1

l!

∂l

∂µl
e2itθ(µ).

It can be obtained that the coefficient of item (µ− vj)
−s of function M̃11(y, t, µ)

is Fj,s(y, t). Now we extend the residue theorem by combining (Equation 2.44) and
(Equation 2.47) and obtain the following relations

Fj,s =
N∑
l=s

l−s∑
m=0

2∑
p=1

N∑
q=1

(
q +m− 1

m

)
×

rj,lζj,l−s−m

{
(−1)m

(vj − v∗p)
q+m

+
(−1)m+q+1

(vj + vp)q+m

}
Gp,q,

(2.50)

where

rj,l = lim
µ→vj

bj,l
(N − l)!

∂N−l

∂(µ− vj)N−l
(µ− vj)

N

a(µ)
. (2.51)

Likewise, the coefficient of item (µ − v∗j )
−s of function M̃12(y, t, µ) is Gj,s(y, t).

Through the same method, we have

Gj,s = −
N∑
l=s

r∗j,lζ
∗
j,l−s −

N∑
l=s

l−s∑
m=0

2∑
p=1

N∑
q=1

(
q +m− 1

m

)
×

r∗j,lζ
∗
j,l−s−m

{
(−1)m

(v∗j − vp)q+m
+

(−1)m+q

(v∗j + v∗p)
q+m

}
Fp,q.

(2.52)

https://doi.org/10.1017/prm.2024.102 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.102


14 W.Y. Zhou, S.F. Tian and Z.Q. Li

Introducing the new notations for j, p = 1, 2

|ηj〉 = (ηj1, · · · , ηjN )T , ηjs = −
N∑
l=s

r∗j,lζ
∗
j,l−s(y, t), (2.53)

then defining the N ×N matrices ϑj,p = [ϑj,p]s,q and ϑ̃j,p = [ϑ̃j,p]s,q for s, q =
1, 2, · · · , N as follows

ϑj,p =

N∑
l=s

l−s∑
m=0

(
q +m− 1

m

)
rj,lζj,l−s−m

{
(−1)m

(vj − v∗p)
q+m

+
(−1)m+q+1

(vj + vp)q+m

}
,

(2.54)

ϑ̃j,p =
N∑
l=s

l−s∑
m=0

(
q +m− 1

m

)
r∗j,lζ

∗
j,l−s−m

{
(−1)m

(v∗j − vp)q+m
+

(−1)m+q

(v∗j + v∗p)
q+m

}
,

(2.55)

|Fp〉 = (Fp,1, · · · , Fp,N )T , |Gp〉 = (Gp,1, · · · , Gp,N )T , (2.56)

ϑ =

(
ϑ1,1 ϑ1,2
ϑ2,1 ϑ2,2

)
, ϑ̃ =

(
ϑ̃1,1 ϑ̃1,2
ϑ̃2,1 ϑ̃2,2

)
, Iσ =

(
I 0

0 I

)
, (2.57)

where I is a N ×N identity matrix. Equations (Equation 2.50)–(Equation 2.52)
can be written as a system of linear equations

I|Fp〉 − ϑj,p|Gp〉 = 0,

ϑ̃j,p|Fp〉+ I|Gp〉 = |ηj〉.
(2.58)

Then taking

|F 〉 = (|F1〉, |F2〉)T , |G〉 = (|G1〉, |G2〉)T , (2.59)

|η〉 = (|η1〉, |η2〉)T . (2.60)

The system (Equation 2.58) has the following solution

|F 〉 = (Iσ + ϑϑ̃)−1ϑ|η〉, |G〉 = (Iσ + ϑ̃ϑ)−1|η〉. (2.61)

The new expression of (Equation 2.48a) is derived as

M̃11(y, t, µ) =
det(Iσ + ϑϑ̃+ |η〉〈Υ(µ)|ϑ)

det(Iσ + ϑϑ̃)
, (2.62)

M̃12(y, t, µ) =
det(Iσ + ϑ̃ϑ+ |η〉〈Υ̃(µ)|)

det(Iσ + ϑ̃ϑ)
− 1, (2.63)
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with

〈Υ(µ)| = (〈Υ1(µ)|, 〈Υ2(µ)|), 〈Υj(µ)| = (Υj1, . . . ,ΥjN ),

〈Υ̃(µ)| = (〈Υ̃1(µ)|, 〈Υ̃2(µ)|), 〈Υ̃j(µ)| = (Υ̃j1, . . . , Υ̃jN ),

〈Υ′(µ)| = (〈Υ′
1(µ)|, 〈Υ′

2(µ)|), 〈Υ′
j(µ)| = (Υ′

j1, . . . ,Υ
′
jN ),

〈Υ̃′(µ)| = (〈Υ̃′
1(µ)|, 〈Υ̃′

2(µ)|), 〈Υ̃′
j(µ)| = (Υ̃′

j1, . . . , Υ̃
′
jN ),

(2.64)

Υjs =
1

(µ− vj)s
+

(−1)s

(µ+ v∗j )
s
, Υ̃js =

1

(µ− v∗j )
s
+

(−1)s+1

(µ+ vj)s
,

Υ′
js =

−s
(µ− vj)s+1

+
s(−1)s+1

(µ+ v∗j )
s+1

, Υ̃′
js =

−s
(µ− v∗j )

s+1
+

s(−1)s

(µ+ vj)s+1
,

where we differentiate the components of vector 〈Υ(µ)| from variable µ to obtain
vector 〈Υ′(µ)|, the vector 〈Υ̃′(µ)| can also be gained from the same way. In the fol-
lowing content, we will continue to use this definition. On the basis of the symmetry
of M̃(µ) = σ2M̃

∗(µ∗)σ2, we have

M̃22(y, t, µ) =
det(Iσ + ϑ̃∗ϑ∗ + |η∗〉〈Υ∗(µ∗)|ϑ∗)

det(Iσ + ϑ̃∗ϑ∗)
, (2.65)

M̃21(y, t, µ) = −det(Iσ + ϑ∗ϑ̃∗ + |η∗〉〈Υ̃∗(µ∗)|)
det(Iσ + ϑ∗ϑ̃∗)

+ 1. (2.66)

Hence the precise expression formula for the solution of cCH equation with single
high-order pole under the ZBCs can be obtained in theorem 2.7.

Theorem 2.7 The solution of cCH equation with single high-order pole under the
ZBCs can be obtained as follows

u(x, t) = −

(
M̃ ′

11(i) + M̃ ′
21(i)

M̃11(i) + M̃21(i)
+
M̃ ′

12(i) + M̃ ′
22(i)

M̃12(i) + M̃22(i)

)
, (2.67)

with

M̃11(i) =
det(Iσ + ϑϑ̃+ |η〉〈Υ(i)|ϑ)

det(Iσ + ϑϑ̃)
,

M̃21(i) = −det(Iσ + ϑ∗ϑ̃∗ + |η∗〉〈Υ̃∗(−i)|)
det(Iσ + ϑ∗ϑ̃∗)

+ 1,

M̃12(i) =
det(Iσ + ϑ̃ϑ+ |η〉〈Υ̃(i)|)

det(Iσ + ϑ̃ϑ)
− 1

M̃22(i) =
det(Iσ + ϑ̃∗ϑ∗ + |η∗〉〈Υ∗(−i)|ϑ∗)

det(Iσ + ϑ̃∗ϑ∗)
,

M̃ ′
11(i) =

det(Iσ + ϑϑ̃+ |η〉〈Υ′(i)|ϑ)
det(Iσ + ϑϑ̃)

− 1,
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M̃ ′
21(i) = −det(Iσ + ϑ∗ϑ̃∗ + |η∗〉〈Υ̃′∗(−i)|)

det(Iσ + ϑ∗ϑ̃∗)
+ 1,

M̃ ′
12(i) =

det(Iσ + ϑ̃ϑ+ |η〉〈Υ̃′(i)|)
det(Iσ + ϑ̃ϑ)

− 1,

M̃ ′
22(i) =

det(Iσ + ϑ̃∗ϑ∗ + |η∗〉〈Υ′∗(−i)|ϑ∗)
det(Iσ + ϑ̃∗ϑ∗)

− 1,

where x = x(y, t) is defined in (Equation 2.41), and the elements |η〉, Iσ, ϑ,
ϑ̃, 〈Υ(i)|, 〈Υ̃(i)|, 〈Υ′(i)|, and 〈Υ̃′(i)| are respectively defined in (Equation 2.53),
(Equation 2.57), and (Equation 2.64).

2.3.1. One-soliton solution
Next, we construct the simple one-soliton solution and compare the expressions of
the solutions obtained by RH approach and Hirota’s bilinear method. In this case,
the zero points of scattering data are one-order, and there is no need to calculate
the high-order derivative formula of the Jost eigenfunctions and the complex Taylor
expansions, which degenerates into the residue conditions of RH matrix. In order to
compare with the solution obtained by bilinear method, we need to process the RH
matrix and use the above construction process to obtain the simplest expression of
solution.

For one-soliton solution, we have N =1. Supposing v1 = µ0 is a first-order zero
point of the scattering data a(µ), then the symmetrical relationships indicate that{
−µ∗

0,− 1
µ0
, 1
µ∗0

}
∈ C+ also are zero points of a(µ). Then from Eqs. (Equation

2.44), (Equation 2.45), and (Equation 2.47), we use the symmetry relationships in
RH problem 2.6 to calculate the following residue conditions

Res
µ=µ0

M̃ (1)(y, t, µ) = c0e
−2itθ(µ0)M̃ (2)(y, t, µ0),

Res
µ= 1

µ∗0

M̃ (1)(y, t, µ) = − c∗0
µ∗2
0

e2itθ
∗(µ0)M̃ (2)(y, t,

1

µ∗
0

),

Res
µ=−µ∗0

M̃ (1)(y, t, µ) = − c0
µ2
0

e2itθ
∗(µ0)M̃ (2)(y, t,−µ∗

0),

Res
µ=− 1

µ0

M̃ (1)(y, t, µ) = − c0
µ2
0

e−2itθ(µ0)M̃ (2)(y, t,− 1

µ0
).

(2.68)

To simplify the calculation process, we redefine the RH matrix as

Ñ1(µ) = M̃11(µ) + M̃21(µ), Ñ2(µ) = M̃12(µ) + M̃22(µ). (2.69)

The characteristic function satisfies ψ±(µ) = σ1ψ±(−µ)σ1, which means that
M̃(µ) = σ1M̃(−µ)σ1, then Ñ1(µ) = Ñ2(−µ). Calculating from formulas
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(Equation 2.48a) and combining with the symmetries of matrix M̃(µ), we obtain

Ñ1(µ) =1 +
c0e

−2itθ(µ0)

µ− µ0
Ñ1(−µ0) +

c∗0e
2itθ∗(µ0)

µ+ µ∗
0

Ñ1(µ
∗
0)+

− c0
µ20
e−2itθ(µ0)

µ+ 1
µ0

Ñ1(
1

µ0
) +

− c∗0
µ∗20

e2itθ
∗(µ0)

µ− 1
µ∗0

Ñ1(−
1

µ∗
0

),

(2.70)

there c0 =
b0
ȧ(µ) is some complex number, we can set c0 = |c0|eiφ (φ ∈ (0, π)). The

linear equation system shown in formula (Equation 2.58) can be simplified as

Ñ1(−µ0) =1 +
c0e

−2itθ(µ0)

−µ0 − µ0
Ñ1(−µ0) +

c∗0e
2itθ∗(µ0)

−µ0 + µ∗
0

Ñ1(µ
∗
0)+

− c0
µ20
e−2itθ(µ0)

−µ0 +
1
µ0

Ñ1(
1

µ0
) +

− c∗0
µ∗20

e2itθ
∗(µ0)

−µ0 − 1
µ∗0

Ñ1(−
1

µ∗
0

),

(2.71)

Ñ1(µ
∗
0) =1 +

c0e
−2itθ(µ0)

µ∗
0 − µ0

Ñ1(−µ0) +
c∗0e

2itθ∗(µ0)

µ∗
0 + µ∗

0

Ñ1(µ
∗
0)+

− c0
µ20
e−2itθ(µ0)

µ∗
0 +

1
µ0

Ñ1(
1

µ0
) +

− c∗0
µ∗20

e2itθ
∗(µ0)

µ∗
0 − 1

µ∗0

Ñ1(−
1

µ∗
0

),

(2.72)

Ñ1(
1

µ0
) =1 +

c0e
−2itθ(µ0)

1
µ0

− µ0

Ñ1(−µ0) +
c∗0e

2itθ∗(µ0)

1
µ0

+ µ∗
0

Ñ1(µ
∗
0)+

− c0
µ20
e−2itθ(µ0)

1
µ0

+ 1
µ0

Ñ1(
1

µ0
) +

− c∗0
µ∗20

e2itθ
∗(µ0)

1
µ0

− 1
µ∗0

Ñ1(−
1

µ∗
0

),

(2.73)

Ñ1(−
1

µ∗
0

) =1 +
c0e

−2itθ(µ0)

− 1
µ∗0

− µ0

Ñ1(−µ0) +
c∗0e

2itθ∗(µ0)

− 1
µ∗0

+ µ∗
0

Ñ1(µ
∗
0)+

− c0
µ20
e−2itθ(µ0)

− 1
µ∗0

+ 1
µ0

Ñ1(
1

µ0
) +

− c∗0
µ∗20

e2itθ
∗(µ0)

− 1
µ∗0

− 1
µ∗0

Ñ1(−
1

µ∗
0

).

(2.74)

After solving this linear system, inputting the results into formula (Equation 2.70),
we can obtain the solution of Ñ1(µ), then substituting it into the following formula

u(x, t) = −

(
Ñ ′

1(i)

Ñ1(i)
+
Ñ ′

1(−i)
Ñ1(−i)

)
, (2.75)
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where

x(y, t) = y − ln

(
Ñ1(−i)
Ñ1(i)

)
, (2.76)

we can obtain the solution of the cCH equation.
Next, we discuss the solution when scattering data a(µ) has only two zero points

through two examples, where the discrete spectrum has four points.
Case 1: Supposing v1 = µ0 = eiτ ∈ C+ (τ ∈ (0, π)), v2 = 1

µ∗0
= v1. Then |v1| = 1,

and we further assume that µ0 = r1+ir2. It can be obtained that θ(eiτ ) = θ(−e−iτ ).
Next we define χ1 , θ(eiτ ) = − i sin τy

2t + i sin τ
cos2 τ

, hence e−2itχ1 is a real number about

variables y and t. Thus algebraic system (Equation 2.70)–(Equation 2.74) have the
following forms

Ñ1(µ) = 1 +
|c0|eiφeχ1
µ− eiτ

Ñ1(−eiτ ) +
|c0|e−iφeχ1
µ+ e−iτ

Ñ1(e
−iτ ), (2.77)

Ñ1(−eiτ ) =1 +
|c0|eiφeχ1
−2eiτ

Ñ1(−eiτ ) +
|c0|e−iφeχ1
e−iτ − eiτ

Ñ1(e
−iτ ),

Ñ1(e
−iτ ) =1 +

|c0|eiφeχ1
e−iτ − eiτ

Ñ1(−eiτ ) +
|c0|e−iφeχ1

2e−iτ
Ñ1(e

−iτ ),

(2.78)

then we have the solutions

Ñ1(−eiτ ) =
1

H1
(1− r1

2ir2
|c0|eχ1−iφ+iτ ),

Ñ1(e
−iτ ) =

1

H1
(1− r1

2ir2
|c0|eχ1+iφ−iτ ),

(2.79)

where

H1 = 1 +
r21
4r22

|c0|e2χ1 + i|c0|eχ1 sin(φ− τ), (2.80)

then we have

Ñ1(µ) = 1 +
1

H1

 |c0|eφ+χ1 − r1|c0|
2e2χ1+φ

2ir2e
−i(τ−φ)

µ− eiτ
+

|c0|eχ1−φ − r1|c0|
2e2χ1−φ

2ir2e
iτ

µ+ ei(τ−φ)

 ,

(2.81)

after assuming the parameter values are |c0| =
2r2 sgn (r1)

r1
and φ − τ = π

2 , the

expression of solution can be obtained as follows

u(x, t) = −4r2
r31

sgn (r1)
cosh(χ1)

cosh(2χ1) +
1+r22
r21

, (2.82)
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Figure 2. (a)–(c) describe the local structure, density, and intensity profiles with different

times of one-soliton solution |u|. Parameters r1 =
√
3

2
, r2 = 1

2
, τ = π

6
.

with

x = x(y, t) = y − ln

1 +
1+r2
1−r2

e2χ1

1 +
1−r2
1+r2

e2χ1

 . (2.83)

Remark 2.8. By comparing with the soliton solution of cCH equation obtained
in reference [31], it can be seen that the solution constructed by the RH method is
exactly the same as the solution obtained by Hirota’s bilinear method after special
parameter selection. Both of the above methods are used to study the construc-
tion of soliton solution for cCH equation under ZBCs. The difference is that [31]
constructs multiple soliton solutions, while our article constructs arbitrary-order
pole solutions. Similarly, when the orders of the zero points degenerate to one, the
expressions of solutions obtained in these two articles are the same for multiple
zero points case.

Remark 2.9. According to the detailed analysis of literature [31], it can be seen
that when the parameters take different values, we can obtain smooth soliton solu-
tions and symmetric singular soliton solutions. When the selected zero point µ0

is complex and its modulus is not equal to zero, the breather solutions can be
obtained.

From expression (Equation 2.83), it can be seen that when x → ±∞, there
exists y → ±∞. The solution (Equation 2.82) indicates that r1 = 0 (τ = π

2 ) is a

singularity point and cosh(2χ1) +
1+r22
r21

has no zero point; otherwise, the following

relationship will presence

r21(e
−2yr2+

2tr2
r21 + e

2yr2−
2tr2
r21 ) = −2(1 + r22), (2.84)

since the point µ0 ∈ C+, the right-hand side of the equation is always negative and
the left-hand side is always positive, which leads to a contradiction. According to
our analysis of constructing the RH problem, the points µ = 0,±i are singularities
which corresponding to the obtained solution. There µ0 ∈ C+ and it has only one
singularity point µ0 = i.
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Figure 3. (a)–(c) describe the local structure, density, and intensity profiles with different

times of one-soliton solution |u|. Parameters r1 =
√
2

2
, r2 =

√
2

2
, τ = π

4
.

Figure 4. (a)–(c) describe the local structure, density, and intensity profiles with different

times of one-soliton solution |u|. Parameters r1 = 1
2
, r2 =

√
3

2
, τ = π

3
.

To demonstrate the characteristics of solitons, we present wave propagations
including images of local structure, density, and intensity distribution in figures 2–4
after selecting different parameters. It can be seen that the single smooth soliton
solutions are obtained at these values. Specifically, figure 2(a) shows a Hump soliton
solution. figure 3(a) is a critical situation where the soliton exhibits a top horizontal
characteristic. Finally, figure 4(a) shows the M-shape soliton solution. From these
figures, it can be seen that as the values of τ increasing, the peak of the soliton
first appears in a horizontal state and then sinks inward.

Case 2: Supposing v1 = µ0 = ir ∈ iR, v2 = 1
µ∗0

. It can be obtained that θ(µ0) =

θ( 1
µ∗0

). Next we define χ2 , θ(µ0) = − i
4
r2+1
r

(
y
t +

8r2

(r2−1)2

)
, hence e−2itχ2 is a real

number about variables y and t. Thus algebraic system (Equation 2.70)–(Equation
2.74) have the following forms

Ñ1(µ) = 1 +
|c0|eiφeχ2
µ− ir

Ñ1(−ir) +
|c0|
r2
e−iφeχ2

µ+ 1
ir

Ñ1(
1

ir
), (2.85)
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Ñ1(−ir) =1 +
|c0|eiφeχ2

−2ir
Ñ1(−ir) +

|c0|
r2
e−iφeχ2

−ir + 1
ir

Ñ1(
1

ir
),

Ñ1(
1

ir
) =1 +

|c0|eiφeχ2
1
ir − ir

Ñ1(−ir) +
|c0|
r2
e−iφeχ2

2
ir

Ñ1(
1

ir
),

(2.86)

the solutions are

Ñ1(−ir) =
1

H2
(1− 1− r2

2ir(1 + r2)
|c0|eχ2+φ),

Ñ1(
1

ir
) =

1

H2
(1 +

1− r2

2ir(1 + r2)
|c0|eχ2+φ),

(2.87)

with

H2 = 1− (r2 − 1)2

4r2(r2 + 1)2
|c0|2e2χ2 − i|c0|eχ2+φ

r
. (2.88)

Substitute formula (Equation 2.87) into (Equation 2.85) and take an appropriate
value for c0 to calculate the solution as follows

u(x, t) =
16r2(1 + r2)

(1− r2)3
sinh(χ2)

cosh(2χ2) +
(1+r2)2+4r2

(1−r2)2

, (2.89)

with

x = x(y, t) = y − ln

1 + (1+r)2

(1−r)2 e
2χ2

1 + (1−r)2
(1+r)2

e2χ2

 . (2.90)

The solution (Equation 2.89) indicates that r =1 is a singularity point and

cosh(2χ2) +
(1+r2)2+4r2

(1−r2)2 has no zero point; otherwise, the following relationship

will presence

(1− r2)2(e2χ2 + e−2χ2) = −2(1 + r2)2 − 8r4, (2.91)

this is clearly impossible.

Remark 2.10. After comparison, when selecting appropriate parameters, the
expression of solution (Equation 2.89) solved by RH approach is the same as
the solution (3.9a) solved by Hirota’s bilinear method in reference [31]. Then the
antisymmetric singular soliton can be obtained.

2.3.2. Two-order pole solution
For the N =2 case, it corresponds to the solution with a two-order pole. The
expression of u(x, t) defined in theorem 2.7.
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Case 3: Assuming that v1 = µ0 = eiτ be one two-order zero point of the
scattering data a(µ), then v2 = eiτ = v1 is also the two-order zero point of a(µ).
The discrete spectrum is the set Z =

{
eiτ ,−e−iτ , e−iτ ,−eiτ

}
. We choose some

parameters to simulate the solution, then the different dynamic models can be
obtained in Figures (5)–(6).

Setting τ = π
6 and {r1,1 = 2, r1,2 = 1, r2,1 = 1, r2,2 = 2}. On the basis of the

construction process of single high-order pole solutions, the following relationships
are calculated.

ζ1,0 = ζ2,0 = e
4t
3 −y2 , ζ1,1 = ζ2,1 =

−8i(40t− 9y)e
4t
3 −y2 (i

√
3− 1)

(i
√
3 + 3)3(

√
3 + i)2

,

ϑ1,1 = ϑ1,3 =
5
√
3e

4t
3 −y2

9

(√
3

(
21 + 27y

40
− 3i

2
− 3t

)
+ it− 9i(y − 1)

40
+

9

10

)
,

ϑ1,2 = ϑ1,4 = −
2880e

4t
3

− y
2

(i
√
3 + 3)3(

√
3 + i)4

(√
3

(
6− y

40
−

i

10
+

t

9

)
+ it−

9i(y + 1)

40
−

1

2

)
,

ϑ3,1 = ϑ3,3 =
10
√
3e

4t
3 −y2

9

(√
3

(
21 + 27y

40
− 3i

8
− 3t

)
+ it− 9i(y − 1)

40
+

9

40

)
,

ϑ3,2 = ϑ3,4 = −
5760e

4t
3

− y
2

(i
√
3 + 3)3(

√
3 + i)4

(√
3

(
6− y

40
−

i

40
+

t

9

)
+ it−

9i(y + 2)

40
−

1

8

)
,

ϑ2,1 = ϑ2,3 = −e
4t
3 −y2 (i

√
3− 2)√

3 + i
, ϑ2,2 = ϑ2,4 = −e

4t
3 −y2 (2i

√
3 + 3)

(
√
3 + i)2

,

ϑ4,1 = ϑ4,3 = −e
4t
3 −y2 (2i

√
3− 4)√

3 + i
, ϑ4,2 = ϑ4,4 = −e

4t
3 −y2 (4i

√
3 + 6)

(
√
3 + i)2

,

η11 = −2e
4t
3 −y2 − 8ie

4t
3 −y2 (1 + i

√
3)(40t− 9y)

(i
√
3− 3)3(i−

√
3)2

, η12 = −e
4t
3 −y2 ,

η21 = −e
4t
3 −y2 − 16ie

4t
3 −y2 (1 + i

√
3)(40t− 9y)

(i
√
3− 3)3(i−

√
3)2

, η22 = −2e
4t
3 −y2 .

Substitute the above results into the expression of solution (Equation 2.67) to
obtain the two-order pole solution, and the propagation phenomenon of soliton
is shown in figure 5. It can be seen that the energies of two waves for solution
decrease after collision; thus, it is not an elastic collision that occurs. According to
the previous analysis, the singularity of the solution is µ0 = i.

Using a similar analysis, when the value is set to µ0 = 3π
4 , the soliton dynamics

behaviour shown in figure 6. figure 6(b) presents the density image of the wave
propagation process, while figure 6(c) shows the intensity distribution at different
times.
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Figure 5. (a)–(c) describe the local structure, density, and intensity profiles with different
times of the soliton solutions |u| with one two-order pole. Parameters r1,1 = 2, r1,2 = 1,
r2,1 = 1, r2,2 = 2, τ = π

6
.

Figure 6. (a)–(c) describe the local structure, density, and intensity profiles with different
times of the soliton solutions |u| with one two-order pole. Parameters r1,1 = 2, r1,2 = 1,
r2,1 = 1, r2,2 = 2, τ = 3π

4
.

2.4. Multiple high-order pole solutions

Now the general circumstance that a(µ) has N high-order zero points
µ1, µ2, . . . , µN , µk ∈ C+ for k = 1, 2, . . . , N and the corresponding powers are
n1, n2, . . . , nN , respectively. Assume that vk1 = µk and vk2 = 1

µ∗
k
. Similar to the case

of one high-order pole, from the definition of M̃(y, t, µ), it can be seen that µ = vkj
and µ = −vk∗j (j = 1, 2) are nk-order pole points of M̃11. Simultaneously, µ = vk∗j
and µ = −vkj (j = 1, 2) are nk-order pole points of M̃12.

Under the assumption that µ = vkj (j = 1, 2) are nk-order zero points of a(µ) for

k = 1, 2, . . . , N , utilizing the Wronskian a(µ) =Wr(φ̆−1, φ̆+2), there exist complex
constants bkj,s (s = 1, 2, · · · , nN ) satisfy the follows

∂m[φ̃+(y, t, v
k
j )]2

∂µm
=

m∑
l=0

(
m

l

)
bkj,m−l+1

∂l[φ̃−(y, t, v
k
j )]1

∂µl
, (2.92)
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and

∂m[ψ̃+(y, t, v
k
j )]2

∂µm
=

m∑
l=0

(
m

l

)
bkj,m−l+1

∂l[ψ̃−(y, t, v
k
j )]1e

2itθ(vkj )

∂µl
, (2.93)

with m = 0, 1, . . . , nN−1. Utilizing the parallel approach in above, we define the
nk × nk matrices Θj,pkd = [Θj,pkd ]s,q and Θ̃j,pkd = [Θ̃j,pkd ]s,q for s, q = 1, 2, · · · , nk and
introduce the following notations for j, p = 1, 2

|ηkj 〉 = (ηkj1, · · · , ηkjnk)
T , ηkjs = −

nk∑
l=s

rk∗j,lζ
k∗
j,l−s(y, t), (2.94)

rkj,l = lim
µ→vk

j

bkj,l
(nk − l)!

∂nk−l

∂(µ− vkj )
nk−l

(µ− vkj )
nk

a(µ)
, (2.95)

|Γ〉 = (|Γ1〉, · · · , |ΓN 〉)T , |Γk〉 = (|ηk1 〉, |ηk2 〉)T , (2.96)

Θj,pkd =

nk∑
l=s

l−s∑
m=0

(
q +m− 1

m

)
rkj,lζ

k
j,l−s−m

{
(−1)m

(vkj − vk∗p )q+m
+

(−1)m+q+1

(vkj + vkp)
q+m

}
,

(2.97)

Θ̃j,pkd =

nk∑
l=s

l−s∑
m=0

(
q +m− 1

m

)
rk∗j,lζ

k∗
j,l−s−m

{
(−1)m

(vk∗j − vkp)
q+m

+
(−1)m+q

(vk∗j + vk∗p )q+m

}
,

(2.98)

Θ =

[Θj,p11 ] · · · [Θj,p1N ]
...

. . .
...

[Θj,pN1] · · · [Θj,pNN ]

 , Θ̃ =

[Θ̃j,p11 ] · · · [Θ̃j,p1N ]
...

. . .
...

[Θ̃j,pN1] · · · [Θ̃j,pNN ]

 , (2.99)

Iε =


Iε1

. . .

IεN

 , Iεk =

(
I

I

)
2nk×2nk

k = 1, · · · , N, (2.100)

〈Y (µ)| = (〈Y 1
1 (µ)|, 〈Y 1

2 (µ)|, · · · , 〈Y N1 (µ)|, 〈Y N2 (µ)|),
〈Ỹ (µ)| = (〈Ỹ 1

1 (µ)|, 〈Ỹ 1
2 (µ)|, · · · , 〈Ỹ N1 (µ)|, 〈Ỹ N2 (µ)|),

〈Y ′(µ)| = (〈Y 1′
1 (µ)|, 〈Y 1′

2 (µ)|, · · · , 〈Y N ′
1 (µ)|, 〈Y N ′

2 (µ)|),
〈Ỹ ′(µ)| = (〈Ỹ 1′

1 (µ)|, 〈Ỹ 1′
2 (µ)|, · · · , 〈Ỹ N ′

1 (µ)|, 〈Ỹ N ′
2 (µ)|),

(2.101)

〈Y kj (µ)| = (Y kj1, · · · , Y kjnk), Y kjs =
1

(µ− vkj )
s
+

(−1)s

(µ+ vk∗j )s
,
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〈Ỹ kj (µ)| = (Ỹ kj1, · · · , Ỹ kjnk), Ỹ kjs =
1

(µ− vk∗j )s
+

(−1)s+1

(µ+ vkj )
s
,

〈Y k′j (µ)| = (Y k′j1 , · · · , Y k′jnk), Y k′js =
−s

(µ− vkj )
s+1

+
s(−1)s+1

(µ+ vk∗j )s+1
,

〈Ỹ k′j (µ)| = (Ỹ k′j1 , · · · , Ỹ k′jnk), Ỹ k′js =
−s

(µ− vk∗j )s+1
+

s(−1)s

(µ+ vkj )
s+1

.

Similar to the theorem 2.7, we give the solution of cCH equation with multiple
high-order poles as follows.

Theorem 2.11 The solution of cCH equation with multiple high-order poles under
the ZBCs can be obtained as follows

u(x, t) = −

(
M̃ ′

11(i) + M̃ ′
21(i)

M̃11(i) + M̃21(i)
+
M̃ ′

12(i) + M̃ ′
22(i)

M̃12(i) + M̃22(i)

)
, (2.102)

with

M̃11(i) =
det(Iε +ΘΘ̃ + |Γ〉〈Y (i)|Θ)

det(Iε +ΘΘ̃)
,

M̃21(i) = −det(Iε +Θ∗Θ̃∗ + |Γ∗〉〈Ỹ ∗(−i)|)
det(Iε +Θ∗Θ̃∗)

+ 1,

M̃12(i) =
det(Iε + Θ̃Θ + |Γ〉〈Ỹ (i)|)

det(Iε + Θ̃Θ)
− 1,

M̃22(i) =
det(Iε + Θ̃∗Θ∗ + |Γ∗〉〈Y ∗(−i)|Θ∗)

det(Iε + Θ̃∗Θ∗)
,

M̃ ′
11(i) =

det(Iε +ΘΘ̃ + |Γ〉〈Y ′(i)|Θ)

det(Iε +ΘΘ̃)
− 1,

M̃ ′
21(i) = −det(Iε +Θ∗Θ̃∗ + |Γ∗〉〈Ỹ ′∗(−i)|)

det(Iε +Θ∗Θ̃∗)
+ 1,

M̃ ′
12(i) =

det(Iε + Θ̃Θ + |Γ〉〈Ỹ ′(i)|)
det(Iε + Θ̃Θ)

− 1,

M̃ ′
22(i) =

det(Iε + Θ̃∗Θ∗ + |Γ∗〉〈Y ′∗(−i)|Θ∗)

det(Iε + Θ̃∗Θ∗)
− 1,

and x = x(y, t) can be obtained by (Equation 2.41), the elements |Γ〉, Iε, Θ, Θ̃,
〈Y (i)|, 〈Ỹ (i)|, 〈Y ′(i)| and 〈Ỹ ′(i)| are defined in (Equation 2.96), (Equation 2.99),
(Equation 2.100), and (Equation 2.101).
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3. RH problem and high-order pole under NZBCs

3.1. Spectral analysis

After doing the transformations u(x, t) = û(x − t, t) + 1, m̂ = û − ûxx + 1 and

R̂ = û2 − û2x + 2û, the Lax pair (Equation 2.1) admits the forms

φ̂x = Û φ̂, φ̂t = V̂ φ̂, (3.1)

Û =

(
−Q

2
λm̂
2

−λm̂
2

Q
2

)
, V̂ =

(
Q

λ2
+ QR̂

2 − û−Qûx+1
λ − λR̂m̂

2
û+Qûx+1

λ + λR̂m̂
2 − Q

λ2
− QR̂

2

)
. (3.2)

Using the similar approach with ZBCs, we have the gauge transformation

ψ̂ = F−1φ̂eĴ , (3.3)

with

F =

 1 λ√
Q2−λ2+Q

λ√
Q2−λ2+Q

1

 ,

where we define Ĵ = pσ3. ψ̂ satisfies the asymptotic conditions

ψ̂(x, t, λ) ∼ I, x→ ±∞.

The parameter p(x, t, λ) is defined as follows

p =

√
1− 2λ2

2

(
x−

∫ +∞

x

(m̂(ξ, t)− 1)dξ − 2

λ2
t

)
. (3.4)

Equation (Equation 1.3) admits the following form Lax pair

ψ̂x + [Ĵx, ψ̂] = X̂ψ̂, (3.5a)

ψ̂t + [Ĵt, ψ̂] = T̂ ψ̂, (3.5b)

with

X̂ =
λ(m̂− 1)Q

2
√
1− 2λ2

(
0 1

−1 0

)
+

(m̂− 1)Q2

2
√
1− 2λ2

(
1 0

0 −1

)
,

T̂ =
1

2
√
1− 2λ2

(
λR̂(m̂− 1) +

2û

λ

)
Q

(
0 −1

1 0

)
+
ûxQ

λ

(
0 1

1 0

)
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− 1√
1− 2λ2

(
û+

1

2
((m̂− 1)R̂+ 2û)Q2 − λ2û

)
σ3,

where Ĵ = Ĵ(x, t, λ), X̂ = X̂(x, t, λ), T̂ = T̂ (x, t, λ) are 2× 2 matrices.
A new spectral parameter k satisfied 2λ2 = 4k2 + 1 is introduced, and to avoid

multi-value problem, we define

λ = − 1

2
√
2

(
µ+

1

µ

)
, k =

1

4

(
µ− 1

µ

)
, (3.6)

then we have

p = − i(µ
2 − 1)

4µ

(∫ +∞

x

(m̂(ξ, t)− 1)dξ − x+
16µ2

(µ2 + 1)2
t

)
, (3.7)

and

X̂(x, t, µ) =
i((µ2 + 1)2 − 8µ2)(m̂− 1)

8µ(µ2 − 1)
σ3

+
i(µ2 + 1)

√
8µ2 − (µ2 + 1)2(m̂− 1)

8|µ|(µ2 − 1)

(
0 1

−1 0

)
,

the two Jost solutions of (Equation 3.5a) with the parameter µ are completely
determined by Volterra integrable equations

ψ̂±(x, t, µ) = I +

∫ x

±∞
e
i(µ2−1)

4µ

∫ ξ
x m̂(τ,t)dτσ̂3

[
X̂(ξ, t, µ)ψ̂±(ξ, t, µ)

]
dξ. (3.8)

The Jost eigenfunctions ψ̂±(x, t, µ) have the analytic properties, symmetry
properties, and asymptotic properties shown in the following three propositions.

Proposition 3.1. Providing that u0(x) − 1 ∈ L1(R±), the Jost eigenfunctions

ψ̂±(x, t, µ) have the following analytic properties. ψ̂−,1(x, t, µ) and ψ̂+,2(x, t, µ) are
analytic in C+ and continuously extended to C+ ∪ R except the points µ = ±1,
ψ̂+,1(x, t, µ) and ψ̂−,2(x, t, µ) are analytic in C−and continuously extended to C−∪R
except the points µ = ±1, there ψ̂±,j(x, t, µ) (j = 1, 2) represent the j-th column of

ψ̂±(x, t, µ), C+ = {µ ∈ C|Imµ > 0} and C− = {µ ∈ C|Imµ < 0}.

Proposition 3.2. The Jost eigenfunctions ψ̂±(x, t, µ) have the following symme-
try conditions

ψ̂±(µ) = σ1ψ̂
∗
±(µ

∗)σ1 = σ2ψ̂±(−µ)σ2 = σ1ψ̂±(
1

µ
)σ1. (3.9)
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Proposition 3.3. The Jost eigenfunctions ψ̂±(x, t, µ) possess asymptotic
behaviour in the µ-plane

ψ̂±(x, t, µ) = I +O(
1

µ
), µ→ ∞,

ψ̂±(x, t, µ) = I +O(µ), µ→ 0,

ψ̂±(x, t, µ) =
i

4(µ− 1)
α±(x, t)Σ1 +O(1), µ→ 1,

ψ̂±(x, t, µ) = − i

4(µ+ 1)
α±(x, t)Σ2 +O(1), µ→ −1,

(3.10)

there α±(x, t) ∈ R, Σ1 =

(
−1 1

−1 1

)
and Σ2 =

(
1 1

−1 −1

)
.

Remark 3.4. It should be noted that the Lax pair (Equation 2.1) for the cCH
equation under ZBCs has singularities at points µ=0, µ = ∞ and branch cut
points µ = ±i in the extended complex µ-plane. Besides, the Lax pair (Equation
3.1) for the cCH equation under NZBCs in addition to possessing the above singu-
larities also has the new singularities at points µ = ±1. Therefore, the asymptotic
behaviour of these points should be controlled.

Because φ̂±(x, t, µ) are two fundamental matrix solutions of the Lax pair
(Equation 3.1), there exists a linear relation between them.

φ̂−(x, t, µ) = φ̂+(x, t, µ)S(µ), (3.11)

using the transformation (Equation 3.3), matrix S(µ) can be introduced as follows

ψ̂−(x, t, µ) = ψ̂+(x, t, µ)e
−p(x,t,µ)σ3S(µ)ep(x,t,µ)σ3 , (3.12)

there µ ∈ R, µ 6= ±1. On the basis of symmetry conditions of ψ̂±(x, t, µ), the matrix
S(µ) can be expressed as

S(µ) =

(
a(µ) b∗(µ∗)

b(µ) a∗(µ∗)

)
. (3.13)

Taking into account the properties of the Jost eigenfunctions ψ̂±(x, t, µ), we
obtain the corresponding properties to the elements a(µ) and b(µ) of the scattering
matrix S(µ) as follows.

Proposition 3.5. The scattering data a(µ) and b(µ) satisfy the following relations

(i) a(µ) is analytic in C+ and continuously extended to C+ ∪ R except the
points µ = ±1, a(µ) → 1 as µ→ ∞,

(ii) b(µ) is continuous in µ ∈ R\{−1, 0, 1}, b(µ) → 0 as µ→ ∞,
(iii) a(µ) = iβ

4(µ−1) +O(1), b(µ) = iβ
4(µ−1) +O(1), µ→ 1, β ∈ R,
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(iv) a(µ) = iβ
4(µ+1) +O(1), b(µ) = − iβ

4(µ+1) +O(1), µ→ −1, β ∈ R,
(v) a∗(µ∗) = a(−µ) = a( 1µ ), b∗(µ∗) = −b(−µ) = b( 1µ ),

(vi) |a(µ)|2 − |b(µ)|2 = 1, µ ∈ R, µ 6= ±1.

Remark 3.6. It should be noted that β 6=0 of proposition 3.5 is generic and when
β=0, we have a21 = 1+ b21 with a(±1) = a1, b(±1) = ±b1, a1, b1 ∈ R. According to
(Equation 3.12), α+(x, t) = (a1 − b1)α−(x, t).

The analytic properties of ψ̂±(x, t, µ) stated above allow rewriting the relation
(Equation 3.12) as a sectionally meromorphic matrix.

3.2. RH problem

A piecewise meromorphic 2× 2-matrix valued function M(x, t, µ) is introduced
as follows

M(x, t;µ) =


(
ψ̂−,1(x,t;µ)

a(µ) , ψ̂+,2(x, t;µ)

)
, as Imµ > 0,(

ψ̂+,1(x, t;µ),
ψ̂−,2(x,t;µ)
a∗(µ∗)

)
, as Imµ < 0.

(3.14)

At the same time, we define the reflection coefficient

r(µ) =
b(µ)

a(µ)
, µ ∈ R. (3.15)

RHP 3.7. Find a matrix M(µ) =M(x, t, µ) satisfies the following conditions

(i) Analyticity: the matrix M(µ) is a meromorphic function in C\R.
(ii) Jump condition:

M+(x, t, µ) =M−(x, t, µ)G(x, t, µ), µ ∈ R, µ 6= ±1, (3.16)

where

G(x, t, µ) = e−p(x,t,µ)σ3G0(µ)e
p(x,t,µ)σ3 , (3.17)

and

G0(µ) =

(
1− r(µ)r∗(µ∗) −r∗(µ∗)

r(µ) 1

)
, (3.18)

p(x, t, µ) is shown in (Equation 3.7).
(iii) Normalization condition:

M(x, t, µ) → I, µ→ ∞. (3.19)
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(iv) Singularity condition:

M(x, t, µ) =



iα+(x,t)

4(µ−1)

 −D 1

−D 1

+O(1), µ→ 1,

− iα+(x,t)

4(µ+1)

 D 1

−D −1

+O(1), µ→ −1,

(3.20)

where α+(x, t) ∈ R and Imµ > 0,

D :=


0, β 6= 0,

a1+b1
a1

, β = 0,

(3.21)

a1 = a(1), b1 = b(1) and β := −2i lim
µ→1

(µ− 1)a(µ).

(v) Symmetry conditions:

M(µ) = σ1M
∗(µ∗)σ1 = σ2M(−µ)σ2 = σ1M(

1

µ
)σ1. (3.22)

(vi) detM(x, t, µ) ≡ 1.

We substitute Eqs. (Equation 3.6) into Lax pair (Equation 3.5a) and take the
new transformation

ψ̂0 = ϕ̂eĴ0 , (3.23)

with

p0 =
i(µ2 − 1)

4µ
x− 4i(µ2 − 1)µ

(µ2 + 1)2
t, (3.24)

there Ĵ0 = p0σ3, the Lax pair can be converted to

ψ̂0x + [Ĵ0x, ψ̂0] = X̂0ψ̂0, (3.25a)

ψ̂0t + [Ĵ0t, ψ̂0] = T̂0ψ̂0, (3.25b)

with

X̂0(x, t, µ) = −
(µ2 + 1)

√
8µ2 − (µ2 + 1)2(m̂− 1)

8|µ|(µ2 − 1)
σ2

+

(
i((µ2 + 1)2 − 8µ2)(m̂− 1)

8µ(µ2 − 1)
− i(m̂− 1)(µ2 − 1)

4µ

)
σ3,
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T̂0(x, t, µ) =
i(µ2 − 1)

4µ
R̂m̂σ3 +

i(µ2 − 1)

2µ
ûσ3 + T̂ (x, t, µ).

Then the Jost solutions of Equation 3.25a are expressed as

ψ̂0±(x, t, µ) = I +

∫ x

±∞
e
− i(µ

2−1)
4µ (x−ξ)σ̂3

[
X̂0(ξ, t, µ)ψ̂0±(ξ, t, µ)

]
dξ. (3.26)

Utilizing the transformation (Equation 3.23), there exist matrices r±(µ) satisfy-
ing

ψ̂±(x, t, µ) = ψ̂0±(x, t, µ)e
−Ĵ0r±(µ)e

Ĵ . (3.27)

Thus r±(µ) = eĴ0(±∞,t,µ)−Ĵ(±∞,t,µ). On the basis of (Equation 3.7) and
(Equation 3.24),

r+(µ) = I, r−(µ) = e
i(µ2−1)

4µ

∫+∞
−∞ (m̂(ξ,t)−1)dξσ3 . (3.28)

Because X̂0(x, t,±i) ≡ 0, making use of (Equation 3.26) and a(µ) =

det(ψ̂−,1, ψ̂+,2), we have

M(x, t, i) =

(
e
1
2

∫+∞
x (m̂(ξ,t)−1)dξ 0

0 e−
1
2

∫+∞
x (m̂(ξ,t)−1)dξ

)
, (3.29)

with symmetry of M(x, t, µ), we can obtain M(x, t,−i). Besides, the symmetry
conditions (Equation 3.22) indicate M (i) is a diagonal matrix with real entries,
taking into account detM ≡ 1, there exists f(x, t) ∈ R such that M11(x, t, i) =
f(x, t) and M22(x, t, i) =

1
f(x,t) .

Based on the new space variable y(x, t) = x−
∫ +∞
x

(m̂(ξ, t)−1)dξ and M̃(y, t, µ) =
M(x, t, µ), we have a new RH problem.

RHP 3.8. Find a matrix M̃(µ) = M̃(y, t, µ) satisfies the following conditions

(i) Analyticity: the matrix M̃(µ) is a meromorphic function in C\R.
(ii) Jump condition:

M̃+(y, t, µ) = M̃−(y, t, µ)G̃(y, t, µ), µ ∈ R, µ 6= ±1, (3.30)

where

G̃(y, t, µ) = e−p̃(y,t,µ)σ3G0(µ)e
p̃(y,t,µ)σ3 , (3.31)

p̃(y, t, µ) =
i(µ2 − 1)

4µ
y − 4i(µ2 − 1)µ

(µ2 + 1)2
t, (3.32)

G0(µ) defined by (Equation 3.18).
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(iii) Normalization condition:

M̃(y, t, µ) → I, µ→ ∞. (3.33)

(iv) Singularity condition:

M̃(y, t, µ) =



iα̃+(y,t)

4(µ−1)

 −D 1

−D 1

+O(1), µ→ 1,

− iα̃+(y,t)

4(µ+1)

 D 1

−D −1

+O(1), µ→ −1,

(3.34)

with some α̃+(y, t) ∈ R and Imµ > 0.
(v) Symmetry conditions:

M̃(µ) = σ1M̃
∗(µ∗)σ1 = σ2M̃(−µ)σ2 = σ1M̃(

1

µ
)σ1. (3.35)

(vi) det M̃(y, t, µ) ≡ 1.

The implicit expression of the potential function u under NZBCs is constructed
by using the solution of RH problem.

Theorem 3.9 Consider that M̃(y, t, µ) is a solution of RH problem 3.8, accord-

ing to the definition of M̃(y, t, µ) at µ = i, we make Φ̂1(x(y, t), t) = Φ̃1(y, t) =

M̃11(y, t, i) + M̃21(y, t, i) and Φ̂2(x(y, t), t) = Φ̃2(y, t) = M̃12(y, t, i) + M̃22(y, t, i),
then the solution û(x, t) of Cauchy problem (Equation 1.3) has the following
representation (

R̂+
2û

m̂

)
(m̂+ 1) = ∂t ln

Φ̃1(y, t)

Φ̃2(y, t)
, (3.36)

with

R̂ = û2 − û2x + 2û, m̂ = û− ûxx + 1.

Proof. Considering the new notations R̃(y, t) = R̂(x(y, t), t), m̃(y, t) = m̂(x(y, t), t),
ũ(y, t) = û(x(y, t), t) and ũx(y, t) = ûx(x(y, t), t), with regard to x(y(x, t), t) = x,
we have

∂t(x(y(x, t), t)) = xy(y, t)yt(x, t) + xt(y, t) = 0. (3.37)

Since y(x, t) = x−
∫ +∞
x

(m̂(ξ, t)− 1)dξ, then

xy(y, t) =
1

m̃(y, t)
. (3.38)
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Based on m̂t = −(m̂R̂)x − 2ûx and unite (Equation 3.37)–(Equation 3.38), we
have

xt(y, t) = R̃(y, t) +
2ũ(y, t)

m̃(y, t)
. (3.39)

By (Equation 3.29), we have

Φ̂1(x, t) = e
1
2

∫+∞
x (m̃(ξ,t)−1)dξ, Φ̂2(x, t) = e−

1
2

∫+∞
x (m̃(ξ,t)−1)dξ, (3.40)

then

x = y(x, t) + ln
Φ̃1(y, t)

Φ̃2(y, t)
. (3.41)

Differential equation (Equation 3.41) with respect to t,

xt = −(R̃(y, t)m̃(y, t) + 2ũ(y, t)) + ∂t ln
Φ̃1(y, t)

Φ̃2(y, t)
, (3.42)

making further calculation, we can get (Equation 3.36), then the theorem 3.9 can
be proved. �

Next, in order to obtain the solution of Lax pair (Equation 3.1) represented

by the new variable y(x, t), using the gauge transformation ϕ̂ = F−1φ̂, there
we have ϕ̃(y, t, λ) = ϕ̂(x, t, λ). Taking (Equation 3.38) and (Equation 3.39) into
consideration, the Lax pair (Equation 3.1) turns into

ϕ̃y = Ũ ϕ̃, ϕ̃t = Ṽ ϕ̃, (3.43)

there Ũ = X̃ − ikσ3 and Ṽ = T̃ + 2ik
λ2
σ3. Then we change the parameters to µ and

expanding X̃ and T̃ at the singularities µ = ±1,±i

ϕ̃y +
i(µ2 − 1)

4µ
σ3ϕ̃ = X̃1ϕ̃, (3.44a)

ϕ̃t −
4i(µ2 − 1)µ

(µ2 + 1)2
σ3ϕ̃ = T̃1ϕ̃, (3.44b)

with

X̃1 = − iv1
µ− 1

Σ1 +
iv1
µ+ 1

Σ2 + v1σ2,

T̃1 = − iv2
µ− 1

Σ1 +
iv2
µ+ 1

Σ2 +
v3∆1 + v4∆2

µ− i
+
v3∆2 + v4∆1

µ+ i
,
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where ∆1 =

(
0 1

0 0

)
, ∆2 =

(
0 0

1 0

)
, Σ1 and Σ2 are shown in proposition

3.3. Besides, we also have v1(y, t) = − m̃−1
2m̃ , v2(y, t) = ũ, v3(y, t) = −ũ − ũx, and

v4(y, t) = ũ− ũx.

Proposition 3.10. Assume M̃(y, t, µ) is a solution of RH problem 3.8, then

ϕ̃(y, t, µ) = M̃(y, t, µ)e−p̃(y,t,µ)σ3 (3.45)

satisfies the Lax pair (Equation 3.44a), there p̃(y, t, µ) is shown in (Equation 3.32).

Proof.

(i) First of all, we think about the y differential part of the Lax pair (Equation
3.44a). From (Equation 3.30) and (Equation 3.45), we can obtain

ϕ̃yϕ̃
−1 = M̃yM̃

−1 − p̃yM̃σ3M̃
−1, (3.46)

then the possible subsistent singularities are µ = 0, 1,−1,∞. Now we esti-
mate ϕ̃yϕ̃

−1 at these points. On the basis of the symmetry conditions

(Equation 3.35), expanding M̃(y, t, µ) with µ at µ→ ∞

M̃ = I +
1

µ
[wσ3 + w̃(∆1 +∆2)] +O(µ−2), µ→ ∞, (3.47)

where w = w(y, t) ∈ iR, w̃ = w̃(y, t) ∈ R. Considering the expansion of p̃y
at µ→ ∞, µ→ 0, and µ→ ±1, we have

ϕ̃yϕ̃
−1 = − iµ

4
σ3 −

w̃

2
σ2 +O(µ−1), µ→ ∞.

ϕ̃yϕ̃
−1 =

i

4µ
σ3 +

w̃

2
σ2 +O(µ), µ→ 0.

ϕ̃yϕ̃
−1 = − iα1

µ− 1
Σ1 +O(1), µ→ 1,

ϕ̃yϕ̃
−1 =

iα1

µ+ 1
Σ2 +O(1), µ→ −1.

(3.48)

Uniting (Equation 3.48), since M̃(y, t, i) is a diagonal matrix,

− iα1

i− 1
Σ1 +

iα1

i+ 1
Σ2 −

w̃

2
σ2

is also diagonal, then w̃(y,t)
2 = −α1(y, t), and the y differential part of the

Lax pair (Equation 3.44a) can be attained, where v1(y, t) = α1(y, t).
(ii) Secondly, using the similar method, we think over the t differential part of

the Lax pair (Equation 3.44a). Due to

p̃t(µ) =
2

(µ− i)2
− 2i

µ− i
+O(1), µ→ i, (3.49a)
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p̃t(µ) = − 2

(µ+ i)2
− 2i

µ+ i
+O(1), µ→ −i, (3.49b)

then the possible subsistent singularities are µ = 0, 1,−1, i,−i,∞. Now
estimating ϕ̃tϕ̃

−1 = M̃tM̃
−1− p̃tM̃σ3M̃

−1 at these points at µ→ ∞, µ→ 0
and µ→ ±1 we have p̃t(µ) = O(µ−1), such that,

ϕ̃tϕ̃
−1 = O(µ−1), µ→ ∞.

ϕ̃tϕ̃
−1 = O(µ), µ→ 0.

ϕ̃tϕ̃
−1 = − iα2

µ− 1
Σ1 +O(1), µ→ 1,

ϕ̃tϕ̃
−1 =

iα2

µ+ 1
Σ2 +O(1), µ→ −1.

(3.50)

Subsequently, on the basis of symmetries (Equation 3.35), estimating
M̃(µ) at µ→ i,

M̃ =

(
f1 0

0 f−1
1

)
+

(
0 f2
f3 0

)
(µ− i) +O((µ− i)2). (3.51)

We have

ϕ̃tϕ̃
−1 = − 2

(µ− i)2
σ3 +

2

µ− i

(
i 2f2f1

−2f3f
−1
1 −i

)
+O(1). (3.52)

By symmetry, at µ→ −i,

ϕ̃tϕ̃
−1 =

2

(µ+ i)2
σ3 +

2

µ+ i

(
i −2f3f

−1
1

2f2f1 −i

)
+O(1). (3.53)

There fj = fj(y, t) (j = 1, 2, 3). Uniting (Equation 3.50)–(Equation 3.53),
we have g1(y, t) = 2f2(y, t)f1(y, t) and g2(y, t) = −2f3(y, t)f

−1
1 (y, t) are

holomorphic functions in the whole complex µ-plane and vanished as µ →
∞. After that, the t differential part of the Lax pair (Equation 3.44a) can
be attained, there v2(y, t) = α2(y, t).

�

For the sake of testifying the compatibility conditions Ũt − Ṽy + [Ũ , Ṽ ] = 0 of
Lax pair (Equation 3.43) can be deduced Eq. (Equation 1.3) with variables (y, t),
we have the theorem 3.11 and theorem 3.12.

Theorem 3.11 Equation (Equation 1.3) with variables (y, t) can be shown as
follows

m̃−1
t (y, t) = 2ũx(y, t)−

2ũm̃x

m̃3
(y, t) +

2ũx
m̃2

(y, t), (3.54)
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with

m̃(y, t) = ũ(y, t)− ũxx(y, t) + 1, xy(y, t) = m̃−1(y, t).

Proof. According to equations m̂t = −(m̂R̂)x− 2ûx, xt(y, t) = R̃(y, t)+ 2ũ(y,t)
m̃(y,t) and

R̃x = 2m̃ũx,

m̃t(y, t) = m̃x(x(y, t), t)xt(y, t) + m̃t(x(y, t), t)

=

(
−2ũm̃x

m̃3
+

2ũx
m̃2

)
(−m̃2) + 2ũx(−m̃2),

then we have Eq. (Equation 3.54), and the theorem 3.11 can be proved. �

Theorem 3.12 It can be demonstrable that the functions α1(y, t), α2(y, t), g1(y, t),
and g2(y, t) of proposition 3.10 content the following algebraic system

α1t + (g1 + g2) = 0, (3.55a)

α2 + (g1 − g2) = 0, (3.55b)

(g1 − g2)y − (1 + 2α1)(g1 + g2) = 0, (3.55c)

(g1 + g2)y + 2α1 − (1 + 2α1)(g1 − g2) = 0, (3.55d)

then the compatibility conditions of Lax pair (Equation 3.43) can be satisfied.

Proof. By the definitions about α1(y, t), α2(y, t), g1(y, t), and g2(y, t) which
are shown in proposition 3.10, there g1(y, t) = 2f2(y, t)f1(y, t), g2(y, t) =
−2f3(y, t)f

−1
1 (y, t). Subsequently, estimating the compatibility conditions Ũt−Ṽy+

[Ũ , Ṽ ] = 0 at these points µ = 0, 1,−1, i,−i,∞, the theorem 3.12 can be proved. �

Proposition 3.13. In compliance with proposition 3.10 and theorem 3.11, the
relations of m̃ and µ̃ with notations {α1, α2, g1, g2} can be available as follows

m̃ =
1

1 + 2α1
, ũ = α2, (3.56)

with the conditions xy = 1+2α1 and (α1α2)x = −α2x
2 , we can derive Eq. (Equation

3.54) from (Equation 3.55a)–(Equation 3.55d).

Proof. Actually, (Equation 3.55a) can be obtained by (Equation 3.54), and from
(Equation 3.55c) we have

ũx = ũyx
−1
y = −(g1 + g2).
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According to

m̃ = ũ− (ũx)ym̃+ 1,

we have

1

1 + 2α1
= −(g1 − g2) + (g1 + g2)y

1

1 + 2α1
+ 1,

which is Eq. (Equation 3.55d). �

Combining Eqs. (Equation 3.56) and (Equation 3.55b), we can further obtain the
relationship between the solution of cCH equation and the RH problem as shown
in (Equation 3.82).

3.3. Single high-order pole solutions

In order to obtain a pure soliton solution, this section we will consider the
reflectionless situation, i.e., b(µ) = 0 (µ ∈ R). Then G̃(µ) = 0 for µ ∈ R. Let z0 ∈
C+ be the N -order zero point of the scattering data a(µ), then

{
−z∗0 ,− 1

z0
, 1
z∗0

}
∈

C+ are also the N -order zero points of the scattering data a(µ). Furthermore,{
z∗0 ,−z0,− 1

z∗0
, 1
z0

}
∈ C− are the N -order zero points of the scattering data a∗(µ∗).

The discrete spectrum is the set X =
{
±z0,±z∗0 ,± 1

z0
,± 1

z∗0

}
, which is same as

the case in figure 1. Taking w1 = z0, w2 = 1
z∗0
, the scattering data a(µ) has the

following form

a(µ) =
2∏
j=1

(µ− wj)
N (µ+ w∗

j )
Na0(µ), (3.57)

where a0(µ) 6= 0 for all µ ∈ C+. Therefore, from the definition of M̃(y, t, µ), it
can be seen that µ = wj and µ = −w∗

j (j = 1, 2) are N -order pole points of M̃11.

Simultaneously, µ = w∗
j and µ = −wj (j = 1, 2) are N -order pole points of M̃12.

According to the definitions of (Equation 3.11) and (Equation 3.12), under the new

scale y(x, t), we define φ̌±(y, t, µ) = φ̂±(x, t, µ) and ψ̌±(y, t, µ) = ψ̂±(x, t, µ) and
obtain the following relationships

φ̌−(y, t, µ) = φ̌+(y, t, µ)S(µ), (3.58)

and

ψ̌−(y, t, µ)e
−itθ(µ)σ3 = ψ̌+(y, t, µ)e

−itθ(µ)σ3S(µ), (3.59)

there we redefine relation p̃(µ) = itθ(µ), p̃(µ) is shown in (Equation 3.32). Under
the assumption that µ = wj (j = 1, 2) are N -order zero points of a(µ), from the
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following two relations, we have a Wronskian form

a(µ) =Wr(φ̌−1, φ̌+2), (3.60)

then a(µ) vanishes to N -order at zero points wj (j = 1, 2), there exist complex
constants bj,s (j = 1, 2) (s = 1, 2, · · · , N) satisfy the follows

∂m[φ̌+(y, t, wj)]2
∂µm

=
m∑
l=0

(
m

l

)
bj,m−l+1

∂l[φ̌−(y, t, wj)]1
∂µl

, (3.61)

and

∂m[ψ̌+(y, t, wj)]2
∂µm

=
m∑
l=0

(
m

l

)
bj,m−l+1

∂l[ψ̌−(y, t, wj)]1e
2itθ(wj)

∂µl
, (3.62)

with m = 0, 1, . . . , N − 1. From the normalization condition of RH problem 3.8,
one can set

M̃11 = 1 +
2∑
j=1

N∑
s=1

(
1

(µ− wj)s
+

(−1)s

(µ+ w∗
j )
s

)
Fj,s −

iα̃+(y, t)

4(µ− 1)
D − iα̃+(y, t)

4(µ+ 1)
D,

(3.63a)

M̃12 =
2∑
j=1

N∑
s=1

(
1

(µ− w∗
j )
s
+

(−1)s+1

(µ+ wj)s

)
Gj,s +

iα̃+(y, t)

4(µ− 1)
− iα̃+(y, t)

4(µ+ 1)
, (3.63b)

where D is shown in (Equation 3.21) and α̃+(y, t) ∈ R. Besides, Fj,s = Fj,s(y, t)
and Gj,s = Gj,s(y, t) are undetermined functions. Once these functions are solved,
the solution of cCH equation will be acquired. To address this problem, making use
of Taylor series expansion, one has

e2itθ(µ) =
+∞∑
l=0

ζj,l(y, t)(µ− wj)
l, (3.64)

ζj,l(y, t) = lim
µ→wj

1

l!

∂l

∂µl
e2itθ(µ). (3.65)

It can be obtained that the coefficient of item (µ−wj)−s of function M̃11(y, t, µ)
is Fj,s(y, t). Now we extend the residue theorem by combining (Equation 3.59) and
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(Equation 3.62) and obtain the following relations

Fj,s = (−1)m
iα̃+(y, t)

4

N∑
l=s

l−s∑
m=0

(
rj,lζj,l−s−m
(wj − 1)m+1

− rj,lζj,l−s−m
(wj + 1)m+1

)

+
N∑
l=s

l−s∑
m=0

2∑
p=1

N∑
q=1

(
q +m− 1

m

)
rj,lζj,l−s−m×

{
(−1)m

(wj − w∗
p)
q+m

+
(−1)m+q+1

(wj + wp)q+m

}
Gp,q,

(3.66)

where

rj,l = lim
µ→vj

bj,l
(N − l)!

∂N−l

∂(µ− wj)N−l
(µ− wj)

N

a(µ)
. (3.67)

Likewise, the coefficient of item (µ − w∗
j )

−s of function M̃12(y, t, µ) is Gj,s(y, t).
Through the same method, we have

Gj,s = (−1)m+1 iα̃+(y, t)

4
D

N∑
l=s

l−s∑
m=0

(
r∗j,lζ

∗
j,l−s−m

(w∗
j − 1)m+1

+
r∗j,lζ

∗
j,l−s−m

(w∗
j + 1)m+1

)

+
N∑
l=s

l−s∑
m=0

+
N∑
l=s

l−s∑
m=0

2∑
p=1

N∑
q=1

(
q +m− 1

m

)
×

r∗j,lζ
∗
j,l−s−m

{
(−1)m

(w∗
j − wp)q+m

+
(−1)m+q

(w∗
j + w∗

p)
q+m

}
Fp,q,

(3.68)

The system (Equation 2.58) has the following solution For the sake of convenience,
selecting the suitable notations for j, p = 1, 2,

|η1j 〉 = (η1j1, . . . , η
1
jN )T , |η2j 〉 = (η2j1, . . . , η

2
jN )T , (3.69)

η1js =
iα̃+(y, t)

4

N∑
l=s

l−s∑
m=0

(
(−1)m

(wj − 1)m+1
− (−1)m

(wj + 1)m+1

)
rj,lζj,l−s−m,

η2js =
N∑
l=s

l−s∑
m=0

r∗j,lζ
∗
j,l−s−m

− iα̃+(y, t)

4
D

N∑
l=s

l−s∑
m=0

(
(−1)m

(w∗
j − 1)m+1

+
(−1)m

(w∗
j + 1)m+1

)
r∗j,lζ

∗
j,l−s−m,
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then defining the N ×N matrices Ωj,p = [Ωj,p]s,q and Ω̃j,p = [Ω̃j,p]s,q for s, q =
1, 2, · · · , N as follows

Ωj,p =
N∑
l=s

l−s∑
m=0

(
q +m− 1

m

)
rj,lζj,l−s−m

{
(−1)m

(wj − w∗
p)
q+m

+
(−1)m+q+1

(wj + wp)q+m

}
,

(3.70)

Ω̃j,p =
N∑
l=s

l−s∑
m=0

(
q +m− 1

m

)
r∗j,lζ

∗
j,l−s−m

{
(−1)m

(w∗
j − wp)q+m

+
(−1)m+q

(w∗
j + w∗

p)
q+m

}
,

(3.71)

|A1〉 = (|η11〉, |η12〉)T , |A2〉 = (−|η21〉,−|η22〉)T , (3.72)

|Fp〉 = (Fp,1, . . . , Fp,N )T , |Gp〉 = (Gp,1, . . . , Gp,N )T , (3.73)

Ω =

(
Ω1,1 Ω1,2

Ω2,1 Ω2,2

)
, Ω̃ =

(
Ω̃1,1 Ω̃1,2

Ω̃2,1 Ω̃2,2

)
, Iε =

(
−I 0

0 −I

)
, (3.74)

where I is a N ×N identity matrix and the definition of Ω matrix and Ω̃ matrix is
the same. Combining functions (Equation 3.66)–(Equation 3.68), we have

I|Fp〉 − Ωj,p|Gp〉 = |η1j 〉,
Ω̃j,p|Fp〉 − I|Gp〉 = −|η2j 〉.

(3.75)

After taking

|K1〉 = (|F1〉, |F2〉)T , |K2〉 = (|G1〉, |G2〉)T , (3.76)

by straight calculation, we have

|K1〉 = (Iε +ΩΩ̃)−1Ω|A2〉 − (Iε +ΩΩ̃)−1|A1〉,
|K2〉 = −(Iε + Ω̃Ω)−1Ω̃|A1〉+ (Iε + Ω̃Ω)−1|A2〉.

(3.77)

The new expression of Equation 3.63a are derived as

M̃11 = 1− iα̃+(y, t)

4
D

(
1

µ− 1
+

1

µ+ 1

)
+

det(Iε +ΩΩ̃ + Ω|A2〉〈E(µ)|)− det(Iε +ΩΩ̃ + |A1〉〈E(µ)|)
det(Iε +ΩΩ̃)

,

(3.78)

M̃12 =
iα̃+(y, t)

4

(
1

µ− 1
− 1

µ+ 1

)
+

det(Iε + Ω̃Ω + |A2〉〈Ẽ(µ)|)− det(Iε + Ω̃Ω + Ω̃|A1〉〈Ẽ(µ)|)
det(Iε + Ω̃Ω)

,

(3.79)
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with

〈E(µ)| = (〈E1(µ)|, 〈E2(µ)|), 〈Ej(µ)| = (Ej1, . . . , EjN ),

〈Ẽ(µ)| = (〈Ẽ1(µ)|, 〈Ẽ2(µ)|), 〈Ẽj(µ)| = (Ẽj1, . . . , ẼjN ),

〈E′(µ)| = (〈E′
1(µ)|, 〈E′

2(µ)|), 〈E′
j(µ)| = (E′

j1, . . . , E
′
jN ),

〈Ẽ′(µ)| = (〈Ẽ′
1(µ)|, 〈Ẽ′

2(µ)|), 〈Ẽ′
j(µ)| = (Ẽ′

j1, . . . , Ẽ
′
jN ),

(3.80)

Ejs =
1

(µ− wj)s
+

(−1)s

(µ+ w∗
j )
s
, Ẽjs =

1

(µ− w∗
j )
s
+

(−1)s+1

(µ+ wj)s
,

E′
js =

−s
(µ− wj)s+1

+
s(−1)s+1

(µ+ w∗
j )
s+1

, Ẽ′
js =

−s
(µ− w∗

j )
s+1

+
s(−1)s

(µ+ wj)s+1
.

According to the symmetry conditions (Equation 3.22), we get that

M̃21 = − iα̃+(y, t)

4

(
1

µ− 1
− 1

µ+ 1

)
+

det(Iε +Ω∗Ω̃∗ + |A∗
2〉〈Ẽ∗(µ∗)|)− det(Iε +Ω∗Ω̃∗ + Ω̃∗|A∗

1〉〈Ẽ∗(µ∗)|)
det(Iε +Ω∗Ω̃∗)

.

(3.81)

Hence the precise expression formula for the solution of cCH equation with single
high-order pole under the NZBCs can be obtained in theorem 3.14.

Theorem 3.14 The solution of cCH equation with single high-order pole under the
nonzero condition can be derived as the form

û(x, t) = −2(M̃ ′
12(i)M̃11(i) + M̃ ′

21(i)M̃
−1
11 (i)), (3.82)

x = x(y, t) = y + 2 ln M̃11(i),

with

M̃11(i) = 1−
α̃+(y, t)D

4
+

det(Iε +ΩΩ̃ + Ω|A2〉〈E(i)|)− det(Iε +ΩΩ̃ + |A1〉〈E(i)|)
det(Iε +ΩΩ̃)

,

M̃ ′
12(i) =

α̃+(y, t)

4
+

det(Iε + Ω̃Ω + |A2〉〈Ẽ′(i)|)− det(Iε + Ω̃Ω + Ω̃|A1〉〈Ẽ′(i)|)
det(Iε + Ω̃Ω)

,

M̃ ′
21(i) = −

α̃+(y, t)

4

+
det(Iε +Ω∗Ω̃∗ + |A∗

2〉〈Ẽ′∗(−i)|)− det(Iε +Ω∗Ω̃∗ + Ω̃∗|A∗
1〉〈Ẽ′∗(−i)|)

det(Iε +Ω∗Ω̃∗)
,

where D is shown in (Equation 3.21), α̃+(y, t) ∈ R, and the elements |A1〉, |A2〉,
Iε, Ω, Ω̃, 〈E(i)|, 〈Ẽ(i)|, 〈E′(i)|, 〈Ẽ′(i)| are defined in (Equation 3.72), (Equation
3.74), and (Equation 3.80).
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3.3.1. One-soliton solution
Next, to construct the simple one-soliton solution of cCH equation under NZBCs,
we consider the specific data as follows.

Case 4: For this case, we consider the situation N =1, Assuming w1 = z0 =
eiλ ∈ C+, (λ ∈ (0, π)) is one-order pole of scattering data a(µ), then we have
w2 = 1

z∗0
= w1. It can be obtained that θ(eiλ) = θ(−e−iλ). Next we define θ1 ,

θ(eiλ) = i sinλy
2t − 2i sinλ

cos2 λ
, hence e2itθ2 is real. Suppose that D =1, α̃+ = 1, r1,1 = 2,

r2,1 = 1. Then the parameters satisfy the following relationships, there Ω1,1 =

Ω1,2 = Ω2,1 = Ω2,2, Ω̃1,1 = Ω̃1,2 = Ω̃2,1 = Ω̃2,2, η
1
21 = 1

2η
1
11, η

2
21 = 1

2η
2
11, ζ1,0 = ζ2,0.

ζ1,0 = e
− 4 sinλ

cos2 λe2iλ

((
t+
y
8

)
e2iλ+

y
16 (e

4iλ+1)
)
,

Ω1,1 = 2e
− 4 sinλ

cos2 λe2iλ

((
t+
y
8

)
e2iλ+

y
16 (e

4iλ+1)
)(

1

eiλ − e−iλ + 1

2eiλ

)
,

Ω̃1,1 = 2e
− ((16t+2y)e−2iλ+y(e−4iλ+1)) sinλ

4 cos2 λe2iλ

(
1

e−iλ − eiλ − 1

2e−iλ

)
,

η111 =
i

2

(
1

eiλ − 1
− 1

eiλ + 1

)
e
− 4 sinλ

cos2 λe2iλ

((
t+
y
8

)
e2iλ+

y
16 (e

4iλ+1)
)
,

η211 =

(
2− i

2

(
1

eiλ − 1
+

1

eiλ + 1

))
e
− 4 sinλ

cos2 λe2iλ

((
t+
y
8

)
e2iλ+

y
16 (e

4iλ+1)
)
,

substituting the above results into the formula (Equation 3.82) we can obtain the
one-soliton solution of cCH equation under NZBCs.

Supposing λ = π
6 , the expression for the solution is

û(x, t) = −2

(
T 1
2 T

1
1 +

T 1
3

T 1
1

)
, (3.83)

x = x(y, t) = y + 2 lnT 1
1 ,

T 1
1 =

12ie−
8t
3 −y2 + 153i

√
3e−

16t
3 −y + 20i

√
3− 246e−

16t
3 −y − 20

(i
√
3− 1)

(
27e−

16t
3 −y2 + 18ie−

16t
3 −y2

√
3 + 4

) ,

T 1
2 =

141ie−
16t
3 −y2

√
3− 6e−

8t
3 −y2 + 216e−

16t
3 −y2 + 32

27e−
16t
3 −y2 + 18ie−

16t
3 −y2

√
3 + 4

,

T 1
3 = −18(i

√
3− 1)e−

8t
3 −y2 − (351i

√
3 + 189)e−

16t
3 −y2 − 32i

√
3 + 32

(i
√
3− 1)

(
18ie−

16t
3 −y2 − 27e−

16t
3 −y2 − 4

) .
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Figure 7. (a)–(c) describe the local structure, density, and intensity profiles with different
times of one-soliton solution |u|. Parameters r1,1 = 2, r2,1 = 1, λ = π

6
.

In accordance with the construction process of the RH problem, it can be known
that there are singularities {0,±1,±i} of the spectral parameter z. Since we choose
z0 ∈ C+ here and |z0| = 1, z0 = i is the singularity of solution û. From the propa-
gation of waves in figure 7, the bright soliton solution is the hump-kink interacted
solution. Based on the intensity distribution figure captured at various time points,
when the wave peaks and then drops a certain height, it continues to propagate
but does not return to the same height as before.

Supposing λ = π
3 , the solution can be obtained as follows

û(x, t) = −2

(
T 2
2 T

2
1 +

T 2
3

T 2
1

)
, (3.84)

x = x(y, t) = y + 2 lnT 2
1 ,

T 2
1 =

1

$2
1

(
(5520− 696i+ (1080− 816i)

√
3)e(−16t−y)

√
3
)
+

1

$2
1

(
320e−

√
3(16t+y)

2
√
3 + 64− 96i+ (64i− 32)

√
3

)
,

T 2
2 =

1

$2
2

(
(−1056− 1728i− (192 + 1248i)

√
3)e(−16t−y)

√
3 + 896− 1536i+ 512

√
3
)
+

1

$2
2

(
(−15360 + 28800i+ (−9600 + 15360i)

√
3)e−

√
3(16t+y)

2 − 896i
√
3

)
,

T 2
3 =

1

$2
3

(
(1056 + 1728i− (192 + 1248i)

√
3)e(−16t−y)

√
3 − 896 + 1536i+ 512

√
3
)
+

1

$2
3

(
(−7680 + 17280i+ (5760− 7680i)

√
3)e−

√
3(16t+y)

2 − 896i
√
3

)
,

$2
1 = 80(1 + i

√
3)(2−

√
3)((3 + 6i

√
3)e(−16t−y)

√
3) + 4,

$2
2 = −40(3 + 2

√
3)(i

√
3− 1)((3 + 6i)e−

√
3(16t+y)

2 + 4),
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Figure 8. (a)–(c) describe the local structure, density, and intensity profiles with different
times of one-soliton solutions |u|. Parameters r1,1 = 2, r2,1 = 1, λ = π

3
.

$2
3 = −320(2−

√
3)2(i

√
3 + 1)((6i

√
3− 3)e−

√
3(16t+y)

2 − 4).

From figure 8, it can be seen that the peak of soliton does not immediately
propagate smoothly when it falls from the highest point but rather fluctuates and
appears as a smaller peak.

3.3.2. Two-order pole solution
In an effort to construct the two-order pole solution of cCH equation under NZBCs,
we consider the specific data as follows. This is for N =2 case, and the expression
of u(x, t) defined in theorem 3.14.

Case 5: Assuming that w1 = z0 = eiλ ∈ C+ be the two-order zero point of
the scattering data a(µ), then w2 = w1 is also the two-order zero point of a(µ).
The discrete spectrum is the set X =

{
eiλ,−e−iλ, e−iλ,−eiλ

}
. For the purpose

of displaying characteristics of soliton propagations more clearly, we select some
appropriate parameters to construct the two-order pole solutions of cCH equation.
The dynamic behaviours of solitons are shown in Figures (9)–(10).

Setting λ = π
6 , {r1,1 = 1, r1,2 = 1, r2,1 = 1, r2,2 = 1}, D =1, α̃+ = 1. Besides,

Ω1,1 = Ω1,3 = Ω3,1 = Ω3,3, Ω1,2 = Ω1,4 = Ω3,2 = Ω3,4, Ω2,1 = Ω2,3 = Ω4,1 = Ω4,3,

Ω2,2 = Ω2,4 = Ω4,2 = Ω4,4, Ω̃1,1 = Ω̃1,3 = Ω̃3,1 = Ω̃3,3, Ω̃1,2 = Ω̃1,4 = Ω̃3,2 =

Ω̃3,4, Ω̃2,1 = Ω̃2,3 = Ω̃4,1 = Ω̃4,3, Ω̃2,2 = Ω̃2,4 = Ω̃4,2 = Ω̃4,4. In view of the
construction process for simple high-order pole solutions under NZBCs and the
parameter expressions of obtained solutions in theorem 3.14, we further obtain

ζ1,0 = ζ2,0 = e−
2t
3 −y2 ,

ζ1,1 = ζ2,1 =
8i(20t+ 9y)e−

2t
3 −y2 (i

√
3− 1)

(i
√
3 + 3)3(

√
3 + i)2

,

Ω1,1 =
5
√
3

18

((
−21 + 27y

20
+

3i

2
− 3t

)√
3 + it+

9i(y − 1)

20
− 9

10

)
e−

2t
3 −y2 ,
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Ω1,2 =
1440e−

2t
3 −y2

(i
√
3 + 3)3(

√
3 + i)4

(√
3

(
y − 6

20
+

i

10
+
t

9

)
+ it+

9i(y + 1)

20
+

1

2

)
,

Ω2,1 = −e
−2t

3 −y2 (−2 + i
√
3)√

3 + i
, Ω2,2 =

e−
2t
3 −y2 (−3− 2i

√
3)

(
√
3 + i)2

,

Ω̃1,1 =
1

24

(
(−6 + 3i+ 20it+ 9iy)

√
3 + 27 + 18i+ 20t+ 9y

)
e−

2t
3 −y2 ,

Ω̃1,2 =
1120

((
3
10 + 3i

14 + t
7 + 9y

140

)√
3 + it+ 9iy

20 − 27
70 + 9i

10

)
e−

2t
3 −y2

(i
√
3− 3)3(i−

√
3)4

,

Ω̃2,1 =
−i

√
3e−

2t
3 −y2

i−
√
3

, Ω̃2,2 =
(2i

√
3− 1)e−

2t
3 −y2

(i−
√
3)2

,

η111 = η121 =
−1280i

((
−6

5 + 3i
5 − t− 9y

20

)√
3 + it+ 9iy

20

)
e−

2t
3 −y2

4(i
√
3− 1)2(i

√
3 + 3)3(

√
3 + i)2

,

η211 = η221 =
(−1920i

√
3− 7680it− 3456iy + 5760− 2304i)e−

2t
3 −y2

4(i
√
3 + 1)2(i

√
3− 3)3(i−

√
3)2

,

η112 = η122 =
ie−

2t
3 −y2

i
√
3− 1

, η212 = η222 = −3e−
2t
3 −y2

2
,

then substituting the above results into the expression of solution (Equation
3.82), we can obtain the two-order pole solution of cCH equation, Figure 9 shows
the dynamic behaviour of soliton propagation, with three images presenting the
local structure, density, and intensity profiles at different times of two-order pole
solutions with the above parameters.

In addition, we select parameter λ = 5π
6 and use the same process to obtain the

dynamic propagation of the solution shown in Figure 10. From these two Figures
9–10, it can be seen that when the two waves collide at the centre, a larger peak is
generated, and then they continue to propagate along the previous trajectory, but
the energy decreases.

3.4. Multiple high-order pole solutions

The general circumstance that scattering data a(µ) has N high-order poles
z1, z2, · · · , zN will be considered, there zk ∈ C+ for all k = 1, 2, . . . , N , and their
powers are n1, n2, . . . , nN , respectively. Let wk1 = zk and wk2 = 1

z∗
k
, k = 1, 2, . . . , N ,

just like the case of one high-order pole, from the definition of M̃(y, t, µ), it can
be seen that µ = wkj and µ = −wk∗j (j = 1, 2) are N -order pole points of M̃11.

Simultaneously, µ = wk∗j and µ = −wkj (j = 1, 2) are N -order pole points of M̃12.
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Figure 9. (a)–(c) describe the local structure, density, and intensity profiles with different
times of the soliton solutions |u| with one two-order pole. Parameters r1,1 = 1, r1,2 = 1,
r2,1 = 1, r2,2 = 1, λ = π

6
.

Figure 10. (a)–(c) describe the local structure, density, and intensity profiles with different
times of the soliton solutions |u| with one two-order pole. Parameters r1,1 = 1, r1,2 = 1,
r2,1 = 1, r2,2 = 1, λ = 5π

6
.

Under the assumption that µ = wkj (j = 1, 2) are nk-order zero points of a(µ)

for k = 1, 2, . . . , N , by the Wronskian a(µ) = Wr(φ̌−1, φ̌+2), there exist complex
constants bkj,s (s = 1, 2, . . . , nN ) satisfy the follows

∂m[φ̌+(y, t, w
k
j )]2

∂µm
=

m∑
l=0

(
m

l

)
bkj,m−l+1

∂l[φ̌−(y, t, w
k
j )]1

∂µl
, (3.85)

and

∂m[ψ̌+(y, t, w
k
j )]2

∂µm
=

m∑
l=0

(
m

l

)
bkj,m−l+1

∂l[ψ̌−(y, t, w
k
j )]1e

2itθ(wkj )

∂µl
, (3.86)

with m = 0, 1, . . . , nN−1. Utilizing the parallel approach in above, we define the
nk × nk matrices Ξj,pkd = [Ξj,pkd ]s,q and Ξ̃j,pkd = [Ξ̃j,pkd ]s,q for s, q = 1, 2, . . . , nk and

https://doi.org/10.1017/prm.2024.102 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.102


On RH problem and multiple high-order pole solutions to the cCH 47

introduce the following notations for j, p = 1, 2

|η1kj 〉 = (η1kj1 , · · · , η1kjN )T , |η2kj 〉 = (η2kj1 , · · · , η2kjN )T , (3.87)

η1kjs =
iα̃+(y, t)

4

nk∑
l=s

l−s∑
m=0

(
(−1)m

(wkj − 1)m+1
− (−1)m

(wkj + 1)m+1

)
rkj,lζ

k
j,l−s−m,

η2kjs =

nk∑
l=s

l−s∑
m=0

rk∗j,lζ
k∗
j,l−s−m

− iα̃+(y, t)

4
D

nk∑
l=s

l−s∑
m=0

(
(−1)m

(wk∗j − 1)m+1
+

(−1)m

(wk∗j + 1)m+1

)
rk∗j,lζ

k∗
j,l−s−m,

rkj,l = lim
µ→wk

j

bkj,l
(nk − l)!

∂nk−l

∂(µ− wkj )
nk−l

(µ− wkj )
nk

a(µ)
, (3.88)

|B1〉 = (|A1
1〉, |A2

1〉, · · · , |AN1 〉)T , |Ak1〉 = (|η1k1 〉, |η1k2 〉)T ,
|B2〉 = (|A1

2〉, |A2
2〉, · · · , |AN2 〉)T , |Ak2〉 = (−|η2k1 〉,−|η2k2 〉)T ,

(3.89)

Ξj,p
k,d =

nk∑
l=s

l−s∑
m=0

(
q +m− 1

m

)
rkj,lζ

k
j,l−s−m

{
(−1)m

(wk
j − wk∗

p )q+m
+

(−1)m+q+1

(wk
j + wk

p)
q+m

}
, (3.90)

Ξ̃j,p
k,d =

nk∑
l=s

l−s∑
m=0

(
q +m− 1

m

)
rk∗j,lζ

k∗
j,l−s−m

{
(−1)m

(wk∗
j − wk

p)
q+m

+
(−1)m+q

(wk∗
j + wk∗

p )q+m

}
, (3.91)

Ξ =

[Ξj,p11 ] · · · [Ξj,p1N ]
...

. . .
...

[Ξj,pN1] · · · [Ξj,pNN ]

 , Ξ̃ =

[Ξ̃j,p11 ] · · · [Ξ̃j,p1N ]
...

. . .
...

[Ξ̃j,pN1] · · · [Ξ̃j,pNN ]

 , (3.92)

Iδ =


Iδ1

. . .

IδN

 , Iδk =

(
−I

−I

)
2nk×2nk

k = 1, . . . , N, (3.93)

〈Λ(µ)| = (〈Λ1
1(µ)|, 〈Λ1

2(µ)|, . . . , 〈ΛN1 (µ)|, 〈ΛN2 (µ)|),
〈Λ̃(µ)| = (〈Λ̃1

1(µ)|, 〈Λ̃1
2(µ)|, . . . , 〈Λ̃N1 (µ)|, 〈Λ̃N2 (µ)|),

〈Λ′(µ)| = (〈Λ1′
1 (µ)|, 〈Λ1′

2 (µ)|, . . . , 〈ΛN ′
1 (µ)|, 〈ΛN ′

2 (µ)|),
〈Λ̃′(µ)| = (〈Λ̃1′

1 (µ)|, 〈Λ̃1′
2 (µ)|, . . . , 〈Λ̃N ′

1 (µ)|, 〈Λ̃N ′
2 (µ)|),

(3.94)

with

〈Λkj (µ)| = (Λkj1, . . . ,Λ
k
jnk

), Λkjs =
1

(µ− wkj )
s
+

(−1)s

(µ+ wk∗j )s
,
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〈Λ̃kj (µ)| = (Λ̃kj1, . . . , Λ̃
k
jnk

), Λ̃kjs =
1

(µ− wk∗j )s
+

(−1)s+1

(µ+ wkj )
s
,

〈Λk′j (µ)| = (Λk′j1, . . . ,Λ
k′
jnk

), Λk′js =
−s

(µ− wkj )
s+1

+
s(−1)s+1

(µ+ wk∗j )s+1
,

〈Λ̃k′j (µ)| = (Λ̃k′j1, . . . , Λ̃
k′
jnk

), Λ̃k′js =
−s

(µ− wk∗j )s+1
+

s(−1)s

(µ+ wkj )
s+1

.

Similar to theorem 3.14, we give the solution of cCH equation with multiple
high-order poles as follows.

Theorem 3.15 The multiple high-order pole solutions of cCH equation under the
nonzero condition can be obtained as follows

û(x, t) = −2(M̃ ′
12(i)M̃11(i) + M̃ ′

21(i)M̃
−1
11 (i)), (3.95)

x = x(y, t) = y + 2 ln M̃11(i),

with

M̃11(i) = 1−
α̃+(y, t)D

4
+

det(Iδ + ΞΞ̃ + Ξ|B2〉〈Λ(i)|)− det(Iδ + ΞΞ̃ + |B1〉〈Λ(i)|)
det(Iδ + ΞΞ̃)

,

M̃ ′
12(i) =

α̃+(y, t)

4
+

det(Iδ + Ξ̃Ξ + |B2〉〈Λ̃′(i)|)− det(Iδ + Ξ̃Ξ + Ξ̃|B1〉〈Λ̃′(i)|)
det(Iδ + Ξ̃Ξ)

,

M̃ ′
21(i) = −

α̃+(y, t)

4

+
det(Iδ + Ξ∗Ξ̃∗ + |Λ∗

2〉〈Λ̃′∗(−i)|)− det(Iδ + Ξ∗Ξ̃∗ + Ξ̃∗|Λ∗
1〉〈Λ̃′∗(−i)|)

det(Iδ + Ξ∗Ξ̃∗)
,

where D is shown in (Equation 3.21), α̃+(y, t) ∈ R, the elements |B1〉, |B2〉, Iδ,
Ξ, Ξ̃, 〈Λ(i)|, 〈Λ̃(i)|, 〈Λ′(i)|, and 〈Λ̃′(i)| are defined in (Equation 3.89), (Equation
3.92), (Equation 3.93), and (Equation 3.94).

4. Conclusions

In summary, we have studied the multiple high-order pole solutions of the cCH
equation with a linear dispersion term by the RH method with ZBCs and NZBCs. In
comparison to the previous work presented in reference [43], we not only provide the
multi-soliton solutions for this equation but also examine the multiple high-order
pole solutions in the context of both boundary conditions.

Under ZBCs, in the direct scattering part, we make spectral analysis to the Lax
pair. To address the issue of the multi-value problem arising from square roots, a
uniformization variable µ is introduced, which leads to the Lax matrices U and V
have singularities at the points µ=0, µ = ∞, and the branch cut points µ = ±i
in the extended complex µ-plane. In order to control the behaviour of the eigen-
functions at these singular points, we introduce the suitable gauge transformations.
This method has been developed by Boutet de Monvel and Shepelsky [6, 7]. In the
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inverse scattering part, we construct the RH problem. According to the asymp-
totic behaviour of spectral parameter at point µ = i, we successfully restore the
solution of potential function u. Since the function a(µ) as a Wronskian of analytic
Jost solutions, which vanishes to N -order at the N -order zero points, we obtain a
linear expression for the N th derivative of Jost solutions. Through solving an alge-
braic expression, we establish the solution of RH problem, which is the constituent
elements of the solution of cCH equation. We select special parameters to provide
specific examples of one-soliton solutions and two-order pole solutions and analysed
the dynamic behaviours of solutions by analysing figures.

Under NZBCs, after making a transformation, the NZBCs are converted to ZBCs.
Using a similar methodology as described earlier, we conduct spectral analysis on
the new Lax pair and establish the RH problem. The differences between them are
that the asymptotic behaviour at the new singularity point µ = ±1 need to be
controlled. There we generalize the processing method described in [5] and further
using the RH method to study the high-order pole solutions of cCH equation with
linear dispersion term νux. Then the solution of RH problem is used to construct
the explicit and implicit expressions of the potential function u. Finally, we use
the solution of RH problem to construct the high-order pole solutions of the cCH
equation and analyse the propagation characteristics of solutions through some
examples.
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