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Fluid viscoelasticity affects ultrasound force
field-induced particle transport
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Ultrasonic standing wave technology offers an ideal platform for manipulating particles
in microfluidics. We study how fluid viscoelasticity and acoustic boundary formation
in micro-confinements affect ultrasound-induced perturbations. These perturbations
influence acoustic energy density (AED) and consequently particle transport dynamics.
Our approach combines theoretical, numerical and experimental methods. Using the
Oldroyd-B model for viscoelastic fluids, we advance acoustic radiation force (ARF)
formulations of Doinikov et al. (Phys. Rev. E, vol. 104, no. 6, 2021a; Phys. Rev. E,
vol. 104, no. 6, 2021b) for particles much smaller than the acoustic wavelength. This
improved approach allows us to decouple AED and acoustic contrast factor terms in the
ARF expression. It also enables us to examine the effects of viscoelastic parameters: μ∗
(ratio of the viscosity of the viscoelastic fluid to that of base Newtonian fluid) and De
(product of fluid relaxation time and actuation frequency) on AED and particle migration.
Remarkably, we show that increasing fluid elasticity or De transitions viscoelastic fluids
from the energy dissipation (relaxation) mode to the energy storage (frozen) mode,
increasing AED. Conversely, increasing viscosity (μ∗) reduces AED. Thus, our findings
suggest that elastic effects accelerate particle migration, while viscous effects decelerate it.
Consequently, a viscoelastic fluid-filled micro-confinement acts as an energy dissipation
device at low De and an energy storage device at high De. Particle migration can be
controlled by adjusting viscoelastic and acoustic parameters, at a fixed power input.
Our theoretical and numerical findings are validated with our experimental data. Our
study advances the fundamental understanding of particle migration in viscoelastic fluids
under ultrasound, and can significantly impact future studies on particle/cell migration in
bio-fluids.
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1. Introduction

The manipulation of particles and cells in Newtonian and non-Newtonian fluids is crucial
for biomedical and biochemical applications (Yuan et al. 2018). Various passive and active
techniques have been used for particle and cell handling in microchannels (Sajeesh & Sen
2013). Recently, ultrasonic standing wave (USW) technology has gained attention for its
contactless, gentle, biocompatible and non-invasive characteristics (Laurell, Petersson &
Nilsson 2007). Exposure of particles to an ultrasound field results in nonlinear scattering,
leading to time-averaged acoustic radiation force (ARF) (King 1934; Yosioka 1955;
Lighthill 1978). In a Newtonian fluid, the primary ARF is proportional to particle volume
(Bruus 2012b), acoustic energy density (AED) (Barnkob et al. 2010) and acoustic contrast
factor (ACF) (Petersson et al. 2004), the latter being a function of compressibility of the
particle relative to the suspending fluid and decides the direction of force. This dependency
enables label-free manipulation of particles based on size, density and compressibility
contrast (Bruus 2012b; Nath, Malik & Sen 2021; Malik et al. 2022).

Various theoretical and numerical studies have formulated ARF on small particles
within the Rayleigh limit (Baasch & Dual 2018), for ideal fluids (Gorkov 1962; Bruus
2012b; Hoque, Nath & Sen 2021), viscous fluids (Doinikov 1997; Settnes & Bruus 2012)
and thermo-viscous fluids (Karlsen & Bruus 2015), based on perturbation theory (Bruus
2012a) and first-order scattering theory (Settnes & Bruus 2012). The USW in the low MHz
range generates a first-order pressure field with the pressure node and antinode within a
microfluidic channel. For the fundamental resonance mode, i.e. a half-wave actuation, the
node and antinode correspond to the channel centre and walls (Bruus 2012a), respectively.
Particles suspended in a Newtonian fluid and exposed to ARF migrate to the node (positive
ACF) or antinode (negative ACF) (Petersson et al. 2004). Barnkob et al. (2010) studied
acoustic particle transport in such a fluid, traced particle trajectories over time and equated
viscous drag with ARF to predict the AED. Experimental investigations on particle/cell
migration (Laurell et al. 2007; Karthick et al. 2018; Nath et al. 2021) show that changes
in fluid density, compressibility and viscosity affect AED and ACF, thereby influencing
migration trajectory and migration time. This is important for ARF-driven separation and
sorting of particles/cells in microchannels (Lenshof & Laurell 2010).

Owing to the rich property dependence of ARF, fluid viscoelasticity can significantly
alter the ARF (Doinikov, Fankhauser & Dual 2021b). A viscoelastic fluid exhibits both
viscous and elastic characteristics, enabling a time-dependent response to deformation,
including stress relaxation and creep (Joseph 2013). Consequently, the motion of particles
suspended in a viscoelastic fluid differs significantly from their motion in a Newtonian
fluid. For instance, the first normal stress difference (N1 = σxx − σyy), which is absent in
Newtonian fluids, produces a viscoelastic lift force (Leshansky et al. 2007) on particles
in viscoelastic fluids. Over the last decade, significant progress has been made in
understanding particle migration and sorting enabled by fluid viscoelasticity (D’Avino,
Greco & Maffettone 2017; Hazra et al. 2021). However, passive viscoelastic particle
migration and sorting require a large shear rate and longer channel length. Additionally,
passive sorting methods have disadvantages such as low separation efficiency and
throughput (Yuan et al. 2018), which could be mitigated by exposing viscoelastic fluid
systems to external force fields (Yuan et al. 2018).

Most microfluidic systems use complex bio-fluids such as blood (Lenshof & Laurell
2010), blood plasma (Brust et al. 2013), saliva (Stokes & Davies 2007), sputum (Li
et al. 2016), synovial fluid (Rainer & Ribitsch 1985), protein solutions (Pan et al. 2009)
or hydrogels (Chaudhuri et al. 2020). These bio-fluids possess complex rheology, with
most being viscoelastic. For example, blood is a viscoelastic shear-thinning fluid due
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to the dynamics, deformability, and interactions of red blood cells (Chien 1970; Brust
et al. 2013). Studies on protein solutions (Pan et al. 2009), polymeric solutions (Rouse
1953), hydrogels and extracellular matrices (Chaudhuri et al. 2020) also highlight the
significance of the viscoelastic nature of bio-fluids. Some of the existing studies have used
ARF for manipulating particles suspended in bio-fluids in microchannels (Laurell et al.
2007; Lenshof & Laurell 2010). Even though these studies involve the use of complex
bio-fluids, modelling and analysis of such systems often assume the fluid to be Newtonian.
Since bio-fluids are inherently viscoelastic, the dynamics may not be captured well by
treating the physics based on such simplified assumptions. Therefore, understanding the
interaction of viscoelastic fluids with external acoustic fields in micro-confinements is
of utmost importance to accurately decipher the physics. This could find relevance in
better understanding particle transport characteristics, leading to important microfluidic
applications (Sajeesh & Sen 2013; Yuan et al. 2018).

Although interaction between viscoelastic fluids and external force fields in a
micro-confinement is yet to be understood, there are few reports which consider the
effect of viscoelasticity on acoustic parameters. For instance, Hintermuller, Reichel &
Jakoby (2017), Doinikov, Fankhauser & Dual (2021a) and Vargas et al. (2022), modelled
Oldroyd-B and Maxwell fluids under ultrasound to study acoustic streaming. Recently,
Doinikov et al. (2021b) theoretically formulated and numerically calculated the ARF on
isotropic solid spherical particles in unbounded compressible viscoelastic fluids, without
imposing any restriction on the particle size compared with the acoustic wavelength.
They derived a generalized ARF expression using indefinite integrals, highlighting the
complexity and precision required for these calculations. Their findings showed that
boundary layer formation on particle surface and shear wave propagation affect wave
scattering and ARF. However, their study focused only on the effects of the particle
boundary layer on ARF. An understanding of the effects of boundary layers on the channel
walls, shear wave propagation and viscous dissipation in the fluid on the incoming waves
and ARF is missing in the literature. Furthermore, the decoupled effects of AED in
the fluid and ACF on ARF and particle migration in viscoelastic fluids are yet to be
investigated.

Recently, Vargas et al. (2022) examined the effects of viscosity and elasticity (Deborah
number, De) on the perturbation field to study acoustic streaming, considering shear wave
attenuation. However, their analysis is limited to extremely narrow microchannels where
the channel depth (D) is comparable to the boundary layer thickness (δve) but much smaller
than the channel width (W) and acoustic wavelength (λ0) (δve ∼ D � W ∼ λ0). Due
to the constraints in the perturbation method, they omitted higher-order viscous effects
(assuming ε = D/λ0 � 1, neglecting second and higher orders of ε) and considered
δve only as a function of viscosity. Nonetheless, microfluidic devices used for particle
manipulations often feature channel depth and width that are of the same order as the
acoustic wavelength. In such cases, the solution provided by Vargas et al. (2022) becomes
inadequate. Consequently, it is essential to advance the analysis for viscoelastic fluid cases
where δve < D ∼ W ∼ λ0 for microfluidic acoustophoresis applications. Further, there is
no theoretical and experimental study reported, exploring acoustic particle migration in
viscoelastic fluids inside a microchannel exposed to ultrasound, which serves the objective
of the present study.

In summary, previous studies on particle dynamics in viscoelastic fluids exposed to
ultrasound have mainly focused on acoustic streaming and the effect of the acoustic
boundary layer near the particles on ARF. However, the impact of the boundary layer at the
channel walls and viscoelasticity on the AED in the fluid, and consequently the ARF, has
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not received attention. Further, there is a lack of understanding of the dynamics of acoustic
particle transport in viscoelastic fluids inside a microchannel, specifically the decoupled
effects of viscous and elastic effects. In this study, we investigate how fluid viscoelasticity
and boundary layer formation along the channel walls influence acoustic perturbations
in a fluidic channel having dimensions comparable to the acoustic wavelength, typical
of a microfluidic acoustophoresis device. By considering the effects of boundary layers
on the channel walls and adjusting the incoming acoustic field, we develop a improved
formulation for the acoustic force in viscoelastic fluids inside a channel. This formulation
decouples the effects of viscoelasticity on both the ACF and the AED. Further, through
experiments and theoretical analysis, we explore the effects of viscoelasticity on acoustic
particle migration dynamics in a microchannel. Our work addresses a significant gap in
the literature, providing new insights into how viscoelastic properties impact acoustic
migration phenomena.

In order to understand the sole effect of viscoelasticity on the ARF, neglecting any
contribution from the viscoelastic lift force, we conduct the study in a quiescent fluid
where the lift force vanishes. We use the Oldroyd-B model (Oldroyd 1950) to describe
viscoelastic fluids as this model stands out for its simplicity and accuracy in capturing both
viscous and elastic behaviours, making it ideal for representing the complex behaviours
of bio-fluids and polymer solutions. We characterize viscous effects (μ = μs + μp) via
the viscosity ratio μ∗ = μ/μbf = μ∗

p + μ∗
s and the elastic effects or fluid relaxation time

τ via the Deborah number De = τω, where μp and μs are the polymer and solvent
viscosities, μ is the total viscosity, μbf is the base Newtonian fluid viscosity and ω is
the ultrasonic actuation frequency. In § 2, we introduce formulations for acoustic field
perturbations in viscoelastic fluids, influenced by the acoustic boundary layer, which is a
function of viscous and elastic properties. We develop a theory to determine the scattered
acoustic field using first-order scattering theory with multipole expansion. We then derive
a modified expression for the ARF by decoupling the AED and ACF and analyse particle
migration dynamics. In § 3, we describe the numerical schemes for solving the perturbed
governing equations and determining the AED. In § 4, we detail the experimental set-up
and fluid properties. In § 5, we present and discuss the effects of μ∗

p, μ∗
s , De and acoustic

boundary layer on the incoming field, AED, ACF, ARF and particle migration dynamics
from theory and experiments using polyethylene oxide (PEO) and polyvinylpyrrolidone
(PVP) solutions. Finally, conclusions are outlined in § 6.

2. Theoretical formulation

Exciting a fluid with sound waves under resonance condition induces fluid perturbations
(Lighthill 1978; Bruus 2012a). Particles present in the fluid experience ARF due to
sound wave scattering, leading to acoustophoretic motion. Studies by Bruus (2012b),
Settnes & Bruus (2012) and Karlsen & Bruus (2015) provided an expression for ARF
for ideal, viscous and thermos-viscous fluids, respectively. Recently, Doinikov et al.
(2021a,b) derived an expression for the ARF for solid spherical particles in compressible
viscoelastic fluids. Here, we aim to advance this formulation by considering the AED in
micro-confinements, for particles much smaller than the acoustic wavelength. Our theory
considers the particles to be solid, compressible and spherical, with the fluid’s resonance
frequency significantly smaller than that of the solid particles (Settnes & Bruus 2012;
Karlsen & Bruus 2015). Our formulation provides new understanding of the influence of
micro-confinements and viscoelasticity on the ARF and particle migration dynamics.

1000 A75-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

96
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.965


Fluid viscoelasticity affects ultrasound force field

W

W
D

z

y

y

y0
x

δve

δve

(b)(a)

Figure 1. Schematic representation of physical domain used in the theoretical and numerical formulation.
(a) Side view of the microchannel with width W and depth D, the acoustic boundary layer thickness is indicated
by δve. (b) Top view of the microchannel with particle, the starting position of the particle in the channel is
y0. The channel width W is exposed to a one-dimensional standing wave (along y axis, shown by dashed violet
lines) operating at the first harmonic mode, i.e. half-wave mode. Particle trajectory due to acoustic excitation
of the fluid is shown using red circles at different time instants.

A schematic of the physical domain used in our theoretical formulation is shown in
figure 1. We consider a straight rectangular microchannel of width W and depth D. The
channel is filled with a viscoelastic fluid containing particles, both the particles and fluid
are initially in a quiescent state. The spherical particles have radius a, density ρP and
compressibility κP. The fluid has viscosity μ (with solvent and polymer contributions μs
and μp, μ = μs + μp), relaxation time τ , density ρ0 and compressibility κ0. The channel
is exposed to a standing bulk acoustic wave (S-BAW) along the y-axis, causing particle
migration. By setting the channel width W to half the acoustic wavelength (λ0/2), we
achieve half-wave resonance. A cross-sectional view of the channel is shown in figure 1(a).
In the presence of an USW, the acoustic boundary layer forms along the channel’s top and
bottom walls, with a thickness δve shown in figure 1(a). Assuming the standing wave is
uniform along the channel length (x-axis), we analyse fluid perturbations in the y–z plane.
We consider the particle motion along the y-direction in the x–y plane, with negligible drift
in the x and z directions. The initial particle position is indicated by y0, and a representative
particle trajectory is shown in figure 1(b). We focus over a region away from the channel
inlet and outlet to avoid end effects, which defines our physical domain.

2.1. Standing bulk acoustic wave and fluid perturbation
Acoustic perturbations cause changes in the pressure p, density ρ and velocity v fields
within a fluid. To understand these variations, we begin with the continuity and momentum
equations. For a viscoelastic fluid, the governing equations are

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + ∇ · μs

[
∇v + (∇v)T − 2

3
(∇ · v)I

]
+ ∇ · σ ve. (2.2)

To represent the rheological behaviour of a viscoelastic fluid, we use the Oldroyd-B
model (Oldroyd 1950), where μs stands for the solvent viscosity, and σ ve represents the
second-order viscoelastic polymer stress tensor. Here, σ ve incorporates both viscous and
elastic effects introduced by the polymer part of the fluid and can be expressed as

τ σ̂ ve + σ ve = μp[∇v + (∇v)T − 2
3 (∇ · v)I]. (2.3)
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Here, μp is the contribution of the polymer viscosity to the total viscosity of the solution,
μ = μs + μp, and τ is the relaxation time. A convected time differentiation is introduced
on σ ve to account for the frame invariance of the stress tensor, and σ̂ ve represents the
upper-convected stress derivative of σ ve, defined as

σ̂ ve = ∂σ ve

∂t
+ v · ∇σ ve − (∇v)T · σ ve − σ ve · ∇v. (2.4)

The governing equations (2.1)–(2.4) are nonlinear and difficult to solve directly. To
simplify, we use a perturbation approach suitable for small acoustic amplitudes. Following
the works of Bruus (2012b), Settnes & Bruus (2012) and Doinikov et al. (2021a),
we introduce perturbation schemes for fluid density ρ, pressure p, velocity v and the
viscoelastic stress tensor σ ve up to second order. Unperturbed quantities are labelled with
subscript ‘0’, while first- and second-order perturbations use subscripts ‘1’ and ‘2’. We
assume that the zeroth-order fields remain constant in space and time. The first-order fields
represent the system’s linear response to small perturbations, oscillating harmonically at
an angular frequency ω and an amplitude that varies only with space (Baasch, Pavlic &
Dual 2019). The second-order fields account for nonlinear interactions arising from the
first-order perturbations, oscillating at double the frequency, 2ω. The perturbed fluid fields
are

ρ = ρ0 + ρ1 + ρ2, p = p0 + p1 + p2, v = v1 + v2, σ ve = σ ve
1 + σ ve

2 . (2.5a–d)

In the unperturbed state, the viscoelastic fluid is at rest, implying that v0 and σ ve
0

are initially zero. We substitute equation (2.5a–d) into (2.1)–(2.4). By disregarding the
products of first-order terms and keeping only the first-order terms, we express the
first-order equations as

∂ρ1

∂t
+ ρ0∇ · v1 = 0, (2.6)

ρ0
∂v1

∂t
= −∇p1 + ∇ · μs

[
∇v1 + (∇v1)

T − 2
3
(∇ · v1)I

]
+ ∇ · σ ve

1 , (2.7)

τ
∂σ ve

1
∂t

+ σ ve
1 = μp

[
∇v1 + (∇v1)

T − 2
3
(∇ · v1)I

]
. (2.8)

Furthermore, the equation of state can be expressed as

p1 − p0 = (ρ1 − ρ0)c2
0, (2.9)

where p0 and ρ0 are unperturbed pressure and mass density, respectively, and c0 represents
the speed of sound in the fluid.

We assume the first-order fields oscillate harmonically with an angular frequency ω

(Baasch et al. 2019). Thus, the harmonic time dependence of the first-order field can be
expressed as

ρ1(r, t) = ρ̃1(r) eiωt, p1(r, t) = p̃1(r) eiωt,

v1(r, t) = ṽ1(r) eiωt, σ ve
1 (r, t) = σ̃ ve

1 (r) eiωt.
(2.10a–d)

Here, the angular frequency ω = 2πf and f represents the resonant frequency. The terms
ρ̃1(r), p̃1(r), ṽ1(r) and σ̃ ve

1 (r) represent time-independent amplitudes (only functions of
space) of first-order density, pressure, velocity and viscoelastic stress fields, respectively.
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By applying harmonic time dependence (2.10a–d) to (2.6)–(2.8), we transform the
first-order equations from the time domain to the frequency domain. Upon simplification,
we obtain

iωρ̃1 + ρ0∇ · ṽ1 = 0, (2.11)

iωρ0ṽ1 = −∇p̃1 + ∇ · μc[∇ṽ1 + (∇ṽ1)
T − 2

3(∇ · ṽ1)I], (2.12)

where

μc = μs + μp

1 + iτω
. (2.13)

Here, we introduce complex viscosity μc to describe the effect of viscoelastic parameters
μs, μp and τ on the first-order fields.

The first-order fields do not contribute to the time-averaged effects (Bruus 2012b).
However, the time-averaged second-order fields are non-zero. We obtain the second-order
perturbed equations by substituting equation (2.5a–d) into (2.1)–(2.4) and retaining only
the second-order terms. This includes the second-order perturbations of single variables
as well as products of two first-order perturbations. The time-averaged second-order
equations are

ρ0∇ · 〈v2〉 = −∇ · 〈ρ1v1〉, (2.14)

ρ0〈v1 · ∇v1 + v1∇ · v1〉 = −∇〈p2〉 + μ∇2〈v2〉 + μ

3
∇(∇ · 〈v2〉)

−τ∇ · 〈v1 · ∇σ ve
1 〉 + τ∇ · 〈(∇v1)

T · σ ve
1 〉 + τ∇ · 〈σ ve

1 · ∇v1〉. (2.15)

Here, ‘〈·〉’ denotes time averaging over a full oscillation period, which is 2π/ω. The time
average of harmonically varying fields f and g can be expressed as 〈 f g〉 = 1

2 Re[ f̃ g̃c],
where f̃ and g̃ are the time-independent amplitudes and c represents the complex
conjugate. The last three terms on the right side of (2.15) arise from the viscoelastic fluid
model and represent additional volume forces due to the fluid’s viscoelastic properties.

The time average of the second-order fields from (2.14)–(2.15) results in the primary
ARF (Bruus 2012b). The ARF acting on a particle can be expressed as

F rad =
〈∮

s
σ · n dA

〉
, (2.16)

where σ is the total fluid stress tensor and s is the surface of the particle, n is the
outward normal to the surface and dA is the infinitesimal particle area. The radiation force
expression can be further modified by considering the momentum flux through an arbitrary
surface s1 enclosing the particle (Doinikov et al. 2021b) as follows:

F rad =
〈∮

s1
(σ 2 − ρ0v1v1) · n dA

〉
. (2.17)

Here, σ 2 is the total second-order fluid stress tensor (terms on the right side of (2.15)),
which includes second-order pressure, as well as viscous and viscoelastic stresses.

Using (2.17), Doinikov et al. (2021a,b) derived a generalized expression for ARF on
solid particles in a viscoelastic fluid. They solved first- and second-order equations near
particles but did not address the effects of boundary layers at the channel walls on the
ARF or the modifications in AED or ACF due to viscoelasticity. Building on their work,
we present a simplified expression for ARF that includes boundary layer effects around
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particles and microchannel walls for small particles (particle radius much smaller than the
acoustic wavelength). We introduce a corrected ACF for viscoelastic fluids, considering
first-order scattering theory and boundary layer formation, to determine the ARF and
particle migration. Additionally, we analyse the impact of microchannel wall boundary
layers on incoming waves and AED, incorporating viscous dissipation. This simplified
expression, decoupling AED and ACF, enhances the understanding of acoustic particle
migration dynamics in microchannels.

2.2. Acoustic boundary layer formation in viscoelastic fluids
Acoustic boundary layer formation at microchannel walls (Muller & Bruus 2014; Bach
& Bruus 2018) and around particles (Doinikov 1997; Settnes & Bruus 2012; Karlsen &
Bruus 2015) is well studied for Newtonian fluids. To modify the expression for ARF
in viscoelastic fluids considering the effects of microchannel walls, understanding the
acoustic boundary layer (ABL) formation on the microchannel walls is important. Here, we
derive the ABL thickness in viscoelastic fluid (δve) by solving the first-order field equations
using Helmholtz decomposition (see supplementary material § 1.1 available at https://
doi.org/10.1017/jfm.2024.965), following Doinikov et al. (2021a). The shear wavenumber
(kve) for a viscoelastic fluid is

kve = (1 − i)
√

ρ0ω

2μc
. (2.18)

From (2.18) the viscous boundary layer thickness δve and viscous shear wavelength λve for
viscoelastic fluids can be expressed as (Doinikov et al. 2021a)

δve = − 1
Im{kve} and λve = 2π

Re{kve} . (2.19a,b)

Simplifying (Brown & Churchill 2009) the above expressions gives

δve = − 1√
Γ − √

Υ
, (2.20)

λve = 2π√
Γ + √

Υ
. (2.21)

Here, Γ and Υ are functions of ς and χ , and can be expressed as

Γ =
√

ς2 + χ2 − ς

2
and Υ =

√
ς2 + χ2 + ς

2
, (2.22a,b)

where ς and χ are fluid parameters that depend on μ and τ as follows:

ς = ρ0ω[μ + μs(τω)2]
2[μ2 + μ2

s (τω)2]
and χ = ρ0ω[μ − μs]τω

2[μ2 + μ2
s (τω)2]

. (2.23a,b)

From here onwards we use subscript ‘v’ to indicate the viscous Newtonian fluid and ‘ve’
for the viscoelastic fluid in ABL thickness and viscous shear wavelength.
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Far field

Viscoelastic fluid

Viscoelastic fluid

Particle

Particle

Near field

Particle

a
ρp, κp

ρ0,μ,τ

Viscoelastic,
incompressible f luid

δve

δve

∼λve

∼λ0

5δve

Inviscid, compressible fluid

ρ0, κ0

(b)(a)

(c)

Figure 2. Schematic of (a) a solid particle of radius a in a viscoelastic fluid (viscosity μ, relaxation time τ ),
with particle density ρP and compressibility κP. An acoustic wave (φ1 = φin + φsc) is introduced to study
scattering. The bulk fluid domain includes a near field (r � λ0) with instantaneous scattered field φsc and
a far field with time-retarded scattered field φsc(t − r/c0). The viscoelastic boundary layer thickness is δve
(dotted line), with boundary layer width ∼ 5δve. Beyond this, the fluid is considered inviscid and compressible
with properties ρ0 and κ0. A viscous shear wavelength λve is shown by a dotted circle around the particle.
(b) Compressibility contrast: particle contracts and expands in the incident pressure wave, causing monopole
radiation with scattering coefficient f1. (c) Density contrast: particle oscillates due to inertia difference, causing
dipole radiation with scattering coefficient f2.

2.3. Acoustic radiation force formulation
To study how viscoelastic parameters and acoustic boundary layers affect particle
migration, we derive an expression for the ARF, separating the effects of the AED and
the ACF, thus advancing the formulation by Doinikov et al. (2021b). We consider a small,
compressible spherical particle (radius a, density ρP, compressibility κP) in a viscoelastic
fluid (density ρ0, compressibility κ0) exposed to an acoustic field with wavelength λ0 (see
figure 2). Assuming a dilute suspension and treating particles as weak scatterers (a � λ0),
we set the system’s frequency below the particle’s resonance frequency due to a higher
speed of sound in the particle compared with that in the fluid.

We actuate the walls of a viscoelastic fluid-filled microchannel at the system’s resonance
frequency (see figure 1). This generates pressure and velocity perturbations in the fluid,
which act as incoming waves for the particle, represented by pin and vin. The amplitudes
of these waves vary with the fluid’s viscoelastic properties and ABL formation at the
channel walls, and are obtained through numerical simulations (see § 3). In theory, we
denote the incoming and scattered waves as φin and φsc, respectively, with the total field
φ1 = φin + φsc. The velocities are given by vin = ∇φin for the incoming wave, vsc = ∇φsc
for the scattered wave and v1 = vin + vsc for the first-order velocity. Figure 2(a) shows the
acoustic wavelength λ0, boundary layer thickness δve and viscous shear wavelength λve,
comparing the scales of the incoming compressible and scattered shear waves. A spherical
coordinate system (r, θ, ϕ) is used for the analysis.

In response to external acoustic perturbations, the fluid’s behaviour changes radially
from the particle’s surface, forming three distinct regions. In the boundary layer
region (a < r � a + 5δve), viscoelastic properties dominate due to high shear gradients.
Here, the fluid is considered to be incompressible because the wave propagation time
through the boundary layer is much shorter than the acoustic wave’s oscillation period

1000 A75-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

96
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.965


T. Sujith, L. Malik and A.K. Sen

(5δve/c0 � 1/ω). Field variations in this region exhibit an exponential decay, falling
below 1 % at a distance of 5δve. We use this distance to differentiate between the
boundary layer and near-field region (discussed in supplemental material § 1), and the
exact value of the prefactor is not critical in our analysis. The near-field region is defined
as a + 5δve � r � λ0 and the far-field region as r � λ0, with the fluid considered inviscid
and compressible in both the regions.

We characterize the acoustic wave scattering from a point scatterer using a time-retarded
multipole expansion. In the far-field region (see figure 2a), only monopole (φmp) and
dipole (φdp) components are significant and take the forms φmp(r, t) = b(t − r/c0)/r and
φdp(r, t) = ∇ · [B(t − r/c0)/r], where b and B are functions of (t − r/c0) (Bruus 2012b;
Settnes & Bruus 2012). The scalar function b is related to the first-order density field
(b ∼ ρin), and the vector function B corresponds to the first-order velocity field (B ∼ vin).
Thus, in the far field, the total scattering field φsc ≈ φmp + φdp, can be expressed as

φsc(r, t) = −f1
a3

3ρ0

∂tρin(t − r/c0)

r
− f2

a3

2
∇ ·

[
vin(t − r/c0)

r

]
. (2.24)

Here, f1 is the monopole scattering coefficient and f2 is the dipole scattering coefficient. To
maintain the correct dimensions of φsc, we introduce a, ρ0 and ∂t in (2.24). In the near-field
region a + 5δve � r � λ0, the scattering field depends on the instantaneous argument t,
unlike the time-retarded argument in the far field (Bruus 2012b; Settnes & Bruus 2012).
Thus, the total scattered field becomes

φsc(r, θ) = φmp(r) + φdp(r, θ) = −f1
a3

3ρ0
∂tρin

1
r

+ f2
a3

2
vin

cos θ

r2 . (2.25)

The first-order velocity and pressure field can be expressed as

v1 = ∇φ1 = ∇φin + ∇φsc, p1 = −ρ0∂tφ1 = −iρ0ω(φin + φsc). (2.26a,b)

We calculate the ARF using (2.17) for an arbitrary surface in the far-field region. Here,
the fluid is inviscid, therefore viscous and viscoelastic stresses are zero, and σ 2 simplifies
to the time-averaged second-order pressure: 〈p2〉 = κ0〈p2

1〉/2 − ρ0〈v2
1〉/2, similar to

Settnes & Bruus (2012). Using the incoming and far-field scattered fields (2.26a,b), we
derive the ARF expression (see supplemental material § 1.2), which simplifies as follows:

F rad = −∇Urad, (2.27)

Urad = 4π

3
a3

[
f1

κ0

2
〈p2

in〉 − f2
3ρ0

4
〈v2

in〉
]

. (2.28)

Here, Urad is the acoustic potential, f1 and f2 are unknowns that need to be determined for
the case of viscoelastic fluid to predict the ARF.

When a fluid with a particle is subjected to pressure oscillations, the particle compresses
and expands. If the particle’s compressibility differs from that of the fluid, it generates fluid
flow towards or away from the particle (Challis et al. 2005). For a small spherical particle,
this resembles a monopole source, where a more compressible particle ejects fluid at a rate
of ∂tm, calculated using the scattered first-order velocity field ρvsc (Bruus 2012b; Settnes
& Bruus 2012; Karlsen & Bruus 2015). Following Settnes & Bruus (2012), we find that
viscoelasticity does not affect the monopole scattering coefficient f1 (see supplemental
material § 1.3). Therefore, f1 can be expressed as

f1(κ∗
P) = 1 − κ∗

P. (2.29)

Here, κ∗
P is the compressibility ratio between particle and viscoelastic fluid, κ∗

P = κP/κ0.
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The dipole scattering coefficient f2 arises from the density difference between the
particle and the surrounding fluid (Bruus 2012b). For denser particles, pressure waves
cause oscillatory motion due to inertia differences (Challis et al. 2005). This motion is
influenced by the viscous boundary layer (Settnes & Bruus 2012). In this study, we present
a new expression for f2 that includes both viscous and elastic effects of the fluid, which
were not considered in previous studies (Doinikov et al. 2021a,b). The value of f2 is
determined through asymptotic matching of the velocity in the ABL with the near-field
region, as detailed in supplemental material § 1.3. Therefore, f2 can be expressed as

f2(ρ∗
P, δ∗

ve, λ
∗
ve) = 2[1 − γ ∗(δ∗

ve, λ
∗
ve)](ρ

∗
P − 1)

2ρ∗
P + 1 − 3γ ∗(δ∗

ve, λ
∗
ve)

, (2.30)

γ ∗(δ∗
ve, λ

∗
ve) = 3(1 + i)[1 + Q + i(1 + P)]

(P − iQ)2 , (2.31)

and P and Q become

P = 1
δ∗
ve

+ 2π

λ∗ve
and Q = 1

δ∗
ve

− 2π

λ∗ve
. (2.32a,b)

Here, δ∗
ve and λ∗ve are the dimensionless ABL thickness and viscous shear wavelength in

a viscoelastic fluid, defined as δ∗
ve = δve/a and λ∗ve = λve/a. The density ratio between

the particle and fluid is represented by ρ∗
P = ρP/ρ0. The dipole scattering coefficient f2

depends on δ∗
ve and λ∗ve, which are functions of the viscoelastic parameters μs, μp and

τ , as obtained from (2.20) and (2.21). In the absence of elasticity, for a viscous fluid,
λve/δve = λv/δv = 2π, matching the results of Settnes & Bruus (2012). For an ideal fluid
with zero viscosity (δ∗

ve = 0 and λ∗ve = 0), (2.30) simplifies to f2 = 2(ρ∗
P − 1)/(2ρ∗

P + 1),
as established by Gorkov (1962).

For an ideal fluid, in a microchannel exposed to a one-dimensional (1-D) S-BAW of the
form p̃in = pa cos(kyy) with λ0 � a, the expression for the ARF (equation 2.27) simplifies
to (Yosioka 1955; Gorkov 1962; Bruus 2012b)

Frad = 4πΦ(κ∗
P, ρ∗

P)a3kyEac sin(2kyy), Φ(κ∗
P, ρ∗

P) = 1
3 f1(κ∗

P) + 1
2 f r

2 (ρ∗
P). (2.33a,b)

Here, Φ, a, ky and Eac denote the ACF, particle radius, wavenumber and AED,
respectively. The compressibility and density ratios are represented by κ∗

P = κP/κ0 and
ρ∗

P = ρP/ρ0. The value of Eac is independent of fluid properties and is given by Eac =
p2

a/(4ρ2
0c2

0). Settnes & Bruus (2012) modified the expression for Frad for a viscous fluid
by correcting the ACF (Φ) to account for the acoustic boundary layer thickness δv , which
depends on fluid viscosity.

Our study considers a rectangular channel with a 1-D S-BAW (see figure 1). The channel
width is set to λ0/2 to achieve resonance with a unidirectional pressure wave, which serves
as the incoming wave for the particle. The incoming wave is assumed to be in resonance,
and has the form p̃in = pve

a cos(kyy), and the AED is Eve
ac = ( pve

a )2/4ρ2
0c2

0. Here, pve
a is

the amplitude of the incoming pressure field generated inside the microchannel which
varies with viscoelastic parameters. The wavenumber along the y direction is ky = 2π/λ0.
Following the works of Yosioka (1955) and Settnes & Bruus (2012), we modify the
expression for the ARF incorporating the viscoelastic parameters,

Frad = 4πΦ(κ∗
P, ρ∗

P, δ∗
ve, λ

∗
ve)a

3kyEve
ac sin(2kyy), (2.34)

Φ(κ∗
P, ρ∗

P, δ∗
ve, λ

∗
ve) = 1

3 f1(κ∗
P) + 1

2 f r
2 (ρ∗

P, δ∗
ve, λ

∗
ve). (2.35)
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The ACF (Φ) for viscoelastic fluids depends on δ∗
ve, λ∗ve, ρ∗

P and κ∗
P. Here, δ∗

ve = δve/a and
λ∗ve = λve/a. However, δve and λve are functions of the viscoelastic parameters (μs, μp,
τ ), ρ0 and ω, as given by (2.20) and (2.21). We compute Φ by substituting equation (2.29)
and the real part of (2.30) into (2.35). Further, we refine the AED for viscoelastic fluids by
accounting for boundary layer effects at the channel walls, given by Eve

ac = ( pve
a )2/(4ρc2

0).
The amplitude of acoustic pressure in the viscoelastic fluid pve

a , which depends on μ and
τ , is determined through numerical simulations detailed in § 3. In summary, we derived an
expression for the ARF in viscoelastic fluids by decoupling the effects of viscoelasticity
on Φ and Eve

ac , particularly for a � λ0, contrasting the approach taken by Doinikov et al.
(2021a,b). This new expression for ARF enhances our understanding of the effects of fluid
viscoelasticity on the AED and ACF and consequently the particle migration dynamics.

2.4. Acoustic particle migration characteristics
We present a new formulation for particle migration in a viscoelastic fluid under ultrasonic
excitation. A particle in a viscoelastic fluid experiences several forces: ARF, inertial force,
viscoelastic force and drag force. The ARF varies along the direction of the standing
wave, and is proportional to sin (2kyy) (see (2.34)). Besides ARF, inertial force can
also influence particle migration; however, a comparison of the acceleration time scale
(τa = (4/3)πa3ρP/6πμa) and the translation time scale (τtrans = W/2VP) reveals that the
acceleration time scale (10−6 s) is much smaller than the translation time scale (10−2 s),
allowing us to neglect inertial effects (Muller et al. 2013). Here, VP is the particle velocity.
In viscoelastic flows, particle migration arises from the imbalance in the first normal stress
difference, N1(γ̇ ) = σxx − σyy, and the viscoelastic force (Fe) is expressed as (Leshansky
et al. 2007) Fe ∼ a3(∂N1(γ̇ )/∂y). However, we consider a quiescent fluid with a negligible
strain rate (γ̇ ) and therefore Fe is taken to be zero.

With inertial and viscoelastic forces negligible, particle migration is governed by the
balance of ARF and drag force that can be explained in a Lagrangian framework. Our
study focuses on particles with a diameter of 15 μm (β = a/(W/2) = 0.0375). Stokes drag
due to acoustic streaming is significant for submicron particles, while the ARF dominates
for particles of diameter above 2 μm (Lighthill 1978; Barnkob et al. 2010; Muller et al.
2012). Consistent with this, our experiments did not show any traces of acoustic flow
rolls, allowing us to neglect the influence of Stokes drag arising from acoustic streaming.
We introduce an ordinary differential equation to express Newton’s law of motion for the
particle. If m is the mass of a particle, VP is the particle velocity at position y and the
different forces are represented by Fi( y), a force balance on the particle gives

m
dVP

dt
=

∑
i

Fi( y). (2.36)

Neglecting the inertial, gravitational (Barnkob et al. 2010) and viscoelastic forces, (2.36)
reduces to

Fdrag = Frad. (2.37)

Due to the inherent viscoelastic properties of the fluid, there is a change in the drag
coefficient and the correction in the drag coefficient for a spherical particle has been
reported by Faroughi et al. (2020). Thus, the drag force in a viscoelastic fluid can be
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expressed as
Fdrag = 6πμaξVp. (2.38)

Here, ξ represents the drag coefficient correction. For a quiescent fluid considered in our
study, ξ ≈ 1 (Faroughi et al. 2020). Incorporating equations (2.34) and (2.38) in (2.37)
gives

6πμaξ
dy
dt

= 4πΦ(κ∗
P, ρ∗

P, δ∗
ve, λ

∗
ve)a

3kyEve
ac sin(2kyy). (2.39)

By simplifying equation (2.39), we obtain

VP = 2Φ(κ∗
P, ρ∗

P, δ∗
ve, λ

∗
ve)kya2Eve

ac sin(2kyy)
3μξ

. (2.40)

Integrating the equation via separation of variables y and t gives the analytical expression
for the particle trajectory, which is expressed as

y(t) = 1
ky

arctan

{
tan[kyy(0)] exp

[
4Φ(κ∗

P, ρ∗
P, δ∗

ve, λ
∗
ve)(kya)2Eve

act
3μξ

]}
. (2.41)

Here, y(0) and y(t) are the initial location and particle location at a time instant t,
respectively. We obtain an expression for the particle migration time by adjusting (2.41) as

t = 3μξ

4Φ(κ∗
P, ρ∗

P, δ∗
ve, λ

∗
ve)(kya)2Eve

ac
ln

[
tan[kyy(t)]
tan[kyy(0)]

]
. (2.42)

We validate the theory described above using experiments, and the details are given
in § 4.

3. Numerical simulations

We perform numerical simulations to determine acoustic field perturbations in the
viscoelastic fluid inside the microchannel considering the boundary layer formation on
the channel walls. These perturbations act as incoming waves to suspended particles and
represent the AED in the fluid. Assuming a 1-D S-BAW along the y-direction (figure 1a),
we consider the variation of the acoustic field and AED along the length (x-direction) of
the channel to be negligible. Therefore, we select the channel cross-section in the y–z plane
as the simulation domain. Similar to the experimental device, the domain of width 400 μm
and depth 300 μm is filled with a viscoelastic fluid specified by μs, μp and τ .

We numerically solve (2.11)–(2.13) for the cross-section of the microchannel, excluding
particles, using the finite element method in COMSOL Multiphysics 6.0. A detailed
description of the numerical model is presented in supplemental material § 2. The
channel sidewalls are excited with a velocity boundary condition, ṽ1 = iAωêy in the
frequency domain (Bach & Bruus 2018; Vargas et al. 2022). Here, A is the vibration
amplitude, determined through 3-D numerical modelling of the experimental device
(Barnkob et al. 2010; Dual & Möller 2012; Dual & Schwarz 2012; Hahn et al. 2015).
The angular frequency ω = 2πf , where f ≈ 1.93 MHz is the resonant frequency of the
experimental device. The top and bottom walls have a Lagrangian no-slip boundary
condition. The first-order fields (p̃1, ṽ1) in the channel act as incoming waves for the
particles, thus we denote the perturbations inside the fluid as p̃in and ṽin. Due to half-wave
resonance condition, the incoming pressure wave distribution is p̃in = pve

a cos(kyy), the
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Solutions C [wt.%] μ [mPa s] τ [s] μ∗ = μ/μbf De = τω

Newtonian 0.00 1.69 0 1.90 0
PVP (0.36 MDa) 0.10 1.69 7.49 × 10−6 1.90 91
PEO (0.40 MDa) 0.20 1.69 1.46 × 10−5 1.90 178

Table 1. Concentration and viscoelastic properties of various fluids, the Newtonian fluid is DI water+0.3 wt.%
glycerol. For all of the fluids: μbf = 0.89 mPa s, ρ∗ = ρ0/ρbf ≈ 1.007 and c∗ = c0/cbf ≈ 1.003 (Rouse 1953;
Zimm 1956; Tirtaatmadja, McKinley & Cooper-White 2006).

amplitude of pressure field pve
a is given by p̃in at the sidewall (at y = 0). By following

the approach for 1-D S-BAW wave in microchannels (Barnkob et al. 2010; Bruus 2012b;
Karlsen & Bruus 2015), we find AED using Eve

ac = ( pve
a )2/4ρc2

0, where pve
a depends on

the fluid’s viscoelastic properties.
We conduct a mesh convergence study following Muller & Bruus (2014). The mesh

convergence parameter, CM , for a solution g with respect to a reference solution gref is
defined as CM(g) = [

∫
(g − gref )

2 dy dz/
∫
(gref )

2 dy dz]1/2. We choose CM = 10−3, and
select the mesh by ensuring δve/dbd is greater than 1 at which both the first- and
second-order fields converge. Here, dbd is the mesh size in the boundary layer. We validate
the numerical model for both first- and second-order fluid fields against Hintermuller et al.
(2017), which shows close agreement (see supplemental material § 2.1). We also predict
the ARF using a numerical model (Baasch et al. 2019) and compare it with the theoretical
predictions (supplemental material § 2.1). The predicted acoustic perturbations and ARF
are also validated with existing studies (Hintermuller et al. 2017; Doinikov et al. 2021a)
(see supplemental material § 2.2).

4. Experimental

Experiments are performed with dilute suspensions containing spherical polystyrene
particles of size between 5 and 25 μm (microParticles GmbH, Berlin) in viscoelastic
and Newtonian fluids. Polyvinylpyrrolidone (PVP) solution, which is a pure viscoelastic
fluid of molecular weight 0.36 MDa, (Sigma-Aldrich, USA) and polyethylene oxide (PEO)
solution which is a shear-thinning viscoelastic fluid (Sigma-Aldrich, USA) of molecular
weights 0.4 and 1.0 MDa are used as viscoelastic fluids. The details of the viscoelastic
fluid preparation are given in supplemental material § 3.1. A mixture of deionized (DI)
water and 0.3 % glycerol (Sigma-Aldrich, Bangalore, India) is used as the Newtonian
fluid. In both viscoelastic and Newtonian fluids, Iodixanol (OptiPrepTM, Sigma-Aldrich,
Bangalore, India) is mixed to adjust the fluid density. The proportions are carefully tuned
to avoid significant a difference in density and speed of sound between the viscoelastic
and Newtonian fluids. The properties of the fluids are presented in table 1. The fluid
viscosity is measured using a rotational rheometer (MCR 72, Anton-Paar). The relaxation
time τ of dilute viscoelastic fluids are predicted using available correlations (Rouse 1953;
Zimm 1956). Other viscoelastic fluid properties and details about the relaxation time
measurement is given in supplemental material § 3.1.

A schematic diagram of the experimental set-up is shown in figure 3(a). The
glass–silicon–glass microchip (see figure 3b) is fabricated by photolithography followed
by dry reactive ion etching. First, the channel design is patterned on a 3 inch 〈100〉 silicon
wafer of 300 μm thickness by coating the wafer with a positive photoresist (MICROPOSIT
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Figure 3. Schematic of (a) experimental set-up, (b) acoustofluidic chip assembly.

S1813), followed by UV exposure. The patterned wafer is through etched to realize a
channel layer of 20 mm length having a rectangular cross-section of 400 μm width (W)

and 300 μm depth (D). The channel is sealed with two borosilicate glasses of 500 μm
thickness on top and bottom sides using anodic bonding by applying a voltage of 1000 V
and temperature of 450 ◦C. Inlet and outlet holes are micro-drilled to establish fluidic
connections.

The working fluid containing suspended particles is infused into the channel using a
syringe pump (neMESYS pump, Cetoni GmbH, Germany). The microchannel is actuated
using a piezoelectric transducer (2.0 MHz, Sparkler Piezoceramics) attached to the bottom
glass lid using an epoxy with a sinusoidal signal generated from a function generator
(SMC100A, Rohde Schwarz, Germany) and amplified using an amplifier (75A250A,
Amplifier Research, USA) operating between 10 and 1000 mW.

The resonance frequency of the system is identified by introducing a 15 μm spherical
polystyrene particle suspension inside the channel and actuating the transducer between
1.85 and 2.1 MHz. At half-wave resonance condition, the particles quickly migrate to the
nodal plane (Nath et al. 2021) at the channel centre. The resonant frequency of the system
is found to be 1.93 MHz, which is maintained throughout the study. We measure the AED
for the base fluid at the resonance frequency using a particle tracking method (Barnkob
et al. 2010), and find it to be 48.3 J m−3. The lateral migration of particles is observed
using an inverted microscope (IX73, Olympus) coupled with a high-speed CCD camera
(SA5, Photron) operating at 500 fps. The particle trajectory and velocity are determined
by analysing the captured videos using a free video analysis and modelling tool, tracker
6.1.0.

5. Results and discussion

We study the effect of fluid viscoelasticity on the acoustic field and subsequently the
transport dynamics of particles in microchannels of dimensions comparable to the acoustic
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wavelength (D ∼ W ∼ λ0). In § 5.1, we report the behaviour of a viscoelastic fluid
in a rectangular microchannel exposed to a S-BAW, where the fluid perturbations are
influenced by the ABL on the microchannel walls. Then, we present and discuss the effects
of ABL and the viscoelastic parameters of the fluid on the AED in § 5.2. Using theoretical
formulations, we decouple the effects of AED on the ARF. We report the effects of fluid
viscoelasticity and the AED on the ARF in § 5.3. The magnitude and distribution of the
ARF in the fluid and the resulting particle migration dynamics are discussed in § 5.4.
Here, we decouple the viscous and elastic effects on the acoustic force field and particle
migration by studying the individual effects of μp and μs (with μ = μp + μs) and τ .
Our study mainly addresses the effects of viscoelasticity and boundary layer formation at
the microchannel walls on particle migration, which is missing in the literature. In our
analysis, we non-dimensionalize the viscoelastic parameters: solvent viscosity (μs) via
dimensionless solvent viscosity μ∗

s = μs/μbf , polymer viscosity (μp) via dimensionless
polymer viscosity μ∗

p = μp/μbf and relaxation time (τ ) via the Deborah number De =
τω. Here, μbf is the base Newtonian fluid (DI water) viscosity, and ω is the angular
frequency, which is kept constant throughout the study. Similarly, the dimensionless
complex viscosity, density and speed of sound of the fluid are taken as, μ∗

c = μc/μbf ,
ρ∗ = ρ0/ρbf and c∗ = c0/cbf , respectively.

5.1. Effect of viscoelastic properties on fluid perturbations
A S-BAW induces perturbations in the viscoelastic fluid present in the microchannel. We
analyse the variation of the first-order fields (p̃1, ṽ1) along the channel width (y-direction)
(refer to figure 1a) and depth (z-direction) in the absence of particles by numerically
solving (2.11)–(2.13), as detailed in § 2.3. These perturbed fields act as incoming fields
for the particle, hence we name them as pin and vin. Here, vin indicates the component of
perturbed velocity field along the y-direction. The perturbed fields are characterized using
dimensionless first-order fluid pressure, p∗

in = p̃in/(ρ0c0Aω), and dimensionless first-order
fluid velocity, v∗

1 = ṽin/(Aω) (Vargas et al. 2022), where A is the amplitude of vibration
of the channel, and ρ0 and c0 are respectively the density and speed of sound of the
viscoelastic fluid. The variations of the incoming fields are shown in figure 4. Here,
y∗ = y/(W/2) and z∗ = z/(D/2). We compare the field fluctuations in a viscoelastic fluid
for De = 0.1, 1.0, 10, 300 and 105 with those in a Newtonian fluid (De = 0), for a fixed
total viscosity (μ∗ = 1001, with μ∗

p = 1000 and μ∗
s = 1), density (ρ∗ = 1) and speed of

sound (c∗ = 1), thereby decoupling the elastic effects from the viscous effects.
We depict the distribution of p∗

in along the channel width y∗ in figure 4(a), where its
magnitude varies from a maximum at the channel walls (y∗ = 0 or y∗ = 2) to zero at
the channel centre (y∗ = 1). A zero value of p∗

in indicates a pressure node, signifying the
absence of the primary ARF. In contrast, v∗

in attains a maximum at the centre and decreases
to zero at the walls, suggesting a velocity node at the walls, as shown in figure 4(b). The
fluid field variation along z∗ is symmetric about the channel centre z∗ = 1. A decrease in
p∗

in from the wall (z∗ = 0) to the centre (z∗ = 1) is seen in figure 4(c), while figure 4(d)
depicts oscillations in v∗

in near the wall that stabilize at the centre. These fluctuations can be
attributed to viscous shear disturbances and acoustic boundary layer formation resulting
from the no-slip condition at the walls and acoustic perturbations (Hamilton, Ilinskii &
Zabolotskaya 2003; Baasch & Dual 2018). Specifically, the ABLs formed at the top and
bottom walls of the microchannel (shown in figure 1a) affect the pressure and velocity
distribution along the z-direction. A change in nature of shear waves near particles with
viscoelastic parameters has been reported by Doinikov et al. (2021a). However, in their

1000 A75-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

96
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.965


Fluid viscoelasticity affects ultrasound force field

20 8

6

4

2

De = 10 μs
∗ = 1

μp
∗ = 103

De = 0

De = 0 De = 0.1 De = 1 De = 10 De = 300 De = 105

De = 0.1

De = 1

De = 300

De = 105
10

0

–10

–20
0

0 0.2 0.4 0.6 0.8 1.0 10–3

δ∗ v
e, 
λ

∗ v
e, 

α
, E

∗ ac

Relaxation
mode

Frozen
mode

101

100

10–1

10–2

10–1 101 103 105

De

101

100

10–1

0.5 1.0

y ∗

z∗

p∗
in

v∗
in

p∗
inv∗

in

1.5 2.0 0 0.5 1.0

y ∗ z∗
1.5 2.0 0

15

12

9

6
0.25 0.50 0.75 1.00

δ
∗
ve λ∗

ve α E∗
ac

(e)

(b)(a)

(d )

(c)

Figure 4. Numerical results of dimensionless incoming pressure ( p∗
in) and velocity (v∗

in) fields in Newtonian
(De = 0) and viscoelastic fluids (De = 0.1, 1, 10, 300, 105) at μ∗

p = 1000, μ∗
s = 1, ρ∗ = 1 and c∗ = 1.

Variation of (a) p∗
in along y∗ (along width or S-BAW direction, at z∗ = 1), (b) v∗

in along y∗ (y∗ = 0 and 2 as
the channel walls, y∗ = 1 as the centre), (c) p∗

in along z∗ (along depth or perpendicular to S-BAW, at y∗ = 0.5)
and (d) v∗

in along z∗ (symmetric about the channel centre z∗ = 1, z∗ = 0 is the channel wall perpendicular to
S-BAW direction), refer to figure 1. (e) Theoretical and numerical variation of dimensionless boundary layer
thickness (δ∗

ve), viscous shear wavelength (λ∗ve), α (λ∗ve/δ
∗
ve) and E∗

ac with De.

study, the discussion is limited to the effect of boundary layer formation on a particle in a
viscoelastic fluid from the perspective of acoustic streaming. Here, we study the effects of
viscoelasticity on the incoming waves and unravel the effects of boundary layer formation
at the channel walls on the perturbations.

Here, the viscous shear disturbances propagate from the walls to the bulk, in
the z-direction, i.e. perpendicular to the S-BAW direction, influenced by the fluid
properties. The characteristics of viscous shear waves with De are shown in figure 4(e),
where the viscous shear wave is characterized using the dimensionless boundary layer
thickness (δ∗

ve = δve/a) and the dimensionless viscous shear wavelength (λ∗ve = λve/a).
The parameter δ∗

ve indicates the penetration distance of viscous disturbances, while λ∗ve
provides an idea about the wavelength of shear waves or the number of oscillations in the
vicinity of the channel wall, as obtained from (2.20) and (2.21). In the absence of elasticity
(De ≈ 0) or in low elasticity fluids (at very low values of De = 0.1), the shear waves
attenuate easily due to higher viscous effects, and oscillations are overdamped (shown
in figure 4d), indicated by a smaller δ∗

ve and larger λ∗ve (λ∗ve > δ∗
ve) in figure 4(e). Here,

ς = ρ0ω/(2μbf μ
∗) and χ = 0 (2.23a,b). From (2.13), (2.20) and (2.21), the dimensionless

complex viscosity μ∗
c(= μc/μbf ), δ∗

ve and λ∗ve reduce to

μ∗
c |De→0 = μ∗

s + μ∗
p, δ∗

ve|De→0 = 1
a

√
2μbf (μ∗

s + μ∗
p)

ρ0ω
and λ∗ve|De→0 = 2πδ∗

ve.

(5.1a–c)
As De increases to intermediate values (De = 1.0 and 10) or in moderate elasticity

fluids, the amplitude, frequency and propagation distance of viscous shear waves increase
due to the transition from a viscous to an elastic state. This transition is shown by the
variation of v∗

in over a larger distance from the channel wall in figure 4(d). Further, as
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depicted in figure 4(e), there is an increase in δ∗
ve and a decrease in λ∗ve, with δ∗

ve being
greater than λ∗ve. Here, μ∗

c , ς and χ reduce to

μ∗
c |De = μ∗

s + μ∗
p

1 + iDe
,

ς |De = ρ0ω[μ∗ + μ∗
s De2]

2μbf [μ∗2 + μ∗2
s De2]

and χ |De = ρ0ω[μ∗ − μ∗
s ]De

2μbf [μ∗2 + μ∗2
s De2]

.

(5.2a–c)

By substituting the above values of ς and χ into (2.20) and (2.21), we obtain the variation
of δ∗

ve and λ∗ve for intermediate De values.
At a higher De or for high elasticity fluids, disturbances attenuate faster with further

increases in De (De = 300 and 105) due to a decrease in the contribution of μ∗
p to μ∗

c ,
as indicated by a decrease in δ∗

ve in figure 4(d), which stabilizes at higher De values. At
very high De (= 105), the polymer contribution to the complex viscosity approaches zero,
restricting the propagation of viscous shear waves to a smaller distance from the wall,
indicated by variations in v∗

in very close to the wall in figure 4(d) and negligible variation
of δ∗

ve and λ∗ve with De in figure 4(e), where λ∗ve > δ∗
ve. Here, ς = ρ0ω/(2μbf μ

∗
s ) and

χ = 0. The values of μ∗
c , δ∗

ve and λ∗ve reduce to

μ∗
c |De→∞ = μ∗

s , δ∗
ve|De→∞ = 1

a

√
2μbf μ∗

s

ρ0ω
and λ∗ve|De→∞ = 2πδ∗

ve. (5.3a–c)

The variation in amplitude of v∗
in along y∗ and z∗ shows a non-monotonic pattern with

increasing De, as shown in figures 4(b) and 4(d). At low De (De ≤ 1), higher momentum
transfer to the fluid occurs with increasing De or elasticity, causing an increase in v∗

in.
Beyond De = 1, due to a significant reduction in effective viscosity, v∗

in decreases. Our
results in figures 4(a) and 4(c) illustrate an increase in pressure amplitude of incoming
waves from De = 0 to De = 300 at a fixed μ∗, followed by a small decrease and then
negligible variation with further increases in De. However, the rate of increase in p∗

in
with De is minimal for fluids with low elasticity (De � 1), more pronounced for fluids
with moderate elasticity (intermediate De) and negligible for fluids with high elasticity
(De = 105). Interestingly, in narrow microchannels where the acoustic boundary layer
thickness δve is comparable to the channel depth D but much smaller than the channel
width W and acoustic wavelength λ0 (δve ∼ D � W ∼ λ0), Vargas et al. (2022) reported
a continuous increase in pressure with relaxation time, with pressure being proportional
to De1/2. However, this relationship does not hold for commonly used microchannels in
acoustofluidics, where δve is smaller and both D and W are comparable to λ0 (δve <

D ∼ W ∼ λ0). Thus our findings highlight a remarkable differences in the behaviour of
pressure waves in commonly used microchannels as compared with narrow microchannels,
highlighting the unique attributes of the present study.

Generally, a fluid undergoes relaxation when exposed to external perturbations, and
it depends on the relaxation time scale τ . In a viscous fluid, τ ∼ 0, and in an elastic
body, τ ∼ ∞. Viscoelastic fluids have a relaxation time between the two extremes (Bird,
Armstrong & Hassager 1977; Joseph 2013), and De represents the fluid relaxation time (τ )

with respect to the time period of acoustic perturbation (tf = 1/ω). For viscoelastic fluids
with De � 1 (τ � tf ), stress generated by the perturbation relaxes faster than the actuation
period, causing a low pressure amplitude. At high De (τ � tf ), stress generated by the
perturbation relaxes very slowly, showing higher incoming pressure amplitude compared
with a Newtonian fluid (De = 0). Therefore, viscoelastic fluids exhibit a distinct behaviour
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compared with Newtonian fluids due to the variations in fluid’s elasticity, δ∗
ve and λ∗ve, as

shown in figure 4(a–d).
We introduce a parameter α = λ∗ve/δ

∗
ve = λve/δve, shown in figure 4(e), to study the

relative variation of the length scales related to the viscous shear wave. The viscous shear
wave parameter α attains a value of approximately 2π for low elasticity (De � 1) and
high elasticity fluids De (De � 1). For moderate elasticity fluids (moderate De values),
α decreases up to De ≈ 10, beyond which it increases. This trend can be attributed to
the variations in δ∗

ve and λ∗ve, providing deeper insights into the viscoelasticity of fluids.
The variations in the incoming fields directly indicate changes in the AED of the fluid.
We characterize AED using the dimensionless AED (E∗

ac), defined as the ratio of Eac

for a viscoelastic fluid to that of the base Newtonian fluid, E∗
ac = Eve

ac/Ebf
ac, as shown

in figure 4(e). Interestingly, at a fixed value of μ∗, we observe that, with increasing
elasticity or De (keeping tf fixed), E∗

ac increases, mirroring the variation in amplitude of
the incoming pressure wave, as shown in figure 4(a). The rate of increase, however, varies
across the different ranges of De. For low elasticity fluids (De � 1), the change in E∗

ac is
negligible. Conversely, moderate elasticity fluids (moderate De) show a significant rise in
E∗

ac with De, corresponding to a marked increase in incoming pressure wave amplitude in
figure 4(a). Further increase in De results in a negligible change in the incoming pressure
field, leading to a nearly fixed value of E∗

ac in highly elastic fluids (De � 1). Viscous
effects dominate in low elasticity fluids, while elasticity effects surpass viscous effects in
high elasticity fluids. Higher viscous effects indicate an energy dissipation state, whereas
higher elasticity effects indicates an energy storage state. Thus, with increasing De, a
viscoelastic fluid transitions from an energy dissipation state (relaxation mode or relaxing
state of AED) to an energy storage state (frozen mode or freezing state of AED) where
energy dissipation is minimized (Bird et al. 1977; Joseph 2013).

In the next section, we investigate the transition of AED with De at different μ∗
p and

μ∗
s , that affects the ARF and particle migration. Our study unveils novel insights into the

energy states of viscoelastic fluids under varying conditions, contributing significantly to
the understanding of fluid behaviour in microfluidic environments exposed to the acoustic
waves.

5.2. Effect of viscoelastic properties on acoustic energy density
Acoustic waves can transport energy without a net fluid transfer (Lighthill 1978). Viscous
attenuation alters the acoustic field and AED in viscous fluids (Allegra & Hawley 1972).
However, the impact of viscoelastic properties on AED in micro-confinements is not
well studied. Therefore, we numerically analyse AED transition in a microchannel due
to variations in the viscoelastic parameters μ∗

p, μ∗
s and De (see §§ 2.1 and 3). Using the

theoretical formulations in § 2.2 for δve, λve and α(= λve/δve), we relate variations in
dimensionless AED (E∗

ac = Eve
ac/Ebf

ac) to the characteristics of viscous shear waves.
We depict the variation of E∗

ac with μ∗
p in figure 5(a) for three different cases: (i) small

De (De ≤ 1, low elasticity fluids), (ii) intermediate De (1 < De ≤ 100, moderate elasticity
fluids) and (iii) high De (De > 100, high elasticity fluids), with μ∗

s = 1, ρ∗ = 1 and
c∗ = 1 fixed in all cases. For low elasticity fluids (De ≤ 1), viscous effects dominate, with
δ∗
ve < λ∗ve and α > 1. The variation of δ∗

ve and λ∗ve with μ∗
p is shown in figure 5(b-i) using

solid and dashed lines, respectively. The corresponding variations in α are illustrated in
figures 5(c) and 5(d). According to (5.1a–c) and figure 5(b-i), increasing μ∗

p amplifies δ∗
ve

and viscous dissipation, reducing incoming fields and consequently the AED, as shown in
figure 5(a-i). The decay is more rapid at smaller μ∗

p and slower at higher μ∗
p, due to a higher
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Figure 5. (a) Numerical variation of dimensionless acoustic energy density (E∗
ac) and corresponding

(b) theoretical variation of δ∗
ve and λ∗ve with μ∗

p at different De: (i) De ≤ 1, (ii) 1 < De ≤ 100, (iii) De > 100.
(c) Contour plot of α with De and μ∗

p. (d) Variation of α with μ∗
p at different De. Here, we consider μ∗

s = 1,
ρ∗ = 1 and c∗ = 1.

rate of change in δ∗
ve and α at smaller μ∗

p, which stabilizes at a higher μ∗
p (see figures 5a-i,

5b-i and 5c,d). Thus, viscoelastic fluids with De � 1 and τ � tf exhibit energy dissipation
at a faster rate similar to viscous fluids, depicting the relaxation mode. Interestingly, E∗

ac
increases with De for all μ∗

p, because an increase in τ decreases α, leading to an increase in
the incoming fields and energy storage, as mentioned in § 5.1. For moderate elasticity fluids
(1 < De ≤ 100), elastic effects start to dominate over viscous effects, with δ∗

ve > λ∗ve
and α < 1 for De > 3 (see figures 5b-ii and 5c,d). In this range, E∗

ac decreases with μ∗
p,

but the rate of decrease slows down due to enhanced elastic effects, indicating a reduced
contribution of polymer viscosity to viscous dissipation (see (5.2a–c)). As De increases,
the incoming pressure p∗

in rises (figure 4a), and E∗
ac approaches 1 for De = 100, suggesting

a transition to a freezing state of AED (frozen mode) at all μ∗
p.

For high elasticity fluids (De > 100), elastic effects dominate over viscous effects, with
δ∗
ve > λ∗ve and α > 1 (see figures 5b-iii and 5c,d). Here, E∗

ac becomes nearly independent
of μ∗

p and De (see (5.3a–c)), as shown in figure 5(a-iii). Viscoelastic fluids with De �
1 and τ � tf indicate energy storage, representing a freezing state of energy or frozen
mode (Bird et al. 1977; Joseph 2013). The frozen mode shows a state of viscoelastic fluid
where the AED is independent of De and μ∗

p. From figure 5(a-i–a-iii), we conclude that
viscoelastic fluids exposed to ultrasound transition from a relaxing to a freezing state with
increasing De, regardless of μ∗

p. This suggests that viscoelastic fluids have a higher AED
compared with a Newtonian fluid for a fixed total viscosity. The increase in p∗

in with De in
figure 4 supports this finding. At lower De, the effects of μ∗

p (see (5.1a–c)) is predominant,
while at higher De, acoustic energy dissipation is determined by μ∗

s (see (5.3a–c)).
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Figure 6. (a) Numerical variation of dimensionless AED (E∗
ac) and corresponding (b) theoretical variation of

δ∗
ve and λ∗ve with μ∗

s at different De (0, 0.1, 1, 10, 103, 107) for (i) μ∗
p = 1 and (ii) μ∗

p = 103. (c) Variation of
α with μ∗

p at different De. (d) Contour variation of α with μ∗
s and De for (i) μ∗

p = 1 and (ii) μ∗
p = 103. We

consider ρ∗ = 1 and c∗ = 1.

To study the influence of solvent viscosity on AED of low, moderate and high elasticity
fluids, the variation of E∗

ac with μ∗
s at different De and μ∗

p is presented in figure 6(a).
For μ∗

p = 1, figure 6(a-i) shows a decrease in E∗
ac with μ∗

s , which is due to the fact
that an increase in μ∗

s leads to the growth of δ∗
ve, causing enhanced viscous dissipation

and a decrease in p∗
in. Interestingly, for μ∗

p = 1, E∗
ac appears to be independent of De

at high μ∗
s , where variation of α with De is negligible (see figures 6b-i and 6d-i). The

inset in figure 6(a-i) shows E∗
ac increases with De for low μ∗

s , accompanied by a small
variation in α (see figure 6d-i). The variation of E∗

ac with μ∗
s and De for μ∗

p = 103 is
presented in figure 6(a-ii), showing a decrease in E∗

ac with μ∗
s similar to μ∗

p = 1. Notably,
E∗

ac varies significantly with De at smaller μ∗
s , attributed to the variation of δ∗

ve and
λ∗ve (see figure 6b-ii) and the change in α from < 1 to 2π (see figure 6c). At higher
μ∗

s , AED follows the same trend as that at lower μ∗
s with increasing De, but due to a

higher viscous dissipation, the freezing state E∗
ac reduces to a smaller value. In summary,

viscoelastic fluids transits from a relaxing to a freezing state in AED for all μ∗
s . In the

freezing state, E∗
ac decreases with increasing μ∗

s , with the rate of decrease dependent on
μ∗

p and De. Interestingly, increasing μ∗
p (or μ∗) does not always result in a decrease in the

pressure amplitude – at higher De, μ∗
p has negligible effect on pressure field and AED.

This contrasts with the study by Vargas et al. (2022) that reported a continuous decrease
in pressure wave amplitude with viscosity varying as μ−3/5 in narrow microchannels.
The difference likely arises because they considered δ∗

ve only as a function of viscosity
and neglected higher-order viscous effects by assuming 2D/λ0 � 1, which is applicable
to narrow channels. In our study, D ∼ λ0 and therefore we consider the effects of both
viscosity and elasticity in δve and λve (see (2.20) and (2.21)).

In the following section, we discuss how variations in the acoustic energy transition
affect the ARF on a particle in a viscoelastic fluid.
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5.3. Effect of acoustic energy transitions on acoustic radiation force
The ARF can induce particle migration in a fluid exposed to ultrasound (Barnkob et al.
2010; Bruus 2012b). The effects of boundary layer formation over particles suspended in
unbounded fluids of different viscoelastic properties on the ARF are discussed in Doinikov
et al. (2021b). However, most acoustomicrofluidic devices consider microchannels of
dimensions of the order of the acoustic wavelength. Here, apart from boundary layer
formation over the particles, the boundary layer formation on the channel walls and
dissipation in viscoelastic fluid also become significant, influencing ARF and particle
migration, which is missing in the literature. We focus on the dynamics of particle
migration in microchannels and for a � λ0. We consider the influence of viscoelastic
fluid properties on ARF, characterized by AED (§ 5.2) and ACF. In contrast to Doinikov
et al. (2021a,b), we successfully decouple the effects of Eve

ac and Φ on ARF theoretically,
as described in (2.34) in § 2.3. Our approach considers the ABL formation on both the
microchannel walls and the particles, reflected in AED and ACF, respectively. From
(2.34), we find that ARF is directly proportional to AED and ACF. Therefore, the ABL
formation on the channel walls and the consequent variation in AED with μ∗

p, μ∗
p and

De (given in § 5.2) significantly impacts ARF and particle migration. Further, we observe
that increasing the fluid elasticity enhances the AED and consequently the ARF due to
boundary layer formation over the channel walls. However, we do not observe any change
in the sign of the force as compared with Doinikov et al. (2021b), even with the influence
of the channel boundary layers, likely due to the high driving frequency used in our system
(order of MHz).

To further differentiate the effect of viscoelasticity on AED from that on ACF,
we analyse the relative variation in ACF for a particle in fluids with and without
viscoelasticity, as detailed in supplemental material § 4.1. This variation is expressed
as Ω = {Φ(κ∗

P, ρ∗
P, δ∗

ve, λ
∗
ve) − Φ(κ∗

P, ρ∗
P, 0, 0)}/Φ(κ∗

P, ρ∗
P, 0, 0) in percentages. We find

that the values of Ω vary by up to 0.3 %, 3.75 %, 2.6 %, 11.8 %, 27 % and 39 % for
polystyrene (PS), MESC2.10 cells, melamine resin, polymethacrylate, silica and Pyrex
particles, respectively, in viscoelastic fluid with μ∗

s = 1, μ∗
p = 10, De = 200, ρ∗ = 1.005

and c∗ = 1. To study the effect of viscoelastic parameters and AED transition on particle
migration dynamics inside a microchannel, we focused on PS microparticles for which the
ACF in a viscoelastic fluid, compared with that in the base Newtonian fluid, is minimal
(only 0.3 %), as given in supplemental material § 4.1. Therefore, the dimensionless
acoustic radiation force F∗

rad (F∗
rad = Fve

rad/Fbf
rad) follows the same trend as the variation

of E∗
ac with the viscoelastic properties of the fluid, as detailed in supplemental material

§ 4.2.

5.4. Effect of viscoelastic properties on particle migration
A particle suspended in a fluid with a positive ACF experiences ARF towards acoustic
pressure node (Barnkob et al. 2010; Bruus 2012b). Here, through appropriate channel
design and actuation, a pressure node is formed at the channel centre, as shown in
figure 4(a). We investigate how changes in the AED and acoustic force field, resulting from
the viscoelastic parameters μ∗

p, μ
∗
s and De, affect the particle migration dynamics. For the

first time, we conduct experiments to study particle migration dynamics in a viscoelastic
fluids within a microchannel exposed to ultrasound and validate the theoretical expressions
given by (2.40) and (2.42) in § 2.4. We use PS beads suspended in PEO and PVP-based
viscoelastic fluids, offering a positive ACF as obtained from (2.35).
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Figure 7. (a) Experimental images showing the time history of the transverse position of a particle released
from y∗

0 = 0.125 in a PEO 0.4 MDa solution with C = 2.5 %. The particle is marked by a red dashed
circle. Comparison of theoretical and experimental variation of (i) dimensionless particle trajectory (transverse
location vs time of migration) and (ii) dimensionless particle velocity along y∗ in PEO 0.4 MDa at two polymer
concentrations: (b) C = 2.5 %: μ∗ = 75 (μ∗

s = 1, μ∗
p = 74), De = 7.4 × 104 and (c) C = 3.5 %: μ∗ = 203

(μ∗
s = 1, μ∗

p = 202), De = 25.5 × 104. The particle is released from initial locations y∗
0 = 0.125, 0.25 and

0.5. The dimensionless central migration time is represented as T∗.

We present the trajectories and velocities of PS particles during their migration,
with different initial locations (y∗

0 = y0/(W/2)), y∗
0 = 0.125, 0.25 and 0.50, in PEO

0.4 MDa solutions at two different concentrations, C = 2.5 % and 3.5 %, in figure 7.
For PEO 0.4 MDa solution with C = 2.5 %, the fluid properties are: μ∗ = 75 (μ∗

s =
1, μ∗

p = 74), De = 7.4 × 104, ρ∗ = 1.025, c∗ = 1.011, ξ ≈ 1. Similarly, the properties
for C = 3.5 % are: μ∗ = 203 (μ∗

s = 1, μ∗
p = 202), De = 25.5 × 104, ρ∗ = 1.045, c∗ =

1.015, ξ ≈ 1 (Zimm 1956; Ebagninin, Benchabane & Bekkour 2009; Faroughi et al. 2020).
We normalize the instantaneous locations of the particles with the half-width of the
channel, y∗ = y/(W/2). We define an acoustic time scale (tac = Dλ0μ/a2EacΦ) based
on the solvent (DI water) to non-dimensionalize the migration time as t∗ = t/tac. The
local velocity of the particles is normalized using a reference velocity (Vref = (W/2)/tac),
the dimensionless particle velocity V∗

P = VP/Vref . The particle diameter is 15 μm and
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therefore blockage ratio becomes β = a/(W/2) = 0.0375. The transducer is operated at a
driving voltage Upp = 13.2 V, where U∗

pp = Upp/Umin
pp = 1.14.

We initially study the effect of varying ARF across the channel width (S-BAW or
y-direction) on particle migration in a viscoelastic fluid. Since the ARF acts only along
the y direction, particle translation is one-dimensional in the x–y plane, with negligible
drift in the x direction. The time-lapsed experimental images showing migration of a
15 μm PS particle with y∗

0 = 0.125 in PEO 0.4 MDa solution of C = 2.5 % is shown
in figure 7(a). The corresponding time evolution of particle position ( y∗) and particle
migration velocity (V∗

P) are shown in figures 7(b-i) and 7(b-ii), respectively. Under an
acoustic field, the particles migrate from their initial positions to a final equilibrium
position with a varying velocity, and the final equilibrium position is represented by
y∗ = 1 ± 0.05 (the central pressure nodal region is indicated as a band in figure 7a).
The value of V∗

P shows a non-monotonic variation during its migration, where V∗
P is

found to be small closer to the channel centre and wall, but becomes maximum closed to
y∗ ≈ 0.5, shown in figure 7(b-ii). We compare the experimental data with the predictions
from the theoretical expressions given by (2.40) and (2.42) in § 2.4, which shows a close
agreement, with VP ∝ sin (2kyy). The maximum velocity seen at y∗ ≈ 0.5 is due to the
higher acoustic radiation force, which becomes zero at the walls and the channel centre,
here, Frad ∝ Eve

ac sin (2kyy), as given by (2.40).
To further investigate the effect of initial locations of a particle on acoustic migration

characteristics in viscoelastic fluids, we consider particles at y∗
0 = 0.125, 0.25 and 0.5. For

PEO fluid with C = 2.5 %, μ∗ = 75 and De = 7.4 × 104, the particle trajectories change
with the initial location and the migration time to reach the centre of the channel decreases
with increase in the y∗

0, illustrated in figure 7(b-i). It is interesting to observe that the
migration velocities across y∗ are found to follow a fixed curve, irrespective of the values
of y∗

0, illustrated in figure 7(b-ii), agreeing with our theoretical prediction (2.42).
Viscoelastic fluids show a coupled variation of viscous and elastic properties with

increasing polymer concentration (Ebagninin et al. 2009; Joseph 2013). We study the
coupled variation of μ∗ (or μ∗

p, where μ∗
s = 1) and De on acoustic particle migration

in figures 7(b-i,ii) and 7(c-i,ii). At a fixed y∗
0, a coupled increase in both μ∗ and De

slows down particle migration due to the combined increase in drag force and decrease
in acoustic energy density, shown in figure 7(c-i,ii). The value of V∗

P is found to be smaller
at a higher μ∗ and De. However, the effect of initial location remains same as figure 7(b-ii).
A quantitative comparison between theoretical predictions and experimental data shows a
close agreement in terms of the particle trajectory and velocity variations within 10 %.

Now we discuss the individual effects of μ∗ and De and the corresponding AED
transition on acoustic particle migration, theoretically and experimentally, as shown in
figure 8. We consider PVP 0.36 MDa (C = 0.1 %, μ∗ = 1.9, μ∗

s = 1, μ∗
p = 0.9, De =

91), PEO 0.4 MDa (C = 0.2 %, μ∗ = 1.9, μ∗
s = 1, μ∗

p = 0.9, De = 178) and Newtonian
fluid (DI water +0.3 % Glycerol, μ∗ = 1.9, De = 0) all having a fixed ρ∗(ρ∗ ≈ 1.007)

and c∗(c∗ ≈ 1.003), keeping μ∗ fixed and only varying De, as shown in figure 8.
Here, we find that an increase in the elasticity or De of the fluid enhances the particle
migration, shown by a reduced central migration time (T∗ = t∗|y∗≈1) and a higher V∗

P
in figures 8(a) and 8(b), respectively. Therefore, as compared with the Newtonian fluid
(De = 0), particles migrate faster in PEO 0.4MDa fluid with De = 178. This is mainly
because of the acoustic energy transition with De, as discussed in § 5.2. Due to the
viscous nature, the Newtonian fluid exhibits higher viscous dissipation and remains in the
relaxation mode, giving rise to a low AED in the fluid. However, in high elasticity fluids,
the elastic nature helps to reduce the viscous dissipation and store the energy, offering
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Figure 8. Comparison of theoretical and experimental variation of dimensionless (a) trajectory (y∗ vs t∗) and
(b) velocity (V∗

P vs y∗) of particle in PEO 0.4 MDa, PVP 0.36 MDa and Newtonian (DI water+0.3 % glycerol)
fluid of constant viscosity μ∗ = 1.9. The initial location of particle is considered as y∗

0 = 0.125. Each data
point corresponds to a value averaged over repeated experiments.

high AED and consequently higher ARF. Here, we observe a strong agreement between
our experimental data and the predictions from our theory and simulations, all of which
suggest that the AED transition is attributed to the fluid elasticity giving rise to a faster
particle migration in viscoelastic fluids than in Newtonian fluid.

Next, we discuss the effect of fluid elasticity and the corresponding AED transition on
the particle migration dynamics at different μ∗

p and μ∗
s , presented in figure 9. We express

the theoretical variation of particle migration time in terms of dimensionless central
migration time T∗, which is defined as the ratio of the time taken by a particle to reach
the channel centre (nodal plane) (tc = t|y∗≈1) to the acoustic time scale (tac), T∗ = tc/tac.
We illustrate the variation of T∗ with μ∗

p in figure 9(a) for three different scenarios:
(a) low elasticity fluids (De ≤ 1), (b) moderate elasticity fluids (1 < De ≤ 100) and
(c) high elasticity fluids (De ≥ 200), with μ∗

s = 1, ρ∗ = 1 and c∗ = 1.
For low elasticity fluids (De ≤ 1), viscous effects dominate and fluids are in the

relaxation state. Therefore, an increase in μ∗
p amplifies the viscous dissipation, and

consequently the AED and ARF decrease, as shown in figure 5(a-i). Moreover, with
increase in μ∗

p drag forces increases. The combined effects of these variations gives
rise to a significant increase in T∗ with μ∗

p in figure 9(a-i). However, an increase in
De leads to an increase in the AED in the fluid, which causes a decrease in the T∗ as
well as the rate of increase in T∗ with μ∗

p. The influence of De on T∗ becomes more
pronounced at a higher μ∗

p. For moderate elasticity fluids (1 < De ≤ 100), T∗ increases
with μ∗

p at a moderate rate in figure 9(a-ii). Here, the elastic effects start dominating
viscous effects, fluid starts to transition from the relaxation mode to the frozen mode,
as shown in figures 4(e), 5(a-ii) and 5(b-ii). The increased E∗

ac in moderate elasticity fluids
compared with low elasticity fluids causes a higher ARF, which reduces T∗ as well as rate
of increase in T∗ with μ∗

p in figure 9(a-ii). A further increase in De leads to an increase
in AED, causing a further decrease in T∗ as well as the rate of increase in T∗ with μ∗

p,
as illustrated in figure 9(a-ii). For high elasticity fluids (De > 100), T∗ slowly increases
with μ∗

p and is nearly independent of De, as shown in figure 9(a-iii). Here, elastic effects
suppress viscous effects, and fluid attains the frozen state, as shown in figures 4(e), 5(a-iii)
and 5(b-iii). Therefore, E∗

ac and thus the ARF attain their maximum values and becomes
independent of De and μ∗

p. This phenomenon reduces T∗ and rate of increase in T∗ with μ∗
p

in figure 9(a-iii). In summary, the higher elasticity fluids show shorter central migration
time as compared with low elasticity fluids in all range of μ∗

p due to transition of AED
from a relaxation mode to a frozen mode.

1000 A75-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

96
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.965


T. Sujith, L. Malik and A.K. Sen

81 De = 0

De = 0

De = 0.1

De = 1

De = 10

De = 103

De = 107

De DeDe = 0.4

De = 0.7

De = 1.0

De = 1.2

De = 3.6

De = 6.0

De = 100

De = 200

De = 103

De = 104

De = 107

De = 5.7 × 104

45

30

15

45

30

15

54

27

0

81
27 50

1.0 1.2 1.4 1.6 1.8

40

30

20

10

0

0 0.02 0.04 0.06 0.08

Exp. – β

Theor. – β

Exp. – U∗
pp

Exp. Fit – U∗
pp

18

9

0

54

27

0

T ∗

T ∗

T ∗ ∝ U ∗
pp

–2

T ∗ ∝ β
–2

(×102)

(i) (ii) (iii)

(i) (ii)

(×102) (×102)

7 14 21

(×102)μ∗
p

1 7 14 21

(×102)

(×102) (×103)

μ∗
s

1 7 14 21

(×102)μ∗
s

μ∗
s = 1

μ∗
p = 1

μ∗
p = 103 μ∗

 = 45.1

μ∗
s = 1 μ∗

s = 1

0 7 14 21

(×102)μ∗
p

0 7 14 21

(×102)μ∗
p

U∗
pp

β

(b)

(a)

(c)

Figure 9. Theoretical variation of (a) dimensionless particle central migration time (T∗) with μ∗
p at different

De: (i) De ≤ 1, (ii) 1 < De ≤ 100, (iii) De > 100 for μ∗
s = 1, and (b) T∗ with μ∗

s at different De for (i) μ∗
p = 1

and (ii) μ∗
p = 103. Here, β = 0.0375, U∗

pp = 1.14, ρ∗
P = 1.05 and y∗

0 = 0.125. (c) Experimental variation of T∗
with blockage ratio (β, at U∗

pp = 1.14) and dimensionless peak-to-peak voltage (U∗
pp, at β = 0.0375) for PEO

1 MDa solution with C = 1.05 % (μ∗ = 45.1, De = 5.7 × 104), where y∗
0 = 0.125. The theoretical variation

of T∗ with β from (2.40) is shown by a solid line, where T∗ ∝ β−2. For T∗ with U∗
pp, the experimental fit

becomes T∗ ∝ U∗−2
pp .

We depict the variation of T∗ with μ∗
s at different De and μ∗

p in figures 9(b-i) and
9(b-ii). For μ∗

p = 1, T∗ consistently increases with μ∗
s and is independent of De, as shown

in figure 9(b-i). This can be attributed to the viscous dissipation and consequent decrease
in E∗

ac with μ∗
s (refer to figure 6a-i). For μ∗

p = 103, T∗ increases with μ∗
s but decreases

with De for smaller De and becomes independent of De at higher De(De = 103 and 107),
as illustrated in figure 9(b-ii). Here, the fluid response transition from the relaxation mode
to the frozen mode, causing a decrease in T∗ with increasing De for low elasticity and
moderate elasticity fluids. However, in high elasticity fluids, the E∗

ac attains a maximum
value and then becomes independent of De, as similar to figure 6(a). In summary, an
augmentation in the solvent viscosity of a viscoelastic fluid decelerates particle migration
and concurrently suppresses elastic effects, particularly at lower polymer viscosity range.

In the above analysis, we consider a fixed particle size or blockage ratio (β =
a/(W/2) = 0.0375) and dimensionless driving voltage U∗

pp(U
∗
pp = Upp/Umin

pp = 1.14),
which indicate the acoustic power input. We perform theoretical and experimental
investigations on the effects of β and U∗

pp on particle migration in a viscoelastic fluid
in figure 9(c). Here, β is varied experimentally by varying the particle size between 5 and
25 μm. The variation of T∗ with β and U∗

pp is depicted in figure 9(c) for PEO 1 MDa
solution with C = 1.05 %, with μ∗ = 45.1, μ∗

p = 44.1, μ∗
s = 1, De = 5.7 × 104, ρ∗ =

1.017 and c∗ = 1.005. We find that the central migration time decreases with an increase
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in the blockage ratio or particle size. This decrease is primarily attributed to the rise in
the ARF, evident from (2.42), where T∗ ∝ β−2, similar to the Newtonian case (Barnkob
et al. 2010). We find that particles migrate more rapidly towards the node at higher
powers and lower μ∗ owing to the increase in AED and ARF. A power-law fit to the
experimental data shows T∗ ∝ U∗−2

pp , agreeing with the Newtonian case (Barnkob et al.
2010). The dependency of T∗ with β and U∗

pp is also studied with two other PEO
1 MDa solutions: C = 0.74 % with μ∗ = 21.3, De = 3.7 × 104; and C = 1.05 % with
μ∗ = 45.1, De = 5.7 × 104; C = 1.4 % with μ∗ = 69.5, De = 1.1 × 105, Here, the rate
of change of T∗ increases/decreases depending upon μ∗ and De of the fluid, as presented
in supplemental material § 4.3.

In summary, particle migration in viscoelastic fluids within a microchannel is
significantly influenced by the fluid properties and acoustic boundary layer formation.
From a biological standpoint, fluids such as blood, plasma, mucus, saliva, sputum, synovial
fluid, protein solution and hydrogel have relaxation times ranging from 10−5 to 10−2 s
(Thurston 1972; Rainer & Ribitsch 1985; Stokes & Davies 2007; Pan et al. 2009; Li et al.
2016; Chaudhuri et al. 2020), thus categorized as moderate and high elasticity fluids. Our
study shows that changes in fluid elasticity or De causes the AED transition from the
dissipation state to the storage state. This transition increases the ARF and accelerates
particle migration. At a fixed input power, viscoelastic fluid in a microchannel acts as
an energy dissipation device at low De (low elasticity) and as an energy storage device
at higher De (high elasticity). Therefore, our study suggests that the Newtonian fluid
assumption may not be valid for bio-fluids under all operating conditions. Moreover, by
carefully controlling De, it is possible to manipulate the particle migration dynamics, at
a fixed power. The outcome of the present study may be crucial for designing effective
microfluidic systems for bio-fluids.

6. Conclusions

We investigated the behaviour of viscoelastic fluids exposed to ultrasound fields in a
microchannel. We studied the effects of viscoelastic parameters and the formation of ABLs
on the channel walls, on AED and consequently the particle migration dynamics. Our
findings show that, with increasing fluid elasticity or Deborah number (De), viscoelastic
fluids transition from an energy dissipation state (relaxation mode) to an energy storage
state (frozen mode). For low elasticity fluids (De ≤ 1), viscous effects dominate, leading to
rapid energy dissipation. For moderate elastic fluids (1 < De ≤ 100), elastic effects start to
dominate, and the fluid begins to store acoustic energy. In high elasticity fluids (De > 100),
elastic effects become predominant, leading to higher AED that are nearly independent of
polymer viscosity and De. In low elasticity fluids, polymer viscosity significantly reduces
the AED, but its effect diminishes with increasing elasticity. Solvent viscosity reduces
the AED in all cases but is more dominant in high elasticity fluids. Thus, a viscoelastic
fluid-filled microchannel acts as an energy dissipation device at low De and as an energy
storage device at high De. By controlling the viscoelastic and acoustic parameters, fluid
viscoelasticity can accelerate or decelerate a particle at a constant power input. Our
experiments and theoretical analysis revealed that particle migration in viscoelastic fluids
is faster than that in Newtonian fluids of comparable viscosity due to the AED transition
from the relaxation to the frozen mode. In all elasticity regimes, the central migration
time (T∗) increases with polymer and solvent viscosities but decreases with De. Higher
solvent viscosity decelerates particle migration and suppresses elastic effects, especially
at lower polymer viscosities. Considering these findings, and recognizing that bio-fluids
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typically exhibit moderate to high elasticity, it becomes evident that assuming a Newtonian
behaviour for such fluids may not always be valid in acoustofluidics. By adjusting the De, it
will be possible to effectively control particle migration dynamics in microfluidic systems
for bio-fluid applications.

Supplementary material. Supplementary material are available at https://doi.org/10.1017/jfm.2024.965.
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