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Vortex ring breakdown dominating the
entrainment of a synthetic jet
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The understanding of the entrainment mechanism of synthetic jets can help optimise the
synthetic jet actuators in engineering applications. It is generally believed that vortex
rings or strong velocity fluctuations in the near field of the synthetic jet are responsible
for its enhanced entrainment. However, in recent years, it has been found that the
enhanced entrainment of the synthetic jet may be caused by the instability or the vortex
ring breakdown in the transition region. To shed new light on this issue, synthetic jets
with different Reynolds numbers and dimensionless stroke lengths are investigated with
time-resolved two-dimensional particle image velocimetry. Based on the analyses of
velocity triple-decomposition, Fourier mode decomposition and phase-averaged λciD/U0
field, the streamwise positions of the vortex ring breakdown are determined for the
synthetic jets, and the entrainment coefficient can be divided into three components, i.e.
the coherent turbulent kinetic energy production, the random turbulent kinetic energy
production and the shape of the velocity profile. It is found that the entrainment coefficient
is dominated by the component related to the random turbulent kinetic energy production,
and reaches its peak value at the position of vortex ring breakdown. The results obtained in
different cases show a strong correlation between vortex ring breakdown and entrainment
enhancement. From the perspective of instantaneous snapshot, the mechanism of vortex
ring breakdown enhanced entrainment is revealed, that is, vortex ring breakdown enhanced
the small-scale vortex near the turbulent/non-turbulent interface, resulting in an increase
of enstrophy production, and thus enhanced local entrainment.

Key words: jets, turbulent mixing, mixing enhancement

1. Introduction

The synthetic jet (James, Jacobs & Glezer 1996; Smith & Glezer 1998) is a new type
of active flow control technique developed over the past two decades. Due to their
advantages of no external air source, simple actuator structure and enhanced entrainment
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characteristics, synthetic jets have been applied in flow control fields such as fluid mixing
(Zhang et al. 2021a), suppression of flow separation (Feng & Wang 2012; Zong, van Pelt
& Kotsonis 2018) and enhancement of heat transfer (Krishan, Aw & Sharma 2019; Xu
et al. 2019). Therefore, revealing the entrainment mechanism of synthetic jets can help to
optimise the design and arrangement of synthetic jet actuators in engineering applications.

The behaviour of synthetic jets has been extensively studied through experimental and
numerical methods, and the insights into the entrainment mechanism of synthetic jets
have been proposed. Mallinson, Reizes & Hong (2001) studied the flow produced by a
synthetic jet actuator with a circular orifice. It was found that the synthetic jet establishes
self-similarity much more rapidly than the continuous jet, primarily because of turbulent
dissipation. They suggested that the ‘flow oscillations introduced by the synthetic jet’
cause a greater entrainment in contrast to the case of the continuous jet. Cater & Soria
(2002) conducted experimental studies on round synthetic jets and continuous jets. They
found that the synthetic jet has a cross-stream velocity distribution similar to that of
the continuous jet, but has a larger spreading rate and a more rapid centreline velocity
decay. They believed that the ‘large-scale structure’ is responsible for a peak in the radial
entrainment in the near field of the synthetic jet, and the difference of near-field flow
structure between the two jets is the reason for the difference of streamwise velocity
gradients, spreading rate and centreline velocity decay. Similar results were found in the
experimental study of two-dimensional synthetic jets and continuous jets with the same
Reynolds number by Smith & Swift (2003). The results indicated that the synthetic jet
has a larger growth rate of volumetric flow in the near field, which is attributed to the
fact that the ‘rollup of the synthetic jet vortex pair’ entrains much more fluid. Krishnan
& Mohseni (2009) modelled the synthetic jet using both the Schlichting solution to
boundary-layer equations in cylindrical polar coordinates and the Landau–Squire solution
to the Navier–Stokes equations in polar coordinates, and found that the eddy viscosity
of the synthetic jet is larger than an equivalent continuous jet. They attributed the
enhanced eddy viscosity to the additional mixing caused by the initial introduction of the
periodic vortex structures and their subsequent breakdown and transition to turbulence. In
summary, these earlier studies attributed the enhanced entrainment of synthetic jets to the
effect of vortex rings or strong velocity fluctuations.

With the development of experimental techniques and computational power,
turbulent/non-turbulent interfaces (TNTIs) in jets (Westerweel et al. 2005, 2009; Mistry
et al. 2016; Breda & Buxton 2019; Mistry, Philip & Dawson 2019), wakes (Kankanwadi
& Buxton 2020, 2022; Chen & Buxton 2023), turbulent boundary layers (Chauhan
et al. 2014; Borrell & Jimenez 2016; Long, Wang & Pan 2022; Zhang, Watanabe &
Nagata 2023), mixing layers (Jahanbakhshi & Madnia 2016, 2018; Balamurugan et al.
2020) and other flows (Zhang, Rival & Wu 2021b; Li, Long & Wang 2022) have been
studied to understand the turbulent entrainment process. The TNTI is a very thin fluid
layer that separates turbulent and non-turbulent flows (da Silva et al. 2014). The TNTI
contains a viscous superlayer dominated by viscous diffusion and a turbulent sublayer
dominated by enstrophy production. The boundary between the viscous superlayer and the
non-turbulent region is the irrotational boundary. From the perspective of an instantaneous
snapshot, entrainment is the process by which irrotational fluid from the environment
enters the turbulent region through the TNTI, visually divided into two parts: nibbling
and engulfment (Jahanbakhshi & Madnia 2016; Mistry et al. 2016). Nibbling refers to the
vorticity propagation process along the TNTI and is related to the small-scale structure
near the TNTI. The small-scale structure near the TNTI influences the entrainment process
by modifying the strain field near the TNTI (Mistry et al. 2019) and the production of the
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TNTI area (Neamtu-Halic et al. 2020). Engulfment refers to the process where irrotational
fluid from the environment is drawn into the turbulent region by the inviscid motion
associated with large-scale structures. Despite the presence of large-scale vortex rings
in the near field of the synthetic jet, it has been confirmed that the engulfment process
is not the dominant entrainment process (Xu, Long & Wang 2023). The contribution
of engulfment to the entrainment process in the synthetic jet does not exceed 4 %,
consistent with previous studies on continuous jets (Mathew & Basu 2002; Westerweel
et al. 2005, 2009; Taveira et al. 2013).

Therefore, it is necessary to reconsider what causes the enhanced entrainment in
synthetic jets. In recent years, it has been observed that enhanced entrainment of synthetic
jets occurs in the transition region between the near field dominated by vortex rings and
the far field where the flow is fully developed (Xia & Mohseni 2018; Xu et al. 2023).
Xia & Mohseni (2018) suggested that the enhanced spreading rate and the centreline
velocity decay in the transition region are caused by the enhanced mode of mixing related
to the forced instability of the pulsed large vortices. Xu et al. (2023) suggested that the
‘breakdown of the vortex ring’, instead of the vortex ring, enhances the entrainment in
the synthetic jet based on the experimental data of a single case. However, to the best of
our knowledge, studies on the origin of enhanced entrainment in the transition region of
synthetic jets are still insufficient, and the mechanism remains unclear.

This paper aims to achieve quantitative determination of the position of vortex ring
breakdown and the peak position of the entrainment coefficient while simultaneously
establishing their correlation. Additionally, the mechanism of vortex ring breakdown
leading to entrainment enhancement is revealed from the perspective of an instantaneous
snapshot of the vortex evolution near the TNTI.

2. Experimental methods

2.1. Apparatus
A brief description of the synthetic jet actuator is provided here, and detailed information
about the device can be found in previous work (Xu et al. 2023). In the present experiment,
the synthetic jet is produced by an actuator based on a piezoelectric ceramic diaphragm.
A sinusoidal signal is generated by the Tektronix AFG1062 signal generator, amplified
by the Aigtek ATA-214 voltage amplifier and then applied to the piezoelectric ceramic
diaphragm to generate a synthetic jet at the orifice with diameter D = 5 mm. The flow at
the orifice of the synthetic jet actuator is measured by the HangHua CTA-02A hot-wire
anemometer. The uncertainty of the hot-wire measurement is approximately 0.2 %. The
hot-wire probe measures the flow velocity at the orifice at a sampling frequency of
40 kHz. A sinusoidal function is used to fit the velocity of the blowing period to obtain
the maximum velocity Umax during the excitation period. The frequency and voltage
characteristics of the synthetic jet actuator are shown in figure 1. According to Smith &
Swift (2003), the time-averaged blowing velocity U0 at the synthetic jet actuator orifice
can be calculated from

U0 = 1
T

∫ T/2

0
u0(t) dt, (2.1)

where the velocity u0(t) at the synthetic jet actuator orifice can be described by the
sinusoidal function u0(t) = Umax sin(2πfdt); T = 1/fd is the excitation period. Reynolds
number and dimensionless stroke length are two important parameters to characterise
synthetic jets (Smith & Swift 2003; Shuster & Smith 2007). The jet Reynolds number
Rej based on the time-averaged blowing velocity U0 and the orifice diameter D is
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Figure 1. (a) Frequency characteristics of the synthetic jet actuator at Vpp = 100 V. (b) Voltage characteristics
of the synthetic jet actuator at fd = 500 Hz. Here fd and Vpp are the driving frequency and driving voltage of
the actuator, respectively.

defined as

Rej = U0D
ν

, (2.2)

where ν is the kinematic viscosity. The stroke length L0 is normalised by the orifice
diameter D and the dimensionless stroke length can be denoted by

L0/D = U0T
D

. (2.3)

In the present experiment, the driving frequency fd of the piezoelectric ceramic diaphragm
is set at the resonance frequency of 500 Hz, and the time-averaged blowing velocity U0
at the orifice is adjusted by changing the driving voltage Vpp. Therefore, both the jet
Reynolds number Rej and the dimensionless stroke length L0/D are proportional to U0.
The jet Reynolds numbers for the three synthetic jets studied in the present experiment
are 1050, 3150 and 4200, respectively. The corresponding dimensionless stroke lengths
are 1.27, 3.82 and 5.09, respectively, which conform to the formation criteria L0/D > 0.5
for axisymmetric synthetic jets (Holman et al. 2005). Hereafter, the three synthetic jets
mentioned above will be referred to as Case 1, Case 2 and Case 3, respectively.

2.2. Particle image velocimetry measurement
Time-resolved two-dimensional particle image velocimetry (TR-2DPIV) experiments are
conducted in a container of size 0.5 m × 0.5 m × 1 m. The coordinate system is defined
in figure 2, and the centre of the orifice is taken as the origin. A laser sheet produced by
the Beamtech Vlite-Hi-527 Nd:YAG dual-cavity laser illuminates the x–y plane through
the jet centreline. The particle images are captured by the Photron Nova R2 high-speed
camera with a Nikon 50 mm lens and processed by the multipass iterative Lucas–Kanade
algorithm (Champagnat et al. 2011; Pan et al. 2015) to obtain the velocity field. For each
jet, the experiments are conducted in three fields of view (FOV), as detailed in table 1. The
uncertainty of particle displacement is approximately 0.1 pixels. The relative uncertainties
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Figure 2. Schematic of the (i) container, (ii) laser head connected to a light arm, (iii) high-speed camera and
(iv) synthetic jet actuator.

Experiment details FOV1 (yellow) FOV2 (red) FOV3 (blue)

Range of FOV 0 ≤ x/D ≤ 20 0 ≤ x/D ≤ 26 0 ≤ x/D ≤ 52
Image size 1024 × 672 1792 × 1408 2048 × 1472
Interrogation window 32 × 32 32 × 32 32 × 32
Overlap 75 % 75 % 75 %
Sampling frequency (Hz) 3000 1000 500
Number of realisations 30 000 7500 7500

Table 1. Particle image velocimetry experiment details.

of flow velocity are no more than 1 % for the three FOV, calculated by the flow velocity
uncertainty relative to the maximum velocity in the flow.

3. Results and discussion

3.1. Velocity triple-decomposition
The velocity u in the flow field can usually be decomposed into a time-averaged velocity ū
and a fluctuation velocity u′. For periodic or quasiperiodic flows, the fluctuation velocity u′
can be further decomposed into a periodic fluctuation velocity ũ and a random fluctuation
velocity û, i.e. velocity triple-decomposition (Reynolds & Hussain 1972; Feng &
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Figure 3. (a) Limit cycle formed by time coefficients a1 and a2 that correspond to the first and second modes
of the POD, respectively. (b) Variations of the turbulent kinetic energy TKE, coherent turbulent kinetic energy
T̃KE and random turbulent kinetic energy T̂KE, normalised by the local mean jet centreline velocity ūcl.

Wang 2010)
u = ū + ũ + û. (3.1)

The periodic fluctuation velocity ũ and the random fluctuation velocity û are, respectively,
defined as

ũ = 〈u〉phase − ū, (3.2)

û = u − 〈u〉phase, (3.3)

where 〈·〉phase represents phase average. The periodic fluctuation velocity ũ reflects the
contribution of large-scale coherent structures, while the random fluctuation velocity û
reflects the influence of small-scale turbulent structures.

The classical Reynolds stress can be obtained based on the total fluctuation velocity u′.
Similarly, the coherent Reynolds stress and the random Reynolds stress can be obtained
based on the periodic fluctuation velocity ũ and the random fluctuation velocity û,
respectively. The three mentioned above have the following relationship (Feng & Wang
2010):

s′q′ = s̃q̃ + ŝq̂, (3.4)

where s and q represent arbitrary combinations of the velocity components u and v. In
addition, the turbulent kinetic energy TKE can be decomposed into coherent turbulent
kinetic energy T̃KE and random turbulent kinetic energy T̂KE, and there is a relation

TKE = T̃KE + T̂KE = 1
2 ũiũi + 1

2 ûiûi. (3.5)

The phase information of the periodic or quasiperiodic flows can be extracted from the
proper orthogonal decomposition (POD) time coefficient. Details of this method have been
provided in previous work (Pan, Wang & Wang 2013; Xu et al. 2023). The phase angle θ

of the snapshot can be obtained from the limit cycle formed by the time coefficients a1
and a2 corresponding to the first and second modes of the POD, respectively, as shown in
figure 3(a). The mean value of the snapshots with θ ± 5◦ is taken as the phase average,
and the velocity triple-decomposition is applied to the flow field. It has been checked
that the variation of the bin width for θ from θ ± 1◦ to θ ± 10◦ does not influence the
conclusions in this paper. The coherent turbulent kinetic energy T̃KE and random turbulent
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kinetic energy T̂KE along the jet centreline are shown in figure 3(b). The coherent turbulent
kinetic energy T̃KE associated with the large-scale vortex ring dominates the region near
the orifice, and gradually decreases to zero as the vortex ring breaks down downstream.
In contrast, the random turbulent kinetic energy T̂KE gradually increases, reaches a peak
value when the coherent turbulent kinetic energy T̃KE is dissipated, and then gradually
decreases to a constant value in the far field. This indicates the process of vortex ring
breakdown and the transition of turbulent kinetic energy from large-scale to small-scale.

3.2. Fourier mode decomposition
To determine the dominant region of the vortex ring, Fourier mode decomposition (FMD)
(Ma et al. 2015) is applied to the synthetic jet flow field. This method decomposes the flow
field data containing multifrequency information into a series of modes according to the
characteristic frequency, with each mode corresponding to a specific frequency coherent
structure. The following is a brief introduction to FMD.

In the experiment, a time discrete signal fn = f (n�t) at a certain point in space is
obtained, where 0 ≤ n ≤ N, �t = 1/fs. Here N is the sampling number; fs is the sampling
frequency. The discrete Fourier transform of the signal is as follows:

fn =
N−1∑
k=0

ckei(2πk/N)n, (3.6)

where

ck = 1
N

N−1∑
n=0

fne−i(2πk/N)n. (3.7)

A series of two-dimensional slice data for snapshots are arranged in the temporal
dimension to form a three-dimensional matrix F n. Applying the Fourier transform to each
grid point in space extends the single-point Fourier transform to the entire flow field,
yielding a matrix

ck = 1
N

N−1∑
n=0

F ne−i(2πk/N)n (3.8)

that contains the spectral information of the entire flow field. Matrix ck can also be written
as

ck = 1
2 Ak e−iϕk = 1

2 Ak(cos ϕk − i sin ϕk), (3.9)

where Ak = 2|ck |, ϕk = − arg ck . Ak is referred to as the global amplitude spectrum, ϕk
is referred to as the global phase spectrum and ck is referred to as the dynamic mode or

the Fourier mode. The Frobenius norm of Ak , namely ‖Ak‖ =
√∑

a2
ij (aij is the element

of the matrix Ak ), is defined as the global power spectrum.
The global power spectra based on the streamwise fluctuation velocity u′ are shown

in figure 4. The global power spectra for the three cases have clear peaks at f /fd = 1
and f /fd = 2, corresponding to the driving frequency of the actuator and its harmonics.
It indicates that the vortex ring generated by the actuator dominates the near field of
the synthetic jet. The periodic evolution of the vortices is accompanied by the periodic
variations of the velocities, and the FMD method can trace or map the vortex behaviours
with the specified characteristic frequency (Ma et al. 2015). Figure 5 presents the
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Figure 4. Global power spectra based on the streamwise fluctuation velocity u′ for (a) Case 1, (b) Case 2 and
(c) Case 3. The red circle marks the peak position.
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Figure 5. Amplitude of the Fourier mode for (a,d) Case 1, (b,e) Case 2 and (c, f ) Case 3 at the characteristic
frequency of f /fd = 1, based on the (a–c) streamwise fluctuation velocity u′ and (d– f ) the radial fluctuation
velocity v′.

amplitude of the Fourier mode at the characteristic frequency of f /fd = 1. The region with
high-amplitude represents the region dominated by the vortex ring. The low-amplitude
regions on both sides of the centreline in figure 5(a–c) can be considered as the trajectory
of the vortex core, since the streamwise fluctuation velocity in this region is less affected
by the vortex. The presence of some low-amplitude regions near the centreline of the near
field in figure 5(a) may be due to the short stroke in this case, causing these locations
to be affected by both the formed vortex ring and the suction cycle, producing a state
similar to the node of the standing wave. Similarly, the low-amplitude region on the
centreline in figure 5(d– f ) can be considered as the centre of the vortex ring, and the
radial fluctuation velocity in this region is less affected by the vortex. As the flow develops,
the vortex rings break down, accompanied by the disappearance of the high-amplitude
region. To determine the vortex ring breakdown position, the amplitudes of the Fourier
mode based on the radial fluctuation velocity v′ at the characteristic frequency of f /fd = 1
along the lines around the edge of the orifice (i.e. y/D = 0.5) are plotted in figure 6. The
approximate linear decreasing parts of the curve are fitted linearly, and the position where
the curve decline rate suddenly becomes smaller is taken as the position where the vortex
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Figure 7. Phase-averaged λciD/U0 field of the synthetic jet over a period: (a–d) Case 1; (e-h) Case 2; (i–l)
Case 3. Here λci is normalised by the orifice diameter D and the time-averaged blowing velocity U0. The sign
of λci is identical to the local vorticity.

rings break down. It can be determined that the synthetic jet vortex rings break down at
approximately x/D = 4.9, 10.1 and 14.4 for Case 1, Case 2 and Case 3, respectively.

The imaginary part of the complex eigenvalue pair of the velocity gradient tensor,
denoted as λci, can be referred to as the local swirling strength of the vortex (Zhou et al.
1999), and is used to identify vortices for visually examining the vortex ring breakdown.
The phase-averaged λciD/U0 field is shown in figure 7, with the same contour levels
selected in the three cases to plot the vortex evolution. It can be found that the vortex
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Term Equation Term Equation

Mean volume flux Q = 2
∫ r0

0
ūr dr Characteristic jet velocity um = M

Q

Mean momentum flux M = 2
∫ r0

0
ū2r dr Mean turbulence production δm = 4

u3
mrm

∫ r0

0
u′v′ ∂ ū

∂r
r dr

Characteristic jet width rm = Q
M1/2 Mean energy γm = 2

u3
mr2

m

∫ r0

0
ū3r dr

Table 2. The terms in (3.10) (Breda & Buxton 2018).

rings maintain a longer streamwise distance as the dimensionless stroke length increases,
and their breakdown positions are consistent with those obtained by FMD.

3.3. Entrainment coefficient
The entrainment coefficient is used to measure the entrainment capacity of jets and plumes,
and a detailed description can be found in previous studies (van Reeuwijk & Craske 2015;
Breda & Buxton 2018; Xu et al. 2023). The entrainment coefficient in a pure jet can be
calculated using the following equation:

α = − δm

2γm
+ Q

2M1/2
∂

∂x
(ln γm) = α1 + α2. (3.10)

The terms in (3.10) are given in table 2. The integral boundary r0 is selected at the radial
position of ū = 0.02ūcl, which is the smallest possible threshold in the present study.
A smaller threshold will cause the integral boundary to be outside the FOV or affected
by experimental noise at the edge, making it impossible to calculate the entrainment
coefficient. It has been checked that the choice of integral boundary r0 from ū = 0.02ūcl
to ū = 0.1ūcl has little effect on the entrainment coefficient, and does not influence the
conclusions in this paper. In (3.10), the first term α1 is related to the production of turbulent
kinetic energy, and the second term α2 is related to the shape of the velocity profile.
According to the velocity triple-decomposition, the Reynolds stress term in α1 can be
further decomposed into the coherent Reynolds stress term and the random Reynolds stress
term. Correspondingly, α1 is decomposed into α̃1 and α̂1, representing the contributions of
the coherent turbulent kinetic energy production and the random turbulent kinetic energy
production to the entrainment coefficient, respectively.

The variations of the entrainment coefficient α and its components for the three cases
are shown in figure 8. The entrainment coefficient shows the same trend for all three
cases, increasing to a peak value and then decreasing to a constant value in the far field.
The entrainment coefficient in the far field is close to the value of 0.057–0.109 found
in previous studies for continuous jets (van Reeuwijk & Craske 2015). The entrainment
coefficient component α2 is virtually zero, and the components α̃1 and α̂1 dominate
the variation of the entrainment coefficient. Similarly to the variations of the coherent
turbulent kinetic energy and random turbulent kinetic energy along the jet centreline, α̃1
gradually decreases to zero, while α̂1 reaches a peak at the vortex ring breakdown position
and completely dominates the entrainment coefficient. Here α̃1 decreases to zero before
the vortex ring breakdown, especially for Case 3, but it is expected that it should decrease
to zero at the vortex ring breakdown position. This may be due to the phase identification
error caused by the prevalence of multiscale structures in the flow field at large Reynolds
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Figure 8. Variations of the entrainment coefficient α and its components for Case 1, Case 2 and Case 3.
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Figure 9. (a) Random turbulent kinetic energy peak positions (xpeakT̂KE) versus entrainment coefficient
peak positions (xpeak α). (b) Vortex ring breakdown positions based on the amplitudes of the Fourier mode
(xvortex breakdown) versus entrainment coefficient peak positions (xpeak α). The black dashed line has a slope
of 1.

number (Pan et al. 2013), which leads to part of the coherent component being classified
as the random component. By identifying the maximum points with zero growth rate
of entrainment coefficient, the peak positions of entrainment coefficient are determined,
which are located at x/D = 4.9, 9.1 and 13.9 for Case 1, Case 2 and Case 3, respectively.
The peak positions of the entrainment coefficient for the synthetic jets in the three cases
are consistent with the vortex ring breakdown positions determined above. It is suggested
that the enhanced entrainment of the synthetic jet is due to the increase of the random
turbulent kinetic energy term caused by the random small-scale turbulent structure.

3.4. Mechanism of entrainment enhanced by vortex ring breakdown
The plots of the random turbulent kinetic energy peak positions and the vortex ring
breakdown positions versus the entrainment coefficient peak positions are shown in
figure 9. As shown in figure 9(a), the random turbulent kinetic energy peak positions and
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Figure 10. (a) Vortices near the TNTI. The black curve represents the irrotational boundary of the TNTI. The
green and red circles mark vortices whose centres are less than and greater than 15η away from the irrotational
boundary, respectively. (b) Variations of vorticity at the centres of vortices with distance of less than 15η from
the irrotational boundary. The conditional average of the vortices over all snapshots is denoted by 〈·〉.

the entrainment coefficient peak positions are approximately the same for Case 1 and Case
2. For Case 3, the random turbulent kinetic energy peak position shifts to the upstream,
which may be due to the increase of phase identification error at large Reynolds number
(Pan et al. 2013). As shown in figure 9(b), the vortex ring breakdown positions match well
the entrainment coefficient peak positions. In addition, it should be emphasised that the
effect of the Reynolds number and the dimensionless stroke length on the vortex ring
breakdown position can be complex and has not been investigated here. Nevertheless,
the above results show the correlation between vortex ring breakdown and enhanced
entrainment, and the mechanism of how vortex ring breakdown enhances entrainment will
be discussed below.

Figure 10(a) shows the vortices near the TNTI and the irrotational boundary of the
TNTI in the instantaneous snapshot. The irrotational boundary of the TNTI is detected
by the vorticity criterion, whose threshold is determined in the plateau region, where the
area of the turbulent region decreases with the threshold with a small slope. It ensures
that minor changes in the threshold do not affect the results. A detailed description of
this procedure can be found in previous studies (Xu et al. 2023). Vortex structures are
identified by λci, whose threshold is selected to be 10 % of the maximum |λci| value in the
flow field. It has been checked that varying the threshold from 5 % to 15 % does not affect
the results. Figure 10(b) shows the variations of vorticity magnitude at the centre of the
vortex near the TNTI. Here, only those vortices whose centres are less than 15η away from
the irrotational boundary are included in the statistics, where η is the local Kolmogorov
scale, and 15η as the thickness of TNTI has been confirmed by previous studies (Zecchetto
& da Silva 2021; Xu et al. 2023). The vorticity magnitude at the centre of the vortex near
the TNTI reaches peak value at x/D = 5.1, 9.3 and 11.7 for Case 1, Case 2 and Case 3,
respectively, which corresponds to the vortex ring breakdown position. The vortex ring
breakdown results in the transfer of turbulent kinetic energy from the coherent large-scale
structure to the random small-scale structure, enhancing the vortices near the TNTI. The
vortex near the TNTI will induce a counterflow velocity field which implies that fluid
from both sides of the TNTI is transported towards the TNTI, resulting in a compressive
strain normal to the TNTI and an extensive strain parallel to the TNTI (Watanabe et al.
2014; Mistry et al. 2019). The alignment of the extensive strain and the vorticity vector
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results in a larger enstrophy production, allowing more environment irrotational fluid to
gain vorticity, thereby enhancing local entrainment.

4. Conclusion

In the present study, the synthetic jets with different Reynolds numbers and dimensionless
stroke lengths are measured using the TR-2DPIV technique. The results of velocity
triple-decomposition show that the coherent turbulent kinetic energy gradually decreases
to zero, while the random turbulent kinetic energy reaches a peak value when the vortex
ring breaks down and then decreases to a constant value in the far field, indicating
that a transition of turbulent kinetic energy from large-scale to small-scale. The global
power spectrum shows that the near field of the synthetic jet is dominated by the vortex
ring generated by the actuator. The high-amplitude region in the Fourier mode at the
characteristic frequency of f /fd = 1 highlights the region dominated by the vortex ring.
According to the streamwise position where the high-amplitude region disappears, it can
be determined that the synthetic jet vortex ring breaks down at approximately x/D = 4.9,
10.1 and 14.4 for the three cases, respectively. In addition, the process of vortex ring
breakdown is visually examined by the phase-averaged λciD/U0 field. The entrainment
coefficient α, which measures the entrainment capacity of jets, is decomposed into three
components: α̃1; α̂1; α2. These components represent the contribution of the coherent
turbulent kinetic energy production term, the random turbulent kinetic energy production
term and the shape of the velocity profile to the entrainment coefficient, respectively.
The contribution of component α2 is almost negligible. Here α̃1 decreases to zero as
the flow develops, while α̂1 reaches a peak value at the vortex ring breakdown position
and completely dominates the entrainment coefficient. The entrainment coefficient peak
positions for the three cases are consistent with the vortex ring breakdown positions
determined above. Based on the analysis of the vortices near the TNTI, it is found that the
strength of the vortex near the TNTI is enhanced by the vortex ring breakdown, which will
lead to the enhancement of the enstrophy production, and thus increase local entrainment.
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