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A novel fast-running model is developed to predict the three-dimensional (3-D)
distribution of turbulent kinetic energy (TKE) in axisymmetric wake flows. This is
achieved by mathematically solving the partial differential equation of the TKE transport
using the Green’s function method. The developed solution reduces to a double integral
that can be computed numerically for a wake prescribed by any arbitrary velocity profile.
It is shown that the solution can be further simplified to a single integral for wakes
with Gaussian-like velocity-deficit profiles. Wind tunnel experiments were performed to
compare model results against detailed 3-D laser Doppler anemometry data measured
within the wake flow of a porous disk subject to a uniform free-stream flow. Furthermore,
the new model is used to estimate the TKE distribution at the hub-height level of the
rotating non-axisymmetric wake of a model wind turbine immersed in a rough-wall
boundary layer. Our results show the important impact of operating conditions on TKE
generation in wake flows, an effect not fully captured by existing empirical models. The
wind-tunnel data also provide insights into the evolution of important turbulent flow
quantities such as turbulent viscosity, mixing length and the TKE dissipation rate in
wake flows. Both mixing length and turbulent viscosity are found to increase with the
streamwise distance. The turbulent viscosity, however, reaches a plateau in the far-wake
region. Consistent with the non-equilibrium theory, it is also observed that the normalised
energy dissipation rate is not constant, and it increases with the streamwise distance.
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1. Introduction

The importance of axisymmetric wake flows lies in their pivotal role in optimising the
efficiency and environmental impact of various engineering systems, ranging from wind
energy to aerospace design and pollution control. The study of turbulence in axisymmetric
wake flows at high Reynolds numbers is a fundamental fluid-mechanics problem treated
in many turbulence textbooks (e.g. Pope 2000). It is also practically significant because
it helps researchers predict and mitigate issues related to drag, flow instability, heat
exchange and energy efficiency. For instance, turbulence in wind turbine wakes serves as a
double-edged sword. It aids the wake recovery, thus providing more energy for downwind
turbines in a wind farm, while simultaneously amplifying the fatigue loads experienced by
those very turbines (Stevens & Meneveau 2017).

The need for fast-running models to predict wake flows such as those of wind turbines is
essential, as high-fidelity computational fluid dynamics (CFD) modelling or experiments
are still too expensive/time consuming and are, therefore, impractical for the optimisation
and real-time control of these flows (Meneveau 2019). Typically, CFD modelling entails
choosing a computational discretisation technique, creating often complex numerical
grids, selecting a suitable turbulence model and conducting post-processing on the data
(Meneveau 2019). This demands considerable manpower and expertise in fluid mechanics
(and turbulence modelling), which typically is not always readily available in industries
such as wind energy due to its multidisciplinary nature and diverse workforce. Hence,
engineering wake models are often preferred over high-fidelity CFD models in industrial
applications. While a substantial amount of research has been dedicated to developing
fast-running models to predict the mean velocity distribution in wind turbine wakes (see
Porté-Agel, Bastankhah & Shamsoddin (2020), and references therein), estimation of
turbulence in these flows predominantly relies on purely empirical methods (e.g. Crespo
& Hernandez 1996; Ishihara & Qian 2018) owing to the intricate nature of turbulence
modelling. Existing analytical engineering wind-farm models (e.g. Niayifar & Porté-Agel
2016; Zong & Porté-Agel 2020a; Bastankhah et al. 2021; Lanzilao & Meyers 2022)
typically determine the wake recovery rate based on the incoming turbulence level for
each turbine. The turbulent kinetic energy (TKE) generated by upwind turbines, predicted
based on empirical models such as Crespo & Hernandez (1996), then serves as an initial
condition for predicting the wake recovery rate of downwind turbines. This emphasises the
importance of advancing physics-based methods to predict the TKE distribution. To the
best of our knowledge, this work is the first attempt to develop a physics-based engineering
TKE model for wake flows. The model derivation is elaborated in § 2, the experimental
set-up for two cases used to validate model predictions is described in § 3. Results are then
discussed in § 4, before a summary is provided in § 5.

2. Mathematical model development

The axisymmetric wake is described using a cylindrical coordinate system with (x, r, θ),
where x is the streamwise distance from the object causing the turbulent wake, r is
the radial distance from the centre of the wake and θ is the azimuthal angle. Mean
and fluctuating velocity components in the (x, r, θ) coordinate system are indicated by
(U,V,W) and (u, v,w), respectively. Due to the assumption of axisymmetry, ∂/∂θ =
0. In the following, 〈〉 denotes time averaging. The TKE denoted by k is defined
by k = 0.5〈q2〉, where q2 = u2 + v2 + w2. The steady-state TKE transport equation,
neglecting pressure–velocity covariance and viscous diffusion but including swirl, reads as
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(Shiri 2010)
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(2.1)

The following simplifications and assumptions are made to be able to mathematically solve
(2.1). First, we model the diffusion (i.e. transport) terms based on the gradient-diffusion
hypothesis given by (Pope 2000)

∂〈uq〉
2∂x

+ ∂(r〈vq〉)
2r∂r

= − ∂

∂x

(
νT

σk

∂k
∂x

)
− 1

r
∂

∂r

(
νT

σk
r
∂k
∂r

)
, (2.2)

where νT is the turbulent viscosity and σk is the turbulent Prandtl number. The value of
σk generally depends on atmospheric stability (see Li (2019) and Basu & Holtslag (2021),
among others), with experimental results of σk ∈ [0.7, 0.92] for a neutral atmospheric
boundary-layer flow (Businger et al. 1971; Kays 1994). This work assumes σk = 1 based
on the Reynolds analogy, commonly used for turbulent flows (Pope 2000). The validity
of the gradient-diffusion hypothesis is further examined in § 4. The terms in (2.1) shown
in square brackets are normally small compared with other terms for axisymmetric wake
flows and can thus be neglected (Uberoi & Freymuth 1970). Neglecting these terms will
be also supported by the budget analysis performed in § 4.

Prior studies (e.g. Wygnanski & Fiedler 1970; Hussein, Capp & George 1994) showed
that νT is fairly uniform at the centre of axisymmetric wakes, but it decays at wake edges.
While cross-stream variations of turbulent viscosity can be determined based on velocity
profiles (Basset et al. 2022), for simplicity, the common assumption of νT ≈ νT(x) is used
herein (Pope 2000). Moreover, the dominant advection term (i.e. U∂k/∂x) is linearised
by replacing U with U0, where the subscript 0 denotes the inflow. This approximation
improves with distance from the origin, as the velocity deficit �U decreases. The TKE
dissipation rate is written as

ε = Cεk3/2/lm, (2.3)

where lm = lm(x) is the mixing length. The normalised energy dissipation rate, Cε, is
traditionally assumed to be constant for high Reynolds number flows, but there has been a
great deal of evidence in recent years showing that it may not be constant (see the review of
Vassilicos (2015), and references therein). Therefore, we assume Cε = Cε(x). Moreover,
the turbulent viscosity is commonly modelled by

νT = ck1/2lm, (2.4)

where c is a constant (Pope 2000). Hence, from (2.3) and (2.4), the TKE dissipation rate ε
can be expressed as

ε = νTk
Ψ (x)

, where Ψ (x) = cl2m(x)
Cε(x)

. (2.5)
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Finally, the Boussinesq hypothesis is used to model the Reynolds shear stress, where

〈uv〉 = −νT

(
∂U
∂r

+ ∂V
∂x

)
. (2.6)

Note that ∂V/∂x � ∂U/∂r, especially in the far-wake region, and thus it can be neglected.
Given the hypotheses discussed above, (2.1) can be reduced to

U0

νt(x)
∂kw(x, r)
∂x

− 1
r
∂

∂r

(
r
∂kw(x, r)
∂r

)
+ 1
Ψ (x)

kw(x, r) ≈
(
∂U(x, r)
∂r

)2

. (2.7)

Note that, in (2.7), the total TKE, k, is substituted with the wake-generated TKE, kw, where
kw = k − k0. This is only possible assuming that the spatial variations of U0 and k0 are
negligible compared with variations caused by the wake. Moreover, the TKE dissipation
rate in the background flow is assumed to be considerably smaller than the one in the wake.
We therefore neglect the terms including k0 on the left-hand side of (2.7), and ∂U/∂r is
only due to the wake-generated shear (i.e. ∂U/∂r = ∂Uw/∂r). Note that the velocity profile
U(x, r) is assumed to be any smooth function with an arbitrary shape.

The solution of the above equation is sought for the domain of x � x0 and r � 0, where
x0 is the virtual origin. The initial and boundary conditions are defined as kw(x0, r) = 0,
∂kw(x, 0)/∂r = 0 and kw(x,∞) → 0 as r → ∞, respectively. Due to the shear in the wake
flow, the turbulence level normally starts increasing right from the origin of the wake,
so we assume that x0 = 0 is a good approximation. However, x0 has been shown to be
both positive and negative (Neunaber, Hölling & Obligado 2022a), and, if included as a
variable parameter, may improve wake model predictions (Neunaber, Hölling & Obligado
2024). Thus, x0 has an arbitrary value in our model derivation for more flexibility. The
solution involves two positive, monotonic functions of x and a dummy variable X (such
that x0 � X � x), namely

φ(X, x) = 1
U0

∫ x

ξ=X
νt(ξ) dξ, ψ(X, x) = 1

U0

∫ x

ξ=X

νt(ξ)

Ψ (ξ)
dξ, (2.8a,b)

where ξ is a dummy variable. The exact solution of (2.7), achieved using the Green’s
function method, is

kw(x, r) =
∫ x

X=x0

∫ ∞

ρ=0

νt(X)
2U0φ(X, x)

× exp
{
− r2 + ρ2

4φ(X, x)
− ψ(X, x)

}
I0

(
rρ

2φ(X, x)

)(
∂U(X, ρ)
∂ρ

)2

ρ dρ dX,

(2.9)

where I0 is the modified Bessel function of the first kind, and ρ is a dummy variable. See
Appendix A for more information on the derivation of (2.9). To compute the integrand
in (2.9), the wake velocity profile U(x, r) needs to be known. This model can be used
with any axisymmetric velocity profile, however, since Gaussian-type models are often
used to represent the mean flow properties in wakes, these are presented here. A wake
with a Gaussian velocity profile is given by (Tennekes & Lumley 1972; Vermeulen 1980;
Bastankhah & Porté-Agel 2014)

U(x, r) = U0

[
1 − C(x) exp

(
− r2

2σ(x)2

)]
, (2.10)

where σ(x) is the characteristic wake width at x, and C(x) is the maximum normalised
velocity deficit at each x. A double-Gaussian velocity profile is given by (Schreiber, Balbaa
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& Bottasso 2020)

U(x, r) = U0

[
1 − 1

2
C(x)

(
exp

(
−(r − r0)

2

2σ(x)2

)
+ exp

(
−(r + r0)

2

2σ(x)2

))]
, (2.11)

where r0 is the radial position of the double-Gaussian extrema. For a wake with a
single-Gaussian velocity-deficit profile as in (2.10), one can simplify (2.9) to

kw(x, r) =
∫ x

X=x0

U0νt(X)C2(x)
(σ 2(X)+ 4φ(X, x))3

{
σ 2(X)r2 + 4φ(X, x)

(
σ 2(X)+ 4φ(X, x)

)}

× exp
{
− r2

σ 2(X)+ 4φ(X, x)
− ψ(X, x)

}
dX. (2.12)

For other wake flow profiles such as double Gaussian, the double integral in (2.9) cannot
be reduced to a single integral, so both integrals need to be computed numerically. The
reader is referred to Appendix B for a discussion on numerical integration of (2.9) for an
arbitrary velocity profile.

3. Experimental set-up

Experiments were conducted in the EnFlo wind tunnel at the University of Surrey with
a test section of 20 m × 3.5 m × 1.5 m (length × width × depth). Tests were run at the
free-stream speed 1.5 m s−1, as measured by an ultrasonic anemometer mounted at the
tunnel inlet (see figure 1). Two different canonical flows are considered in this work: (i) a
porous disk in a uniform shear-free flow (i.e. a free-stream (FS) case), and (ii) a turbine
model in shear flow over a rough wall (i.e. a boundary-layer (BL) case). These are depicted
in figures 1(a) and 1(b), respectively. For the FS case, a porous disk (of diameter D =
416 mm) was manufactured out of a metallic grid arranged in an orthogonal coordinate
system, with wires of diameter 1.2 mm and a square grid 3.8 × 3.8 mm2 in size. The disk
was mounted in the centre of the tunnel (both vertically and laterally) via a roof-mounted
sting; its estimated thrust coefficient, CT , is 0.65. The mean incoming flow for the FS case
was verified to be uniform within 0.39 % and characterised by a turbulence intensity of

TI = 1/U0

√
1/3(〈u2

0〉 + 〈v2
0〉 + 〈w2

0〉) = 1.98 %.
For the BL case, a typical offshore BL was achieved by a combination of 13 truncated

triangular spires located at the tunnel inlet with roughness elements arranged in a
staggered layout covering the entire tunnel floor. The spires (flat plates) have the following
dimensions: 60 mm (base), 4 mm (apex), are 600 mm tall and spaced 266 mm in the
tunnel’s span. The roughness elements were arranged in a staggered layout covering
the tunnel floor. The values of (u∗/U0)

2 and roughness length z0 are 2.2 × 10−3 and
0.18 mm, respectively, where u∗ is the friction velocity. The boundary-layer set-up is
depicted in figure 1(b), with further information provided in Placidi, Hancock & Hayden
(2023). The flow mean uniformity across the spanwise direction of the BL at hub height
zh is within 1.16 %. The wind turbine used in this case is a 1 : 300 scaled rotating
model of a 5 MW offshore wind turbine with a rotor diameter D of 416 mm (matching
the porous disk case) and a hub height zh of 300 mm. The blades are tapered and
twisted flat plates to account for the much lower operating laboratory Reynolds number
compared with the full-scale counterpart. See Hancock & Pascheke (2014) and Placidi
et al. (2023) for more information on turbine design and characteristics. The model
tip-speed ratio λ was kept at 6 ± 1.5 %, which resulted in an estimated CT of 0.48,
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3-axis traverse

D = 0.416 m

D = 0.416 m

Carriage

3-D LDA

Disk

Reference anemometer

1.5 m

Measurement volume

(a)

x = 0D

3-axis traverse

Roughness

Spires

Carriage

3-D LDA
WT

Reference anemometer

20 m

1.5 m

0.6 m

z
x

y

10 m

0.3 m Measurement volume

(b)

532 nm

(W̃ )

516 & 532 nm

(Ũ & Ṽ )

45°

mirror

(c)

Figure 1. Sketch, and overall dimensions, of the wind-tunnel set-up: (a) disk in the free-stream case, (b) wind
turbine (WT) in the boundary-layer case and (c) close-up of the three-dimensional laser Doppler anemometry
(LDA) set-up (not to scale). Here, Ũ, Ṽ, W̃ indicate the mean velocities in the Cartesian coordinate system.

Case ID Inflow Turbine model D
(

u∗
U∞

)2

× 103 z0 Reδ × 10−3 TI (%) Λ/D

(FS) Exp Empty tunnel Porous disk 416 — — — 1.98 0.044
(BL) Exp Spires & roughness 3-blade WT 416 2.2 0.18 59 4.80 0.648

Table 1. Summary of the experimental conditions in the reference cases (i.e. with no turbine/disk).
Boundary-layer characteristics are derived at x/D = 2, although slowly varying in x. Here, u∗ is the friction
velocity, z0 and D are the roughness length and the turbine/disk diameter in mm, Reδ is the BL thickness
Reynolds number, Λ the integral length scale and TI is the turbulence intensity.

originally based on wake measurements in uniform flow (Hancock & Pascheke 2014), but
later verified with floating-element force balance measurements. The spanwise-averaged
hub-height incoming velocity U0 is 1.42 m s−1, and the incoming turbulence intensity,
TI, is 4.8 %. The turbine was positioned 10 m downstream of the tunnel inlet, as shown in
figure 1(b), where the BL had time to fully adjust to the surface conditions and reached
a fully developed state, and quantities are slowly varying in x. A summary of the main
experimental parameters for both cases is presented in table 1. Here, the integral time scale
is evaluated by integration of the autocorrelation coefficient of the velocity fluctuations
until its first zero crossing, with a robust procedure similar to that described in Smith
et al. (2018), which involves ensemble averaging the time scale over several independent
realisations of the original signal. As in Gambuzza & Ganapathisubramani (2021), we used
signals with a duration of 200 times the initially estimated integral time scale. Then, the
non-dimensional spanwise-averaged integral length scale at hub height (Λ/D in table 1)
is obtained by applying Taylor’s hypothesis of ‘frozen turbulence’.

For both cases, three-component velocity measurements were acquired with a LDA
(Dantec Dynamics, Denmark) at a minimum frequency of 200 Hz for 120 s for each
measurement point, which balanced competing requirements between data statistical
convergence, reasonable running time, seeding density and temporal resolution required to
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resolve the turbulence scales of interest, as further discussed in Placidi et al. (2023). The
three components are acquired independently, but can be synchronised by interpolation,
when required by the analysis. Standard errors are within ±0.5 % and ±5 % for the mean
and second-order quantities (95 % confidence level). Three laser beams emanating from
two laser probes (of a focal length of 300 mm) were used in conjunction to measure
the velocity components as shown in figure 1(b). One probe measured streamwise and
lateral components, while the other measured the vertical component independently. A
45◦ mirror is used to focus the beam measuring the vertical component onto the same
measurement volume of the other two beams, allowing for simultaneous measurements of
all three velocity components. Both probes were mounted vertically in the tunnel (hence
the need for the mirror) and embedded into an aerodynamic shroud to minimise flow
interference. This set-up helps minimise the intrusiveness of the measurement system
while circumventing the error propagation originated by the 3-D transformation matrix and
accurate determination of the position/separation between the beams. Measurements, for
all cases, were collected at different streamwise locations (2 � x/D ≤ 15) both with and
without the turbine/disk model to isolate the wake-added quantities from their counterpart
in the background flow.

Before any results are presented, we discuss the relevance of the BL case to the model
developed for axisymmetric wake flows in § 2. The TKE transport equation (in § 2) is
simplified by assuming wake flow axisymmetry and inflow homogeneity. While these
assumptions are valid for the porous disk in a uniform flow, they do not hold in the
BL case. Figure 2(a) shows vertical profiles of normalised streamwise velocity (U/U0)
and TKE (k/U2

0) at two downwind locations for the BL case, where z is the height from
the ground in the Cartesian coordinate system. Inflow conditions are also reported for
comparison (dashed lines). Figure 2(a) shows that, due to the mean shear in the incoming
BL, neither the inflow velocity nor the inflow TKE is uniform in the vertical direction.
Looking at x = 5D, it is evident that the wake increases the flow shear in the upper half
of the wake while decreasing it in the lower half. This generates/suppresses turbulence
in above/below hub height, as shown in figure 2(a). The assumptions made in § 2 are
therefore clearly violated in the vertical direction, and the developed model is not expected
to provide satisfactory predictions. In the lateral direction, y, however, the incoming flow
is approximately uniform, and the TKE lateral profiles appear to be more symmetrical, as
seen in figure 2(b). Therefore, despite the fact that the wake is not axisymmetric in this
case, it is still of interest to examine whether the developed model can be employed to
estimate lateral TKE profiles at the turbine’s hub height. It is also worth noting that the
slight lateral wake deflection towards the negative y direction, as seen in figure 2(b), is due
to the interaction of the wake swirling in the anticlockwise direction (seen from upstream)
with the incoming flow shear (Fleming et al. 2014). Since equations in § 2 are written in
cylindrical coordinates, hereafter, quantities for the BL case are averaged on both sides of
the wake for presentation purposes (i.e. f (r) = 0.5( f ( y)+ f (−y)) for r = y).

4. Results and discussions

To predict TKE profiles based on (2.9), the wake velocity profile U(x, r) needs to
be first known either from experiments or engineering wake models. Figure 3 shows
radial profiles of the normalised streamwise velocity deficit, �U/U0 = (U − U0)/U0,
at different streamwise locations for both cases and compares them with two customary
profiles: Gaussian (2.10) and double Gaussian (2.11). The figure shows that the velocity
deficit in the BL case is consistently smaller than the other case. The observed difference
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(a)
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(b)

x = 5D x = 12D Inflow

(×10–3) k/U0
2

5 10

(×10–3)

Figure 2. (a) Vertical and (b) lateral profiles of normalised streamwise velocity (U/U0) and normalised TKE
(k/U2

0) for the BL case. Horizontal lines represent the hub and the tip positions.
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Figure 3. Radial profiles of normalised velocity deficit (�U/U0) at different x/D based on experiments,
Gaussian and double Gaussian (referred to as D-Gaussian) wake models. Solid lines show the BL case and
dashed lines show the FS case.

is expected to be caused by the different inflow conditions and thrust coefficients in the
two cases. A higher level of inflow turbulence and a lower value of thrust coefficient
in the BL case leads to a less pronounced wake. To predict wake velocity profiles,
the double-Gaussian profile (2.11) is used hereafter as it generally better represents our
experimental data for x/D � 6 where the wake profiles present a double peak, although
some discrepancies are noticeable, especially for the FS case. Further work can be done
to see if the double-Gaussian model parameters can be better optimised to improve its
predictions. It is important to note that inaccuracies in velocity prediction in the near wake
manifest as an error in TKE predictions for the far wake. This highlights the importance
of accurate velocity predictions in the near wake. Depending on the actual shape of the
near-wake profiles, one may also apply other wake models such as super-Gaussian (Shapiro
et al. 2019; Blondel & Cathelain 2020). This is possible due to the versatility of the new
model developed for a generic profile of U(x, r).

Next, the radial profiles of the normalised azimuthal velocity W/U0 at different
streamwise positions are shown in figure 4(a) for both cases. The azimuthal velocity in
the FS case is negligible as the porous disk does not generate any swirl motion. In the BL
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Figure 4. (a) Lateral profiles of normalised azimuthal velocity (W/U0) at hub height. (b) Ratio of the
maximum W to the maximum �U at different x/D.

case, while rotating blades of the turbine induce swirl motion in the wake, the value of
wake swirl decays rapidly. Figure 4(b) shows that the maximum azimuthal velocity in the
wake is considerably smaller than the maximum velocity deficit, especially in the far-wake
region. This is consistent with the TKE budget analysis, discussed later, which will show
that all terms in the TKE budget (2.1) that include azimuthal velocity have negligible
values at x = 5D. Nonetheless, it is still important to bear in mind that, despite the rapid
decay of swirl and seemingly its small contribution in the far wake, the wake swirl in the
near wake may still have a non-negligible impact on the TKE in the far wake.

Figure 5 shows radial profiles of the wake-added turbulent velocity fluctuations (〈u2〉w,
〈v2〉w, and 〈w2〉w) and the wake-added TKE (kw) at different streamwise locations for
both cases. It is clear how the wake edge (i.e. r ≈ 0.5D) where the shear production is
maximum corresponds to the maximum level of turbulence. At the wake edge, 〈u2〉w is
dominant and significantly larger than 〈v2〉w and 〈w2〉w in both cases. This is especially
the case in the near wake of the BL case. However, the other two components (〈v2〉w, and
〈w2〉w) gradually become larger and more comparable to 〈u2〉w in the far wake. Spalart
(1988) showed that, for BL flows, the TKE diffusion due to fluctuating pressure is mainly
small, however, pressure has a significant role in redistributing the energy by extracting
it from the streamwise component and transferring it to the other two components (Pope
2000). This seems to be the case here too. It is also interesting to note that, at the wake
centre (r/D < 0.25) of the BL case, 〈v2〉w and 〈w2〉w are bigger than 〈u2〉w for x > 3D.

Cross-stream turbulent fluctuations are especially critical in explaining unsteady
oscillations of wakes termed as wake meandering (Larsen et al. 2008), which has
major impacts on flow mixing and wake expansion. However, prior experiments have
often quantified the TKE distribution only based on streamwise fluctuations. Moreover,
steady-state engineering wake models have often used the turbulence intensity defined
only based on streamwise fluctuations to estimate the wake expansion. This highlights the
importance of the current experimental work in capturing the total TKE.

Next, we determine three important turbulent quantities using the experimental data: (i)
turbulent viscosity (νt), (ii) mixing length (lm) and (iii) the normalised TKE dissipation
rate (Cε). The last two are needed to compute the parameter Ψ = cl2m/Cε in the simplified
TKE transport equation (2.7). Both turbulent viscosity and mixing length are estimated
based on the method described in Bai, Meneveau & Katz (2012) and later implemented in
Rockel et al. (2016) and Scott et al. (2023). At each streamwise location, νt is the slope of
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Figure 5. Radial profiles of normalised wake-added turbulent quantities at different x/D. Solid lines show the
BL case and dashed lines show the FS case.

the linear curve fitted to the variation of −〈uv〉 with respect to ∂U/∂r, and l2m is the slope
of the linear curve fitted to the variation of −〈uv〉 with respect to |∂U/∂r|∂U/∂r.

Figure 6(a) shows that, in both cases as expected, the normalised mixing length
increases with x/D, which indicates an increased characteristic length scale as the wake
flow evolves (Iungo et al. 2015). The trend is almost identical for the FS case, but with a
lower value at each x/D, which would be expected because of the lower value of inflow
integral length scale in this case (see table 1). The normalised turbulent viscosity, shown in
figure 6(b), also linearly increases with x and seems to approach an almost constant value
in the far wake. The same trend is shown in experiments by Zong & Porté-Agel (2020b),
displayed in green. In all three cases shown in figure 6(b), the turbulent viscosity reaches
a plateau at approximately 6D − 8D downstream. Experiments and numerical simulations
by Scott et al. (2023) (not shown here) also reported a fairly similar behaviour, and
found that, further downstream (e.g. x/D � 15), the turbulent viscosity should decrease
as the wake recovers. This behaviour of νt can be explained with the hypothesis that
νt ≈ l2m|∂U/∂r| (Bai et al. 2012). In the near wake, the increase in the turbulent viscosity is
mainly due to the increase in the mixing length. However, in the far wake, the growth in the
mixing length is balanced by the decreasing velocity gradients across the wake. It is also
noteworthy that, despite having higher CT , the turbulent viscosity is smaller in the FS case
compared with the BL case, which can be attributed to a lower level of inflow turbulence
in the former case. Furthermore, the turbulent viscosity in Zong & Porté-Agel (2020b) is
higher than the BL case although both have a fairly similar inflow turbulence level. The
discrepancy between these two cases can be explained by the different thrust coefficients
of the turbine models. In conclusion, figure 6(b) shows that, while the variation of νt with
x follows a fairly similar pattern in all cases, its value is sensitive to both inflow turbulence
and thrust force.

Next, we compute the TKE dissipation rate (ε, hereafter dissipation in short). Estimating
the dissipation from experimental data is a troublesome task (Wang et al. 2021). Two
common approaches are used here. In the first method, thanks to our comprehensive
experimental data set, we estimate the dissipation indirectly by performing a TKE budget
analysis, i.e. evaluating all the terms in (2.1), so that by definition its residual is the
dissipation (Hearst & Lavoie 2014). As an example, the TKE budget is provided in figure 7
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Figure 6. Evolution of normalised (a) mixing length (lm/D), (b) turbulent viscosity (νt/U0D) including data
reported by Zong & Porté-Agel (2020b), (c) energy dissipation rate (Cε) and (d) l2m/CεD

2, with x/D. The black
circles are from the BL case and the blue circles are from the FS case.

for x = 5D. Figure 7 demonstrates that all the terms in square brackets in (2.1) can,
indeed, be considered negligible for both cases. The diffusion terms are shown in red,
where the real terms are represented as circles and the modelled terms based on the
gradient-diffusion hypothesis in (2.2) as lines. It can be seen that, in both cases, the radial
diffusion term, which is the dominant diffusion mechanism in the wake, and its modelled
counterpart behave similarly. The figure also suggests that the streamwise convection term
is in balance with the radial diffusion term at this streamwise location, which is particularly
evident in the BL case. The radial diffusion term is positive at the wake edge, acting as a
sink of energy transporting energy towards the wake’s centre and the outer region where
the radial diffusion is negative (i.e. acting as an energy source). This process flattens and
widens the TKE profiles as the wake moves downstream, as already seen in figure 5. The
dominant production term (dot-dashed black line) is mainly in balance with the dissipation
(green dotted line) as the main two dominant terms and, as expected, −ε is negative so that
it acts as an energy sink. Both have maximum absolute values in correspondence of the
blade tip at the wake edge (r/D ≈ 0.5).

Given the time-resolved nature of the experimental data, we can also directly quantify
the dissipation based on another common approach that assumes the turbulence at
small scales to be homogeneous and isotropic (subscript HIT ). This leads to the
estimation of the dissipation based on Taylor’s hypothesis of frozen turbulence, as εHIT =
15ν〈(∂u/∂t)2〉/U2, where ν is the kinematic viscosity and t is time (Dairay, Obligado
& Vassilicos 2015; Neunaber, Peinke & Obligado 2022b). Figure 7 shows there is a
satisfactory agreement between the two methods used herein to estimate the dissipation,
particularly in the BL case. Although there is a difference in the magnitude between the
two dissipation terms at the wake edge (r/D ≈ 0.5) for the FS case, overall there is a
satisfactory agreement given a high level of uncertainty in estimating the dissipation.

Once the dissipation is estimated, the normalised TKE dissipation rate (Cε) can
be computed based on εlm/K

3/2
w , where ε and Kw are the maximum absolute values

of ε and kw at each streamwise location, respectively. Figure 6(c) confirms that Cε
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is, indeed, not constant and instead increases with x. This is in line with previous
works that highlighted how Cε may vary in non-equilibrium flows (Dairay et al. 2015;
Vassilicos 2015; Obligado, Dairay & Vassilicos 2016). Moreover, in line with other
turbulent quantities, the normalised TKE dissipation rate is higher for the BL case.
Next, figure 6(d) reports the variation of l2m/CεD

2 with x/D. Based on the fitted linear
curve shown by the black dashed line in the figure, l2m/CεD

2 ≈ 0.0072 + 0.0032x/D for
the BL case. As discussed in § 2, Ψ = cl2m/Cε , so ΨBL/D2 ≈ c(0.0072 + 0.0032x/D).
Similarly, for the FS case (blue dashed line), ΨFS/D2 ≈ c(0.0076 + 0.0039x/D), where
c = 0.46 seems to provide satisfactory predictions for both. It is interesting to note that
this value is comparable to c = 0.55 used in the log layer of boundary-layer flows (Pope
2000). Furthermore, despite significant disparities in other turbulent parameters such as
lm and Cε, the value of Ψ appears fairly similar in both cases. This similarity tempts
us to speculate about the existence of a universal relationship for Ψ . However, further
investigation is required to substantiate this hypothesis.

After assessing both νt(x) and Ψ (x), we proceed to compare the predictions of the
model outlined in § 2 with the experimental data, depicted in figure 8. Some deviations
are apparent in predicting the location of TKE maxima in the near wake for the FS
case and also the TKE level at the wake centre in the far wake for both cases. These
discrepancies are believed to primarily stem from inaccuracies in the velocity-deficit
predictions illustrated in figure 3. Nevertheless, the overall trend reveals that the model
reasonably predicts both the magnitude of wake-added TKE (kw) and its radial distribution
for 3 � x/D � 15 in both cases. Moreover, the model successfully captures the difference
in wake-added TKE between the two cases. Figure 8 shows that the wake-added TKE
is considerably higher in the FS case compared with the BL case. As previously
discussed, our results show that the inflow turbulence and the amount of the thrust
force significantly impact all pertinent turbulent quantities. Thus, predicting their overall
effects on wake-added TKE is not straightforward, given their counteracting influences on
wake behaviour. This emphasises the necessity of employing a physics-based TKE model
capable of realistically predicting wake behaviour under varied operating conditions. It is
worth highlighting that, while the FS case shows approximately a 3 % lower turbulence
intensity compared with the BL case (as indicated in table 1), the difference becomes
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the experimental data and the empirical models of Crespo & Hernandez (1996) and Ishihara & Qian (2018) at
different streamwise positions. The BL case is shown in black and the FS case in blue.

significant when considering the integral length scale, where there is more than a one
order of magnitude difference. This emphasises that relying solely on turbulence intensity
may not fully capture the impact of the incoming turbulent flow on the wake evolution
(Gambuzza & Ganapathisubramani 2021; Hodgson, Madsen & Andersen 2023).

Predictions based on the empirical models of Crespo & Hernandez (1996) and Ishihara
& Qian (2018) are also shown in figure 8. Since these two models predict the wake-added
turbulence only based on streamwise velocity fluctuations, for a fair comparison, we use
the relationship

√〈u2
w〉 = α

√
kw, where α is a constant (Larsén 2022). Various values

for α have been suggested in the range α ∈ [0.82 1.03] (e.g. Cleijne 1992; Crespo &
Hernandez 1996; Malki et al. 2014). Our experimental data suggest that α ≈ 0.93 and
this is used to plot the total wake-added TKE (kw) predictions for these two empirical
models in figure 8. The predictions based on the model of Crespo & Hernandez (1996)
only depends on the streamwise distance from the disk/turbine, while the one proposed
by Ishihara & Qian (2018) also predicts the radial distribution of wake-added turbulence.
Both empirical models cannot fully capture the impact of changing operating conditions
on the wake-added TKE distribution.

5. Summary

A new fast-running model to predict the 3-D TKE distribution in axisymmetric wake flows
is presented. Detailed 3-D LDA measurements were conducted for two canonical cases:
(i) a porous disk exposed to a uniform FS flow, and (ii) a turbine model under a turbulent
BL. While the former configuration generates an axisymmetric wake, the wake flow in
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the latter case is non-axisymmetric due to inflow shear. In the latter case, our analysis
primarily focused on the flow distribution within a horizontal plane at hub-height level.
A budget analysis is first performed to identify dominant terms in the TKE transport
equation written in a cylindrical coordinate system. The Boussinesq turbulent-viscosity
and gradient-diffusion hypotheses were used to simplify production and diffusion terms,
respectively. The simplified partial differential equation was then solved using the Green
function’s method, which led to a solution written in the form of a double integral.
Further simplifications were applied to the exact mathematical solution to facilitate the
numerical integration. The new model requires numerical integration based on simple
methods such as the trapezoid rule, which can be performed with very basic mathematical
knowledge. Therefore, in addition to addressing computational costs, the ease of use (in
comparison with CFD models) is the main driving factor behind the development of such a
model. The developed solution predicts second-order flow statistics (i.e. TKE distribution)
from the knowledge of first-order flow statistics (i.e. time-averaged streamwise velocity
distribution, u(x, r)). While the solution was derived for an arbitrary distribution of u(x, r),
a double-Gaussian profile was assumed herein due to its resemblance to the experimental
data, especially in the near wake. To predict the TKE, the model also necessitates the
turbulent viscosity νt(x), and the parameter Ψ (x) = cl2m/Cε.

The experimental data showed that in both cases the mixing length in the wake flow
grows with the streamwise distance from the disk/turbine. The increase in the mixing
length initially leads to an increase in turbulent viscosity, but the turbulent viscosity
approaches a constant value in the far wake as wake velocity gradients diminish with the
wake recovery. Operating conditions (i.e. CT and the inflow turbulence) are found to have
major impacts on turbulent quantities such as the mixing length and turbulence viscosity.
Moreover, in agreement with non-equilibrium similarity theory (Vassilicos 2015), we
observed that the normalised TKE dissipation rate (Cε) is indeed not constant, but it
increases with streamwise distance from the turbine; this results in a linear relationship
for Ψ (x). Finally, the new TKE model predictions are compared with the experimental
data, demonstrating a satisfactory level of agreement both in the magnitude and the radial
shape of the TKE profiles across a wake flow extent of interest to wind-farm developers
and operators (3 < x/D < 15).

This section is concluded by a discussion on model limitations and future research
directions. In this work, we relied on the same experimental data to determine the
variations of νt(x) and Ψ (x) with x, which were then used to validate model predictions.
This validation does not inherently establish the universality of the relationships governing
these input parameters. Therefore, we opt not to claim that the same parameter settings are
universally applicable across all different scenarios. Our main goal in this study was to
demonstrate the robustness of the developed model. Specifically, we aimed to show that
when accurately estimating these parameters, our model reliably predicts the distribution
of TKE in axisymmetric wake flows (and approximates non-axisymmetric turbine wake
flows at the hub-height level). However, we acknowledge the need for further research to
establish universal relationships for νt andΨ across a range of relevant parameters, thereby
creating a comprehensive framework for TKE engineering modelling.

The developed model uses information on the mean streamwise velocity distribution as
an input to estimate TKE generation resulting from flow shear. Integrating this model into
existing engineering velocity-deficit models that determine the wake recovery rate based
on the incoming turbulence is straightforward. However, this approach does not take into
account the two-way coupling effect, where velocity gradients in the wake generate higher
turbulence levels, which subsequently influence mean flow distribution through enhanced
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flow mixing. Investigating how the wake-added TKE may impact flow entrainment and
wake recovery presents an interesting area of research (Nygaard et al. 2020). Future
studies could potentially explore this by using the developed model in an iterative approach
that considers the interplay between first-order and second-order statistics. Alternatively,
addressing this coupling in the developed TKE model may involve further simplification
and decoupling of equations, leveraging assumptions such as the self-similarity of TKE
profiles. In addition, more refined models are needed to predict vertical TKE profiles in
non-axisymmetric wakes of turbines immersed in BL flows.

Acknowledgements. We would like to thank Dr P. Hayden, who aided the experimental data collection.

Funding. The experimental work was supported via Flex Funding agreement project VENTI within
EPSRC-Supergen ORE (EP/S000747/1) coordinated by the University of Plymouth.

Declaration of interests. The authors report no conflict of interest.

Data availability statement. The wind-tunnel data utilised in this work are available at the following link:
https://doi.org/10.15126/surreydata.901120.

Author ORCIDs.
Majid Bastankhah https://orcid.org/0000-0002-1326-027X;
Peter E. Hydon https://orcid.org/0000-0002-3732-4813;
Marco Placidi https://orcid.org/0000-0001-5105-8980.

Appendix A. Green’s function solution of the TKE transport equation

The derivation of (2.9) is as follows. First, we use an integrating factor to cancel
the kw(x, r) term (i.e. the third term on the left-hand side) in (2.7). Set kw(x, r) =
exp{−ψ(x0, x)}Q(x, r), which reduces (2.7) to

U0

νt(x)
∂Q(x, r)
∂x

− 1
r
∂

∂r

(
r
∂Q(x, r)
∂r

)
=

(
∂U(x, r)
∂r

)2

exp{ψ(x0, x)}. (A1)

Now introduce a change of variable T(x) = φ(x0, x) and a corresponding dummy variable
t(X) = φ(x0,X) as a coordinate on the interval 0 � t � T . As νt > 0 throughout the region
of interest, t is a monotonically increasing function of X; consequently, X can be used as a
coordinate in the range x0 � X � x.

Let Q(x, r) = q(T(x), r), which reduces (A1) to an inhomogeneous axisymmetric heat
equation

∂q(T, r)
∂T

− 1
r
∂

∂r

(
r
∂q(T, r)
∂r

)
=

(
∂U(x(T), r)

∂r

)2

exp{ψ(x0, x(T))}. (A2)

The Green’s function for such equations, subject to q(0, r) = 0, ∂q/∂r(T, 0) = 0 and
q(T, r) → 0 as r → ∞, is (see Cole et al. 2011)

G(T, r; t, ρ) = H(T − t)
4π(T − t)

exp
{
− r2 + ρ2

4(T − t)

}
I0

(
rρ

2(T − t)

)
, (A3)
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where H is the Heaviside step function and I0 is the modified Bessel function of the first
kind. Integrating over the cylindrical domain yields the solution of (A2)

q(T, r) =
∫ T

t=0

∫ ∞

ρ=0

1
2(T − t)

× exp
{
− r2 + ρ2

4(T − t)
+ ψ(x0,X(t))

}
I0

(
rρ

2(T − t)

) (
∂U(X(t), ρ)

∂ρ

)2

ρ dρ dt.

(A4)

Changing the dummy variable from t to X yields the solution (2.9) for kw(x, r).

Appendix B. Numerical integration of (2.9)

To ease the numerical integration of (2.9) for an arbitrary wake velocity profile, we apply
the changes below to the exact solution:

(i) For large values of ρ, the Bessel function in (2.9) goes to infinity, while the
exponential term goes to zero, which may introduce errors in the numerical
integration. For r > 0, it is useful to write the solution (2.9) in the following form:

kw(x, r) = 1
U0

∫ x

X=x0

∫ ∞

ρ=0
νt(X) exp(−ψ(X, x))

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
(

− (r − ρ)2

4φ(X, x)

)
√

4πφ(X, x)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

×
[√

πrρ
φ(X, x)

exp
(

− rρ
2φ(X, x)

)
I0

(
rρ

2φ(X, x)

)] (
∂U(X, ρ)
∂ρ

)2

×
√
ρ

r
dρ dX. (B1)

The expression in square brackets is a well-behaved function, f (z), where z =
rρ/φ(X, x), whose graph rises rapidly from 0 up to around 1.2 at z ≈ 1.5, then
decreases towards its limiting value of 1 as z increases further. By combining
the power series and asymptotic expansions for the modified Bessel function, one
obtains the following good approximation:

f (z) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
πz exp(−z/2)

(
1 + z2

16
+ z4

1024

)
, 0 � z � 4;

1 + 1
4z

+ 9
32z2 , z > 4,

(B2)

which gives a maximum error of less than 1.3 %.
(ii) The integrand in the exact solution (2.9) has a singularity at X = x, because

φ(x, x) = 0. To avoid this singularity, we compute the integral by restricting X
to the interval [x0, x − δ], where δ is the size of the grid used for numerical
integration. This approximation provides satisfactory results with negligible error
for small values of δ (e.g. δ � 0.1D, where D is the diameter of the object causing
the turbulent wake).

(iii) In the exact solution (2.9), the upper bound of integration with respect to ρ is
infinity. For the numerical integration, we replace this with a large finite value,
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namely 3D. The velocity gradient ∂U(X, ρ)/∂ρ quickly goes to zero for large
values of ρ, so this has a negligible effect on final results.

In summary, instead of the exact solution (2.9), one can numerically compute

kw(x, r) = 1
U0

∫ x−δ

X=x0

∫ 3D

ρ=0
νt(X) exp(−ψ(X, x))

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
(

− (r − ρ)2

4φ(X, x)

)
√

4πφ(X, x)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

f
(

rρ
φ(X, x)

)(
∂U(X, ρ)
∂ρ

)2 √
ρ

r
dρ dX, (B3)

where the function f (z) is approximated by (B2). It is worth noting that (B1), and its
approximated form (B3), are valid for r > 0. At r = 0, the exact solution (2.9) is simplified
to

kw(x, 0) =
∫ x−δ

X=x0

∫ 3D

ρ=0

νt(X)
2U0φ(X, x)

exp
{
− ρ2

4φ(X, x)
− ψ(X, x)

} (
∂U(X, ρ)
∂ρ

)2

ρ dρ dX.

(B4)
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