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Abstract

In the continuous transportation process of coal in mining, exploring real-time detection
technology for longitudinal tear of conveyor belts on mobile devices can effectively prevent
transport failures. To address the challenges associated with single-dimensional detection, high
network complexity, and difficulties in mobile deployment for longitudinal tearing detection in
conveyor belts, we have proposed an efficient parallel acceleration method based on field-
programmable gate arrays (FPGA) for the ECSMv3-YOLO network, which is an improved
version of the you only look once (YOLO) network, enabling multidimensional real-time
detection. The FPGA hardware acceleration architecture of the customized network incorpor-
ates quantization and pruning methods to further reduce network parameters. The convolu-
tional acceleration engines were specifically designed to optimize the network’s inference speed,
and the incorporation of dual buffers andmultiple direct memory access channels can effectively
mitigate data transfer latency. The establishment of a multidimensional longitudinal tear
detection experimental device for conveyor belts facilitated FPGA acceleration experiments
on ECSMv3-YOLO, resulting in model parameters of 6.257M, mean average precision of 0.962,
power consumption of 3.2W, and a throughput of 15.56 giga operations per second (GOP/s). By
assessing the effects of different networks and varying light intensity, and comparing with CPU,
GPU, and different FPGA hardware acceleration platforms, this method demonstrates signifi-
cant advantages in terms of detection speed, recognition accuracy, power consumption, and
energy efficiency. Additionally, it exhibits strong adaptability and interference resilience.

Introduction

In underground mines, continuous material transportation is facilitated by belt conveyors
(Ribeiro et al., 2019), operating within challenging environmental conditions (Ji et al., 2020).
The coal extracted from the working face may contain sharp angular objects, such as angle steel
and gangue. Additionally, height variations exist at the blanking port and the junction between
the head and tail of two conveyor belts, heightening the risk of direct punctures or tears in the
conveyor belt (Guo et al., 2022; Guo et al., 2022). Longitudinal tearing primarily occurs at the
loading and unloading positions of the head and tail, often manifesting as significant cracks or
complete tears. These incidents pose potential hazards to transportation, diminishing efficiency,
and resulting in economic losses. Hence, investigating real-time detection methods for longitu-
dinal tearing in conveyor belts holds significant importance.

Various methods are employed for detecting longitudinal tears in conveyor belts, including
X-ray flaw detection (Xianguo et al., 2018), magnetic detection (Błażej et al., 2018), infrared
spectrum (Yang et al., 2020), ultra-high frequency identification (Salim et al., 2021), and laser line
scanning (Trybała et al., 2020; Li et al., 2021). However, due to the intricate environment of coal
mine transportation and substantial interference, some of these methods may fall short in terms
of stability and accuracy. Consequently, the development of conveyor belt longitudinal tear
detection utilizing machine vision technology has gained prominence. Traditional machine-
learning approaches rely on themanual formulation of features to be learned, followed by feature
extraction from images. This approach is associated with challenges such as intricate data
preprocessing, slow detection speed, and limited accuracy. In the realm of deep learning, target
detection networks primarily fall into two categories: two-stage detection, exemplified by the Fast
region-based convolutional neural networks (R-CNN) (Girshick, 2015) and Mask R-CNN
(He et al., 2018) series, and one-stage detection algorithms, including the single shot multiBox
detector (SSD) (Liu et al., 2016) and YOLO (Redmon et al., 2016) series. Given the high real-time
requirements of conveyor belt longitudinal tear detection, one-stage target detection algorithms
are predominantly adopted.
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Wang et al. (2020) utilized a depth-separable convolution
method to reduce the parameters in the SSD algorithm, thereby
enhancing its speed. Qu et al. (2020) proposed a conveyor belt
damage detection method based on Adaptive Deep Convolutional
Network for capturing and classifying damaged targets. However,
YOLO, as a real-time object detection algorithm, can directly
predict the categories and locations of objects in a single forward
pass and is utilized in various detection scenarios. Compared to
other models, its main advantages include rapid processing speed,
high accuracy, and strong interpretability. Zhang et al. (2022)
implemented a Yolov4-based depth-lightweighted target detection
network, improving the backbone and neck of Yolov4 to ensure
both speed and accuracy in foreign object detection on mining
conveyor belts. In a bid to balance accuracy and speed while
reducing model complexity, lightweight networks like MobileNet
(Howard et al., 2017) and EfficientNet (Koonce, 2021) have been
introduced. Zhang et al. (2021) presented an improved Yolov3
algorithm combined with EfficientNet for the simultaneous detec-
tion of multiple faults in conveyor belts. Zhang et al. (2021) inte-
grated MobileNet and Yolov4 deeply to achieve lightweight
detection, yielding a conveyor belt damage detection accuracy of
93.22%. To enhance network generalization performance, Liu et al.
(2022) designed an improved attention mechanism, incorporating
it into the image space feature extraction model, resulting in a
recognition accuracy improvement of over 20% for the belt damage
recognition method.

However, the aforementioned detection methods exclusively
focus on the longitudinal tearing of the upper-dimensional surface
of the conveyor belt. The lower-dimensional surface of the belt, in
contactwith the rollers, is susceptible to tearing on its sides or bottom
due to sharp objects falling on the roller supports. In terms of
network model design, there are dual challenges. Firstly, to enhance
detection accuracy and speed, algorithms tend to overlook the
increase in the number of parameters. Consequently, the resulting
high memory consumption and computational complexity hinder
the deployment of edge devices. Secondly, in striving for a lightweight
model with improved generalization performance, the design of deep
learning network models often neglects a profound integration of
features from longitudinal tearing images of conveyor belts and the
accelerated convolution calculations at the mobile end.

FPGAs have found application in deploying and accelerating
neural networks, leveraging their advantages of low power con-
sumption and high efficiency (Li et al., 2022; Chen et al., 2022;
Ganesh et al., 2022). Nguyen et al. (2019) implemented a CNN
using the VC707 FPGA, achieving a throughput of 1.877 Megabits
per second at a 200 MHz batch. The on-chip power consumption
was 18.29 W, and the mean average precision (mAP) of the YOLO
network experienced a reduction of 2.63%. Yu et al. (2022) utilized
the Xilinx deep neural network development kit to convert an
improved YOLOv3 into programmable logic (PL) and deployed
it on the Python Productivity for Zynq (PYNQ-Z2) FPGA, achiev-
ing a processing speed of 1.54 frames per second (FPS) while
consuming a high power of 10 W. Bao et al. (2020) introduced an
accelerator design method based on the Winograd algorithm for
YOLO, a deep learning object detection model under the PYNQ
architecture. Li et al. (2022) applied the Winograd algorithm to
optimize the conv3*3 operator in the YOLOv3-tiny network,
resulting in improved accelerator efficiency. Adiono et al. (2021)
designed a general matrix multiplication (GEMM) processor for
the YOLOv3-Tiny network, utilizing an optimal shrink array archi-
tecture to conserve on-chip storage space. Yu and Bouganis (2020)

pioneered the implementation of a parameterized FPGA custom
architecture specifically tailored for YOLOv3-tiny, optimizing it for
latency-sensitive applications. Zhang et al. (2022) adopted the static
quantizationmethod of fixed-point numbers to achieve a reasoning
delay of 498.89 ms for YOLOv4-tiny on ZYNQ-7020, with an
average accuracy exceeding 0.95. Xu et al. (2022) designed
YOLOv4-tiny convolution and pooling IP kernel on the FPGA
platform, accelerating the calculation of convolution and pooling
and enabling the identification of coal and gangue.

This paper makes the following main contributions:

(1) Addressing the longitudinal tearing detection issues on both
the upper and lower surfaces of conveyor belts, we devised a
multidimensional surface target detection test apparatus.
This apparatus was designed to gather and analyze multidi-
mensional longitudinal tearing image sample features from
the conveyor belts.

(2) Proposing an innovative networkmodel, ECSMv3-YOLO, that
embeds a hybrid attention mechanism in the backbone net-
work. Thismodel focuses on the longitudinal tearing features in
images under low-light conditions prevalent in coal mines. It
features lightweight model parameters, thereby enhancing the
recognition accuracy of targets on mobile devices.

(3) Customizing an FPGA accelerator for the ECSMv3-YOLO
network, employing fixed-point quantization, model prun-
ing, and normalization of convolution kernel sizes to reduce
network computational load. Designing Winograd and
GEMM computation engines, utilizing parallelized convolu-
tion unfolding to accelerate FPGA processing. To minimize
data transfer latency, dual buffers and multiple direct mem-
ory access (DMA) channels are introduced.

Finally, FPGA acceleration experiments of the networkmodel were
carried out. The results show that this work provides a newmethod
for longitudinal tear detection of mine conveyor belt, and opens the
way for low latency object detection on FPGA devices.

Network design and FPGA accelerator

ECSMv3_YOLO network

In the original YOLOv8 algorithms (Terven and Cordova-Esparza,
2023), the extensive use of CSPDarknet network layers resulted in a
complex and challenging-to-train model. Considering the need for
deploying a lightweight network on FPGA mobile devices, this
paper substitutes MobileNetv3 for CSPDarknet as the backbone
for feature extraction. To enhance the model’s detection capability
for longitudinal tears in conveyor belts and its adaptability to
various degrees of longitudinal tearing, we introduce a hybrid
domain attention mechanism to replace the SENet channel atten-
tion mechanism. The improved MobileNetv3 network model,
named ECSMv3, depicted in Figure 1, incorporates the ECSNet
hybrid domain attention mechanism composed of the efficient
channel attention (ECA) (Wang et al., 2020) module and spatial
transformer (ST) (Jaderberg et al., 2015) module.

In the ECSMv3 network structure illustrated in Figure 1, the
dimension of the input feature layer is initially increased through a
1*1 convolution, followed by feature extraction using 3*3 depthwise
separable convolution. Subsequently, an efficient attentionmodule,
the ECA module, is constructed using global average pooling and
1D convolution with an adaptive convolution kernel size (k). This
module facilitates effective interaction of information between
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channels, acquiring channel weights to enhance the utilization of
pertinent channels. The feature maps of these pertinent channels
are obtained and undergo spatial transformation using the ST
module and 2D convolution operations, resulting in feature maps
post-affine transformation that augment the network’s feature
extraction capability. Finally, 1*1 convolution is applied for dimen-
sion reduction, and the input feature maps are concatenated to

obtain the output of the network model, thereby achieving the
objective of improving the model’s detection accuracy.

The hierarchical parameters of the ECSMv3 network are pre-
sented in Table 1. Inspired by the architectural design of the YOLO
series networks, a lightweight real-time target detection neural
network model, ECSMv3-YOLO, was developed to enhance the
model’s detection accuracy and inference speed. ECSMv3-YOLO
represents an end-to-end object detection framework based on
regression, as illustrated in Figure 2.

In the ECSMv3-YOLO model architecture, the K-means algo-
rithm is employed to cluster the dataset and determine the lengths
and widths of anchor points. The model’s input image size is set to
416 × 416, utilizing the ECSMv3 backbone network for feature
extraction. The neck section of the model incorporates a significant
number of depth-wise separable convolutional blocks for lightweight-
ing, and the prediction section yields two effective feature layer
outputs. Within the SPP structure, max-pooling kernels of sizes
13*13, 9*9, 5*5, and 1*1 are applied to enhance the network’s recep-
tive field, facilitating the separation of crucial contextual feature
information. The neck section employs a top–down and bottom–

up structure for feature fusion, producing two Prediction heads with
output sizes of 13×13and26× 26, predicting 3 anchors for each scale.

Figure 1. ECSMv3 network structure.

Table 1. Hierarchical parameters of the ECSMv3 network

Hierarchy
name Input Out Numbers

Activation
function Attention

Conv2D_BN_
hard-swish

416×416×3 208×208×16 1 hard-swish No

Bneck_block 208×208×16 208×208×16 1 relu No

Bneck_block 208×208×16 104×104×24 2 relu No

Bneck_block 104×104×24 52×52×40 3 relu Yes

Bneck_block 52×52×40 26×26×112 6 hard-swish Yes

Bneck_block 26×26×112 13×13×160 3 hard-swish Yes

Figure 2. Structure of ECSMv3-YOLO model.
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This ultimately accomplishes the recognition, classification, and out-
put of conveyor belt longitudinal tear images of different classes.

FPGA accelerator

The customized FPGA accelerator for the ECSMv3-YOLO network
is depicted in Figure 3, with the top-level control (TOP_CONTROL)
executing data transfer. Multiple DMA channels have been designed
to leverage off-chip dynamic random access memory (DRAM)
resources for caching feature maps, weights, and bias data, while
also managing read and write operations to on-chip cache. The data
transfer utilizes a first-in, first-out (FIFO) approach, and circular
parallel unfolding is employed for convolution computation. To
expedite the computations of numerous 3*3 and 1*1 convolutional
layers, two enginemodules have beendevised, switching based on the
convolution kernel size, and the feature results are output to the off-
chipDRAMcache via FIFO. The entire process involves three stages:
data retrieval, convolution computation, and data transmission to
the off-chip, facilitating the convolutional layer acceleration of the
ECSMv3_YOLO network.

Lightweight FPGA computation network

In the ECSMv3_YOLO network structure depicted in Figure 2, the
convolutional kernel comes in five sizes: 13*13, 9*9, 5*5, 3*3, and
1*1. When utilizing FPGA resources for parallel computation of
convolutional layers, these five sizes exhibit substantial differences
and are not evenly divisible by each other, excluding the 1*1
convolution. During the process of loop parallel convolution
unrolling, finding an optimal convolution kernel expansion size

suitable for each layer proves challenging, resulting in a wastage of
hardware computing resources. To optimize the parallel unfolding
computational resources of FPGA convolution in the ECSM-
v3_YOLO network, a method of convolution kernel size normal-
ization is proposed. This method employs a multilevel
concatenation of small-size convolution kernels to substitute for
large-size convolution kernels, and its optimization process is
illustrated in Figure 4a.

From Figure 4a, it can be observed that replacing the 5*5 convo-
lution kernel with a 2-level 3*3 convolution kernel calculation results
in a reduction of convolution weights from 25 to 18. Similarly, the
concatenation of 6-level and 4-level 3*3 convolutional kernels opti-
mizes the computation for the 13*13 and 9*9 convolutional kernels,
respectively, leading to a decrease in the number of weights from
169 and 81 to 54 and 36. By employing the optimization scheme of
convolution kernel size normalization, original convolution kernels
larger than 3*3 can be standardized to 3*3. Following the convolu-
tional normalization operation, a significant decrease in the number
of convolutional kernel weights is achieved while maintaining the
perceptual field of each convolutional layer. This is advantageous for
the design of optimal parallel expansion scales in the hardware
architecture, further enhancing hardware computational efficiency.

The process of compressing the ECSMv3-YOLO network using
pruning techniques is illustrated in Figure 4b. Initially, a scaling
factor is introduced for each output channel between the layers of
the networkmodel, and it is multiplied by the output weights of each
channel. Subsequently, during the training process of the network
model, both the network weights and scaling factors are involved in
training, simultaneously undergoing sparse regularization. Finally,

Figure 3. Customized FPGA accelerator architecture for ECSMv3_YOLO.
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pruning is applied to channels with smaller-scale factors. The overall
training objective of the entire pruning method is as follows:

L=
X
x,yð Þ

l f x,Wð Þ,yð Þ + λ
X
γ∈Γ

g γð Þ (1)

Where x,yð Þ is the training input and the target output. W is the
weight of the network model. f x,Wð Þ represents the model
function, and l denotes the loss function, which quantifies the
discrepancy between themodel’s predictions f x,Wð Þand the actual
labels y. The network model introduces an L1 regularization term
for the scaling factor γ. The first term of L represents loss of model
training, the second term of L represents the sum of the penalty
g γð Þ caused by the sparsity of the scaling factors γ , and the two
terms are balanced by the regulation factor λ. During the pruning
process, when λ < 0:1 , the input and output channels of the
convolutional layer are removed from the network.

To effectively utilize FPGA hardware resources and enhance
data transfer speed, a dynamic 16-bit fixed-point precision data
quantization strategy (Qiu et al., 2016) is employed to quantize the
weights, biases, and feature maps of the network model. This helps
reduce memory consumption and the utilization of computational
resources, allowing for better utilization of external storage band-
width. The formula for converting 16-bit fixed-point quantized
data to signed complement is as follows:

V fixed16 =
X15
i= 0

Bi �2�f l �2i, Bi ∈ 0,1f g (2)

Where f l is the length of the decimal place, 15� f l
� �

is the length of
the integer bit, combined with the 1-bit part of the symbol to form a
complete 16-bit fixed-point number. f l is the key to dynamic precision
quantization. Between different layers and among different feature
maps in the convolutional network, dynamic f l values are employed,

resulting in varying lengths of integer and fractional parts for corres-
ponding fixed-point numbers in different layers. Static f l values are
used within the same layer and the same feature map to minimize
truncation errors within each layer/feature map. In the convolutional
computations of the ECSMv3-YOLO network, shift operations are
performed based on the optimal quantization bit-width for each layer.
After quantizing the weights, biases, and feature maps, the ReLU
activation function is also subjected to 16-bit fixed-point quantization.

FPGA acceleration strategy

Convolution parallel unrolling

The convolutional computation of the proposed ECSMv3_YOLO
network comprises four cyclic loops, as depicted in Figure 5. These
loops include the convolution kernel loop, input channel loop,
input feature map loop, and output channel loop. The convolu-
tional operations are cyclically executed along four loops, sliding
between the convolution kernel and feature maps, providing sig-
nificant parallel optimization space. The key is to design the scale,
dimensions, and magnitude for the cyclic parallel expansion within
the ECSMv3_YOLO network.

To effectively map and execute convolution loops, loop
unrolling is employed to expedite convolution computations,
enabling high-throughput and efficient data reuse within the
architecture for convolutional calculations. The unrolling of
various convolution loops results in distinct parallelization of
computations, influencing the optimal processing element
(PE) architecture concerning data reuse opportunities andmem-
ory access patterns (Ma et al., 2018). Given the FPGA’s con-
strained number of multipliers, this paper aims to enhance pixel
data reuse and PE efficiency during FPGA hardware design. It
also seeks to balance the impact of different dimensions of
unrolling on buffer bandwidth and the depth of intermediate

(a) Multi-level cascade convolution 
normalization

(b) Channel convolution pruning [(Liu et al. 2017)]

Figure 4. Multilevel cascade convolution normalization and model pruning (b: Liu et al., 2017).
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results. Specifically, this study explores the loop parallel unroll-
ing of the Loop-3 input feature map in the ECSMv3_YOLO
network structure. The hardware unfolding of the design is
illustrated in Figure 6.

To maximize the parallelism following loop unrolling, the par-
allel unrolling scale of different convolutional operation layers
should be the greatest common factor of the relevant loops for each

layer. The values of loop unrolling variables collectively determine
the total number of parallel multiply-accumulate (MAC) oper-
ations, calculated using the following formula.

Pm= Pkx ×Pky × Pix ×Piy ×Pof (3)

ECSMv3_YOLO network model employs the design approach
of convolution kernel size normalization. The size of the

Figure 5. Four-layer Loops of convolution computation.

Figure 6. FPGA parallel loop unrolling computation of ECSMv3_YOLO input feature maps (Ma et al., 2018).
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convolution kernel Pkx ×Pky of each layer is 3 × 3, the maximum
common factor Pof of the input and output channels for each layer
is 8, and the maximum common factor Pix × Piy of the input
feature map for each layer is 13 × 13. Therefore, the overall
parallelism using the Loop-3 parallel unrolling method is 169.

Design of Winograd engine

For FPGA computation of 2D convolution F(m × m, r × r), the
number of multiplications for sliding window convolution is
m2 × r2, while it is reduced to (m + r � 1)2 when employing
Winograd convolution. Here, m × m represents the feature map
of the ECSMv3_YOLO network, and the convolution kernel size is
r × r. The result of the Winograd convolution calculation is
expressed as a matrix multiplication, as shown in the following
equation (Lu et al., 2017; Lavin and Gray, 2016).

Y =AT GwGT
� �

⊙ BTxB
� �� �

A (4)

Where ⊙ represents the multiplication of the corresponding
elements, when F(2 × 2,3 × 3) is calculated, w = W0W1W2½ � is
the row element matrix of the 3*3 convolution kernel,
x = x0x1x2x3½ � is the row element matrix of the 4 × 4 input feature
map, and Y represents the 2 × 2 output feature map obtained after
Winograd convolution calculation. A, B, G, and their transpose are
the transformation coefficients for Winograd convolution, with
their values depicted in the following equation.

AT =
1 1 1 0

0 1 �1 �1

� �
B=

1 0 0 0

0 1 �1 1

�1 1 1 0

0 0 0 �1

2
6664

3
7775 G=

1 0 0

1=2 1=2 1=2

1=2 �1=2 1=2

0 0 1

2
6664

3
7775

(5)

The conversion coefficient matrix includes constants ±1,
0, and ± 1/2, which increase as (m + r � 1) increases. After the
convolution calculation parameters are dynamically quantized into
16-bit fixed-point integers. Tomaintain the recognition accuracy of
the proposed ECSMv3_YOLO network, the precision of the con-
volution kernel must not fall below 2�10, and the value of
(m + r � 1) in the Winograd algorithm should not exceed 8. The
constant multiplication operation is implemented using shift oper-
ations or a combination of 2m or 2�m, ensuring that it does not
consume digital signal processor (DSP) resources.

The PE engine design, incorporating the fusion of Winograd
convolution with activation and pooling modules, is depicted in
Figure 7. TheWinograd convolutionmodule encompasses four key

steps. In the first stage, feature maps are acquired from the input
buffer, and weights are retrieved from the convolution kernel
buffer. These two transformations are independently and concur-
rently executed, utilizing FPGA’s. Look-Up Table (LUT) resources
to perform shift operations for constantmultiplication inmatricesB
and G, thus conserving on-chip storage block random access mem-
ory (BRAM). In the second stage, three parallel matrices are used to
perform dot multiplication on the transformed data blocks of each
channel. In the third stage, the output transformation of each
channel is derived through Winograd matrix multiplication. In
the fourth stage, the resultant values of the output feature maps
for each channel are accumulated by using the parallel channel
addition tree structure. In the activation pooling module, activation
and pooling operations are applied to the obtained single-channel
4 × 4 output feature map. The max pooling kernel size is set at 2*2
with a stride of 2. Finally, three comparators are employed to
produce the output results. The integration design of these two
modules in the PE engine reduces the transmission latency of
convolution and pooling calculations.

According to the pseudocode of the Winograd convolution
inner loop in Figure 8, mappings of rows and columns of input
features, as well as loop unrolling of input and output channels, can
be performed. Different parallelization strategies lead to distinct
data sharing and throughput. Considering that parallel unrolling of
the row-loop will significantly increase the size of on-chip row
buffers, and parallel unrolling of the col-loop may lead to severe
memory bank conflicts, the ti-loop and to-loop parallel unrolling
methods are employed. Simultaneously, in the convolution layer
architecture of the Winograd algorithm on FPGA, the input, out-
put, and convolution kernel buffers are partitioned to maintain

Figure 7. PE engine integrating Winograd convolution, activation, and pooling modules.

Figure 8. Pseudocode for the inner loop of the Winograd convolution (Lu et al., 2017).
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effective memory bandwidth. Using Tm and Tn to denote the
maximum unfolding factors of ti-Loop and to-Loop, respectively.
Based on the different sizes n of input Winograd blocks and the
resource consumption of parallelism Tm and Tn, the computational
load ofDSP consumption is obtained. A regressionmodel is utilized
to predict the consumption of LUTs. The formulas for DSP and
LUT calculations are as follows:

DSP = n2 ×Tn ×Tm (6)

LUT = δrn ×Tn ×Tm (7)

Where δrn is the LUT consumption of a singleWinograd PEwith
inputWinograd tile size n and convolution kernel size r.Combined
with the PE structure of the Winograd convolution and pooling
module of the FPGA in Figure 7. The stride between two adjacent
Winograd tiles is designed to be m, where m = n � r + 1. The
amount of BRAM consumed to compute the Winograd convolu-
tion is given in the following equation.

BRAMs = r2 ×Tn ×Tm + n+mð Þ× n×m×Tm + 2 ×m2 ×Tn (8)

Design of GEMM engine

For the numerous 1*1 convolution operation layers in the ECSMv3
backbone network of the ECSMv3_YOLO model, a PE engine is
designed to integrate the GEMM convolution and reordering mod-
ule, as depicted in Figure 9. The GEMM convolution calculation
involves three layers of nested loops. The outer loop mirrors the
structure of the 3*3 convolution in the Winograd algorithm. The
multiplication and accumulation operations at corresponding posi-
tions in the inner loop are transformed into matrix multiplication
through the GEMM algorithm. Based on the operation with a
convolution kernel size of 1*1, considering the advantage that it
eliminates the need for input feature maps to undergo Im2col
operations, a series of copying and permutation processes are saved.
Utilizing GEMMmatrixmultiplication for continuous access to the
input feature map enhances the efficiency and speed of the 1*1
convolution.

The GEMM module in Figure 9 includes the operation of
multichannel feature maps and multichannel 1*1 convolution

kernels to obtain the weights of multichannels and all pixel values
of the corresponding channel featuremaps, the intermediate results
are calculated by parallel matrix multiplication, and the output
results of single channel are obtained by parallel channel addition
tree accumulation. After the output feature map results are
obtained by calling the inner loop GEMM algorithm for the
[Nix/Niy] time, the reorderingmodule is then entered. By designing
a 4-way selector, the 2*2 convolution window data on the output
feature map is divided into 4 channels, resulting in the output
feature map having four times the original number of channels.
Consequently, the feature values of each single output channel are
half of the output feature map. The fusion of the reordering
operation and GEMM convolution calculation module can also
be used for the 1*1 convolution layer of the upsampling process in
the ECSMv3_YOLO network.

Dual system memory

The dual-cache system and multichannel transmission structure are
illustrated in Figure 10, and implemented in FPGA for the ECSM-
v3_YOLOnetwork to reduce the latency associated with overlapping
data loading, data computation, and output stages. It primarily
comprises an off-chip dynamic memory DRAM system and a regis-
ter REG combined with a block buffer BRAM system. During the
operation of the convolution layer, the proposed dual-buffer system
facilitates the delayed overlap of the three stages: data input, convo-
lution loop unrolling calculation, and result output, allowing for
effective data reuse in the DRAM cache. Given that input feature
maps are significantly larger than the 3*3 convolution kernel,
the convolution kernels are initially unrolled cyclically to enable
the reuse of current unrolled feature map pixels and alleviate the
buffer throughput pressure on the on-chip BRAM. Subsequently,
the input feature maps undergo cyclic unrolling. This process, in
conjunction with the feature map blocking strategy, entails cach-
ing the feature map first, followed by the on-chip BRAM cache of
the weights.

In design of the customized FPGA accelerator for the ECSM-
v3_YOLO network, a parallel data transmission strategy utilizing
multiple DMA channels is employed. Specifically, considering
that the number of input channels for the cyclic block of feature
maps is 4, and the output channels are 32, the data from each
channel of the input feature maps is read in parallel using

Figure 9. PE engine integrating GEMM convolution and reordering modules.
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4 channels. The number of weights of 32 3*3 convolution kernels
is less than the 418×418 input feature map pixel values of a single
channel, so the weight and bias information are transmitted
through the DMA of 1 channel. In consideration of the overlap
of the overall delay between pixel loading and feature map pro-
cessing, the DMA of 2 channels is designed to transmit informa-
tion for the 32 output channels.

Results and analysis

Experimental equipment

The longitudinal tearing of the conveyor belt is prone to happen
not only on the upper surface carrying the coal but also, when the
belt deviates or slips, sharp objects in the conveyed coal can
easily become lodged in the lower position of the roller, leading
to severe tearing of the lower surface of the conveyor belt.
Therefore, comprehensive tear detection is essential for both
the upper and lower surfaces of the conveyor belt. The designed
device for detecting longitudinal tearing in the multidimensional
conveyor belt is illustrated in Figure 11. Considering that the
head and tail of the belt conveyor are prone to tearing at the
loading and unloading points, the upper surface detection cam-
era is suspended directly above the coal-free section in front of
the loading port. Simultaneously, the lower surface detection
camera is positioned between the upper and lower conveyor belts
near the unloading end. This camera setup enables a swift and
effective safety inspection of locations prone to tearing. Add-
itionally, it ensures that the collected image samples remain
unobstructed by coal, allowing for more comprehensive

detection of longitudinal tears on the conveyor belt surface.
The designed light sources are arranged to illuminate vertically,
and their brightness can be adjusted to simulate varying illu-
mination conditions.

The laboratory-setup multidimensional conveyor belt detection
system is illustrated in Figure 12. The conveyor belt utilized is a
standard coal mine steel wire rope conveyor belt with a width of
0.6m and a thickness of 15.0mm. The belt conveyor is adjustable in
speed, with a total length of 4.0 m and a maximum belt speed of
4.0 m/s. Cameras and light sources in the experiment are mounted
on a sliding rail, enabling dynamic adjustment of the spacing with
the conveyor belt. The camera model is MV-CA003-21UC, a
USB3.0 industrial camera designed for visual inspection, with a
C-Mount lens and an industrial filter. The light source consists of
two FG-DR70-A45-W ring lights, and the light controller is
HG-APC2424-C-4CH, used for adjusting the intensity of the two
ring lights.

In the process of deploying the ECSMv3_YOLO network for
parallel acceleration on FPGA to detect vertical tearing targets,
considering that mining conveyor belts work continuously over
long distances and frequent shutdowns for maintenance would
greatly reduce transportation efficiency, it is therefore crucial to
accurately identify and dynamically track the category and loca-
tion of tearing occurrences. Firstly, when a tear in the conveyor
belt is detected, the system responds with signals indicating the
type of tear (large crack or complete tear), as well as the position
and time captured by industrial cameras. Secondly, based on
factors such as continuous conveying speed of the belt, transport
distance, position of industrial cameras in both vertical dimen-
sions, occurrence time of tearing events, and downtime duration,

Figure 11. Multidimensional camera and light source placement diagram.

Figure 10. Dual-system cache and multichannel input architecture.
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damaged areas during marking/positioning movements are
dynamically calculated to facilitate corresponding repair strat-
egies after shutdown.

ECSMv3_YOLO results

The quality of the dataset significantly influences the detection of
longitudinal tears in conveyor belts in actual production envir-
onments. Considering that steeply inclined mining conveyors
operate at very low speeds (typically 0.5 m/s) to prevent ore
spillage, this study conducts experiments on image collection,

enhancement, detection performance, and FPGA parallel accel-
eration testing at a conveyor speed of 0.5 m/s. Utilizing industrial
cameras placed at various locations to capture video sources, the
video frame extraction method was applied to extract images
containing longitudinal tears. A total of 350 image samples were
obtained, representing both the upper and lower surfaces of the
conveyor belt. To address the issue of overfitting in network
training with small-sample data, a variety of augmentation tech-
niques, including mosaic augmentation, affine transformation,
rotation shearing, flipping, and adding Gaussian noise, are
employed. These techniques enhance the longitudinal tear dataset

Figure 13. Image enhancement and network training loss.

Figure 12. Experimental device for multidimensional longitudinal tear detection of the conveyor belt.
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for conveyor belts to a total of 1500 samples. This enhances the
model’s ability to discern the positions of image targets, thereby
facilitating more efficient feature extraction. The images obtained
from the original acquisition and the augmented samples are
illustrated in Figure 13a, depicting tears categorized as either large
cracks or complete tears.

The primary objective of the ECSMv3_YOLO network is to
minimize the computational load and parameters of the model,
ensuring a balance between detection accuracy and speed, thereby
achieving a design characterized by low complexity and lightweight
attributes. The dataset was partitioned using 10-fold cross-
validation, where the training and test sets were mutually exclusive
with a ratio of 9:1. This procedure was iteratively repeated 10 times
for both training and testing. Take the average of these tests’ results
to comprehensively evaluate the performance of the model. The
loss curve of ECSMv3-YOLO trained using the NVIDIA RTX 2070
SUPER GPU is depicted in Figure 13b. During the initial 1–10
iterations, the loss values are relatively high with a sharp decrease.
After 500 iterations, the loss value stabilizes around 0.8, indicating
the acquisition of favorable model parameters. The model’s per-
formance is assessed through metrics such as mAP, FPS, floating
point operations (FLOPs), and the total number of training param-
eters (Params).

The MobileNetv3 network was enhanced by integrating the
SENet, CBAM, ECA, and the hybrid domain attention mechan-
ism ECSNet proposed in this paper. The results of different
attention mechanisms in the ECSMv3_YOLO network are dis-
played in Table 2. Through comparative analysis, the addition of
the channel domain attention ECA module exhibited a superior
effect compared to SENet. With a marginal FPS difference of 1.0
frame/s, the detection accuracy of the hybrid domain attention
mechanism ECSNet slightly surpassed that of ECA, and it was
1.3% higher than CBAM. The FLOPs and Params were reduced
by 0.003G and 0.752M, respectively. The test results confirm that
the ECSNet designed in this study demonstrates better perform-
ance.

The superiority of ECSMv3_YOLO is validated by comparing
the performance of different network models, as shown in
Table 3. The ECSMv3_YOLO and YOLOv4-Tiny networks both
employ two-scale prediction heads and six anchors, with lower
FLOPs and Params. YOLOv4-Tiny achieves a maximum FPS of
45 frames/s but with a minimummAP of 0.875. In comparison to
the YOLOX-s network, ECSMv3_YOLO outperforms in various
evaluation metrics. In comparison to YOLOv5-s, ECSM-
v3_YOLO demonstrates a reduction of 1.859G FLOPs and a
3.3% improvement in mAP, with the Params difference of
1.826M. Furthermore, compared to YOLOv8-s, ECSMv3_YOLO
achieves further reductions in FLOPs and Params, reaching
4.882G and 8.851 M, respectively. Despite a 3 frames/s difference
in FPS, ECSMv3_YOLO shows a 1.5% improvement in mAP,
reaching 0.978. These comparative results indicate the significant
advantages of employing ECSMv3_YOLO for multidimensional
longitudinal tear detection on conveyor belts.

Different hardware acceleration

The platform for detecting conveyor belt longitudinal tear targets
with different hardware accelerations is depicted in Figure 14. In
the FPGA acceleration of the ECSMv3_YOLO network, IP cores
for pwconv, dwconv, conv, fc, shortcut, and sampling were crafted
using Vivado HLS 2019.2. Leveraging the block design module of
Vivado 2019.2, the IP cores for each module are instantiated, and
the IP core parameters for the ZYNQ development board are
configured. The complete IP core architecture is depicted in
Figure 15. Test results reveal that the total delay of the hardware
system for accelerating the ECSMv3_YOLO network using FPGA
is 255 ms, with a power consumption of 3.2 W, achieving a
throughput of 15.56 GOP/s and an energy efficiency ratio of
4.86 GOP/s/W.

Within the overall architecture of IP core acceleration for the
ECSMv3_YOLO network, the pwconv IP core utilizes GEMM
convolution-reranking fusion operations to expedite the 1*1 con-
volution in pointwise convolution. The dwconv and conv IP cores
utilize Winograd convolution-BN-activation-pooling fusion
operations to accelerate standard and depthwise separable 3*3
convolution layers. The fc IP core is responsible for accelerating
the global average pooling layer and fully connected layer. The
shortcut IP core accelerates the residual layer, and the sampling IP
core accelerates the sampling layer. The IP cores on the PL side are
invoked multiple times by the PS side to achieve the acceleration
of the ECSMv3_YOLO network model. Based on GPU-trained
network weights, they are stored separately according to the
network architecture’s point-wise convolution layers, channel-
wise convolution layers, residual layers, ordinary convolution
layers, sampling layers, and prediction heads. The test dataset
samples and network weights are stored in SD cards, and the data
is read using the API provided by Xilinx.

The recognition results of the FPGA-accelerated ECSM-
v3_YOLO network platform, developed using Xilinx Vitis 2019.2,
are depicted in Figure 16. A comparison of mAP under different
light intensities reveals a slight decrease compared to the 0.978
achieved by the GPU. This discrepancy is primarily attributed to
partial accuracy loss resulting from dynamic 16-bit fixed-point
quantization and model channel pruning. Similar conclusions are
drawn from the light-intensity tests conducted for GPU acceler-
ation. The network demonstrates optimal testing performance
under low-light intensity conditions of 84 lux, achieving a remark-
able mAP of 0.962, aligning with the dark conveying environments

Table 2. Results of changing attention mechanism in the network

Network Backbone network
FLOPs
(G)

Params
(M) mAP

FPS
(frames/s)

ECSMv3_YOLO MobileNetv3 + SENet 7.030 11.309 0.952 33

ECSMv3_YOLO MobileNetv3 + ECA 7.027 9.797 0.958 35

ECSMv3_YOLO MobileNetv3 + CBAM 7.032 10.550 0.963 33

ECSMv3_YOLO ECSMv3 7.029 9.798 0.976 34

Table 3. Effect comparison of different networks

Network Backbone network
FLOPs
(G)

Params
(M) mAP

FPS
(frames/s)

YOLOv4-Tiny CSPdarknet53-Tiny 6.823 5.876 0.875 45

YOLOX-s Focus+CSPDarknet 11.254 8.938 0.952 35

YOLOv5-s C3 + CSPDarknet 6.741 7.025 0.945 38

YOLOv8-s C2f + CSPDarknet 12.104 11.136 0.963 40

ECSMv3_YOLO ECSMv3 4.882 8.851 0.978 37
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typical in most mines. Even under moderate and strong light
backgrounds, the model exhibits high recognition accuracy, with
mAP exceeding 0.95, showcasing robustness in longitudinal tear
detection.

FPGA accelerator performance analysis

To validate the effects before and after pruning and quantization of
the ECSMv3-YOLO network, comparative experimental results are

presented in Table 4. The mAP of the ECSMv3-YOLO network,
quantified with Fixed-32 before model pruning is 0.978. After
model pruning and Fixed-16 quantization, the mAP decreases by
0.016, and the average inference time is reduced from 418 to
255 ms. The number of model parameters is compressed from
8.851 to 6.257 M, and FLOPs are reduced by 18.74%. The results
reveal the existence of numerous redundant weight values in the
original ECSMv3-YOLO network, and channel pruning effectively
reduces model complexity, preventing overfitting. The pruning and

Figure 14. Target detection platform with various hardware accelerations.

Figure 15. IP cores for FPGA hardware accelerators.
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quantization methods significantly reduce FPGA inference time,
the number of parameters, and the computational workload,
thereby enhancing the model’s detection speed.

According to the pruned ECSMv3_YOLO network, the size of
the large convolution kernels in the network is normalized to 3*3.
The experiment is conducted on the FPGA development platform
of AX7Z020, and Table 5 presents the performance comparison
results of different acceleration engine types. It is observed that
when the operating frequency is 150 MHz and dynamic 16-bit
fixed-point quantization technology is employed, the perform-
ance of the three FPGA accelerator engines is high. Among them, the
power consumption and total latency of the GEMM+ reordering
engine are higher at 3.9 W and 342 ms, respectively. Due to the
characteristics of the ECSMv3_YOLO network, which involves a
significant number of depthwise separable convolutions, a greater
number of combination operations of 3*3 and 1*1 convolutions are
included. Leveraging an engine that integrates Winograd convolu-
tion with activation and pooling to accelerate 3*3 convolutional
layers, combined with the GEMM algorithm fused with reordering

to accelerate 1*1 convolutional layer, yields a power reduction of 0.4
and 0.7 W compared to either acceleration engine alone. The min-
imum total latency achieved is 255 ms. The results indicate that
utilizing the combined engine for accelerating the ECSMv3_YOLO
network in longitudinal tear detection brings noticeable performance
advantages.

Simulated testing of FPGA resource utilization for the ECSM-
v3_YOLO network was conducted in the Vivado HLS 2019.2
environment. For the Zynq-7020 core component, there is a 64-
bit AXI_ACP interface on the PL side, 8 DMA channels, 220 DSP
slices, 280 slices of memory with a total of 4.9 Mb BRAM, 85 K PL
cells, and 53,200 LUT cells. The resource utilization percentages are
detailed in Table 6, with the LUT utilization rate reaching 81.7%.
Specifically, the on-chip BRAM resources utilize 247 pieces, with
BRAM and Flip-Flop (FF) consumption rates of 88.2% and 67.6%,
respectively. Efficiently utilizing on-chip cache resources can effect-
ively reduce the frequency of off-chip DRAM accesses, thereby
lowering power consumption and FPGA latency. Due to the adop-
tion of the strategy of loop parallelization and unrolling in convo-
lution calculations, a significant number of 3*3 and 1*1
convolutional layers are computed using Winograd and GEMM-
based PE engines. Consequently, a higher utilization of on-chip
DSP resources is observed, reaching 97.73%.

The ECSMv3_YOLO network was tested on various hardware
acceleration platforms, including host CPU, GPU, and AX7Z020,
assessing power consumption, total delay, and energy efficiency
ratio indicators. The results are presented in Table 7. It is evident
that the Intel i7-10700 CPU-accelerated hardware does not out-
perform in all indicators. In comparison to CPU and GPU
hardware acceleration, the AX7Z020 hardware acceleration plat-
form exhibits the lowest power consumption at 3.2 W and a
computing time per image of 0.255 s at a frequency of 150 MHz.
The FPGA’s energy efficiency is 4.834 GOP/s/W higher than that
of the CPU and 0.16 GOP/s/W lower than that of the GPU.

Upper 

dimension 

Lower 

dimension 

mAP 0.962 0.958 0.957 0.953 0.955

Illumination (a) 84 lux (b) 207 lux (c) 341 lux (d) 2599 lux (e) 4891 lux

Figure 16. Detection results of FPGA-accelerated ECSMv3_YOLO network.

Table 4. Pruning experiment results of ECSMv3-YOLO network.

Network model
Quantization
accuracy FLOPs (G)

Inference
time (ms) mAP

Params
(M)

ECSMv3-YOLO
(Before pruning)

Fixed–32 4.882 418 0.978 8.851

ECSMv3-YOLO
(After pruning)

Fixed–16 3.967 255 0.962 6.257

Table 5. Comparison results of different acceleration engines.

Acceleration engine type
Frequency
(MHz)

Quantization
accuracy

Power
(W)

Total
delay
(ms)

Winograd + activation +
pooling

150 Fixed–16 3.5 286

GEMM + reordering 150 Fixed–16 3.9 342

Winograd + activation +
pooling, GEMM +
reordering

150 Fixed–16 3.2 255

Table 6. Hardware resource utilization of FPGA.

Resources BRAM DSP FF LUT

Available resources 280 220 106,400 53,200

Actually using resources 247 215 82,537 43,465

Consumption ratio 88.2% 97.73% 67.6% 81.7%
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Overall, the FPGA hardware acceleration architecture demon-
strates superior energy efficiency, lower delay, and minimal
power consumption, validating the clear hardware advantages
of the FPGA acceleration approach for the ECSMv3_YOLO
network.

In comparison with the work of other researchers focusing on the
FPGA-based acceleration of YOLO series algorithms, the results are
presented in Table 8. The findings indicate that, when utilizing similar
hardware resources and employing Fixed-16 quantization bit width,
this paper achieves higher energy efficiency and throughput while
maintaining lower power consumption and total delay compared to
theworks of Yu et al. (2022), Yu andBouganis (2020), andZhang et al.
(2022). The FPGA hardware’s ability to achieve a higher frequency
contributes to improved hardware performance. Adiono et al. (2021)
accelerated YOLOv3-tiny using Fixed-8 quantization at a hardware
frequency of 250 MHz, achieving further latency reduction and
increased energy efficiency. However, in this study, to ensure the
average detection accuracy of the ECSMv3_YOLO network, a
dynamic Fixed-16 quantization method was employed, resulting in
higher FPGA hardware acceleration throughput of 15.56 GOP/s and
lower power consumption of 3.2 W.

Conclusion and future work

This paper introduces the innovative ECSMv3_YOLO network,
designed for longitudinal tearing detection on conveyor belts. In

additrion, FPGA acceleration strategies were implemented to com-
pute the network, reducing edge computing latency and power
consumption. A multidimensional detection device for longitudinal
tearing on conveyor belts was constructed, and the performance of
the network and FPGA accelerator is tested.

(1) Samples of longitudinal tears on the upper and lower dimen-
sions of the conveyor belt were collected under varying light
intensities. The backbone network ECSMv3 was constructed,
embedding the hybrid attention mechanism ECSNet to
extract image features. Using a combination of 2Heads and
6Anchors, the ECSMv3_YOLO network was built, with test
results surpassing YOLO series networks, achieving mAP of
0.978, FLOPs of 4.882 G, and Params of 8.851M under a light
intensity of 84 lux.

(2) A customized FPGA accelerator for the ECSMv3_YOLO net-
work was designed. It involves pruning and quantization of
network parameters, parallel loop unfolding of convolutions,
and Winograd+activation+pooling engines, and GEMM
+reordering engines further accelerate the FPGA computation
of network convolutions. Utilizing dual-system memory, the
FPGAachieves a high throughput of 15.56GOP/swith a power
consumption of 3.2 w, and the total latency for processing a
single image is reduced to 255 ms.

(3) An FPGA-accelerated network platform was constructed,
conducting experiments on acceleration engines and model
lightweighting. A comparison of CPU, GPU, and AX7Z020
hardware acceleration performance validates the advantages
of the FPGA acceleration strategy proposed in this paper.
Compared to the results of other scholars investigating FPGA
acceleration for YOLO, our approach demonstrates superior
performance across evaluation metrics such as FPS, mAP,
power, and energy efficiency ratio.

The paper employs AX7Z020 hardware acceleration for ECSM-
v3_YOLO network, achieving commendable performance and
cost-effectiveness. However, constrained by hardware resources,
this study focuses solely on the parallel unfolding computation of
the network’s input and output feature mapping. Future research
could leverage higher-resource FPGA hardware to explore experi-
ments involving parallel unfolding of a cross-combination convo-
lution with a four-layer loop, aiming to further enhance
Throughput and Energy Efficiency Ratio. Considering the effects
of dust and haze in mine environments on the quality of industrial
camera video transmission, future developments could incorporate
a dust-clearing device for cameras, such as a rolling cover protecting

Table 7. Comparative results of ECSMv3-YOLO network on different hardware
platforms.

Names CPU GPU FPGA

Hardware platform Intel i7–10700 RTX 2070 SUPER AX7Z020

Frequency 4.59 GHz 471 MHz 150 MHz

Bit width (bits) Float–32 Float–32 Fixed–16

Average precision mean
(mAP)

0.978 0.978 0.962

Power (W) 48 36 3.2

Computing time per
image (s)

3.814 0.027 0.255

Energy efficiency ratio
(GOP/s/W)

0.026 5.02 4.86

Table 8. Comparative experimental results among different scholars.

YOLOv3
(Yu et al., 2022)

YOLOv3-tiny
(Adiono et al., 2021)

YOLOv3-tiny
(Yu and Bouganis, 2020)

YOLOv4-tiny
(Zhang et al., 2022) This Paper

Hardware platform PYNQ-Z2 Ultra96 V2 ZedBoard ZYNQ–7020 AX7Z020

Frequency 650 MHz 250 MHz 100 MHz – 150 MHz

Bit width (bits) Fixed–16 Fixed–8 Fixed–16 Fixed–16 Fixed–16

Power (W) 10 4.26 3.36 2.86 3.2

Throughput (GOP/s) – 31.5 10.45 9.24 15.56

Total delay (ms) 285 121 532 376 255

GOP/s/W – 7.4 3.11 3.23 4.86
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the lens equipped with a motion brush for real-time dust removal.
Additionally, research into defogging algorithms could further
ensure the high-quality acquisition of conveyor belt imagery.
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