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Barcelona, Spain and
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We present a one-parameter family Fλ of transcendental entire functions with zeros,
whose Newton’s method yields wandering domains, coexisting with the basins of the
roots of Fλ. Wandering domains for Newton maps of zero-free functions have been
built before by, e.g. Buff and Rückert [23] based on the lifting method. This
procedure is suited to our Newton maps as members of the class of projectable
functions (or maps of the cylinder), i.e. transcendental meromorphic functions f (z ) in
the complex plane that are semiconjugate, via the exponential, to some map g(w),
which may have at most a countable number of essential singularities. In this paper,
we make a systematic study of the general relation (dynamical and otherwise)
between f and g, and inspect the extension of the logarithmic lifting method of
periodic Fatou components to our context, especially for those g of finite-type. We
apply these results to characterize the entire functions with zeros whose Newton’s
method projects to some map g which is defined at both 0 and ∞. The family Fλ is
the simplest in this class, and its parameter space shows open sets of λ-values in
which the Newton map exhibits wandering or Baker domains, in both cases regions
of initial conditions where Newton’s root-finding method fails.
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functions; lifting of Fatou components; pseudoperiodic points;
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1. Introduction

The iteration theory of meromorphic functions has been a primary focus of recent
research in complex dynamics, investigating the possible extension of celebrated
theorems in rational dynamics and the occurrence of new phenomena (see [14]
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2 R. Florido and N. Fagella

for a comprehensive survey on the field). Transcendental meromorphic functions

f : C → Ĉ are holomorphic except for isolated poles on the complex plane that
may accumulate at the essential singularity at∞. They naturally arise, for example,
from the popular Newton’s root-finding method applied to entire functions. In order
to study the long-term behaviour of arbitrary points under iteration, we split the
Riemann sphere Ĉ := C ∪ {∞} into two completely invariant sets: the Fatou set
F(f) as the maximal open set on which the family of iterates {fn}n∈N is defined

and normal (or equicontinuous); and the Julia set J (f) := Ĉ\F(f), its chaotic
complement. If U is a Fatou component of f, i.e. a connected component of F(f),
then fn(U) is contained in a Fatou component Un for each n ∈ N, and U1\f(U)
contains at most two points [34]. If Un 6= Um for all n 6=m, then U is called a
wandering component (or wandering domain); otherwise U is eventually p-periodic,
where p ≥ 1 is the smallest such that Uk+p = Uk for some k ∈ N.

It is well-known that Newton’s method NF (z) := z − F (z)

F ′(z) , where F : C → C is

an entire function, may fail to converge to the roots of F, i.e. to the (attracting)
fixed points of NF. This happens not only if the initial condition z 0 is chosen in
the Julia set, but also if some iterate of z 0 falls into a periodic cycle of Fatou
components not containing the roots of F as showcased in [24], or even into a
chain of wandering domains. Although there are several conditions that rule out
the existence of wandering domains in this context (see e.g. [12] and [47, §4]),
explicit Newton’s methods with wandering domains were given in [18] and [23].
However, these examples were associated to zero-free functions F, so that there
were indeed no roots to be found. In the present work we display the first, to our
knowledge, explicit families of Newton maps which show that wandering domains
and attracting invariant basins can, and often do, coexist. Our construction is based
on the logarithmic lifting method due to Herman [33]. More precisely, we shall build
these wandering domains by lifting certain periodic Fatou components of a function
g, which is semiconjugate through an exponential map to a Newton’s method. This
leads to the following class of meromorphic functions in which the use of such a
technique makes sense. Denote by expτ (z) := e2πiz/τ the exponential of period
τ ∈ C∗ := C\{0}, and by S0(τ) :=

{
z : −1

2 < Re z
τ ≤ 1

2

}
its (fundamental) period

strip.

Definition 1.1. (Projectable functions). Let f : C → Ĉ be a transcendental
meromorphic function. We say that f is projectable via expτ if there exists a function
g, its exponential projection, satisfying

g ◦ expτ = expτ ◦f, (1.1)

whenever defined, where τ ∈ C∗.

By the preliminary change of variable z 7→ τz, we assume without loss of gener-
ality that τ =1. Given g, the function f is unique up to an integer, and it is called a
logarithmic lift of g. Here we point out that exp1 induces a conformal isomorphism

from the (extended) cylinder Â := C/Z ∪ {±i∞} onto Ĉ, which sends the upper
end +i∞ to 0, and the lower end −i∞ to ∞. Thus we may say that projectable
functions f quotient down to meromorphic maps of the cylinder, whose domain of
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Dynamics of projectable functions 3

definition will be specified later. This naturally raises several questions about the
nature of f and the dynamical relationship with its projection via exp1.

We wish to address such questions from a general point of view, and therefore
we start by identifying the structure of projectable functions via the exponential.
For this purpose, in §2 we transfer to the complex plane the notion of (simply and
doubly) pseudoperiodic maps in the sense of Arnol’d [3] (see definition 2.2). This is
in line with the work of Brady [21] who studied doubly pseudoperiodic functions,
as a generalization of the Weierstrass ζ-function. Pseudoperiodic maps turn out to
be the sum of a linear and a periodic map, and characterize projectable functions
as in the following theorem. Recall that the set of all periods of a non-constant
periodic meromorphic function on C forms either a 1-dimensional lattice τ1Z (the
simply periodic ones, e.g. e2πiz/τ1), or a 2-dimensional lattice τ1Z+ τ2Z (the doubly
periodic or elliptic ones, e.g. the Weierstrass ℘-function), where τ1, τ2 ∈ C∗ have
non-real ratio, say τ2/τ1 ∈ H+ := {z : Im z > 0} (see e.g. [1]).

Theorem 1 (Form of projectable functions). The class of projectable functions
f via exp1 coincides with the class of non-affine pseudoperiodic maps such that
f(z + 1) = f(z) + ` for all z, with ` ∈ Z. They can be written uniquely as

f(z) = `z +Φ(e2πiz), (1.2)

where Φ is a non-constant meromorphic function in C∗. Furthermore, f is doubly
pseudoperiodic (i.e. we also have f(z+τ) = f(z)+ητ for some τ ∈ H+ and ητ ∈ C)
if and only if

Φ(e2πiz) =
`τ − ητ
2πi

(
ζ(z)− 2ζ(1/2)z

)
+ E(z), (1.3)

where ζ is the Weierstrass ζ-function with respect to Z + τZ, and E is a doubly
periodic function with periods 1 and τ . In particular, f is also projectable via expτ
when ητ = Lτ for some L ∈ Z.

Hence, any projectable function via exp1 can be written as the sum of a linear
map and a periodic function Φ ◦ exp1 as above, which is either simply periodic,
doubly periodic, or a linear combination of those, with 1 as a period. We refer to
[32] for an example of the dynamics of a doubly pseudoperiodic function, where two
different directions of projection exist. In the case of entire projectable functions,
the dynamics of their exponential projections g, which are holomorphic self-maps of
C∗, has been widely studied, especially when both 0 and∞ are essential singularities
of g (see e.g. [15, 35, 36, 39, 41]), following the early work of Rädstrom [49]. In other
words, these projectable functions project down to holomorphic branched coverings
of C∗, which may not be well-defined at 0 or ∞ (i.e. the ends of the cylinder).
However, in the non-entire case, the map g is not going to be defined at all points
of C∗.

In this regard, given a projectable function f, in §3 we start the study of its
exponential projection g by showing that poles of f correspond via exp1 to essential
singularities of g in C∗ (see proposition 3.1). Thus g belongs to Bolsch’s class K
[19] of meromorphic functions with countably many essential singularities, which
is the smallest class that contains all transcendental meromorphic maps and is
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closed under composition. We denote by D(g) := Ĉ\E(g) the domain of definition
of g, where E(g) is the set of essential singularities, and by g−1(v) := {w ∈ D(g) :

g(w) = v} the set of preimages of v ∈ Ĉ under g. We can show that both 0 and ∞
(the omitted values of the exponential) are in D(g) if and only if f belongs to the
following class of (non-entire) projectable functions via exp1 (see proposition 3.4).

Definition 1.2. (Class R`). Denote by R`, ` ∈ Z, the class of meromorphic
functions of the form

f(z) = `z +R(e2πiz), (1.4)

where R is a non-constant rational map such that R(0) 6= ∞ and R(∞) 6= ∞. To
be precise,

R(w) =
anw

n + · · ·+ a0
bmwm + · · ·+ b0

(1.5)

is the ratio of coprime polynomials with m ≥ max {n, 1}, and an, bm, b0 ∈ C∗, i.e.
R−1(∞) ⊂ C∗ is non-empty.

Given f ∈ R`, its exponential projection g : Ĉ\R−1(∞) → Ĉ is written as

g(w) = w`e2πiR(w), (1.6)

for which 0 and ∞ are fixed points if ` > 0, a cycle of period 2 if ` < 0, or omitted
values if ` = 0. Since {0,∞} ∩ R−1(∞) = ∅, and the set of poles of R in C∗

coincides with the image under exp1 of the set f−1(∞) (see remark 2.4), we have
that E(g) = R−1(∞), and so each essential singularity of g has as many preimages
as the degree of R, counted with multiplicity, which we call (essential) poles of g
(see definition 3.2). Observe that g would be a transcendental meromorphic map,
i.e. #E(g) = 1, as long as f ∈ R` with exactly one pole in the period strip S 0 of
exp1. In general, this is also possible just for some projectable entire functions (see
remark 3.5). In our pursuit of wandering domains for Newton’s methods with fixed
points, the class R` is going to be central as will become clear later.

As an example, Newton’s method of sinπz is in class R1, with R(w) =
i
π

w−1
w+1 ,

while the Arnol’d standard map lies outside of R` since {0,∞} ⊂ R−1(∞) (see
example 1, and [29]). Any f ∈ R` may be seen as a map defined on the extended

cylinder Â, which is holomorphic outside of the canonical projection on C/Z of the
set f−1(∞) of poles of f. These functions correspond to pseudoperiodic analogues
of the (periodic) maps R◦exp1 which were studied in [8] (concerning the dimension
of Julia sets), but here, as in [37, §6], we allow the set of singularities of the inverse
function to intersect the Julia set.

Singular values play a pivotal role in complex dynamics. For a given g ∈ K,
these are points v in the range of g for which some branch of its inverse g−1 fails
to be defined in any neighbourhood of v. They are either critical values, asymptotic
values, or limit points of those. The critical value set CV(g) consists of images of
critical points of g which, in Bolsch’s class, correspond not only to points c ∈ D(g)
such that g′(c) = 0, but also to multiple preimages of an essential singularity.

The asymptotic value set AV(g) corresponds to those v ∈ Ĉ for which there is an
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asymptotic path γ : [0, 1) → D(g) such that γ(t) → ŵ ∈ E(g) and g(γ(t)) → v as
t → 1. We denote the set of singular values of g by

S(g) := CV(g) ∪ AV(g), (1.7)

where the closure is taken in Ĉ. Then, g : Ĉ\
(
E(g) ∪ g−1(S(g))

)
→ Ĉ\S(g) is a

covering map. The relevance of S(g) becomes clear in close relation to the different
types of periodic Fatou components.

The well-known classification of periodic Fatou components for meromorphic
functions also holds for maps in Bolsch’s classK, and beyond (see [7], and references
therein). Recall that a periodic point w0 ∈ D(g), as well as the cycle to which it
belongs, is called attracting, indifferent, or repelling if the modulus of its multiplier
(i.e. |(gp)′(w0)|) is less than, equal to, or greater than 1, respectively, where p ≥ 1
is the smallest natural such that gp(w0) = w0. In particular, w0 is said to be
parabolic if the multiplier is e2πiρ with ρ ∈ Q, while it is of Siegel type if ρ /∈ Q and
a local linearization is possible. Given that F(gp) = F(g), it is enough to classify
an invariant Fatou component of g ∈ K (see [7, theorem A and C]): it can be
either a basin of attraction of an attracting or parabolic fixed point, a Siegel disk
or Herman ring on which g is conformally conjugate to an irrational rotation of
a disk or annulus, respectively (called rotation domains), or a Baker domain on
which the iterates of g tend to an essential singularity of g. It is known that any
cycle of basins of attraction (of an attracting or parabolic cycle) must contain at
least one singular value, and all boundary components of a cycle of Siegel disks or
Herman rings are in the closure of forward orbits of values in S(g) [7, lemma 10].

In our context, we emphasize that a projectable function f (z ) has, in general,
infinitely many poles and singular values accumulating at ∞, that is, f lies outside
of the so-called Eremenko-Lyubich class B [28], as S(f) ∩ C is not bounded. This
is always the case if f is not 1-periodic (i.e. ` 6= 0), due to pseudoperiodicity:
f(z + k) = f(z) + `k for all k ∈ Z. The crucial point in our discussion is that,
by the global change of coordinates w(z) := e2πiz/τ , we transfer the analysis to a
Bolsch’s function g(w) with simpler dynamics. In particular, this occurs when g is a
finite-type map (i.e. #S(g) <∞), since g has no wandering components nor Baker
domains (see e.g. [7, 28]). The correspondence between critical and asymptotic
values of f and g (remark 3.7 and proposition 3.8; see also proposition 3.6 and figure
2) leads to the following result.

Theorem 2 (Projections of finite-type). Let f be a projectable function via exp1,
written as f(z) = `z + Φ(e2πiz) for some ` ∈ Z and Φ meromorphic in C∗, g its

exponential projection, and S̃0 :=
{
z : − `

2 < Re z ≤ `
2

}
. Then g is of finite-type if

and only if one of the following holds:

(i) (Non-1-periodic case) ` 6= 0 with #
(
S(f)∩S̃0

)
<∞ and, in addition, ητ ∈ Q

in the case that f is doubly pseudoperiodic with f(z + τ) = f(z) + ητ for
some τ ∈ H+.

(ii) (1-periodic case) ` = 0 with #exp1 (S(Φ)\{∞})<∞.

Furthermore, S(g) ∩ C∗ = exp1 (S(f)\{∞}) in case (i), S(g) ∩ C∗ =
exp1 (S(Φ)\{∞}) in case (ii), and {0,∞} ⊂ AV(g) for both of them. Additionally,
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0 (resp. ∞) belongs to CV(g) if and only if f is simply pseudoperiodic with |`| ≥ 2
and g−1(0) (resp. g−1(∞)) is outside of E(Φ) ∪ Φ−1(∞).

Observe that for such a g of finite-type, the corresponding projectable function
f may have infinitely many critical values, but none in the period strip S 0 of exp1,
as e.g. the double standard map f(z) = 2z + 1 − 1

π sin 2πz, with CV(f) = 2Z + 1.
The periodic case of this theorem includes all doubly periodic functions f (since
they are known to have finitely many critical values and no asymptotic values),
and even functions f which are not of finite-type (see example 3). Note also that
projections g of functions in the class R` are all of finite-type, with finitely many
essential poles and critical values, and 0 and ∞ as asymptotic values (corollary 3.9),
although the converse is not true (consider e.g. projections of the Arnol’d family).
This, together with the control of the multipliers of the points at 0 and ∞, makes
R` (with ` ∈ Z∗) an excellent class of meromorphic maps to deliver Baker and
wandering domains by the lifting method (see §4).

Motivated by Herman’s idea [33] (detailed by Baker [5, §5] in the entire case),
we first identify non-periodic points in the following class for a (meromorphic) pro-
jectable function f, all of which project via exp1 to periodic points of its projection
g (lemma 4.3), and then look for wandering domains among the Fatou components
of f that come from lifting periodic components of F(g) associated to such periodic
points.

Definition 1.3. (Pseudoperiodic points). Let f be a projectable function via exp1.
We say that z∗ ∈ C\f−1(∞) is a pseudoperiodic point of type (p, σ) of f if, for some
p ≥ 1 and σ ∈ Z,

fp(z∗) = z∗ + σ. (1.8)

It is said to be of minimal type, or (p, σ)-pseudoperiodic, if p ≥ 1 is the smallest
natural with this property.

In our case, to relate the dynamics of f and g, we rely on a theorem by Zheng [53,
corollary 3.1], based on Bergweiler’s result [15] in the entire setting. It essentially
states that the Fatou and Julia sets of f and g are in correspondence via the
exponential, that is,

exp1 F(f) = F(g) ∩ C∗, exp1 (J (f)\{∞}) = J (g) ∩ C∗. (1.9)

Therefore, a Fatou component of f, say U, projects under exp1 to a Fatou component
of g, say V such that V ∩ C∗ = exp1 U . Conversely, the component V ⊂ F(g) lifts
via exp1 to {U + k}k∈Z ⊂ F(f), that is, either to infinitely many distinct Fatou
components of f, or to only one (see lemma 4.2).

Clearly, U and V do not need to be of the same type. On the one hand, we
can build escaping wandering domains U (those for which ∞ is the only limit
function of {fn|U}n∈N), which may be bounded or unbounded, by detecting appro-
priate pseudoperiodic points of f (see corollary 4.5). Hence, we construct wandering
domains by lifting via exp1 some periodic component V ⊂ F(g), without leaving
the family of projectable functions f under consideration, in contrast to the usual
procedure of adding an integer to f (one can think on Newton maps, depending
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on a parameter). Recall that the latter consists in changing the choice of the loga-
rithmic lift of g, which turns a periodic component of f directly into a wandering
domain of f + σ, σ ∈ Z∗.

On the other hand, we may produce Baker domains of f by lifting certain periodic
components V ⊂ F(g) related somehow to the points at 0 and∞ (i.e. the projection
of the upper and lower ends of C/Z, respectively), especially for those projections
g of finite-type (see theorem 4.6). Examples 4 and 5 (see also figure 3) illustrate
the different possibilities that may occur; see §4.2 for the case where f is periodic.

Finally in §5 we apply the general theory for projectable functions developed in
§3 and §4 to the special case of Newton’s methods, our original motive. We start
by characterizing Newton maps in class R` with (attracting) fixed points, which
are the natural candidates for our constructions.

Theorem 3 (Newton’s methods in class R` with fixed points). Let F be an entire
function with zeros, and ` ∈ Z. Its Newton map NF is in class R` if and only if
` = 1 and

F (z) = eΛzΨ(e2πiz), with Ψ(w) = wm0P (w)eQ(w)+Q̃(1/w), (1.10)

where Λ ∈ C, m0 ∈ Z, and P, Q, Q̃ are polynomials with P (0) 6= 0 and P−1(0) ∩
C∗ 6= ∅. In addition, Λ 6= −2πi(m0 + degP ) if Q is constant, and Λ 6= −2πim0 if

Q̃ is constant.

This provides uniparametric families of projectable Newton maps NΛ ∈ R1 of
entire functions satisfying F (z + 1) = eΛF (z) for all z, which take the form

NΛ(z) = z +RΛ(e
2πiz), where RΛ(w) = − Ψ(w)

ΛΨ(w) + 2πiwΨ′(w)
. (1.11)

As a Newton map in class R1, the points at 0 and ∞ are not poles of the rational
map RΛ (see lemma 5.1), and NΛ has p̃ distinct fixed points (roots of F ) and finitely
many poles in a period strip of exp1; indeed

#exp1
(
N−1

Λ (∞)
)
= #R−1

Λ (∞) = p̃+ degQ+ deg Q̃. (1.12)

For convenience we consider the parameter λ := Λ+ πi(2m0 +degP ). Applying
our results in §4 into this framework, we obtain Baker and wandering domains for
families of Newton maps for different values of λ, which coexist with the attract-
ing invariant basins of Nλ, as desired (see corollary 5.2). The simplest cases are
Newton’s methods with exactly one superattracting fixed point and a simple pole
in each period strip of exp1. It can be seen that those Nλ are conjugate to a member
of the following family (see proposition 5.3).

Definition 1.4. (Pseudotrigonometric family Nλ). The pseudotrigonometric
family Nλ consists of the Newton maps of Fλ(z) = eλz sinπz, λ ∈ C\{±πi}, which
are of the form
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Nλ(z) = z +Mλ

(
e2πiz

)
, where Mλ(w) = − w − 1

(λ+ πi)w − (λ− πi)
. (1.13)

The name refers to the fact that N0(z) = z − 1
π tanπz is a pseudoperiodic

analogue of the tangent map (of period 1). The exponential projection gλ(w) of
Nλ has a unique essential singularity at Bλ := λ−πi

λ+πi , and only one free critical

point at Cλ := B2
λ. For each value of λ, Bλ may be placed at ∞ via Mλ (see

remark 5.6), i.e. gλ is conjugate to a transcendental meromorphic map with two
finite asymptotic values (as the tangent map), a superattracting fixed point and a
unique free critical point (as the quadratic map), which degenerates to an entire
map for λ = ±πi. Despite its simplicity, this family turns out to exhibit a wide
variety of interesting Newton dynamics which can be reflected in a one-dimensional
parameter slice.

To this end, we inspect the set M̃ of parameters λ in which the free critical
point of gλ does not converge to the superattracting fixed point at 1 (the non-
white region in figure 1). This is equivalent to study the values of λ for which
the pseudotrigometric Newton’s method Nλ fails to converge to a root of Fλ in

some open set of initial conditions. This unveils components of M̃ in which the
free critical point Cλ is attracted to a periodic cycle of gλ other than 1, whose
immediate basin of attraction may lift via exp1 to Baker or wandering domains of
Nλ, coexisting with the infinitely many basins of the roots of Fλ (see examples 7
and 8). Of special interest in the parameter space for gλ, and hence for Nλ (see

also figures 7 and 8), are the connected components of M̃ leading to wandering
domains of different nature for our family of Newton maps (see remark 5.8). These

and many other questions related to M̃ will be addressed in a future paper.
Outline of the paper. In §2 we derive the general form of pseudoperiodic maps

to prove theorem 1 on the class of projectable functions f. In §3 we analyse the pro-
jection of poles and singular values of f via exp1 (see propositions 3.1, 3.6 and 3.8),
to identify exponential projections g of finite-type in Bolsch’s class (theorem 2),
including those from the class R` (corollary 3.9). The fundamentals of the lifting
method in our setting are detailed in §4, starting with the notion of pseu-
doperiodic points. Theorem 4.6 is the keystone for our purposes, which delivers
different types of Baker and wandering domains of f in the non-periodic case (see
examples 4 and 5). In §5 we characterize the Newton maps in class R` with fixed
points (theorem 3), whose attracting basins, under the conditions of corollary 5.2,
coexist with Baker or wandering domains. We explore the one-parameter family Nλ

of Newton maps, as the simplest one in this class, to unveil the atlas of wandering
domains in figure 1, and conclude with some observations on the components of

M̃.

2. Pseudoperiodic maps and proof of theorem 1

The semiconjugacy relation g ◦ exp1 = exp1 ◦f determines the class of projectable
functions (see definition 1.1), as well as its iterates, by means of gn ◦ exp1 =
exp1 ◦fn, n ∈ N, whenever defined. The following lemma, which is fundamental
for our discussion, can be easily proved by induction.
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Dynamics of projectable functions 9

Figure 1. Left (parameter space of gλ or the pseudotrigonometric family Nλ): The set

M̃ for which the free critical point Cλ of gλ fails to converge to 1. The colour of each
pixel λ indicates the period p of the cycle attracting Cλ under iteration: red if p=1 and
lim

n→∞
gnλ(Cλ) /∈ {0,∞} (gray otherwise, i.e. when | Imλ| > π), orange if p=2, yellow if

p=3, green if p=4, light blue if p=5, dark blue if p=6, purple if p=7, and black if
higher; see also figure 8. Range: [−3.75, 3.75] × [−3.25, 3.25]. Right-top (dynamical plane
of λ for λ = −3πi): The superattracting basins of k ∈ Z (in purple) coexist with a simply-
connected Baker domain (in blue); see example 7. Range: [−1.5, 1.5]× [−0.85, 0.85]. Right-
bottom (dynamical plane of Nλ for λ = −1 − i

√
π2 − 1): The superattracting basins of

k ∈ Z (in purple) coexist with a chain of simply-connected wandering domains (in orange)
containing a pseudoperiodic point z∗1 of type (1, 1); see example 8. Range: [−1.5, 1.5] ×
[−1.15, 0.55]. The brightness of the blue, orange and purple colours indicate the speed
of convergence to the fixed points of gλ at ∞, e2πiz∗1 and 1, respectively (lighter if it
requires more iterates). The dashed lines refer to the coordinate axes in the λ-plane, and
to {Re z = ±1/2} in the z -planes.

Lemma 2.1. (Pseudoperiodicity). Let f be a projectable function via exp1. Then

f(z + 1) = f(z) + ` (2.1)

for some ` ∈ Z, and every z ∈ C. Moreover, for any n ∈ N and k ∈ Z,

fn(z + k) = fn(z) + `nk. (2.2)

Hence, projectable functions correspond to meromorphic functions satisfying the
relation (2.1), which are occasionally called `-pseudoperiodic, or periodic modulo an
integer ` (of period 1), in the sense that f(z + 1) − f(z) = `. In order to further
characterize projectable functions, it is convenient to identify them as a special case
of the more general class of pseudoperiodic functions.
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Definition 2.2. (Pseudoperiodic functions). Let f : C → Ĉ be a meromorphic
function, and Λ a lattice in C. We say that f is pseudoperiodic with respect to Λ if,
for each τ ∈ Λ, there exists a constant ητ ∈ C (a pseudoperiod of f) such that

f(z + τ) = f(z) + ητ , (2.3)

for all z ∈ C. It is said to be simply or doubly pseudoperiodic if all its pseudoperi-
ods are of the form mητ1 or mητ1 + nητ2 , respectively, for some τ1, τ2 ∈ C∗ with
Im [τ2/τ1] > 0, where m,n ∈ Z.

Example 1. (Standard map and Weierstrass ζ-function). The extension of the
Arnol’d standard family of circle maps [2] to the complex plane, given by the
transcendental entire function

fα,β(z) = z + α− β

2π
sin 2πz (2.4)

with parameters α ∈ R and β > 0, is an example of a simply pseudoperiodic function
such that ητ1 = τ1 = 1, i.e. it is projectable via exp1. The archetype of a doubly
pseudoperiodic function is the so-called Weierstrass ζ-function with respect to
Λ := τ1Z+ τ2Z, τ2/τ1 ∈ H+, given by

ζ(z) =
1

z
+
∑
τ∈Λ∗

(
1

z − τ
+

1

τ
+

z

τ2

)
, (2.5)

where the sum runs over all non-zero lattice points. Its pseudoperiods, ητ1 =
2ζ (τ1/2) and ητ2 = 2ζ (τ2/2), satisfy the Legendre relation: ητ1τ2 − ητ2τ1 = 2πi. It

may be written as ζ(z) =
ητ1
τ1
z + ϕ1(z), where ϕ1 is a τ1-periodic map such that

ϕ1(z + τ2) = ϕ(z)− 2πi
τ1

(see explicit form in [38, §18]).

In analogy to the classical theory of periodic functions, and following the descrip-
tion of doubly pseudoperiodic functions by Brady [21], we show that any pseudope-
riodic meromorphic function on C is either simply or doubly pseudoperiodic, and
it can be written in a unique manner.

Proposition 2.3. (Form of pseudoperiodic functions). Let f be a pseudoperi-
odic function. Then f can be uniquely expressed either as the simply pseudoperiodic
function with respect to τ1Z, τ1 ∈ C∗,

f(z) = az + ϕ(z) (2.6)

with pseudoperiod ητ1 = aτ1, where a ∈ C and ϕ is a simply periodic function of
period τ1; or as the doubly pseudoperiodic function with respect to Λ := τ1Z+ τ2Z,
τ2/τ1 ∈ H+,

f(z) = az + bζ(z) + E(z) (2.7)

with pseudoperiods ητ1 = aτ1+2bζ(τ1/2) and ητ2 = aτ2+2bζ(τ2/2), where a, b ∈ C,
ζ is the Weierstrass ζ-function with respect to Λ, and E is a doubly periodic function
of periods τ1 and τ2.
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Proof. We distinguish cases in terms of the number of independent pseudoperiods
of f. First, suppose that f is simply pseudoperiodic with respect to τ1Z, where
τ1 is taken as the non-zero complex number of smallest modulus that satisfies
the pseudoperiodicity condition (2.3). Let ητ1 be the associated pseudoperiod, and

consider the function ϕ(z) := f(z)− az, where a =
ητ1
τ1

. Then,

ϕ(z + τ1) = f(z + τ1)− az − ητ1 = ϕ(z)

for all z ∈ C, so that ϕ is simply periodic (with period τ1). To verify uniqueness, we
may assume that f(z) = ãz + ϕ̃(z) for some ã ∈ C and a non-constant τ1-periodic
function ϕ̃. It follows that (a − ã)τ = 0, and so ϕ̃ = ϕ, that is, the representation
of f in such form is unique.
Now suppose that f is doubly pseudoperiodic with respect to Λ, and choose τ1 and
τ2 as the two non-zero complex numbers of smallest modulus, with Im[τ2/τ1] > 0,
such that Λ = τ1Z+ τ2Z. Denote by ητ1 and ητ2 the corresponding pseudoperiods
satisfying (2.3). This case follows directly from [21, theorem 4.1.4], which leads to
expression (2.7) in the same fashion, using Legendre’s relation between the pseu-
doperiods of the Weierstrass ζ-function and the periods of the elliptic function
E.
Finally, observe that if, in the latter case, f had an additional pseudoperiod ητ3
associated to some τ3 ∈ C∗\Λ, then, for some m,n ∈ Z, the point τ3 −mτ1 − nτ2
would be a non-zero complex number of smaller modulus than τ1 or τ2 satisfying
relation (2.3), contrary to our construction. Hence, such a point must lie in some
vertex of Λ, and ητ3 = mητ1 + nητ2 , given that ητ is Z-linear in τ . �

Remark 2.4. (Representation by exponentials). The nonlinear term of any pro-
jectable function is a periodic function, which may be expanded as the quotient of
two convergent Fourier series. Indeed, for any 1-periodic meromorphic map ϕ(z),
defined in a region Ω which is invariant under translation by ±1, there exists a
unique function Φ(w) which is meromorphic in exp1 Ω := {e2πiz : z ∈ Ω} such that

ϕ(z) = Φ(e2πiz). (2.8)

The poles of Φ(w) coincide with the image under exp1 of the poles of ϕ(z), and are
of the same multiplicity (see e.g. [40, theorem 4.7]). The Laurent development of Φ
in an annulus {w : r < |w| < R} in which Φ has no poles, where 0 ≤ r < R ≤ ∞,
delivers the Fourier coefficients of ϕ in the horizontal strip {z : −1

2π lnR < Im z <
−1
2π ln r} via w = e2πiz. Notice that Φ(w) = ϕ

(
1

2πi logw
)
is well-defined since,

although the logarithm has infinitely many values, they differ by integer multiples
of 2πi.

Proof. Due to lemma 2.1 projectable functions f via exp1 naturally arise as the par-
ticular class of pseudoperiodic functions, whether simply or doubly pseudoperiodic,
with an integer pseudoperiod `. In any case, by direct application of proposition 2.3
(see also example 1 on Weierstrass ζ-function), f is the sum of a linear map and a
periodic function (with period 1). Thus, remark 2.4 asserts that f(z) = `z+Φ(e2πiz)
for a meromorphic function Φ in C∗, which is non-constant as f is transcendental.

https://doi.org/10.1017/prm.2024.81 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.81


12 R. Florido and N. Fagella

Moreover, in the case that f is doubly pseudoperiodic (with respect to the lattice
Z+ τZ), using the same notation as in (2.7), and given that η1 = `, we obtain

` = a+ 2bζ(1/2), ητ = aτ + 2bζ(τ/2). (2.9)

Therefore, b = `τ−ητ
2πi via the Legendre relation ζ(1/2)τ − ζ(τ/2) = πi. Taking into

account that ζ(z)−2ζ(1/2)z is a 1-periodic function (see example 1), we can obtain
the expression (1.3) for Φ ◦ exp1. In this situation, f would be also projectable via
e2πiz/τ if and only if ητ = Lτ for some integer L. �

3. The exponential projection and proof of theorem 2

3.1. Essential singularities

A projectable function f has a unique essential singularity at ∞ due to its non-
constant periodic part. The first step of our analysis is to determine the set of
essential singularities of its exponential projection g, which we denoted by E(g).

Proposition 3.1. (Projection of poles). Let f be a projectable function via exp1,
and g its exponential projection. Then

E(g) ∩ C∗ = exp1
(
f−1(∞)

)
. (3.1)

If f is non-entire, then f has infinitely many poles, and E(g) ∩ C∗ 6= ∅.

Proof. Consider an arbitrary pole b ∈ C of the projectable function f, and a neigh-
bourhood Ub of b such that Ub∩f−1(∞) = {b}. Then, there exists some R> 0 such
that {z : |z| > R} ⊂ f(Ub). Take a pair of curves γ± in Ub towards the pole of f
such that Im f(z) → ±∞ as z → b along γ±.
On the one hand, Ub is mapped conformally by exp1 onto a neighbourhood of
B := e2πib ∈ C∗, and both Γ± := exp1(γ

±) are paths to B in exp1(Ub). On the
other hand, given that

g ◦ exp1(γ±) = exp1◦f(γ±)

due to the semiconjugacy, and |e2πiz| = e−2π Im z, we obtain that g(Γ±) are curves
converging to 0 and ∞, respectively. Thus, lim

w→B
g(w) does not exist, i.e. B is an

essential singularity of g.
For all other points z ∈ C\f−1(∞), f is holomorphic and bounded in a neigh-
bourhood of z, hence g(e2πiz) is well-defined. In the non-entire case, we have that
f−1(∞) ⊂ C is an infinite set by pseudoperiodicity, and so f has at least one pole
in every period strip of exp1 (of width 1), i.e. # exp1

(
f−1(∞)

)
≥ 1. �

In view of this, and considering that a meromorphic function can have at most
countably many poles, the exponential projection g belongs to the so-called Bolsch’s
class [19].

Definition 3.2. (Bolsch’s class and essential prepoles). Denote by K the Bolsch’s

class formed by those functions g for which there is a closed countable set E(g) ⊂ Ĉ
such that g is non-constant and meromorphic in Ĉ\E(g), but in no larger set. We
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say that D(g) := Ĉ\E(g) is the domain of definition of g, and B ∈ D(g) is a
(essential) prepole of g of order m ≥ 1 if B ∈ g−m (E(g)).

This is the smallest class which includes transcendental meromorphic functions
and is closed under composition. Note that, in general, the iterates of a meromorphic
(non-entire) map f are no longer meromorphic in C, since every pole of f becomes an
essential singularity of f 2. In the context of Bolsch’s class, as stated in [7, lemma 2],
if g1 and g2 belong to K, then g2 ◦ g1 ∈ K with

E(g2 ◦ g1) = E(g1) ∪ g−1
1 (E(g2)) , (3.2)

and by [7, lemma 4] its set of singular values satisfies

S(g2 ◦ g1) ⊂ S(g2) ∪ g2 (S(g1)\E(g2)) . (3.3)

In transcendental dynamics, poles and prepoles are dynamically relevant since
their forward orbits get eventually truncated, in contrast to poles of rational maps,
for which ∞ is a common point on Ĉ. Furthermore, for a general map g ∈ K,
E(g) is the closure of the set of isolated essential singularities of g, and J (g) is the
closure of the set of all its essential prepoles if g has at least one essential pole (i.e.
a prepole of order 1) which is not an omitted value. Hence, Picard’s great theorem
applies, that is, for any neighbourhood U of ŵ ∈ E(g), the function g assumes in

U\E(g) every value of Ĉ infinitely often, with at most two exceptions, often called
Picard exceptional values (see more details in [19]).

Remark 3.3. (Doubly pseudoperiodic case). Any projectable function f via exp1
which is doubly pseudo-periodic with respect to Z + τZ, τ ∈ H+ (see theorem 1),
is non-entire with poles at b +m + nτ for all m,n ∈ Z, given b ∈ f−1(∞). Thus,
f has infinitely many poles in the period strip S0 = {z : −1

2 < Re z ≤ 1
2} of

exp1, accumulating onto both ends of S 0. Hence, #E(g) = ∞ for its exponential
projection g due to proposition 3.1, and both 0 and∞must be essential singularities
of g as accumulation points of E(g).

Note that poles of a simply periodic function may also accumulate at either end
of the strip S 0.

Example 2. (Accumulation of poles and zeros at the ends of the strip). Consider
the 1-periodic function

f(z) = Φ(e2πiz), where Φ(w) =
e2πiw − 1

e2πi/w − 1
, (3.4)

and its exponential projection g. Then, f has zeros at ak,m := k
2 − i logm

2π , poles at

bk,m := k
2 + i logm

2π , and removable singularities at k
2 , where k,m ∈ Z with m ≥ 2

(see [45, §X.2.6]). Note {ak,m, bk,m} ⊂ S0 if and only if k ∈ {0, 1}, and 0 ∈ E(g)
since it is the limit point of e2πib0,m ∈ E(g) as m → ∞. The zeros of f in S 0

accumulate at the lower end of the strip, hence ∞ is a limit point of g−1(1), and
so ∞ ∈ E(g) as well.
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It remains to check under which conditions the points at 0 and/or ∞, as omitted
values of exp1, are in the domain of definition of the projection g, called D(g). Here
the class R` (see definition 1.2) of non-entire projectable functions f emerges in a
natural way. Recall that exp1(z) := e2πiz induces an isomorphism from C/Z onto
C∗, sending the upper (resp. lower) end to 0 (resp. ∞).

Proposition 3.4. (Projection of cylinder ends). Let f be a projectable function
via exp1, written as f(z) = `z + Φ(e2πiz) for some ` ∈ Z and Φ meromorphic in
C∗, and g its exponential projection. Then 0 ∈ D(g) (resp. ∞ ∈ D(g)) if and only
if Φ(0) (resp. Φ(∞)) is defined and not equal to ∞. Furthermore,

{0,∞} ⊂ D(g) ⇐⇒ f ∈ R`.

Proof. Due to the semiconjugacy, the exponential projection g is given by

g(w) = w`e2πiΦ(w),

whenever defined. As a map in Bolsch’s class, we deduce from the relation (3.2)
that 0 (resp. ∞) is in the domain of definition of g if and only if 0 (resp. ∞) does
not belong to E(Φ)∪Φ−1(∞), that is, 0 (resp. ∞) is neither an essential singularity
of Φ nor a preimage of E(exp1) = ∞ under Φ.
It follows that {0,∞} ⊂ D(g) if and only if Φ is defined and not equal to infinity
at both 0 and ∞. As Φ is a non-constant meromorphic function in C∗, we conclude
that here Φ must be a rational map such that {0,∞}∩Φ−1(∞) = ∅, i.e. f ∈ R`. �

Remark 3.5. (Entire case). If f is a projectable entire function, then its expo-
nential projection g is in general an analytic self-map of C∗. To be precise, we have
that f(z) = `z + Φ(e2πiz), where ` ∈ Z and Φ ◦ exp1 must be a simply 1-periodic
entire function. Given that f has no poles, and

Φ−1(∞) ∩ C∗ = exp1
(
f−1(∞)

)
(3.5)

by remark 2.4, we obtain Φ−1(∞) ∩ C∗ = ∅. Due to propositions 3.1 and 3.4,
E(g) ∩ C∗ = ∅, and both 0 and ∞ are in D(g) if and only if f ∈ R` (non-entire).
Thus, E(g) 6= ∅, and we have the following cases:

(i) #E(g) = 1, say E(g) = {∞} (up to w 7→ 1/w). Note that Φ is either a
transcendental entire function (if E(Φ) = {∞}), or a polynomial (if Φ(∞) =
∞). If ` < 0, then g is a transcendental meromorphic map with only one
(omitted) pole at 0, while otherwise g is a transcendental entire function.

(ii) E(g) = {0,∞}. Then g is a transcendental self-map of C∗, Φ(w) = H(w) +

H̃(1/w) for some non-constant entire functions H and H̃, and ` is equal to
the winding number of g(Γ) with respect to 0, for any simple closed curve
Γ ⊂ C∗ (oriented counterclockwise) around the origin; see more details in
[41, 49].

3.2. Singular values

Our goal in this section is to relate the singular values of a projectable function f
with those of its projection g via exp1, and in particular, to characterize the cases
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in which g is of finite-type, i.e. #S(g) < ∞. Recall that S(g) refers to the set of
singular values of g defined in (1.7), and denote by C(g) the set of critical points.
First, we investigate the correspondence between the critical points of f and g. By
the semiconjugacy,

g′(e2πiz) = e2πi(f(z)−z)f ′(z) (3.6)

for any z ∈ C\f−1(∞). Note that in the general form f(z) = `z +Φ(e2πiz), where
` ∈ Z and Φ ◦ exp1 is periodic (see theorem 1),

g′(w) = w`−1e2πiΦ(w) (`+ 2πiwΦ′(w)) . (3.7)

Proposition 3.6. (Projection of critical points). Let f be a projectable function
via exp1, and g its exponential projection, written as g(w) = w`e2πiΦ(w) with ` ∈ Z
and Φ meromorphic in C∗. Then

C(g) ∩ C∗ = exp1
(
C(f)\f−1(∞)

)
. (3.8)

If 0 is not an omitted value of f ′, then #C(f) = ∞, and C(g) ∩ C∗ 6= ∅. Moreover,
0 ∈ C(g) (resp. ∞ ∈ C(g)) if and only if g(0) (resp. g(∞)) is defined, and either
|`| ≥ 2, or ` = 0 with Φ′(0) = 0 (resp. Φ′(∞) = 0).

Proof. It follows from (3.6) that the critical points of g in C∗ are the image under
exp1 of the critical points of f, excluding the possible multiple poles of f (since they
project via exp1 to points outside the domain of definition D(g) of g ; see proposition
3.1). If 0 is not an omitted value of f

′
, i.e. f ′(c) = 0 for some c ∈ C\f−1(∞), it is

clear that #C(f) = ∞, as the derivative f
′
is 1-periodic.

Given g as in the statement with 0 ∈ D(g), i.e. 0 /∈ E(Φ) ∪Φ−1(∞) by proposition
3.4, we have the following:

(i) If ` ≥ 2, then 0 is a fixed critical point of g, as computed from the expression
(3.7).

(ii) If ` ≤ −2, then {0,∞} is a critical cycle of period 2 if ∞ ∈ D(g); otherwise
0 is a multiple (essential) pole of g, since 0 is a multiple zero of 1/g(w) as
seen from (3.7).

(iii) If ` = 0 (periodic case), then g′(0) = e2πiΦ(0)2πiΦ′(0) vanishes if and only
if Φ′(0) = 0.

Thus, if |`| ≥ 2, or ` = 0 with Φ′(0) = 0, we have 0 ∈ C(g). The reverse implication
follows from (3.7) by considering the value of g ′ in the remaining cases: g′(0) =
e2πiΦ(0) ∈ C∗ if ` = 1, and 0 is a simple preimage of ∞ if ` = −1, that is, 0 /∈ C(g).
The same arguments apply to the point at ∞. �

Notice that, even if f has infinitely many critical points in the fundamental
period strip S 0 of exp1 (and so in every vertical strip of width 1), its exponential
projection g may be of finite-type.
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Example 3. (Infinitely many critical points in every period strip). Consider the
1-periodic entire function

f(z) = Φ(e2πiz), where Φ(w) = w − 1

2π
sin (2πw). (3.9)

The critical points of f are ck,m := k
2 − i logm

2π with f(ck,m) = eπikm, where k,m ∈
Z, and m ≥ 1. Observe that # (C(f) ∩ S0) = ∞, and its set of critical values,
CV(f) = Z\{0}, is also infinite. However, CV(g) = {1} for g(w) = e2πiΦ(w). Here
∞ ∈ E(g), but 0 ∈ C(g) due to proposition 3.6.

The previous proposition leads directly to the analogous relation between the
critical values of f and g.

Remark 3.7. (Projection of critical values). Using the notation in proposition
3.6, since g ◦ exp1 = exp1 ◦f , the set of critical values of g(w) = w`e2πiΦ(w), given
by CV(g) = g (C(g)), is the union of

exp1
(
CV(f)\{∞}

)
(3.10)

and, as long as 0 (resp. ∞) is in D(g) (see proposition 3.4), one of the following
points:

(i) 0 (resp. ∞) if ` ≥ 2;
(ii) ∞ (resp. 0) if ` ≤ −2;
(iii) e2πiΦ(0) (resp. e2πiΦ(∞)) if ` = 0 with Φ′(0) = 0 (resp. Φ′(∞) = 0). In this

case, as f = Φ ◦ exp1 and g = exp1 ◦Φ, note that CV(f) = Φ
(
C(Φ) ∩ C∗),

and so CV(g) = exp1
(
CV(Φ)\{∞}

)
⊂ C∗.

A projectable function f may have no critical points (and thus no critical values)
at all, such as the exponential or tangent map (with two asymptotic values), or the
non-periodic entire function

f(z) =
1

2πi

∫ 2πiz

0

e−etdt = z +
∞∑
k=1

(−1)k

2πik!k

(
e2πikz − 1

)
, (3.11)

which has infinitely many asymptotic values (as locally omitted values), i.e.
#S(f) = ∞ (see [34, example 4]).

In what follows we discuss the relation between asymptotic values of a given f
and its projection g, by building corresponding asymptotic paths in different cases.
Recall that, given v ∈ AV(g), an asymptotic path to ŵ ∈ E(g) (associated to v) is
a curve γ : [0, 1) → D(g) such that γ(t) → ŵ and g(γ(t)) → v as t → 1.

Proposition 3.8. (Projection of asymptotic values). Let f be a projectable func-
tion via exp1, written as f(z) = `z +Φ(e2πiz) for some ` ∈ Z and Φ meromorphic
in C∗, and g its exponential projection. Then {0,∞} ⊂ AV(g). Furthermore,
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(i) If ` 6= 0, then ∞ ∈ AV(f), and AV(g) ∩ C∗ = exp1 (AV(f)\{∞}).
(ii) If ` = 0, then AV(f) = AV(Φ) ∪ Φ

(
{0,∞}\E(Φ)

)
, and AV(g) ∩ C∗ =

exp1 (AV(Φ)\{∞}).

Proof. We start by showing that both 0 and ∞ are always asymptotic values of
g through finding corresponding asymptotic paths to some essential singularity of
g, either to the projection of a pole of f via exp1 (see proposition 3.1), or to an
essential singularity of g at 0 or ∞ in the entire case.
On the one hand, suppose that f is non-entire and consider a pole b ∈ C of f, and
a neighbourhood Ũ of ∞. Let U be the connected component of f−1

(
Ũ
)
which

contains b, and choose Ũ small enough such that f : U → Ũ is a proper map, i.e.
U does not contain other poles or critical points of f, apart from b itself. Take two
straight paths γ̃± ⊂ iR± ∩ Ũ , so that their preimages, say γ± : [0, 1) → U\{b}, are
curves landing at b as t → 1. Hence, exp1◦γ± is a path towards e2πib ∈ E(g) ∩C∗,
and for all t ∈ [0, 1),

g
(
exp1 ◦γ±(t)

)
= exp1

(
f ◦ γ±(t)

)
= exp1 ◦ γ̃±(t). (3.12)

Given that Im γ̃±(t) → ±∞ as t → 1, we conclude from (3.12) that 0 and ∞
are asymptotic values of g associated to the paths exp1◦γ+(t) and exp1◦γ−(t),
respectively. On the other hand, assume f to be entire, so that, by remark 3.5,
E(g) ∩ C∗ = ∅ but g has at least one essential singularity at E ∈ {0,∞}. In fact,
we have either that E ∈ E(Φ), or Φ(E) = ∞ (see proposition 3.4). Then, it is clear
that we can find a pair of paths Γ± : [0, 1) → D(g) such that Γ±(t) → E and
ImΦ(Γ±(t)) → ±∞ as t → 1, and so, as g(w) = w`e2πiΦ(w), Γ± are the asymptotic
paths of g that we were looking for.
In order to relate the asymptotic values of g in C∗ to those of f, we split the
discussion into two cases:

(i) If ` 6= 0, we first show that ∞ ∈ AV(f). Consider a path γ∞ : [0, 1) →
C\f−1(∞) to ∞ which is invariant under translation by 1, and let t∗ ∈ [0, 1)
be such that γ∞(t∗) = γ∞(0) + 1 (see figure 2). Due to pseudoperiodicity,
note that

f(γ∞(t) + k) = f(γ∞(t)) + `k (3.13)

for all t ∈ [0, 1). From (3.13) we obtain that
{
f
(
γ∞([0, t∗]) + k

)}
k∈N is a

sequence of compact sets (on the curve f ◦ γ∞) converging to ∞ as k → ∞,
and thus f(γ∞(t)) → ∞ as t → 1.
Next we consider an asymptotic path γu to ∞ associated to some u ∈
AV(f) ∩ C and show that e2πiu is an asymptotic value of g. We claim that
Im γu(t) is unbounded. To see this, suppose that | Im γu(t)| ≤ M for some
M ∈ R+ and all t ∈ [0, 1), and so Re γu(t) → ±∞ as t → 1. Then, there
would be points zk := k+ iyk ∈ γu for some unbounded sequence of integers
k and |yk| ≤M , and by pseudoperiodicity,

f(zk) = f(iyk) + `k. (3.14)
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γ+
α

Re z

Im z

γ∞

γ∞(0) γ∞(t∗)

f(γu)

γu

u

f(γu+ 1)

γu+ 1

u+�

Re w

Im w

Γu

g(Γu)

e2πiu

Figure 2. Correspondence between asymptotic paths of f (left) and its projection g (right)
via exp1 for the proof of proposition 3.8. The green dashed line refers to Re z = α

2π
,

α ∈ (−π, π], and the gray ones to Re z = 1
2
+ k, k ∈ Z.

Assuming without loss of generality that iyk /∈ f−1(∞), the relation (3.14)
implies that f(zk) → ∞ as |k| → ∞, which contradicts that γu is an
asymptotic path for u ∈ C.
Furthermore, in this situation, we assert that either Im γu(t) → +∞ with
0 ∈ E(g), or Im γu(t) → −∞ with ∞ ∈ E(g), as t → 1. Indeed, if this were
not the case, then Φ(0) or Φ(∞), respectively, would be defined and not
equal to ∞ (see proposition 3.4), so that the explicit expression of f leads
to

f(γu(t)) = `γu(t) + Φ(e2πiγu(t)) → ∞

as t → 1, in contradiction with u 6= ∞. Hence, we conclude that e2πiu ∈
AV(g) ∩ C∗, since Γu := exp1◦γu is a corresponding asymptotic path to
either 0 ∈ E(g) in the first case, or ∞ ∈ E(g) in the second.
The reverse inclusion follows from the fact that an asymptotic path Γ :
[0, 1) → D(g) associated to v ∈ AV(g)∩C∗, can only converge to 0 or ∞ as
t → 1. In fact, if this were not true, then any lift of Γ via exp1 would tend to
some b ∈ f−1(∞) due to proposition 3.1, in contradiction with lim

t→1
g(Γ(t)) =

v ∈ C∗. Then, every curve γ ⊂ exp−1
1 Γ has unbounded imaginary part.

Given that g(Γ(t)) = e2πif(γ(t)) for all t ∈ [0, 1), any such γ is an asymptotic
path of f associated to some u ∈ C such that v = e2πiu.

(ii) If ` = 0, i.e. f is 1-periodic with f = Φ ◦ exp1 and g = exp1◦Φ, then the
relation (3.3) implies that

AV(f) ⊂ AV(Φ)∪Φ
(
{0,∞}\E(Φ)

)
, and AV(g) ⊂ {0,∞}∪exp1 (AV(Φ)\{∞}) .

(3.15)
First, notice that Φ(0) (resp. Φ(∞)), whenever defined, is an asymptotic
value of f(z) = Φ(e2πiz) along some path in H+ (resp. H−) with unbounded
imaginary part; e.g. along curves γ±α : [0, 1) → C with

Im γ±α (t) → ±∞, and Re γ±α (t) → α

2π
,
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as t → 1 (see figure 2), for suitable values of α ∈ (−π, π] such that exp1 ◦γ+α
or exp1 ◦γ−α lies in D(g), sufficiently close to 0 or ∞, respectively. Moreover,
observe that a logarithmic lift of any asymptotic path of Φ (to E ∈ {0,∞})
associated to u ∈ Ĉ corresponds to an asymptotic path γ of f such that
f(γ(t)) = Φ(e2πiγ(t)) → u as t → 1, i.e. AV(Φ) ⊂ AV(f).
The equality also holds in the right-hand side of (3.15) since, as shown at
the beginning of the proof, {0,∞} ⊂ AV(g), and for any u ∈ AV(Φ) ∩ C,
e2πiu is clearly an asymptotic value of g(w) = e2πiΦ(w).

�

Finally we proceed to prove theorem 2 to discern those exponential projections
g of finite-type.

Proof of theorem 2. We split the class of projectable functions f via exp1, written
as f(z) = `z+Φ(e2πiz) with ` ∈ Z and Φ meromorphic in C∗ (see theorem 1), into
three disjoint cases:

(i-a) If f is simply pseudoperiodic with ` 6= 0, i.e. Φ◦exp1 is a simply 1-periodic
map (and so is its derivative), then for any critical point c, {c+ k}k∈Z ⊂
C(f), as f ′

is 1-periodic. By pseudoperiodicity (lemma 2.1),

f(c+ k) = f(c) + `k 6= f(c)

for all k ∈ Z∗, and so {f(c+k)}k is a collection of distinct critical values,
except if c is a pole. This, together with remark 3.7, shows that #CV(g) <
∞ if and only if f has finitely many critical values in the strip S̃0 = {z :
− `

2 < Re z ≤ `
2}, as all other critical values of f differ by an integer

multiple of ` from those, i.e. exp1
(
CV(f)\{∞}

)
= exp1

(
CV(f)∩ S̃0

)
. The

same argument applies to AV(g) in view of proposition 3.8, by considering
instead the image under exp1 of the sequences {f(γ+k)}k for asymptotic
paths γ associated to any u ∈ AV(f) ∩ C.

(ii-a) If f is doubly pseudoperiodic with ` 6= 0 and, say, f(z+τ) = f(z)+ητ for
some τ ∈ H+ and ητ ∈ C, then, given c ∈ C(f), {c+k+mτ}k,m∈Z ⊂ C(f),
since f

′
is doubly periodic (with periods 1 and τ). Moreover, due to

pseudoperiodicity in both directions,

f(c+ k +mτ) = f(c) + `k + ητm, (3.16)

which is a critical value different from f (c) for all k,m ∈ Z∗, provided
that c ∈ C\f−1(∞). Hence, using (3.16), we deduce from remark 3.7 that
the set

CV(g) ∩ C∗ = exp1 (CV(f)\{∞}) =
{
e2πif(c)e2πiητm : c ∈ C(f),m ∈ Z

}
is finite if and only if ητ ∈ Q, and also #

(
CV(f) ∩ S̃0

)
< ∞ as argued

above. The same follows for the set AV(g) from (3.16), proceeding in
terms of the projection via exp1 of asymptotic paths of f.
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(iii-a) If ` = 0, i.e. f is 1-periodic and g = exp1◦Φ, the statement follows from
remark 3.7 and proposition 3.8.

In all cases, {0,∞} ⊂ AV(g) due to proposition 3.8. From propositions 3.4 and
3.6, we obtain that 0 ∈ C(g) if and only if 0 /∈ E(Φ) ∪ Φ−1(∞) and either |`| ≥ 2,
or ` = 0 with Φ′(0) = 0. Notice that the first condition does not hold if f is doubly
pseudoperiodic (see remark 3.3), and in the 1-periodic case, g(0) ∈ C∗ when defined.
In the remaining cases, as g(w) = w`e2πiΦ(w), we conclude that 0 ∈ D(g) and either
g(0) = 0 ∈ CV(g) if ` ≥ 2, or g(0) = ∞ ∈ CV(g) if ` ≤ −2. We can argue similarly
for the point at ∞. �

The following corollary for projections g of functions in the class R` (see defini-
tion 1.2), which is central to our study, follows directly from propositions 3.1 and 3.4
on E(g), and remark 3.7 and proposition 3.8 on S(g). Recall that the (non-entire)
periodic part R(e2πiz) of f ∈ R` (where R is a non-polynomial rational map) has
finite limits as Im z → ±∞. In this situation, note that AV(f) = {R(0), R(∞)} ⊂ C
in the periodic case (` = 0), while AV(f) = {∞} otherwise.

Corollary 3.9. (Projections of functions in class R`). Let f ∈ R`, written as
f(z) = `z +R(e2πiz), ` ∈ Z and R as a non-constant rational map with R(0) 6= ∞
and R(∞) 6= ∞, and g its exponential projection. Then g is a finite-type map with
AV(g) = {0,∞}, and E(g) = R−1(∞). Moreover,

(i) If ` = 1, then 0 and ∞ are fixed points of g with g′(0) = e2πiR(0) and
g′(∞) = e−2πiR(∞), while both are fixed critical points if ` ≥ 2.

(ii) If ` = −1, then {0,∞} is a 2-cycle with multiplier e2πi(R(∞)−R(0)), while it
is critical if ` ≤ −2.

(iii) If ` = 0, then 0 (resp. ∞) is a critical point of g if and only if R′(0) = 0
(resp. R′(∞) = 0).

4. Lifting periodic Fatou components

A good number of the explicit examples of entire functions with Baker or wandering
domains come from Herman’s idea [33] on lifting periodic Fatou components via an
appropriate branch of the logarithm (see e.g. [5, 50]). This method is indeed appli-
cable to any projectable function f (see theorem 1), which may be meromorphic.
Here we infer the iterative behaviour of f from that of its exponential projection
g ; especially from those g of finite-type (see theorem 2).

The lifting procedure in our context grounds on a theorem by Bergweiler [15]
in the entire case, who proved that the dynamical partition of C into the Fatou
and Julia sets is preserved via exp1 (see [35], too). This result was extended to
Bolsch’s class (and beyond) by Zheng [53, corollary 3.1], building on the fact that,
for a transcendental map g ∈ K with at least one non-omitted essential pole (see
definition 3.2, and [19]),
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J (g) =
∞⋃

n=0

g−n(E(g)) =
∞⋃

n=1

(E(gn)\E(gn−1)), (4.1)

where E(gn) denotes the set of essential singularities of gn (let E(g0) := ∅).
To be precise, the dynamical relation between f and g is given by: exp1 F(f) =

F(g) ∩ C∗, as stated in (1.9), taking into account that 0 and/or ∞ (the omitted
values of exp1) may be or not be in the Fatou set of g. Equivalently, given that the
inverse image operation commutes with complements, we have that

exp−1
1 (F(g) ∩ C∗) = F(f), exp−1

1 (J (g) ∩ C∗) = J (f)\{∞}. (4.2)

In this section, we reinforce the fact that a Fatou component of f which comes
from the lift of a periodic component V ⊂ F(g), needs not to be of the same type.
In particular, we shall give conditions which make such a V deliver wandering or
Baker domains of f by lifting. For this purpose, the location of the points at 0 and
∞ with respect to V, which is encoded by the following standard notion, is going
to be crucial. The fill of a set A ⊂ Ĉ, denoted by fill(A), is the union of A and all
bounded components of C\A.

Remark 4.1. (Fill of a Fatou component). Consider a function g in Bolsch’s class,

and view a Fatou component V of g as a domain in Ĉ\E(g). Observe that if ∞ ∈ V ,

then fill(V ) = Ĉ. However, if V ⊂ C, then fill(V ) is a simply-connected domain in
C (as V is open). In this case, we have that w ∈ fill(V ) if and only if there is a
Jordan curve Γ ⊂ V such that w ∈ int(Γ), where int(Γ) is the bounded component
of C\Γ.

In this context, the following lemma provides a simple way to single out those
Fatou components V of g which do not lift via exp1 to infinitely many distinct
Fatou components of f.

Lemma 4.2. (Lifting components surrounding 0). Let f be a projectable function
via exp1, and g its exponential projection. Suppose V is a component of F(g), and
U is a component of exp−1

1 (V ∩ C∗). Then

0 ∈ fill(V ) ⇔ U + k = U, for all k ∈ Z.

In this case, U is an unbounded component of F(f) which is equal to exp−1
1 (V ∩C∗).

Proof. Recall that exp−1
1 (V ∩ C∗) = {U + k}k∈Z ⊂ F(f) due to the relation (4.2).

Notice that the statement is clear when ∞ (resp. 0) lies in V, as U must then
contain a lower (resp. upper) half-plane.
In the remaining cases, fill(V ) ⊂ C, and it follows from remark 4.1 that 0 ∈ fill(V )
if and only if there is a simple closed curve Γ ⊂ V ∩C∗ such that 0 ∈ int(Γ). Hence,
γ := exp−1

1 Γ consists of a single (simple) curve such that γ + k = γ for all k ∈ Z.
Since γ is connected and belongs to U, we conclude that U is an unbounded Fatou
component of f, and actually U = exp−1

1 (V ∩ C∗).
Conversely, if U + k = U for any k ∈ Z, then take a simple curve γ ⊂ U which
is invariant under translation by ±1, and so projects via exp1 to a closed curve in
V ∩ C∗ which surrounds the origin. �
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4.1. Pseudoperiodic points

The key players for the detection and tracking of wandering domains are going to
be the pseudoperiodic points of f (of type (p, σ); see definition 1.3). These may be
identified as points z∗ which are periodic modulo an integer σ, in the sense that
fp(z∗) − z∗ = σ for some p ≥ 1. The following lemma is straightforward from the
fact that gp ◦ exp1 = exp1 ◦fp, and the explicit relation between the iterates of f,
which in the general form f(z) = `z + Φ(e2πiz) (as stated in theorem 1), is given
by

fn(z) = `nz +
n−1∑
j=0

`n−1−jΦ
(
e2πif

j(z)
)

(4.3)

for every n ≥ 1. Recall that by a p-periodic point we mean a point of minimal
period p, and also that a (p, σ)-pseudoperiodic point refers to one of minimal type
(p, σ), which may be called σ-pseudofixed if p=1.

Lemma 4.3. (Characterization of pseudoperiodic points). Let f be a projectable
function via exp1, written as f(z) = `z +Φ(e2πiz) with ` ∈ Z and Φ meromorphic
in C∗, and g its exponential projection. Then z∗ is a (p, σ)-pseudoperiodic point of

f, where p ≥ 1 and σ ∈ Z, if and only if e2πiz
∗
is a p-periodic point of g. In this

case, z∗ is a solution of

(`p − 1)z +

p−1∑
j=0

`p−1−jΦ
(
gj(e2πiz)

)
= σ. (4.4)

Note that if z∗ is actually q-periodic, then e2πiz
∗
is a p-periodic point of g,

where p|q, but the reverse is not true. Observe that here we may have p< q if z∗ is
indeed a pseudoperiodic point of minimal type (p, σ) for some σ ∈ Z∗; consider e.g.
f(z) = −z− sin 2πz, for which z∗ = −1

2 is 2-periodic but (1, 1)-pseudoperiodic. We
are interested in the limiting behaviour of pseudoperiodic points under iteration, so
we next specify the orbit of those (and of their translates by an integer) according
to the pseudoperiod of f.

Proposition 4.4. (Iterates of pseudoperiodic points and of their translates). Let
f be a projectable function via exp1, and ` ∈ Z such that f(z+1) = f(z)+`. Suppose
z∗ is a pseudoperiodic point of f of minimal type (p, σ), where p ≥ 1 and σ ∈ Z,
and let z∗k := z∗ + k, k ∈ Z. Then,

(i) If |`| ≥ 2, each point z∗k is pseudoperiodic of minimal type (p, σ+(`p−1)k),
and for all m ∈ N,

fmp(z∗k) = z∗k + (`mp − 1)(k − δ), where δ :=
σ

1− `
p . (4.5)

In particular, fmp(z∗k) → ∞ as m → ∞, except for z∗δ if δ ∈ Z (which is
p-periodic).
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(ii) (`p=1 case) If ` = 1, or ` = −1 with p even, each point z∗k is pseudoperiodic
of minimal type (p, σ), and for all m ∈ N,

fmp(z∗k) = z∗k +mσ. (4.6)

In particular, fmp(z∗k) → ∞ as m → ∞, unless σ= 0 (in which case each
z∗k is p-periodic).

(iii) (`p=−1 case) If ` = −1 with p odd, each point z∗k is pseudoperiodic of
minimal type (p, σ − 2k). In particular, each z∗k is 2p-periodic, except for
z∗σ/2 if σ

2 ∈ Z (which is p-periodic).

(iv) (1-periodic case) If ` = 0, the point z∗σ is p-periodic, and f(z∗k) = z∗σ for all
k ∈ Z.

Proof. Since fp(z∗) = z∗ + σ, lemma 2.1 implies that fp(z∗ + k) = fp(z∗) + `pk =
z∗ + σ + `pk, which by induction leads to

fmp(z∗ + k) = z∗ + σGm + `mpk, where Gm :=
m−1∑
j=0

`jp, (4.7)

for all k ∈ Z, m ∈ N (let G0 := 0). We distinguish cases based on the sum of the
geometric series Gm:

(i) If |`| ≥ 2, then it follows from (4.7) that, for each z∗k = z + k,

fmp(z∗k) = z∗k+σGm+(`mp−1)k, where Gm =
1− `mp

1− `p
, (4.8)

which is equivalent to (4.5) because σGm = (1 − `mp)δ for all m. Notice
that |Gm| → ∞ as m→ ∞, and we deduce from (4.8) that z∗k is p-periodic
if and only if σGm + (`mp − 1)k = 0 for some k ∈ Z. Hence, z∗k escapes to
∞ under iteration, unless k = δ ∈ Z.

(ii) If ` = 1, or ` = −1 with p even (i.e. `p = 1), then Gm = m. Thus, the
expression (4.6) on the iterates of z∗k under f comes directly from (4.7), and
the conclusion follows as before.

(iii) If ` = −1 with p odd (i.e. `p = −1), then, for any s ∈ N, G2s = 0 while
G2s+1 = G2s + `2sp = 1, that is,

f2sp(z∗k) = z∗k and f (2s+1)p(z∗k) = z∗k + σ − 2k,

due to (4.7). Observe that z∗k is 2p-periodic (indeed (p, σ − 2k)-
pseudoperiodic), unless k = σ

2 ∈ Z.
(iv) If ` = 0, i.e. f is 1-periodic, then clearly, for each m ≥ 1, Gm = 1 and so

fmp(z∗k) = z∗σ for all k by (4.7).

Moreover, note that in all cases the pseudoperiodic points z∗k are of minimal type.
If this were not true, say z∗k is (p̃, σ̃)-pseudoperiodic for some k ∈ Z∗, p̃ < p and
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σ̃ ∈ Z, then lemma 2.1 would imply that

f p̃(z∗k − k) = z∗k + σ̃ − `p̃k,

in contradiction with z∗ = z∗k − k being of minimal type (p, σ). �

Observe that if we are able to identify a pseudoperiodic (but non-periodic) point
z∗ of f (see lemma 4.3) in F(f), then z∗ (and all but at most one of its translates
by an integer) turns out to lie in an escaping Fatou component in the cases (i)
and (ii) of proposition 4.4. This, together with lemma 4.2, leads directly to the
following result which gives a sufficient condition for f to have indeed a wandering
domain (containing z∗).

Corollary 4.5. (Wandering domains through pseudoperiodic points). Let f be a
projectable function via exp1, and ` ∈ Z such that f(z + 1) = f(z) + `. Suppose z∗

is a (p, σ)-pseudoperiodic point of f with σ ∈ Z∗ (and p ≥ 1), and is contained in a
Fatou component U of f. If 0 /∈ fill(exp1 U) and either |`| ≥ 2, or `p = 1, then U is
an escaping wandering domain.

4.2. Lifting components of projections of finite-type

Zheng in [53, theorem 3.3] analysed the connection between the types of Fatou
components of f and g in our context, showing e.g. that if f does not have wandering
domains, then g does not either. In the opposite direction we have the following
theorem. Here we concentrate on (non-periodic) functions f whose projection g is
of finite-type (detailed in theorem 2), and so g has no Baker domains nor wandering
components (see e.g. [7, theorem E and F]). The special case where f is periodic, is
going to be clarified at the end of the section. But first let us recall that the basin
of attraction of an attracting p-periodic point w0 of g is defined as

A(w0) := {w : gmp(w) → w0 as m→ ∞} , (4.9)

and the (Fatou) component containing w0 is called its immediate basin, denoted by

A∗(w0). For a set A ⊂ Ĉ, we denote by ∂A its boundary in Ĉ, and by A its closure

in Ĉ as done previously.
Similarly, by the immediate basin of attraction of a parabolic p̃-periodic point w̃0

of g, we understand the union of Fatou components V in A(w̃0) for which w̃0 ∈ ∂V .
We remark that if (gp̃)′(w̃0) is a primitive qth root of unity, then the number of
attracting (invariant) petals for gp̃q at w̃0, in the sense of the Leau-Fatou flower
theorem, is an integer multiple of q, and the map gp̃ permutes these petals in cycles
of length q (see more details in [44, §10]). Hence, any component V ⊂ A∗(w̃0) is
indeed a Fatou component of period p̃q. This is going to be important when lifting
parabolic basins in the proof of cases (2-i) and (2-ii) that follows.

Theorem 4.6 (Lifting periodic components). Let f be a non-periodic projectable
function via exp1, written as f(z) = `z+Φ(e2πiz) for some ` ∈ Z∗ and Φ meromor-
phic in C∗, and g its exponential projection. Suppose g is a finite-type map, V is a
p-periodic component of F(g), and U is a connected component of exp−1

1 (V ∩C∗).
Then U is a p-periodic Baker domain of f if and only if one of the following holds:
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(1) 0 ∈ fill(V ).
(2) {0,∞} ∩ ∂ fill(V ) 6= ∅ and either

(i) (p=1 case) ` = 1 with Φ(0) = 0 (resp. Φ(∞) = 0) and gm|V → 0 (resp.
∞) as m→ ∞; or

(ii) (p=2 case) ` = −1 with Φ(0) = Φ(∞) and g2m|V → 0 or ∞ as m→ ∞.

Alternatively, either

(a) U is a component of F(f) of period p, or 2p (which is only possible if `p=−1),
of the same type as V; or

(b) U is a wandering domain with fp(U) ⊂ U + σ, σ ∈ Z∗, which is unbounded
if {0,∞} ∩ ∂ fill(V ) 6= ∅.

Proof. Let Uk := U + k, k ∈ Z, and note that f(z + 1) = f(z) + ` for all z, where
` 6= 0. Given that gp(V ) ⊂ V , it is clear by lifting that fp(U) ⊂ Uσ for some σ ∈ Z,
and Uk ⊂ F(f) due to the relation (4.2).
We are going to prove this theorem by considering the following collection of mutu-
ally exclusive cases, which cover all the possibilities for the p-periodic component
V ⊂ F(g). We proceed in terms of the location of 0 or ∞ with respect to the fill of
V and the limit function of {gmp|V }m∈N.

Case 1. 0 ∈ fill(V ):
It follows from lemma 4.2 that U is an unbounded Fatou component of f (of
period p) which is invariant under translation by ±1. In this situation (case (1) of
the theorem), U must be a Baker domain; otherwise:

(i) If U is a component of the immediate basin of attraction of an attracting
or parabolic periodic point z∗, then z∗ ∈ U ∩ C with fp(z∗) = z∗ and
fmp|U → z∗, as m → ∞. By pseudoperiodicty (see lemma 2.1), we have
that

fmp(z + k) = fmp(z) + `mpk, (4.10)

for all z ∈ U , k ∈ Z. Hence, if |`| ≥ 2, then |fmp(z+k)| → ∞ as m→ ∞ for
any k 6=0, contradicting that z + k ∈ U . The same expression gives that for
z ∈ U , fmp(z + k) tends, as m → ∞, to z∗ + k if `p = 1, or to the 2-cycle
{z∗ + k, z∗ − k} if `p = −1, which is also a contradiction for k 6=0.

(ii) If U is a rotation domain, then there is a simple closed curve γ ⊂ U which
is invariant under fp. Again by the pseudoperiodicity relation (4.10), for any
z ∈ γ, |fmp(z + k)| → ∞ as m → ∞ if |`| ≥ 2 and k 6=0, in contradiction
with γ being fp-invariant. Moreover, if `p = 1 (resp. `p = −1), then γ+k ⊂ U
is invariant under fp (resp. f2p); a contradiction since {γ+k}k is a sequence
of non-nested loops in U.

Case 2. 0 /∈ fill(V ), {0,∞} ∩ ∂ fill(V ) 6= ∅, and gmp|V → 0 (resp. ∞):
Notice that ∞ /∈ fill(V ) (see remark 4.1), and Uk∩Uj = ∅ for all k 6= j, due to lemma
4.2. Since V cannot be a Baker domain (as g is of finite-type), and gmp(w) → 0
(resp. gmp(w) → ∞) for all w ∈ V , as m → ∞, we deduce that 0 (resp. ∞)
must be a parabolic periodic point of g, which lies outside of E(Φ) ∪ Φ−1(∞) by
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proposition 3.4. Hence, V shall be a component of the immediate basin of attraction
of 0 (resp. ∞).
This is only possible if ` = ±1; otherwise 0 (resp. ∞) would be a critical point of
g due to proposition 3.6. Recall that g(w) = w`e2πiΦ(w), and consider each case
separately:

(i) If ` = 1, then 0 (resp. ∞) is a fixed point of g with g′(0) = e2πiΦ(0) (resp.
g′(∞) = e−2πiΦ(∞)), and Φ(0) ∈ Q (resp. Φ(∞) ∈ Q) because the fixed point
needs to be of parabolic type. Denote by Υ the attracting axis of the petal
contained in V, in which the iterates converge to 0 (resp. ∞) tangentially
to Υ, at an angle, say, α ∈ (−π, π] with respect to the positive real axis.
Assume, without loss of generality, that υ := {Re z = α/2π} ⊂ exp−1

1 Υ
intersects U (figure 2 can serve as guidance for this situation).

From the explicit relation (4.3), the asymptotic behaviour of f mp near the
upper (resp. lower) end of C/Z, is given by

fmp(z) ∼ z +mpΦ(0)
(
resp. fmp(z) ∼ z +mpΦ(∞)

)
, (4.11)

as Im z → +∞ (resp. −∞). Hence, if Φ(0) = 0 (resp. Φ(∞) = 0), it follows
from (4.11) that, for z ∈ Uk,

Re fmp(z) → α

2π
+ k, as m→ ∞,

given that Uk crosses the vertical line υ + k, k ∈ Z. In this case, g′(0) = 1
(resp. g′(∞) = 1), and so the petal in V is invariant under g, i.e. p=1.
Then, for any k, Im fmp|Uk

→ +∞ (resp. −∞) tangentially to υ + k, as

m → ∞, and we obtain that Uk is a Baker domain. This proves case (2-i)
of the theorem.
However, if Φ(0) 6= 0 (resp. Φ(∞) 6= 0), we have from (4.11) that
|Re fmp(z)| → ∞, as m → ∞, for z ∈ U with large imaginary part. Since
each Uk is asymptotically contained in the strip

{
z : |Re z − α

2π − k| < 1
2

}
(as υ + k ⊂ Uk), we conclude that U is a (unbounded) wandering domain
of f.

(ii) If ` = −1, then, as 0 (resp. ∞) is in the domain of definition of g, for which
g(0) = ∞ (resp. g(∞) = 0), we have that {0,∞} is a parabolic 2-cycle, so
that p is even, and the cases gmp|V → 0 and gmp|V → ∞ can be treated
as one and the same. Furthermore, f ∈ R−1 and Φ(0) − Φ(∞) ∈ Q (see
corollary 3.9).
Now, given that `p = 1 (as p is even), the relation (4.3) yields the
asymptotics

fmp(z) ∼ z ± mp

2

(
Φ(∞)− Φ(0)

)
, as Im z → ±∞. (4.12)

As in the previous subcase, by lifting via exp1 the axis Υ of the attracting
petal in V (which is invariant under gp) and using (4.12) to infer the real
part of fmp(z) for z ∈ U (with | Im z| large enough), as m → ∞, we see
that U is a Baker domain if Φ(0) = Φ(∞). This corresponds to case (2-ii)
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of the theorem, since (g2)′(0) = 1, i.e. p=2. As before, if Φ(0) 6= Φ(∞), U
is wandering and unbounded.

Case 3. 0 /∈ fill(V ), {0,∞} ∩ ∂ fill(V ) 6= ∅, gmp|V 6→ 0 and gmp|V 6→ ∞:
Observe that {0,∞} ∩ fill(V ) = ∅, and U is unbounded. Recall that V cannot be
a Baker domain of g, so that we have the following possibilities:

(i) V is in the immediate basin of attraction of a p-periodic point w∗, and hence

w∗ ∈ V ∩ C∗, say w∗ = e2πiz
∗
(as both 0 and ∞ are not limit functions of

{gmp|V }m∈N). Note that each z∗k := z∗+k, k ∈ Z, is a (p, σk)-pseudoperiodic
point of f, where σk ∈ Z, and suppose, without loss of generality, that
z∗ ∈ U ∩ C.
Given that gmp(w) → w∗ for all w ∈ V , as m → ∞, the semiconjugacy
yields that fmp(z) → z∗k ∈ Uk ∩C for all z ∈ Uk, and from the relation (3.6)
between the derivatives of f and g, we have that, for k ∈ Z,

(fp)′(z∗k) = (gp)′(e2πiz
∗
). (4.13)

Thus, by inspection of the cases in proposition 4.4, we assert that z∗k is
either p-periodic, or 2p-periodic (`p=−1 case), or it escapes to ∞ under
iteration. In other words, Uk can be either a Fatou component of f of period
p, or 2p, of the same type as V due to (4.13), or an escaping wandering
domain in the latter situation. These belong to the cases (a) and (b) of the
theorem, respectively.

(ii) V is a rotation domain, and thus there is a simple closed curve Γ ⊂ V ∩C∗

which is invariant under gp. Since 0 /∈ fill(V ), i.e. 0 /∈ int(Γ), by taking a
branch of the logarithm with a cut along a simple curve joining 0 and ∞
which does not intersect int(Γ), we see that exp−1

1 Γ is a non-nested collection
of disjoint loops γk := γ + k, k ∈ Z, say with γ ⊂ U . Then, each γk belongs
to the component Uk ⊂ F(f), which is of the same connectivity as V, and
is mapped to γk+σ

k
by fp, where σk ∈ Z, due to the semiconjugacy.

Therefore, we may consider any γk as a pseudoperiodic object of minimal
type (p, σk), and then apply proposition 4.4 in analogy to the previous case,
so that the same conclusion follows.

Case 4. 0 /∈ fill(V ), {0,∞} ∩ ∂ fill(V ) = ∅:
Following exactly the same arguments as in Case 3, we obtain the same options for
U ⊂ F(f), but here U must be bounded, since {0,∞} ∩ fill(V ) = ∅. Hence, these
also lead to the cases (a) and (b) of the theorem.
Finally, notice that the compilation of possibilities, as indicated in each case, gives
the statement. �

The following is an example which is interesting in its own right, in the spirit of
Arnol’d family. It illustrates the case (1) of theorem 4.6, since we build different
kinds of Baker domains (we refer to [30] for their classification into three types) by
lifting periodic Fatou components V with 0 ∈ fill(V ).
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Example 4. (Meromorphic standard family). Consider the non-entire function

f(z) = z+α− β

4πi

(
Ba(e

2πiz)− 1

Ba(e2πiz)

)
, where Ba(w) =

w − a

1− aw
, (4.14)

for some a ∈ D∗, α ∈ [0, 1) and β > 0 (note that for a =0, f degenerates to the
entire standard map f(z) = z + α − β

2π sin 2πz; see example 1). Its exponential
projection g via exp1 may be written as

g(w) = we2πiR(w), where R(w) = α− β

4πi

(1− a2)w2 − 2w Im a− (1− a2)

(1− aw)(w − a)
.

(4.15)
Notice that Ba is a finite Blaschke product, and hence it preserves the unit circle
∂D and orientation. For all θ ∈ R, f(θ) = θ + α − β

2π ImBa(e
2πiθ) ∈ R, which

implies that g(∂D) ⊂ ∂D. Since R(0) = α − β
4πi

1−a2

a 6= ∞ and R(∞) = R(0) (as
α, β ∈ R), f ∈ R1, and corollary 3.9 asserts that E(g) = {a, 1/a}, and

g′(0) = e2πiαeβ(a−1/a)/2, g′(∞) = g′(0). (4.16)

Here we choose the real parameters a = 1
2 , β = 1

4 , and α such that the restric-
tion of g to ∂D is a real-analytic diffeomorphism (of topological degree one) with

rotation number equal to the golden mean ρ =
√
5−1
2 (numerically, we find that

α≈ 0.61783128). Since ρ is Diophantine, a theorem due to Herman and Yoccoz (see
e.g. [44, §15]) yields that ∂D is contained in a Herman ring V ⊂ F(g). Note from
(4.16) that 0 (resp. ∞) is an attracting fixed point of g, and denote by V + (resp.
V −) its immediate basin of attraction.
Now observe that the origin is in the fill of V and V ±, and hence lemma 4.2 shows
that their lifts via exp1 correspond to invariant Baker domains of f, say U and U±

(see figure 3). It can be checked that U is a hyperbolic Baker domain containing R,
and U+ (resp. U−) is a doubly parabolic Baker domain containing an upper (resp.
lower) half-plane, analogously to [9, §5] (using the terminology in [30]).
The finite-type map g has exactly two pairs of symmetric critical points with respect
to ∂D, which belong to the positive real axis. Numerically, each boundary compo-
nent of the Herman ring V seems to contain one of them (c+ ≈ 0.81135 and
c− ≈ 1.23251, whose orbits are dense in ∂V as displayed in figure 3), in which case
g would have no other periodic Fatou components, since V ± must enclose the two
remaining critical points.
Although the dynamical plane of f shows a close similarity to the one of the Arnol’d
standard map near the real line (compare figure 3 with, e.g. [9, figure 4]), here we do
not observe the so-called Devaney hairs near the essential singularity [25]. Indeed,
it looks like I(f)∩J (f) has no unbounded continua (apart from ∂U), where I(f)
denotes the escaping set of f (i.e. the set of points z ∈ C for which {fn(z)}n∈N
is defined and fn(z) → ∞ as n → ∞), in contrast to the situation for many
transcendental meromorphic maps (see [17]). It seems plausible that this sort of
baldness property holds for a wide range of functions in the class R`.

Next we give some examples of Baker and wandering domains which arise from
the lifting of periodic components V with 0 /∈ fill(V ). These lie in a family of
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U+

U−

Figure 3. Left (dynamical plane of the meromorphic standard map f): Three invariant
Baker domains in purple, yellow and orange, containing an upper half-plane, the real
axis (dashed line) and a lower half-plane, respectively; using the same parameters as in
example 4. The vertical dashed lines refer to {Re z = ±1/2}. Range: [−1, 1]× [−0.5, 0.5].
Right (dynamical plane of its projection g): The immediate basin of attraction in purple
(resp. orange) of the fixed point at 0 (resp. ∞), and the Herman ring (in yellow) containing
the unit circle, lift to the Baker domains of f (same colours). The white dot is the origin,
and ⊕ at 1/2 and 2 refer to the projections of the poles of f. Range: [−2.1, 2.1]2.

Newton maps of entire functions Fβ (without roots), introduced in [23, §5] to show
that a direct non-logarithmic singularity of F−1

β over 0 does not need to induce
Baker domains of the Newton map (often called virtual immediate basins in this
context); see e.g. [17] for the classification (and examples) of singularities of the
inverse function of meromorphic maps following Iversen.

Example 5. (Buff-Rückert’s family of Newton maps). For β > 0, consider the one-
parameter family of Newton’s methods for the zero-free entire function Fβ(z) =

exp
(
− z

β − 1
2πiβ e

2πiz
)
, given by

Nβ(z) = z +
β

e2πiz + 1
. (4.17)

The dynamics of Nβ modulo 1 is analysed in [23, §5] through its projection gβ via
exp1, written as

gβ(w) = we2πiRβ(w), where Rβ(w) =
β

w + 1
. (4.18)

Notice that Rβ(∞) = 0 and Rβ(0) = β, so that Nβ ∈ R1, and E(gβ) = {−1} (see
corollary 3.9). Moreover, gβ has a parabolic fixed point at ∞ and a fixed point at

0, with multipliers g′β(∞) = 1 and g′β(0) = e2πiβ .

If we denote by V − the immediate basin of attraction of ∞, then it follows from
theorem 4.6, case (2-i), that Nβ has infinitely many invariant Baker domain Uk :=
U +k, k ∈ Z, since 0 /∈ fill(V −) (see also lemma 4.2). This agrees with [23, theorem
4.1] as each Uk is induced by a logarithmic singularity of F−1

β over 0 along the

asymptotic path γ−k :=
{
Re z = 1

4 + k
}
∩ H−, so Uk is of doubly parabolic type,

using again the terminology in [30]. As an explicit example, for β∗ = 2i/π, as shown
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in [11, example 7.3], the Newton map

Nβ∗(z) = z +
i

π
+

1

π
tanπz

has a completely invariant Baker domain U+ of infinite degree which contains H+

(note that |g′β∗(0)| < 1), and infinitely many Baker domains Uk (of degree 2), each

one containing the vertical half-line γ−k , k ∈ Z.
Furthermore, observe that if β ∈ Q∗, i.e. 0 is a parabolic fixed point of gβ , then
its immediate basin of attraction, say V +, lifts via exp1 to a chain of unbounded
wandering domains of Nβ due to theorem 4.6, as 0 ∈ ∂ fill(V +) and Rβ(0) 6= 0;
see the asymptotic formula (4.11). Nonetheless, if β is a Brjuno number, then gβ
has a Siegel disk about 0, which lifts to a (simply parabolic) Baker domain. Note
that these components of Nβ are now induced by a direct singularity of F−1

β over 0
(along the real axis) which is not of logarithmic type since, although 0 is an omitted
value of Fβ , the function has infinitely many critical points on R+.

Before we turn our attention to projectable Newton maps of entire functions
(with roots) in §5, we conclude this section with some remarks about the case left
aside in theorem 4.6, namely when f is 1-periodic (` = 0).

4.3. The periodic case

Recall that a meromorphic function f which is 1-periodic (and so projectable via
exp1) may be written as f(z) = Φ(e2πiz), where Φ is meromorphic in C∗ (see remark
2.4). Moreover, both 0 and ∞ are omitted values of its exponential projection,
g(w) = e2πiΦ(w), which is of finite-type if and only if exp1 (S(Φ)\{∞}) is a finite
set (theorem 2). In this situation, note that f does not need to be of finite-type
(see example 3).

Proposition 4.7. (1-periodic case). Let f be a 1-periodic function, and g its expo-
nential projection via exp1. If g is a finite-type map, then f has no wandering
components nor Baker domains.

Proof. Consider a Fatou component U of f, and let Uk := U +k, k ∈ Z. Given that
f(z + k) = f(z) for all z, we have that f(Uk) ⊂ f(U) for all k, and V = exp1 U is
a component of F(g) due to the relation (1.9).
First, if U is assumed to be wandering, we can see that, for all n ∈ N, k ∈ Z,

fn+1(U) ∩ (fn(U) + k) = ∅. (4.19)

If this were not the case, then there would exist σ ∈ Z such that fN+1(U) ⊂
fN (U) + σ for some N ≥ 0, and so fN+2(U) ⊂ fN+1(U) since f is 1-periodic; a
contradiction with U being wandering. Hence, it follows from (4.19) that gn(V ) ∩
gm(V ) = ∅ for all n 6=m, i.e. V = exp1 U would be also a wandering component,
which is not possible as g is of finite-type.
Now, suppose that U is a p-periodic Baker domain, and thus fmp+j(z) → ∞ for
some j ∈ {0, 1, . . . , p − 1} and all z ∈ U , as m → ∞. We show that this is not

https://doi.org/10.1017/prm.2024.81 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.81


Dynamics of projectable functions 31

possible by arguing in terms of the type of the periodic component V = exp1 U of
F(g) (of the same period p, as f(U + k) ⊂ f(U) for all k ∈ Z by periodicity of f ):

(i) If V is the immediate basin of attraction of a p-periodic point w∗, then
w∗ ∈ C∗, as g(0) = e2πiΦ(0) and g(∞) = e2πiΦ(∞), if defined (see proposition
3.4), belong to C∗. Due to the semiconjugacy, asm→ ∞, fmp+j(z) → z∗ for

all z ∈ U , where z∗ satisfies e2πiz
∗
= gj(w∗); a contradiction since z∗ 6= ∞.

(ii) If V is a rotation domain, then there exists a p-periodic Jordan curve Γ ⊂ V ,
and gp is conformally conjugate on V to an irrational rotation of a disk (resp.
annulus).
On the one hand, if 0 ∈ fill(V ), then U contains an unbounded curve
γ := exp−1

1 Γ (invariant under translation by ±1; see lemma 4.2), and fp

is conformally conjugate on U to a horizontal translation on a half-plane
(resp. horizontal strip). This is a contradiction, as fp(z + 1) = fp(z) for all
z.
On the other hand, if 0 /∈ fill(V ), then Γ lifts via exp1 to a collection of
disjoint loops γk := γ + k, k ∈ Z, say with γ ⊂ U . Hence, by periodicity,
fp maps every γk to γσ for some σ ∈ Z, i.e. γσ is fp-invariant, which is in
contradiction with U being escaping.

�

It can be derived that for a p-periodic component V of F(g), any connected
component U of exp−1

1 (V ∩ C∗) is a Fatou component of f of the same type as
V, which is either p-periodic and invariant under translation by ±1 if 0 ∈ fill(V )
(see lemma 4.2), or eventually p-periodic otherwise, since f(U + k) ⊂ f(U) for
all k ∈ Z. Both cases occur already for the sine family as shown in the following
example by lifting, respectively, a doubly or simply connected attracting basin. The
connectivity of periodic Fatou components in Bolsch’s class K is known to be 1, 2
or ∞; however, note that in contrast to meromorphic functions in C, an invariant
doubly-connected Fatou component of g ∈ K does not need to be a Herman ring
(see more details in [20]).

Example 6. (Sine family). Consider the entire function fβ(z) =
β
2π sin 2πz, β ∈

R∗, which is 1-periodic. Its exponential projection gβ (via exp1) is given by

gβ(w) = e2πiΦβ(w), where Φβ(w) =
β

4πi

(
w − 1

w

)
. (4.20)

Note that gβ is a transcendental self-map of C∗ (with Φβ(0) = Φβ(∞) = ∞; see
remark 3.5), for which the unit circle is invariant, and the fixed point at 1 has
multiplier g′β(1) = β. The critical points of gβ are ±i.
On the one hand, it is known that, for 0 < β < 1, the Fatou set of gβ consists of
a single doubly-connected component V containing the unit circle and ±i, i.e. 0 ∈
fill(V ), with {0,∞} ⊂ ∂V (see [6, theorem 2]). Hence, the only Fatou component
of fβ is the (unbounded) basin of the attracting fixed point at 0, due to (4.2).
On the other hand, if we choose β = −π

2 , then the fixed point of gβ at 1 becomes
repelling, and {+i,−i} is a superattracting 2-cycle. Then, the immediate basin

https://doi.org/10.1017/prm.2024.81 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.81


32 R. Florido and N. Fagella

V ± of attraction of ±i lifts via exp1 to an infinite collection of disjoint Fatou
components U±

k := U± + k, k ∈ Z, chosen such that ± 1
4 ∈ U±. As fβ

(
± 1

4

)
= ∓1

4 ,
we obtain that {U+, U−} is a 2-periodic cycle of immediate attracting basins, and
fβ(U

±
k ) ⊂ U∓ for all k.

5. Projectable Newton maps and proof of theorem 3

The meromorphic function in example 5 (introduced by Buff and Rückert [23]) is
a first instance of a Newton’s root-finding method (in class R1) with wandering
domains obtained by the lifting method; however, as the Newton map of a zero-
free function, there are no fixed points to search for. In this section, building on
corollary 4.5 and theorem 4.6, we present a broad class of explicit (projectable)
Newton’s methods with fixed points, whose attracting basins do often coexist with
Baker domains and (escaping) wandering domains.

For this purpose, we first characterize those Newton’s methods (with fixed points)
in the class R` (see definition 1.2). We claim in theorem 3 that they are the Newton

maps NF : C → Ĉ of the entire functions

F (z) = e(Λ+2πim0)zP (e2πiz)eQ(e2πiz)+Q̃(e−2πiz), (5.1)

where Λ ∈ C, m0 ∈ Z, P, Q and Q̃ are polynomials with P (0) 6= 0, and P has zeros

in C∗. Additionally, Λ 6= −2πi(m0 +degP ) if Q is constant, and Λ 6= −2πim0 if Q̃
is constant.

If we consider that the polynomial P has M ≥ 1 distinct roots (all in C∗), say
Aj of multiplicity mj for j = 1, . . . ,M , and α ∈ C∗ is its leading coefficient, then
we may write

P (w) = α
M∏
j=1

(w −Aj)
mj , and degP =

M∑
j=1

mj . (5.2)

Moreover, if we define P̃ (w) := (w−A1) · · · (w−AM ), it follows from the product
rule that the logarithmic derivative of the polynomial P in (5.2) gives that

P ′(w)

P (w)
=

M∑
j=1

mj

w −Aj
, and

P ′(w)P̃ (w)

P (w)
=

M∑
j=1

mj

∏
k 6=j

(w −Ak). (5.3)

Denote by p, q, p̃, q̃ the degrees of P, Q, P̃ , Q̃, respectively. Then, the Newton
map of the entire function F in (5.1), may be written as NΛ(z) = z + RΛ(e

2πiz),
where RΛ is the quotient of two coprime polynomials:

RΛ(w)

=− wq̃P̃ (w)

(Λ + 2πim0)wq̃P̃ (w) + 2πiwq̃+1
(
P ′(w)P̃ (w)

P (w) + P̃ (w)Q′(w)
)
−2πiP̃ (w)wq̃−1Q̃′(1/w)

.

(5.4)
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Expanding the polynomials in (5.4) in powers of w, we see that the degree of the
numerator of RΛ is p̃+q̃, while the degree of its denominator turns out to be p̃+q+q̃;
note that deg

(
P ′(w)P̃ (w)P (w)

)
= p̃ − 1 due to (5.3), and deg

(
wq̃−1Q̃′(1/w)

)
=

q̃ − 1. Therefore, degRΛ = p̃+ q + q̃, and the following lemma is straightforward.

Lemma 5.1. (Rational map RΛ). Using the notation in theorem 3, consider the
rational map RΛ in (5.4) with Λ ∈ C, m0 ∈ Z, and let p := degP , q := degQ,

q̃ := deg Q̃. Then, if q> 0 (resp. q̃ > 0), we have that

RΛ(∞) = 0
(
resp. RΛ(0) = 0

)
. (5.5)

In the case that q= 0 (resp. q̃ = 0), we have that

RΛ(∞) = − 1

Λ + 2πi(m0 + p)

(
resp. RΛ(0) = − 1

Λ + 2πim0

)
. (5.6)

This is going to be used to prove theorem 3 as follows, particularly to establish
the conditions on Λ.

Proof of theorem 3. Suppose that the Newton map NF is in the class R`, that is,
NF (z) = `z + R(e2πiz) for some ` ∈ Z and a non-constant rational map R with
{0,∞} ∩ R−1(∞) = ∅ (see definition 1.2), and let us find an expression for the
entire function F. Observe that such a Newton map is transcendental, and so is F.
The exponential projection of NF (via exp1) is given by g(w) = w`e2πiR(w).
We shall first show that ` = 1. Let ξ be a (attracting) fixed point of NF, and
A∗(ξ) its immediate basin. It is known that there is an invariant access to ∞ from
A∗(ξ), represented by a curve γ : [0,∞) → A∗(ξ) that lands at ∞ with γ(0) = ξ
and, for t ≥ 1, NF (γ(t)) = γ(t − 1) (see [42]). Hence, as ∞ ∈ AV(NF ), note
that ` 6= 0 due to proposition 3.8 (indeed, if NF were in class R0, we would have
AV(NF ) = {R(0), R(∞)} ⊂ C). Furthermore, if Im γ(t) → +∞ (resp. −∞), then
the explicit form of the Newton map gives that, as t→ ∞,

ImNF (γ(t)) ∼ ` Im γ(t) + ImR(0)
(
resp. ImNF (γ(t)) ∼ ` Im γ(t) + ImR(∞)

)
.

(5.7)
Since R is a rational map for which 0 and ∞ are not poles, we deduce from (5.7)
that, for large enough t, the iterate of γ(t) moves further away from ξ if ` ≥ 2, or
lies outside γ if ` ≤ −1, contradicting the fact that γ is a NF-invariant curve whose
points converge to ξ under iteration. Analogously, the same contradiction can be
obtained if Re γ(t) were unbounded as t→ ∞. This proves that ` = 1.
It follows that NF (z) = z+R(e2πiz), that is, F/F ′ = −R◦exp1. Since NF (z+1) =

NF (z) + 1, this leads to the difference equation F (z+1)

F ′(z+1)
= F (z)

F ′(z) , which means that

the logarithmic derivative operator F ′/F is 1-periodic. By direct integration,

F (z + 1) = eΛF (z)

for some constant Λ ∈ C. Hence, F (z)e−Λz is 1-periodic, that is, F (z) = eΛzψ(z)
for a periodic entire function ψ of period 1. Note that ψ is non-constant because
NF is transcendental (see e.g. [48, proposition 2.11]).
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In fact, ψ(z) = Ψ(e2πiz), where Ψ is an analytic function in C∗ for which 0 or∞may
be essential singularities or poles (see remarks 2.4 and 3.5). Thus, as R(e2πiz) =

− F (z)

F ′(z) and ψ′(z) = 2πie2πizΨ′(e2πiz), the rational map R is written as

R(w) = − Ψ(w)

ΛΨ(w) + 2πiwΨ′(w)
. (5.8)

Given that the finitely many zeros of R coincide with the zeros of the function Ψ,
those in C∗ may be regarded as the roots (counted with multiplicity) of a polynomial
P like (5.2) with P (0) 6= 0, that is, we have that

Ψ(w) = wm0P (w)eQ(w)+Q̃(1/w)

for some m0 ∈ Z, and entire functions Q, Q̃. Since F (z) = eΛzΨ(e2πiz) has zeros in
C by assumption, so does P(w) in C∗. Using this expression for Ψ in (5.8), we can

see that R takes the form (5.4), where P̃ is the monic polynomial with the same

roots as P but of multiplicity one. Then, both Q and Q̃ must be polynomials, or
otherwise R would be transcendental as either lim

w→0
R(w) or lim

w→∞
R(w) would not

be well-defined.
Finally, as NF ∈ R1, we have some constraints on Λ so that R(∞) 6= ∞ and

R(0) 6= ∞. If we denote by p, q, q̃ the degrees of P, Q, Q̃, then by lemma 5.1 we
need Λ 6= −2πi(m0 + p) if q =0, and Λ 6= −2πim0 if q̃ = 0.

For the reverse direction, suppose that P, Q, Q̃ are polynomials (with P (0) 6= 0
and P−1(0)∩C∗ 6= ∅), m0 ∈ Z, Λ ∈ C satisfies the requirements stated in theorem

3, and F is the entire function given by (1.10). By a direct computation, − F (z)

F ′(z)
leads to R(e2πiz) with R as the quotient of coprime polynomials in (5.4). It follows
from lemma 5.1 (and the conditions on Λ) that R(∞) ∈ C∗ if Q is constant, while

R(∞) = 0 otherwise, and R(0) ∈ C∗ if Q̃ is constant, or else R(0) = 0. Thus,

NF (z) = z − F (z)

F ′(z) is in class R1. �

This provides good candidates of projectable Newton maps to showcase the exis-
tence of wandering domains via the lifting procedure developed in §4. But first let
us recall that if NF := Id− F

F ′ is the Newton map of an entire function F, then

N ′
F (z) =

F (z)F ′′(z)(
F ′(z)

)2 , (5.9)

that is, the zeros of F
′′
which are neither roots of F

′
nor F, are the free critical points

of NF (in the sense that they are not fixed points in general). Table 1 summarizes
well-known relations between dynamically relevant points of F and NF, which can
be easily extended to its projection g via exp1 as an outcome of §3.

It is well-known that all fixed points of the Newton map NF are attracting
and roots of F, and ∞ is either an essential singularity of NF, or a parabolic or
repelling fixed point if NF is rational (see e.g. [48]). In [42] it was shown that
the immediate basin of attraction for every root of F is simply-connected and
unbounded, extending Przytycki’s result [46] in the rational case. Furthermore, in

https://doi.org/10.1017/prm.2024.81 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.81


Dynamics of projectable functions 35

Table 1. Character of the roots of F (of multiplicity m ≥ 1), F
′
and F

′′
as points of the

Newton map NF (z) = z − F (z)
F ′(z) , and in the case that NF is projectable, as points of its

exponential projection g(w) via w = e2πiz.

F (z ) NF(z) g(w)

Zero of multiplicity m

F (a) = 0

Attracting fixed point

N ′
F (a) =

m−1
m

Attracting fixed point

A = e2πia, g′(A) = m−1
m

Critical point (not root of F )

F ′(b) = 0

Pole

NF (b) = ∞

Essential singularity

B = e2πib

Inflection point (not root of F, F
′
)

F ′′(c) = 0

Free critical point

N ′
F (c) = 0

Free critical point

C = e2πic, g′(C) = 0

[10] it was proven that every Fatou component of NF is simply-connected, based
on the absence of weakly repelling fixed points in the transcendental setting, which
generalizes Shishikura’s result [51] in the rational case.

5.1. Baker and wandering domains for Newton maps

In this context, our results in relation to the lifting method (see §4) can be applied
to find Baker and wandering domains for one-parameter families of projectable
Newton maps. This is displayed by the following corollary for Newton’s methods
in the class R1, which are specified by theorem 3. We consider, for convenience,
the parameter λ := Λ+ πi(2m0 +degP ), where m0 ∈ Z and P(w) is a polynomial
whose zeros are the projection of the fixed points of the Newton map of F (z ) under
consideration, i.e. P−1(0) = exp1

(
F−1(0)

)
.

Corollary 5.2. (Baker and wandering domains for Newton’s methods in class
R1). Using the notation in theorem 3 with Λ = λ − πi(2m0 + degP ), let Nλ be a
Newton map in class R1 with fixed points, and gλ its exponential projection. Then,
Nλ has infinitely many attracting invariant basins, and a simply-connected

(i) invariant Baker domain for any λ such that | Imλ| > π degP if both Q and

Q̃ are constant, as well as for all λ if Q or Q̃ is non-constant;
(ii) escaping wandering domain for any λ such that the projection via exp1 of a

(p, σ)-pseudoperiodic point of Nλ with p ∈ N∗ and σ ∈ Z∗, as a p-periodic
point of gλ, is attracting, parabolic or of Siegel type.

Proof. Since Nλ has fixed points, as a Newton map, these must be attract-
ing. Furthermore, there should be infinitely many of them because Nλ is
1-pseudoperiodic, i.e. Nλ(z + k) = Nλ(z) + k for all k ∈ Z.
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The projection gλ is given by gλ(w) = we2πiRλ(w), where, by theorem 3, Rλ is a
rational map of the form,

Rλ(w) = − Ψ(w)(
λ− πi(2m0 + degP )

)
Ψ(w) + 2πiwΨ′(w)

, with

Ψ(w) = wm0P (w)eQ(w)+Q̃(1/w), (5.10)

m0 ∈ Z, and P, Q, Q̃ as polynomials (P has all zeros in C∗). Additionally, λ ∈ C
satisfies that λ 6= −πi degP (resp. λ 6= πi degP ) in the case that Q (resp. Q̃) is
constant. Given that Nλ ∈ R1, we have that, as stated in corollary 3.9, both ∞
and 0 are fixed points of gλ with

|g′λ(∞)| = e2π ImRλ(∞), and |g′λ(0)| = e−2π ImRλ(0). (5.11)

To prove (i), we observe first that if both Q and Q̃ are constant, then by (5.6),
with Λ = λ− πi(2m0 + degP ),

Rλ(∞) =
−Reλ+ i(Imλ+ π degP )

|λ|2 + (π degP )2
, and Rλ(0) =

−Reλ+ i(Imλ− π degP )

|λ|2 + (π degP )2
,

so that (5.11) yields the relations,

|g′λ(∞)| < 1 ⇐⇒ Imλ < −π degP, and |g′λ(0)| < 1 ⇐⇒ Imλ > π degP.
(5.12)

Hence, for any λ satisfying the first (resp. second) condition in (5.12), we deduce
that ∞ (resp. 0) is an attracting fixed point of gλ. In any case, if we denote by
V the immediate basin of attraction of ∞ (resp. 0), then V lifts via exp1 to an
invariant Baker domain of NΛ by theorem 4.6, case (1).

In the case that Q (resp. Q̃) is non-constant, it follows from lemma 5.1 that
Rλ(∞) = 0 (resp. Rλ(0) = 0). Then, from (5.11) the fixed point of gλ at ∞
(resp. 0) is parabolic with multiplier 1, and so there is at least one attracting petal
attached to it, contained in an invariant component V of F(g). The case (2-i) of
theorem 4.6 gives that any connected component of exp−1

1 V is an invariant Baker
domain of Nλ for all λ.
To see (ii), assume z∗λ to be a pseudoperiodic point of Nλ of minimal type (p, σ),
with p ≥ 1 and σ ∈ Z∗, i.e.

Np
λ(z

∗
λ) = z∗λ + σ.

On the one hand, if λ is such that w∗
λ := e2πiz

∗
λ , as a p-periodic point of gλ (see

lemma 4.3), is attracting or of Siegel type, then z∗λ ∈ F(Nλ) due to (4.2), and the
conclusion follows from corollary 4.5.
On the other hand, when λ is such that w∗

λ is parabolic, any component V of
its immediate basin of attraction lifts via exp1 to a chain of wandering domain
{U + k}k∈Z of Nλ due to theorem 4.6; note that 0 /∈ fill(V ), gmp

λ (w) → w∗
λ ∈ C∗ for

all w ∈ V , as m→ ∞, and Nmp
λ (U) ⊂ U +mσ by proposition 4.4 (` = 1 case). �

Observe that if Q (resp. Q̃) is non-constant, then a component V of the imme-
diate parabolic basin for gλ of ∞ (resp. 0) lifts to infinitely many distinct Baker
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domains of the Newton map Nλ, as 0 /∈ fill(V ). Moreover, we point out that the
internal dynamics of a wandering domain U ⊂ F(Nλ) built by this lifting proce-
dure, relates to the type of the periodic component V = exp1 U of gλ. Given an
appropriate pseudoperiodic (but non-periodic) point of Nλ, say z∗ ∈ U , if V is
an attracting (resp. parabolic) basin, the iterates of all points in U accumulate
about the forward orbit of z∗, which lies in the interior (resp. boundary) of U.
However, if V is a Siegel disk, points in U travel along {Nn

λ (U)}n∈N in a rotation-
like behaviour around the orbit of z∗ (as a moving centre); see [13] for a classification
(and examples) of simply-connected wandering domains.

This result showcases the possible coexistence of wandering domains and attract-
ing invariant basins for Newton’s methods, as we were looking for. To make it
explicit, in the following sections we inspect the dynamical and parameter planes
for the simplest family of Newton maps (with fixed points) in this class.

5.2. Pseudotrigonometric family: dynamical planes

It follows from theorem 3 that any Newton map in class R1 is the Newton’s method
of a transcendental entire function

F (z) = e(λ−πi degP )zP (e2πiz)eQ(e2πiz)+Q̃(e−2πiz), (5.13)

considering the parameter λ ∈ C as done in §5.1, where m0 ∈ Z and P, Q, Q̃ are
polynomials, with P (0) 6= 0.

These Newton maps may be written in the form Nλ(z) = z + Rλ(e
2πiz), with

Rλ as the rational map in (5.4), where P̃ is a monic polynomial whose roots are
simple, non-zero, and exactly those of P. As it is assumed that λ 6= −πi degP if
degQ = 0, and λ 6= πi degP if deg Q̃ = 0, it can be easily verified from lemma 5.1
that Rλ(∞) 6= ∞ and Rλ(0) 6= ∞. Furthermore, counting with multiplicity,

#
(
R−1

λ (0) ∩ C∗) = deg P̃ , and #R−1
λ (∞) = deg P̃ + degQ+ deg Q̃, (5.14)

In general, such an Nλ ∈ R1 may have multiple poles, as it is the case, for example,
of the Newton map of exp

(
z−e2πiz/πi+e4πiz/4πi

)
at all integers. In the following

we give representatives for the simplest case, that is, when the Newton’s method Nλ

has a unique pole of multiplicity one in every period strip of exp1, i.e. #R
−1
λ (∞) =

1, and in particular, its exponential projection gλ is a transcendental meromorphic
map (in the sense that #E(gλ) = 1). Recall that two entire functions have the
same Newton map NF if and only if they differ by a multiplicative constant (see

[47, proposition 2.8]); indeed F (z) = K exp
(∫ z

0
du

u−NF (u)

)
for K ∈ C∗.

Proposition 5.3. (Newton’s methods in class R1 with a simple pole in a period
strip). Every Newton map in class R1 with exactly one simple pole in a period
strip of exp1, is conjugate to either

(i) The Newton’s method of Fα,m(z) =
(
eαz sinπz

)m
, for some α ∈ C\{±πi}

and m ∈ N∗.
(ii) The Newton’s method of Fβ(z) = exp

(
− z

β − 1
2πiβ e

2πiz
)
, for some β ∈ C∗.
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Proof. Following theorem 3 in terms of λ = Λ+πi(2m0+degP ), any Newton map
NF ∈ R1 is the Newton’s method of an entire function F of the form (5.13), i.e.
NF (z) = z +R(e2πiz) for a rational map R like (5.4), with {0,∞} ∩ R−1(∞) = ∅.
Here NF may have no fixed points if we allow the case P−1(0) ∩ C∗ = ∅.
Since NF is required to have only one simple pole in S0 = {z : −1

2 < Re z ≤ 1
2}

(the fundamental period strip of exp1), and exp1
(
N−1

F (∞)
)
= R−1(∞), it follows

from (5.14) that deg P̃ ≤ 1, that is, P can have at most one root (which may be
multiple). There are two possible cases:

(i) If P has exactly one zero (which lies in C∗, as P (0) 6= 0), say e2πia0 of

multiplicity m ≥ 1, then both Q and Q̃ must be constants due to (5.14),

as deg P̃ = 1. Without loss of generality, we may assume that P (w) =
(w − e2πia0)m and disregard multiplicative constants in F, so that (5.13)
and (5.4) yield that

F (z) = e(λ−πim)z
(
e2πiz − e2πia0

)m
, and

NF (z) = z − e2πiz − e2πia0

(λ+ πim)e2πiz − (λ− πim)e2πia0
, (5.15)

respectively, with λ ∈ C\{±πim}; note that P ′P̃
P ≡ m = degP . It can be

checked that the Newton map in (5.15) is conjugate, via z 7→ z − a0, to the
Newton’s method of Fα,m in the statement, with α = λ/m.

(ii) If P is a (non-zero) constant, then either degQ = 1 or deg Q̃ = 1 by (5.14),
and they may be assumed to be linear, as a multiplicative constant in F
does not alter the Newton map NF (z) = z−F (z)/F ′(z). Consider first that

Q(w) = w, and so Q̃ is constant, then the entire function F in (5.13) is
given by

F (z) = eλz exp
(
e2πiz

)
, and NF (z) = z − 1

λ+ 2πie2πiz
, (5.16)

with λ ∈ C∗ so that NF ∈ R1. Then the non-entire map NF is conjugate
through z 7→ z − aλ, where aλ ∈ C satisfies that e2πiaλ = λ/2πi, to the
Newton’s method of Fβ in the statement, with β = −1/λ.

The case deg Q̃ = 1 (and so Q constant) follows in exactly the same manner,
and indeed the Newton map of eλz exp

(
e−2πiz

)
is conjugate to the one in

(5.16) via z 7→ −z + 1/2.

�

On the one hand, observe that the Newton’s methods from the case (ii) of propo-
sition 5.3 exactly correspond to the family of meromorphic maps Nβ in example 5,
which was introduced by Buff and Rückert [23], and their projections gβ (via exp1)
have a unique essential singularity at −1 for all β ∈ C∗.

On the other hand, the case (i) of proposition 5.3 delivers a family of Newton
maps Nα,m with fixed points (at the integers) of multiplier m−1

m , which leads to
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the pseudotrigonometric family Nλ (see definition 1.4) when α = λ and m =1, i.e.
to the Newton’s method of Fλ(z) := eλz sinπz, λ ∈ C\{±πi}.

Remark 5.4. (Relaxed Newton’s method). Following [14, §6.2], it is of interest
to notice that for m ≥ 2, the function Nλ,m is the relaxed Newton’s method of Fλ

with relaxation factor 1
m ∈

(
0, 12
]
, that is,

Nλ,m(z) = z − 1

m

Fλ(z)

F ′
λ(z)

= z − 1

m

e2πiz − 1

(λ+ πi) e2πiz − (λ− πi)
(5.17)

Due to [18, theorem 2.2], if 0 is not an asymptotic value of Fλ, as m increases, the
complement of the union of the immediate basins of the roots of Fλ (including all
those regions of starting values for which Newton’s method fails) shrinks, in the

sense of the Lebesgue measure on Ĉ. Notice that

Fλ(z) =
1

2i
e(λ−πi)z(e2πiz − 1), with Fλ(z) ∼ e(λ∓πi)zas Im z → ±∞, (5.18)

and the asymptotic path γ±0 : [t0,∞) → C such that e(λ±πi)γ±0 (t) → 0 as t→ ∞, is
represented by γ±0 (t) = −

(
λ± πi

)
t. Hence, 0 ∈ AV(Fλ) if and only if Im γ∓0 (t) →

±∞ as t → ∞, that is, ± Imλ > π. Then, when | Imλ| < π, the relaxation of Nλ

really trades speed of convergence for the ease of finding a good initial guess.

In what follows we study the uniparametric family Nλ of pseudotrigonometric
Newton’s methods, as a representative of those Newton maps in class R1 with
exactly one superattracting fixed point and a simple pole in each period strip of
exp1. Let us highlight the dynamically important points of their projections gλ.

Lemma 5.5. (Projections of Newton’s methods in the family Nλ). Let Nλ be
a Newton map in the pseudo-trigonometric family Nλ, λ ∈ C\{±πi}. Then its
exponential projection gλ, which is given by

gλ(w) = we2πiMλ(w), where Mλ(w) = − w − 1

(λ+ πi)w − (λ− πi)
, (5.19)

has a unique essential singularity at Bλ := λ−πi
λ+πi . Moreover,

(i) The set of fixed points of gλ consists of the points at 0 and ∞, with
multipliers

g′λ(0) = exp

(
2πi

πi− λ

)
and g′λ(∞) = exp

(
2πi

πi+ λ

)
, (5.20)

and, for σ ∈ Z, the points at

w∗
σ :=

1 + (λ− πi)σ

1 + (λ+ πi)σ
, with g′λ(w

∗
σ) = 1−

(
1+(λ−πi)σ

)(
1+(λ+πi)σ

)
.

(5.21)
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(ii) The set of singular values of gλ consists of the fixed asymptotic values at
0 and ∞, the fixed critical point at w∗

0 = 1, and the image of the only free
critical point at Cλ := B2

λ.

Proof. By definition 1.4, Nλ is the Newton’s method of the entire function Fλ(z) =
eλz sinπz, λ ∈ C\{±πi}, written as Nλ(z) = z+Mλ(e

2πiz), whereMλ is the Möbius
transformation in (5.19). Then, for any k ∈ Z,

ak := k, bλ,k :=
1

2πi
Log

(
λ− πi

λ+ πi

)
+ k, cλ,k := 2bλ,0 + k,

are the (simple) roots of Fλ, F
′
λ, F

′′
λ , respectively, where Log denotes the principal

branch of the logarithm. Referring to table 1, we find that, as e2πik = 1 for all
k, e2πiak = 1 is a superattracting fixed point of gλ, e

2πibλ,k = λ−πi
λ+πi =: Bλ is an

essential singularity of gλ, and e
2πicλ,k = B2

λ =: Cλ is a free critical point of gλ.
Given that Nλ is in class R1, it follows from corollary 3.9 (` = 1 case) that E(gλ) =
M−1

λ (∞) = {Bλ}, and the points at 0 and ∞ are the asymptotic values of gλ,
which are indeed fixed points with multipliers g′λ(0) = e2πiMλ(0) and g′λ(∞) =
e−2πiMλ(∞), respectively, of the form (5.20) since

lim
Im z→±∞

Mλ(e
2πiz) =

1

±πi− λ
.

From lemma 4.3 we know that the projection via exp1 of any (1, σ)-pseudoperiodic
point of Nλ, with σ ∈ Z, is a fixed point of gλ, say w

∗
σ, which satisfies the relation

Mλ(w
∗
σ) = σ. The solution of this equation gives the expression of w∗

σ as in the
statement of (i). Notice also that

g′λ(w) = e2πiMλ(w)
(
1+2πiwM ′

λ(w)
)
, where M ′

λ(w) =
−2πi(

(λ+ πi)w − (λ− πi)
)2 .

Hence, as M ′
λ(w

∗
σ) = −1

2πi

(
1 + (λ + πi)σ

)2
, a straight computation leads to the

multipliers of w∗
σ in (5.21). Observe that w∗

σ may be the fixed point at ∞ if λ =
−πi− 1

σ (σ 6=0), in which case we have that g′λ(∞) = 1.
To see (ii), note that remark 3.7 and (5.9) imply that the critical values of gλ are

located at 1 and gλ(Cλ), as e
2πiNλ(cλ,k) = gλ(e

2πicλ,k), k ∈ Z. Since AV(gλ) =
{0,∞}, we conclude that S(gλ) = {0, 1, gλ(Cλ),∞}. �

We observe from (5.20) that one of the fixed asymptotic values of gλ (either the
point at 0 or ∞) is attracting if | Imλ| > π. This is indeed the case in which 0 is
an asymptotic value of Fλ (see remark 5.4).

Remark 5.6. (Logarithmic singularities). The projection gλ of a pseudotrigono-
metric Newton map is conjugate via Mλ (which places the essential singularity at
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∞ and the fixed points w∗
σ at σ ∈ Z) to the function

g̃λ(ζ) :=Mλ◦gλ◦M−1
λ (ζ) = −

(
1 + (λ− πi)ζ

)
e2πiζ −

(
1 + (λ+ πi)ζ

)
(λ+ πi)

(
1 + (λ− πi)ζ

)
e2πiζ − (λ− πi)

(
1 + (λ+ πi)ζ

) .
(5.22)

The singular values of g̃λ are the fixed asymptotic values at 1
πi±λ , the superattract-

ing fixed point at 0, and the free critical point at −2λ
λ2+π2

. Furthermore, its order of

growth (in the sense of Nevanlinna [45]) is ρ(g̃λ) = 1, as the sum and division of
meromorphic functions do not increment the order (this is also the case for Fλ and
functions in class R`, given that their periodic part is the quotient of trigonometric
polynomials).
Since g̃λ is a finite-type map of finite order, all singularities of g̃−1

λ over an asymp-
totic value are logarithmic due to [16, corollary 1]. This means that for v ∈ AV(g̃λ),
there exists r > 0 and a component Ur of g−1

λ (Br(v)\{v}), where Br(v) denotes the

open disk of centre v and radius r in the spherical metric on Ĉ, such that Ur

contains no preimages of v and f : Ur → Br(v)\{v} is a universal covering. The
domain Ur is called a logarithmic tract, and g̃λ = exp ◦η + v in Ur (or g̃λ = e−η

if v = ∞) for some conformal (i.e. one-to-one analytic) map η from Ur onto the
half-plane {z : Re z < ln r}; see more details in [17] and [54, §6]. The same holds
for gλ.

In fact, in the situation where 0 ∈ AV(Fλ), using remark 5.4 we can find an
asymptotic path associated to 0 which does not pass through the critical points of
Fλ, and so there is a logarithmic singularity of F−1

λ over 0, which induces a (doubly
parabolic) Baker domain of the Newton map Nλ by a result of Buff and Rückert
[23, theorem 4.1], as already mentioned in example 5. This agrees with our results
as follows.

Example 7. (Coexistence of Baker domains and the basins of the roots). First
recall that the pseudo-trigonometric family Nλ comprises the Newton’s methods of

Fλ(z) =
e(λ−πi)z

2i (e2πiz − 1), with λ ∈ C\{±πi}. It follows from corollary 5.2 that
the Newton map Nλ has an invariant Baker domain if | Imλ| > π, alongside the
infinitely many basins of the roots of Fλ. This implicitly relies on (5.12) which says
that here the fixed point at ∞ (resp. 0) of its exponential projection gλ is attracting
if and only if Imλ < −π (resp. Imλ > π).
As a particular example, for λ∗ = −3πi, lemma 5.5 asserts that

gλ∗(w) = w exp

(
w − 1

w − 2

)
, g′λ∗(0) = e1/2, and g′λ∗(∞) = e−1. (5.23)

Moreover, the half-line γ+0 := −i[t0,∞), where t0 >
ln 2
2π so that it avoids the critical

points of Fλ∗ (i.e. the poles of the Newton map; see table 1), is an asymptotic path
associated to 0 ∈ AV(Fλ∗) by remark 5.4. As shown in figure 4, the immediate
basin of attraction of ∞ for gλ∗ , which encloses the free critical point at Cλ∗ = 4,
lifts via exp1 to a simply-connected invariant Baker domain U of infinite degree for
Nλ∗ , since it contains a logarithmic tract of Fλ∗ over 0 with γ+0 as its asymptotic
path (see also remark 5.6).
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0 11−

U

1

Figure 4. Left (dynamical plane of Nλ for λ = −3πi): The basins of the fixed points of Nλ

at the integers coexist with a simply-connected Baker domain U (in blue) as in figure 1;
see example 7. Range: [−1.5, 1.5]× [−0.85, 0.85]. Right (dynamical plane of its projection
gλ): The superattracting basin of 1 (in purple), and the basin of the fixed point at ∞ (in
blue) which lifts via exp1 to the Baker domain U. Range: [−0.2, 2.2]× [−1, 1]. The white
⊕ at 2 refers to the projection of the poles of Nλ, and the colour palettes to the speed of
convergence to these fixed points of gλ.

It is important to emphasize that each fixed point w∗
σ of gλ, specified in (5.21)

with σ ∈ Z, is the projection via exp1 of the (1, σ)-pseudoperiodic points z∗σ,k :=

z∗σ + k, k ∈ Z, of the corresponding Newton’s method Nλ such that e
2πiz∗σ,k =

w∗
σ, where z

∗
σ is chosen as the one in the fundamental period strip of exp1. They

satisfy that Nλ(z
∗
σ,k) = z∗σ,k + σ, and escape to ∞ under iteration unless σ=0 (see

proposition 4.4, `p = 1 case).

Example 8. (Coexistence of wandering domains and the basins of the roots).
Applying corollary 5.2 we explicitly identify escaping wandering domains in the
pseudotrigonometric family Nλ, for those λ ∈ C\{±πi} such that the fixed point
of its projection gλ at w∗

σ is attracting, parabolic or of Siegel type, for some σ ∈ Z∗.
Recall that w∗

0 = 1 is a superattracting fixed point of gλ for all λ, i.e. g′λ(1) = 0,
as it is the projection via exp1 of the roots of Fλ (see table 1). For σ 6=0, the fixed
point at w∗

σ(λ) can also be superattracting if its multiplier, given by (5.21), vanishes
for some λ. This occurs for the parameters

λ±σ :=
−1

σ
± i

√
π2 − 1

σ2
, and so w∗

σ(λ
±
σ ) = 1 + 2πσ2

(
−π ±

√
π2 − 1

σ2

)
.

(5.24)
In such case, the Newton map N

λ±σ
has infinitely many wandering domains Uk,

k ∈ Z, with Nn

λ±σ
(Uk) ⊂ Uk + nσ for all n ∈ N, emerging as the lift via exp1 of

the immediate basin of attraction of w∗
σ, which is indeed the free critical point of

g
λ±σ

, σ ∈ Z∗. The σ-pseudofixed points z∗σ,k described above, lie in this chain of

wandering domains, coexisting with the infinitely many basins of the roots of F
λ±σ

,

as displayed in figure 5 for λ = λ−1 .
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0 1−1

U−1 U0

�

z*
1

�

z*
1 −1

1�

w*
1

Figure 5. Left (dynamical plane of Nλ for λ = −1 − i
√
π2 − 1): The basins of the fixed

points of Nλ at k ∈ Z coexist with a chain of simply-connected wandering domains Uk

(in orange) such that z∗1 + k ∈ Uk as in figure 1, where z∗1 projects to the superattracting
fixed point w∗

1(λ
−
1 ) ≈ −37.45 of gλ from example 8. Range: [−1.5, 1.5]×[−1.15, 0.55]. Right

(dynamical plane of its projection gλ): The superattracting basin of 1 (in purple), and the
immediate basin of attraction of w∗

1 (in orange) which lifts to the wandering domains Uk.
Range: [−42, 42]× [−35, 35]. The white ⊕ refers to the projection of the poles of Nλ, and
the colour palettes to the speed of convergence to the fixed points of gλ.

For the sake of completeness, we illustrate the dynamical planes in a case when
the free critical point of the exponential projection gλ lies in the basin of the
superattracting fixed point at 1 (i.e. the image under exp1 of the zeros of Fλ), and
hence, as gλ is of finite-type, there can be no other Fatou components.

Example 9. (Basins of the roots as the only Fatou components). The free critical
point of gλ coincides with the fixed point at 1 if and only if λ=0. In this case, the
pseudotrigonometric Newton map N 0 is precisely the Newton’s method of sinπz,
given by

N0(z) = z − 1

π
tanπz = z − 1

πi

e2πiz − 1

e2πiz + 1
, (5.25)

and its fixed points at k ∈ Z are critical points of N 0 of multiplicity two (i.e.
N ′′

0 (k) = 0 but N ′′′
0 (k) 6= 0).

As detailed in [11, example 7.2], the only periodic Fatou components of F(N0) are
the infinitely many immediate basins of attraction Uk of the fixed points at k ∈ Z,
with degN0|Uk

= 3. Moreover, each Uk has two distinct accesses to ∞, and ∂U

contains exactly two accessible poles of N 0 as depicted in figure 6. Observe that
all the basins Uk project to the superattracting basin of 1 for g0, and the lines
{Re z = 1/2 + k}k∈Z ⊂ J (N0) are sent via exp1 to the negative real axis (e.g. the
prepole of N 0 of order 2 near the point 0.5−0.3816i, is sent to an essential prepole
of g0 close to −11), showing the distortion of lengths by the exponential.

5.3. Atlas of wandering domains: λ-plane

The goal of this final section is to present some numerical observations and remarks
on the parameter space of our pseudotrigonometric family Nλ of Newton maps
(outside of the Eremenko-Lyubich class B). It is convenient to transfer our analysis
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0 1−1

U−1 U0 U1

1

Figure 6. Left (dynamical plane of Nλ for λ= 0): The Fatou set of N 0 consists only of
the superattracting basins Uk of the fixed points at k ∈ Z, with {Re z = 1/2 + k}k∈Z ⊂
J (N0); see example 9. Range: [−1.5, 1.5] × [−0.75, 0.75]. Right (dynamical plane of its
projection gλ): The superattracting basin of 1, and the essential singularity ⊕ at −1.
Range: [−14, 14]×[−11, 11]. The purple colours matches the speed of convergence to 1 by
g0 (the lightest covers J (g0)).

to their projections gλ via exp1, as they compose a one-parameter family of finite-
type maps with a unique essential singularity and only one free critical orbit (see
lemma 5.5).

It is of interest to identify the values of λ for which the free critical point of gλ,

given by Cλ =
(
λ−πi
λ+πi

)2
, does not converge to the superattracting fixed point at 1

under iteration, since then the corresponding Newton map Nλ exhibits other types
of Fatou components besides the basins of attraction of its fixed points (i.e. the
roots of Fλ), such as Baker or wandering domains, which are clear obstructions to
root-finding. We denote this set of parameters by

M̃ :=
{
λ ∈ C\{±πi} : lim

n→∞
gnλ(Cλ) 6= 1

}
, (5.26)

which is symmetric with respect to both the real and imaginary axes, as g−λ

(
1
w

)
=

1
g
λ
(w) , and g−λ

(w) = gλ(w). This is shown in figure 1, where we colour each λ

according to the period of the cycle which attracts Cλ.
Notice that gλ is never hyperbolic (nor topologically hyperbolic) since at least one

of its asymptotic values (at 0 or ∞) lies in the Julia set of gλ for any λ. Nonetheless,
we may say that gλ is subhyperbolic if the forward orbit of every singular value of
gλ is either finite or converges to an attracting periodic cycle, in analogy to the
rational case (see [44, §19]). This allows singular values to be in J (gλ) only if they
are eventually periodic.

A connected component of the subhyperbolic locus of the family {gλ}λ is called a
subhyperbolic component. Throughout such a component, the subhyperbolic maps
gλ are structurally stable, which means that, roughly speaking, the qualitative
dynamics of gλ does not change as we perturb λ; in particular, the period of the
attracting cycle to which Cλ converges under iteration is constant (see more details
in [4, 31]).

Figure 1 shows notable similarities between the components of M̃ and the well-
studied hyperbolic components of the Mandelbrot set for the quadratic polynomials
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−1−πi−2−πi−3−πi

Ω−
0,−1

Ω−
0,−2

Ω−
1/2,−1

Ω−
1/2,−2

Ω−
2/3,−1

Ω−
1/3,−1

1/2

λ
†
1

Ω†

Ω−

Figure 7. Region of the set M̃ in the 3rd quadrant of the λ-plane (same colouring as
in figure 1). We indicate on ∂Ω− = {λ : Imλ = −π} the roots of some components of

M̃ which emerge from the landing points of internal rays of rational argument θ in Ω−,
denoted by Ω−

θ,k as described in Remarks 5.7 and 5.8. The white region consists of capture

components, and at λ†
1 ≈ −1.096−2.462i the free critical point happens to be an essential

prepole of gλ.

(see e.g. [26]). Furthermore, there is a remarkable elephant-like structure which
reminds us of the fractal geometry of the Mandelbrot set near parabolic parameters.

The parade of elephants in figure 7 (blow-up of M̃ in the third quadrant of the
λ-plane) seems to be almost invariant under translation by −1, similarly to the
illustrations in [22] for the quadratic family. However, in our case it looks like each
elephant’s trunk actually terminates in the neck of the next one, with the right-
most one reaching the parameter singularity at −πi, whose Newton’s method N−πi

is indeed conjugate, via z 7→ −2πiz, to a Fatou function of the form z − 1 + e−z

(analysed in [52]). The rest of trunk endings seems to occur at λ-values for which
the free critical point of gλ at Cλ is a (essential) prepole of order m ≥ 1, i.e. such
that

gmλ (Cλ) =
λ− πi

λ+ πi
. (5.27)

Notice that all capture components (i.e. subhyperbolic components in which the
free critical point of gλ at Cλ eventually falls in the immediate basin of attraction

of the fixed point at 1) are in the complement of M̃, shown in white in figures
1 and 7. In particular, the one containing λ=0, denoted by Ω†, is the analogue
of the outside of the Mandelbrot set since Cλ ∈ A∗(1); see example 9. In each
capture component, there seems to be a distinguished parameter (its centre) for
which the free critical point is eventually fixed, so that its Newton map Nλ may be
called postcritically fixed in analogy to the rational case (see [27] for a combinatorial
classification of them). Moreover, if Cλ actually lands on a fixed point after m +1
iterations, m ∈ N, we have detected a value λ†m in the boundary of the associated
component, satisfying equation (5.27).

The root-finding method has virtually no obstacles in capture components, as
the Fatou set of these Newton maps consists only of the basins of the fixed points
(and the Julia set has empty interior). Nevertheless, as already mentioned, this will
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Ω− Ω+

1
RΩ+

0,1RΩ−
0,−1

Figure 8. The set M̃ for the parameter µ := λ+2πi
λ

(same colouring as in figures 1 and 7).

The dashed lines refer to the internal raysRΩ±
0,k of argument zero in Ω± for k ∈ {0,±1,±2},

following remark 5.7.

not be the case along the set M̃, for instance, if the fixed point of the projection
gλ at 0 (resp. ∞) is non-repelling; that is, if Imλ ≥ π (resp. Imλ ≤ −π) as follows
from lemma 5.5.

Remark 5.7. (Components of M̃ leading to Baker domains). Denote by Ω+ (resp.
Ω−) the subhyperbolic component in which the free critical point of gλ is attracted
to the asymptotic value at 0 (resp. ∞), i.e.

Ω± :=
{
λ : ± Imλ > π

}
⊂ H±. (5.28)

Notice that the multiplier map ρ
Ω± : Ω± → D∗, which is explicitly given by (5.20),

is a universal covering of Ω±, as it happens in the exponential or tangent family for
their hyperbolic components (see e.g. [31]). However, in our case we do not observe
cusps on ∂Ω± at the ends of the internal rays of argument zero. Recall that the inter-

nal rays of argument θ ∈ [0, 1) in Ω± are the curves RΩ±
θ,k : (−∞, 0) → Ω±, k ∈ Z,

which are sent by the multiplier map to the radial segment
{
ete2πiθ : t ∈ (−∞, 0)

}
of D∗, and satisfy

exp−1◦ρ
Ω±
(
RΩ±

θ,k (t)
)
= t+ 2πi(θ + k). (5.29)

It is easy to check that, for each k ∈ Z, RΩ±
θ,k is the half-circle starting at ±πi ∈ ∂Ω±

(the virtual centre) and ending at ±
(
πi− 1

θ+k

)
, which degenerates to the half-line

{Reλ = 0,± Imλ > π} if θ = k = 0. In figure 8 we show rays of argument θ=0 in

M̃, after the change of parameter λ 7→ µ := λ+2πi
λ which sends Ω− (resp. Ω+) to

the unit disk D (resp. D+ 2); as a reference, −πi 7→ −1, −π(1 + i) 7→ −i, ∞ 7→ 1.
In this framework, when λ ∈ Ω+ (resp. λ ∈ Ω−), we know that the basin of
attraction V of 0 (resp. ∞), which is a Picard exceptional value of gλ, lifts via
exp1 to a simply-connected Baker domain of the Newton map Nλ (see example

https://doi.org/10.1017/prm.2024.81 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.81


Dynamics of projectable functions 47

7) of infinite degree, as V contains a logarithmic tract of gλ by remark 5.6. We
note that the landing points on ∂Ω± of internal rays of rational (resp. Brjuno-type)
arguments, give rise to a wandering (resp. Baker) domain of Nλ as follows from
theorem 4.6 (see also the arguments in example 5).

We point out that the internal rays of argument θ=0 in Ω± do not terminate at

a cusp, but rather at the root of a component of M̃ of period 1, which we denote

by Ω±
0,k if it comes from RΩ±

0,k (t), k ∈ Z∗, as t → 0.

Remark 5.8. (Some components of M̃ leading to wandering domains). We
observe that for every λ ∈ Ω±

0,k, k ∈ Z∗, the free critical point of gλ is attracted to
the fixed point w∗

±k 6= 1 in (5.21), which is the projection of (1,±k)-pseudoperiodic
points of the Newton map Nλ, lying in a chain of wandering domains; see example 8.

In fact, for any σ ∈ Z∗, g′λ(w
∗
σ) = 1 if and only if λ ∈

{
RΩ+

0,σ (0),RΩ−
0,−σ(0)

}
(with

real part −1/σ), which means that a transcritical bifurcation between such a fixed
point and one of the fixed asymptotic values of gλ (either 0 if λ ∈ ∂Ω+, or ∞ if
λ ∈ ∂Ω−) occurs at the ends of rays of argument zero in Ω±.
The multiplier map

ρ
Ω±
0,k

(λ) := g′λ(w
∗
±k), where w∗

±k =
1± (λ− πi)k

1± (λ+ πi)k
, (5.30)

provides a foliation of these subhyperbolic components by rays (those mapped to
radial segments of D), which can be derived from (5.21) as usual. Note that Cλ = w∗

σ

at the centre of Ω+
0,σ (resp. Ω−

0,−σ), which is indeed the parameter λ+σ (resp. λ−σ )

in (5.24), with Cλ ∈ R− for σ ∈ Z∗. In analogy to the polynomial case (see e.g.
[43]), for each q ∈ N∗, the internal rays of rational argument s/q (in lowest terms,
with s > 0) in Ω±

0,k, land at period q-tupling bifurcation parameters, as roots of

(satellite) subhyperbolic components of M̃ of period q.
It turns out that the q-periodic cycle which attracts the free critical point at Cλ in
these satellite components, lifts via exp1 to a collection of pseudoperiodic points of
type (q,±qk) of the Newton map Nλ. For example, when λ crosses the value at the
end of the internal ray of argument 1/3 in Ω−

0,−1 (attached to Ω− at −πi − 1 by
remark 5.7), the fixed point at w∗

1 becomes repelling and Cλ is then attracted to
a 3-periodic cycle. The points in this 3-cycle of gλ happen to be the projection of
(3, 3)-pseudoperiodic points of Nλ (escaping to ∞ under iteration; see proposition
4.4). Hence, the immediate basin of attraction of such a cycle lifts to a chain of
wandering domains of Nλ, which looks like a menagerie of Douady rabbits as shown
in figure 9 (left).

This kind of bifurcation phenomena can be also identified for subhyperbolic com-
ponents of higher period. Following the previous remarks, denote by Ω±

r/p,k the

component of M̃ of period p ≥ 2 (see figure 7) which emerges from the ray of
rational argument θ = r/p in Ω± (with 1 ≤ r < p, and r coprime to p), landing at

lim
t→0

RΩ±
r/p,k(t) = ±

(
πi− p

r + kp

)
(5.31)
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0 1−1 0 1−1

Figure 9. Left (dynamical plane of Nλ for λ ≈ −0.833− 2.889i): The basins of attraction
(in purple) of the fixed points of Nλ at the integers coexist with a chain of simply-connected
wandering domains (in orange), containing a (3, 3)-pseudoperiodic point z̃ of Nλ which
projects to some superattracting 3-periodic point of gλ; see remark 5.8. Right (dynamical
plane of Nλ for λ ≈ −0.924 − 2.256i): The basins of the fixed points of Nλ coexist now
with infinitely many 2-cycles of immediate superattracting basins (in orange). Ranges:
[−1.5, 1.5]× [−1.2, 0.6]. The colour palettes refer to the speed of convergence to these
periodic points of gλ. The values of λ are, respectively, at the centre of the yellow (satellite)

component and the orange (primitive) component of M̃ inside the cyan squares shown in
figure 7.

by (5.29). Then, as λ goes from Ω± to Ω±
r/p,k through this value, a Baker domain of

the Newton’s method Nλ turns into a chain of wandering domains, coexisting with
the infinitely many basins of its fixed points. Our observations indicate that the
bulb Ω±

r/p,k gives rise to a wandering domain U such that Np
λ(U) ⊂ U ∓ (r + pk)

via the lifting method, which shrinks as it undergoes successive period q-tupling
bifurcations from there.

In contrast to subhyperbolic components of period 1 in M̃, which always induce
Baker or wandering domains for the Newton’s method of the entire function Fλ,
the components of higher period p may lead to Newton maps with p-cycles of
immediate attracting basins, alongside the unbounded invariant basins of the
roots of Fλ, as illustrated in figure 9 (right) for p=2. Our numerical inspec-

tion suggests that this occurs for subhyperbolic components of M̃ of primitive
type whose root (a cusp not lying on the boundary of another component) hap-
pens to be accessible from the central capture component Ω† (the one containing
λ=0).

We believe that these analogies and observations on M̃ are worth further
exploration, which is nevertheless out of the scope of this paper.
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[8] K. Barański. Hausdorff dimension and measures on Julia sets of some meromorphic maps.
Fundam. Math. 147 (1995), 239–260.

[9] K. Baranski and N. Fagella. Univalent Baker domains. Nonlinearity 14 (2001), 411–429.

[10] K. Barański, N. Fagella, X. Jarque and B. Karpińska. On the connectivity of the Julia
sets of meromorphic functions. Invent. Math. 198 (2014), 591–636.
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