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Abstract

Hybrid MKNF Knowledge Bases (HMKNF-KBs) constitute a formalism for tightly integrated
reasoning over closed-world rules and open-world ontologies. This approach allows for accurate
modeling of real-world systems, which often rely on both categorical and normative reasoning.
Conflict-driven solving is the leading approach for computationally hard problems, such as
satisfiability (SAT) and answer set programming (ASP), in which MKNF is rooted. This paper
investigates the theoretical underpinnings required for a conflict-driven solver of HMKNF-KBs.
The approach defines a set of completion and loop formulas, whose satisfaction characterizes
MKNF models. This forms the basis for a set of nogoods, which in turn can be used as the
backbone for a conflict-driven solver.
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1 Introduction

Real-world problems often require integrated reasoning of both rules-based and onto-

logical knowledge, spanning domains such as customs, healthcare, and penal systems

(Alberti et al. 2012; Knorr 2021). For example, in customs, ontological reasoning aids

in categorizing imported goods, while rule-based reasoning determines inspection pro-

cedures (Knorr 2021). The prevalence of such applications has led to the development

of frameworks for reconciling ontologies with rules, including Hybrid MKNF Knowledge

Bases (Motik and Rosati 2010).

A Hybrid MKNF Knowledge Base (HMKNF-KB) consists of two components: a logic

program of rules, such as in answer set programming (ASP), and an ontology repre-

sentable in a decidable fragment of first-order logic, most often under a description logic.

The main feature of HMKNF-KBs, compared to other approaches that combine ASP with

description logics, is the tight integration between their two components. Here, tightness

refers to the ability of an integration to allow for derivation within one component based

on conclusions from the other. For certain applications, a one-way flow of information is

sufficient. However, greater tightness results in a richer interplay between two knowledge

sources.
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Some integrations have partial tightness, such as dl-programs (Eiter et al. 2005). While

these allow for back-and-forth derivation between two components, it must be localized to

specific dl-atoms within rules, which may query the ontology. Conversely, HMKNF-KBs

fully integrate the two components – inferences in one are immediately available to the

other. The integration also has several other desirable properties, including faithfulness

to each of the underlying components, flexibility in whether any predicate can be viewed

under closed or open-world reasoning, and decidability (under the DL-safety assumption)

(Motik and Rosati 2010).1

The well-founded semantics for Hybrid MKNF (Knorr et al. 2011) have enjoyed consid-

erable focus due to their polynomial complexity (under some assumptions), and form the

basis for the reasoner NoHR (Kasalica et al. 2020). However, reasoning tools for the stable

model semantics are still relatively limited. Ji et al. (2017) define well-founded opera-

tors for non-disjunctive Hybrid MKNF. Killen and You (2021) generalize this approach

to the disjunctive case for a DPLL-based solver (Nieuwenhuis et al. 2006). This rep-

resents significant progress towards efficient solving, but is still behind state-of-the-art

conflict-driven solving, which is widely adopted by ASP and its extensions.

While there have been advancements in resolution or query-based solving for Hybrid

MKNF (Alferes et al. 2013), we strictly focus on solvers that employ bottom-up model-

search. The prominent modern ASP solvers, Clasp (Gebser et al. 2013) and WASP

(Alviano et al. 2015) (within the Potassco/Clingo (Gebser et al. 2019) and DLV sys-

tems (Adrian et al. 2018) resp.), combine conflict-driven SAT solving with native ASP

propagation, to achieve a high degree of performance. Clingo is designed to be exten-

sible, and numerous applications have been built on it. The relevant case here is the

system DLVHEX (Redl 2016; Eiter et al. 2018), which allows integrating rules with arbi-

trary external sources and can solve dl-programs (Eiter et al. 2006). Despite being only

partially tight, dl-programs are closely related to HMKNF-KBs. It has been shown that

under reasonable assumptions, HMKNF-KBs can be translated to dl-programs (Eiter and

Šimkus 2015). Thus, one can translate HMKNF-KBs to dl-programs and use DLVHEX

to compute the MKNF models; however, it is unclear whether this would be as powerful

as a native conflict-driven approach.

Therefore, this paper aims to develop a general theory relating HMKNF-KB model

computation to conflict-driven solving. In particular, we focus on the notion of a K-

interpretation, which represents everything concludable under an MKNF model. To

accomplish this task, we first characterize whether K-interpretation s correspond to mod-

els according to whether they satisfy a set of formulas; we call these the completion and

loop formulas . They follow the naming convention of, and are directly inspired by, the

formulas of Lee and Lifschitz (2003), which characterize answer sets of disjunctive logic

programs. We then define nogoods in the sense of Gebser et al. (2012), which capture

the constraints induced by our formulas and thereby characterize models of HMKNF-

KBs. Finally, we give an overview of how our nogoods can be used within conflict-driven

algorithms. We conclude with comments on related and future work, including practical

considerations for implementing a solver.

1 There are other systems of tight integration of rules and first-order formulas such as IDP-systems
Wittocx et al. (2008), however they are beyond the scope of this paper since their reasoning task deals
with extension of classical first-order logic which presents a very different challenge.
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Complete proofs are provided in a separately available Appendix. To aid reading, we

provide proof sketches for the two most crucial claims.

2 Preliminaries

2.1 Minimal knowledge and negation as failure (MKNF)

MKNF is a nonmonotonic logic formulated by Lifschitz (1991). MKNF formulas extend

first-order formulas with two modal operators, K for minimal knowledge, and not for

negation as failure. We define a first-order interpretation I as usual and denote the uni-

verse of I by |I|. An MKNF structure is a triple (I,M, N), where M and N are sets of

first-order interpretations within the universe |I|. The language of MKNF formulas con-

tains a constant for each element of |I|, which we call a name. We define the satisfaction

relation between an MKNF structure (I,M, N) and an MKNF formula as follows:

(I,M, N) |= φ (φ is a first-order atom) if φ is true in I,

(I,M, N) |=¬φ if (I,M, N) �|= φ,

(I,M, N) |= φ1 ∧ φ2 if (I,M, N) |= φ1 and (I,M, N) |= φ2,

(I,M, N) |= ∃xφ if (I,M, N) |= φ[a \ x] for some a,

(I,M, N) |=Kφ if (J,M, N) |= φ for all J ∈M,

(I,M, N) |= not φ if (J,M, N) �|= φ for some J ∈N.
The symbols �,⊥,∨, ∀, and ⊃ are interpreted as usual.

An MKNF interpretation M is a nonempty set of first-order interpretations.

Throughout this work, we employ the standard name assumption to avoid unintended

behaviors (Motik and Rosati 2010). This assumes all interpretations are Herbrand

interpretations with a countably infinite number of additional constants, and that the

predicate ≈ is a congruence relation. Thus, we do not explicitly mention the universe

associated with interpretations.

An MKNF interpretation M satisfies an MKNF formula φ, written M |=MKNF φ, if

(I,M,M) |= φ for each I ∈M .

Definition 1

An MKNF interpretationM is an MKNF model of an MKNF formula φ, ifM |=MKNF φ,

and for all MKNF interpretations M ′ s.t. M ′ ⊃M , we have ∀I ′ ∈M, (I ′, M ′, M) �|= φ.

2.2 Hybrid MKNF knowledge bases (HMKNF-KBs)

Motik and Rosati (2010) identify a subset of MKNF formulas as Hybrid MKNF. In this

new language, an HMKNF-KB K= (P,O) consists of a finite set of rules termed a rule

base P, and an ontology O translatable to first-order logic as π(O). A rule r is of the

form

h0, . . . , hm← p0, . . . , pj ,¬n0, . . . ,¬nk
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where hi, pi, and ni are function-free first-order atoms. We denote body+(r) =

{p0, . . . , pj}, body−(r) = {n0, . . . , nk}, Body(r) =
∧
body+(r)∧¬∨ body−(r), and

head(r) = {h0, . . . , hm}. A rule r’s semantics is governed by the following MKNF

formula.

π(r) = ∀−→x : (Kh0 ∨ · · · ∨Khz)⊂ (Kp0 ∧ · · · ∧Kpj ∧ not n0 ∧ · · · ∧ not nk)
where −→x is the vector of free variables in r. Naturally, a rule base P translates to an

MKNF formula as π(P) =⋃
r∈P π(r). We say that an MKNF interpretation M is an

MKNF model of the HMKNF-KB K if it is an MKNF model of the MKNF formula

π(K) =Kπ(O)∧ π(P).
A program P is ground if no rule r ∈P has variables. Motik and Rosati (2010) show

that under the assumption of DL-safety ,2 a first-order rule base is semantically equivalent

to a finite ground rule base and that decidability is guaranteed for HMKNF-KBs with

decidable ontologies. In this work, we assume rule bases are ground.

We define KA(K) be the set containing every atom φ that occurs in P (either as Kφ

or not φ) and we use KA(O) to denote the maximal subset of KA(K) s.t. for each

p(t1, . . . , tm)∈KA(O), the predicate p also appears in π(O).
We define the objective knowledge of an HMKNF-KB K w.r.t. a set S ⊆KA(K) as

the set OBO,S = {π(O)} ∪ {φ | φ∈ S}. Intuitively, OBO,S is a first-order formula that

considers O with the assumption that Kφ holds for each φ∈ S. In this paper, we prefer

polynomial ontologies, that is for any S ⊆KA(O) and a∈KA(O), the relation OBO,S |=
a can be checked in polynomial time.

The following notion of a K-interpretation allows for a simplified representation of

an MKNF interpretation as a single set of atoms. A central focus of this work is to

show which K-interpretation s are induced by MKNF models. Such a relationship is not

completely straightforward, due to the quite different nature of the two representations.

Definition 2

A K-interpretation is any set of atoms Î ⊆KA(K). An MKNF interpretation M induces

a K-interpretation Î, if Î = {a∈KA(K) | M |=MKNF Ka}. Whereas, a K-interpretation

Î extends to an MKNF interpretation M if M = {I | I |=OBO,Î}.
Above, we use the notation Î to express that as an interpretation in an entailment

relation, Î |= φ, any atom a∈KA(K) but not in Î is assigned to false.

2.3 Assignments and nogoods

Nogoods (Gebser et al. 2012) act as canonical representations of Boolean constraints,

reflecting partial assignments , which cannot be extended to a solution. A nogood

{σ1, . . . , σn}, is a set of literals σi, of the form Tvi or Fvi for 1≤ i≤ n, where vi is

a propositional variable. The complement of a literal, is referred to by Tv=Fv and

Fv=Tv. For any set δ of literals, δT = {v |Tv ∈ δ} and δF = {v |Fv ∈ δ}. The set of

variables occurring within a set of nogoods Δ, is denoted var(Δ) =
⋃

δ∈Δ(δ
T ∪ δF). An

assignment A for Δ is any subset of {Tv,Fv | v ∈ var(Δ)} such that AT ∩AF = ∅. A

2 An HMKNF-KB K= (P,O) is DL-safe, if for all rules r ∈P, all variables present in r appear within
body+(r), under a predicate that does not occur in π(O).
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solution for Δ is an assignment A for Δ, such that AT ∪AF = var(Δ) and δ �⊆A for all

δ ∈Δ. A nogood δ is unit-resulting for an assignment A if |δ \A|= 1. For a literal Tσ in

an assignment, σ is true within the assignment, whereas for Fσ, σ is false.

3 Dependency graph

A guiding principle behind the dependency graph of a logic program is to provide a

syntactic overapproximation of the true semantic dependency between atoms within the

program. This overapproximation can be used to bound the possible sources of circular

derivation to loops , sets of atoms where there is a path between any two in the set.

Given an HMKNF-KB K= (P,O), a dependency graph G(K) is the graph containing

all vertices and edges in either of two dependency graphs, G(P) or G(O). G(P) consists
of vertices for atoms in KA(K) and edges from a vertex a to a vertex b if there is a rule

r ∈P such that a∈ head(r) and b∈ body+(r). Below, we offer a characterization of G(O)
in terms of the entailment relation.

Definition 3

An ontology dependency graph G(O) for an HMKNF-KB K= (P,O), contains vertices
for each atom in KA(O). There is an edge from vertex a to vertex b in G(O) if for some

S ⊆KA(O), where a �∈ S and b∈ S, we have

OBO,S |= a, (contributes to derivation)

OBO,S �|=⊥ and, (is consistent)

OBO,S\{b} �|= a. (is minimal)

It is not difficult to see that the ontology dependency graph defined here is an over-

approximation of true semantic dependencies based on entailment relation. In addition,

there is a unique minimal version of G(O) containing only those edges that are strictly

required by its definition. However we do not expect to tractably generate such a depen-

dency graph in general. This is because the ontology of an HMKNF-KB is allowed to

take a variety of forms, so dependency graph generation for any particular ontology

requires separate study. As such, to keep our approach general we assume some version

of G(O) is provided. To ensure correctness (of overapproximation) the assumed depen-

dency graph must simply contain every edge within the minimal version, in accordance

with Definition 3. A similar approach of leveraging externally provided information for

dependency pruning is explored within (Eiter and Kaminski 2021), to enhance minimality

checking.

Similar to Clark (1977), we call K tight if G(K) is acyclic. We denote by Loops(K) the
set of loops of the dependency graph G(K).

4 Completion and loop formulas

In this section we characterize models of HMKNF-KBs through logical formulas. Our

approach follows that of Lee and Lifschitz (2003) who defined completion and loop

formulas to capture the answer sets of disjunctive logic programs. While this work is

self-contained, we draw frequent comparison to their seminal work to ease understanding.
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4.1 Completion

Lee and Lifschitz (2003) show that an interpretation of a tight disjunctive logic program

is an answer set if and only if it satisfies a set of formulas termed the completion. A

program’s completion is composed of a rule completion, clauses that ensure atoms whose

truth is implied must be included in an answer set, and a support completion, clauses

that ensure true atoms within an interpretation are supported by some rule.

The rule completion of Lee and Lifschitz (2003) can be easily adopted as follows.

Definition 4

The rule completion of a rule base P is Prule = {Body(r)⊃
∨
head(r) | r ∈P}.

The formula Prule guarantees that for any satisfying K-interpretation Î, atoms implied

by the rules of P under Î are contained in Î. We can construct an analogous formula for

an ontology O that requires all atoms entailed by O given Î to be within Î. We define

this notion as saturation and formulate what we call saturation completion.

Definition 5

Given an HMKNF-KB K= (P,O), a K-interpretation Î of K is saturated if OBO,Î �|=⊥,
and ∀a∈KA(K) such that OBO,Î |= a, a∈ Î.
Definition 6

Let K= (P,O) be an HMKNF-KB. The saturation completion of K, with respect to a

K-interpretation Î, is the set Osatr(Î) = {a∈KA(K)∪ {⊥} | OBO,Î |= a}.
In the following lemma, we provide alternative characterizations of saturation to

provide further insight into its relevance and establish a relationship between K-

interpretation s and MKNF interpretations. For instance, characterization 3 below

implies that all K-interpretation s induced by MKNF models are saturated.

Lemma 1

The following are equivalent for a K-interpretation Î.

1. Î is saturated.

2. Î extends to an MKNF interpretation M which induces Î.

3. Î is induced by some MKNF interpretation M such that M |=MKNF Kπ(O).
4. Î |=Osatr(Î).

5. OBO,Î �|= a for every atom a∈ (KA(K)∪ {⊥}) \ Î.
The relationship between saturated K-interpretation s which satisfy the rule comple-

tion and MKNF interpretations is described by the following proposition.

Proposition 1

For any K-interpretation Î of an HMKNF-KB K= (P,O), Î |=Prule ∧Osatr(Î), if and

only if, there exists an MKNF interpretation M such that M induces Î and M |=MKNF

π(K).
Unlike the rule completion, the support completion of Lee and Lifschitz (2003) is not

immediately adaptable to HMKNF-KBs. This is because their notion of support is based

on the idea that atoms must be implied by rules, but applying this idea directly to
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HMKNF-KBS would be misguided as they combine both rules-based and ontological

reasoning. We instead define two different notions of support for an atom a occurring

within a K-interpretation Î of an HMKNF-KB K= (P,O). Firstly, a is supported by

a rule r ∈P, if Î |= r while Î \ {a} �|= r. Secondly, a is supported via the ontology O if

OBO,Î\{a} |= a.

We can now specify a formula which ensures that all atoms within a satisfying K-

interpretation are supported by either a rule or the ontology.

Definition 7

The support completion of an HMKNF-KB K= (P,O), w.r.t. a K-interpretation Î, is

the set of formulas Ksup(Î) = {φ(a) | a∈KA(K), OBO,Î\{a} �|= a}, where

φ(a) = a⊃
∨

r∈P & a∈head(r)

(Body(r)∧
∧

p∈head(r)\{a}
¬p).

When we combine the rule completion, saturation completion, and support completion,

we obtain a formula which determines whether a K-interpretation of a tight HMKNF-KB

is induced by some MKNF model.

Definition 8

The completion of an HMKNF-KB K= (P,O) with respect to a K-interpretation Î, is

Kcomp(Î) =Prule ∧Osatr(Î)∧Ksup(Î).

Theorem 1

For any K-interpretation Î of a tight HMKNF-KB K= (P,O), Î |=Kcomp(Î), if and only

if, K has an MKNF model M such that M induces Î.

4.2 Loop formulas

The loop formulas of Lee and Lifschitz (2003) generalize the support completion and

allow for the assumption of tightness to be dropped by ensuring that each set of atoms

forming a loop has support. We generalize our earlier notion of support to any subset L,

of a K-interpretation Î for an HMKNF-KB K= (P,O) as follows. A rule r ∈P supports

L if Î |= r but Î \L �|= r, whereas L is supported by the ontology O if OBO,Î\L |=
∨
L.

Thus, the conversion of loop formulas to the case of HMKNF-KBs, is similar to that for

the support completion, instead of requiring that each atom within a K-interpretation

is supported, we require that each subset forming a loop within G(K) is supported by

either a rule or the ontology.

Definition 9

The loop formulas of an HMKNF-KB K= (P,O) with respect to a K-interpretation Î,

is the set of formulas Kloop(Î) = {ψ(L) | L∈Loops(K), OBO,Î\L �|=
∨
L}, where

ψ(L) =
∨

L⊃ (
∨
r∈P

head(r)∩L �=∅
body+(r)∩L=∅

(Body(r)∧
∧

a∈head(r)\L
¬a)).
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We combine the completion and loop formulas to determine whether aK-interpretation

of an arbitrary HMKNF-KB is induced by any MKNF model.

Theorem 2

For any K-interpretation Î, of an HMKNF-KB K= (P,O), Î |=Kcomp(Î)∧Kloop(Î), if

and only if, K has an MKNF model M such that M induces Î.

Proof Sketch.

(⇒) It can be shown that whenever Î |=Prule ∧Osatr(Î), it extends to an MKNF inter-

pretationM such thatM |=MKNF π(K). Note thatM also induces Î in this case. We must

still show that there is noM ′ ⊃M , such that ∀I ′ ∈M ′, (I ′, M ′, M) |= π(K). Therefore, we
investigate the K-interpretation Î ′, for which such an M ′ induces. It can be shown that

(Î \ Î ′) �= ∅. Thus we consider whether there is an atom p∈ (Î \ Î ′), such that p’s truth

is implied via a rule or the ontology under Î ′. We take G to be the subgraph of G(K),
containing only atoms within (Î \ Î ′) which are reachable from an atom g ∈ (Î \ Î ′). It is
always possible to select an atom g, such that either G is acyclic or G contains only atoms

from a single loop L. In the former case there is some atom p, which has no outgoing

edges in G. The fact that Î |=Kcomp(Î) can then be shown to imply that p has a form

of support within Î ′. In the later case, all atoms in L only have outgoing edges in G to

other atoms in L. The fact that Î |=Kloop(Î) can be shown to imply that some atom

p∈L has a form of support outside L and within Î ′. In both cases this is sufficient to

show that ∀I ′ ∈M ′, (I ′, M ′, M) �|= π(K), and thereby show that M is a model of K.
(⇐) This direction is relatively straightforward. It primarily relies on showing how M

being a model of K imposes restrictions on the K-interpretation it induces.

Example 1

Consider the following HMKNF-KB K= (P,O), representing whether a person p, is a

good candidate for a blood-pressure medication:

P =

{
r1 = goodCand(p)← (cand(p),¬highRisk(p)). r2 = highBP (p).

r3 = highRisk(p)← (riskFactor(p),¬risksTreated(p)).
}

and π(O) = {∀x, (highBP (x)⊃ cand(x))∧ (highRisk(x)⊃ riskFactor(x))}.
The ontology states that any person with high blood-pressure is a candidate, and that

anyone who is high-risk for the drug has a risk factor. The rule base states that p is a

good candidate for the drug if they are a non-high-risk candidate, that they are high

risk if they have a risk factor they have not been treated for, and that they have high

blood-pressure. Below is the dependency graph G(K).

highBP (p)

cand(p)

goodCand(p)

highRisk(p) riskFactor(p)

risksTreated(p)

The following are selected K-interpretation s for K, of which only Î4 is induced

by any MKNF model: Î1 = {highBP (p)}, Î2 = {highBP (p), cand(p), goodCand(p),
risksTreated(p)}, Î3 = {highBP (p), cand(p), highRisk(p), riskFactor(p)}, and Î4 =

{goodCand(p), cand(p), highBP (p)}.
Clearly, cand(p) is entailed by the ontology given Î1, so Î1 fails to satisfy Osatr(Î1).

For Î2, it is clear that risksTreated(p) has no form of support, therefore it fails to satisfy
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Ksup(Î2). Finally, from examination of G(K), {highRisk(p), riskFactor(p)} forms a loop

L∈Loops(K). As each atom is only supported by the other Î3 does not satisfy Kloop(Î3).

In contrast to the other K-interpretation s, Î4 satisfies Kcomp(Î4) and Kloop(Î4). It

avoids the problem with Î1 as Î4 |= cand(p), the one with Î2 as Î4 �|= risksTreated(p),

and the one with Î3 as Î4 �|=
∨
L. This is consistent with the fact that it is the only

K-interpretation induced by an MKNF model.

5 Nogoods

In what follows, we present sets of nogoods indirectly capturing the constraints induced

by the completion and loop formulas of the previous section. Total assignments of these

nogoods directly correspond with K-interpretation s, and their solutions to those induced

by MKNF models. True atoms within an assignment reflect those evaluated as true

under the corresponding K-interpretation, and similarly for false atoms. Through this

relationship the nogoods characterize MKNF models. As such, conflict-driven approaches

can be built on generating a subset of these nogoods.

In all definitions of this section, we assume a given HMKNF-KB K= (P,O).

5.1 Completion nogoods

5.1.1 Rule nogoods

For expressing that the body of a rule r is satisfied, Gebser et al. (2013) use sets of

literals of the form β(r) = {Tp | p∈ body+(r)} ∪ {Fp | p∈ body−(r)}. These are treated

as composite variables with an intrinsic meaning. The literal Tβ(r) represents Body(r)

being satisfied whereas Fβ(r) represents its unsatisfaction. This meaning is enforced

within solutions by a set of conjunction nogoods to be introduced shortly.

Directly following Gebser et al. (2013), we define a set of rule nogoods corresponding

to the rule completion, which in our case ensures that the rule base is satisfied.

Definition 10

The rule nogood for any r ∈P, is defined as: φP(r) = {Fp1, . . . ,Fpt,Tβ(r) | head(r) =
{p1, . . . , pt}}. The rule nogoods of K are ΦP = {φP(r) | r ∈P}.

5.1.2 Saturation nogoods

To represent whether an atom p is supported by the ontology, we use the variable βO(p).
Within an assignment, TβO(p) represents that p is supported via O, and FβO(p) repre-
sents that it is not. This is enforced within solutions by a set of entailment nogoods to

be introduced shortly.

To express that a solution must be reflective of a saturated K-interpretation, we

introduce a novel set of saturation nogoods corresponding to the saturation completion.

Definition 11

The saturation nogood for any atom p∈KA(O)∪ {⊥}, is defined as: φO(p) =
{Fp,TβO(p)}. The saturation nogoods of K are ΦO = {φO(p) | p∈KA(O)∪ {⊥}}.
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5.1.3 Support nogoods

To reflect whether an atom p is supported by a rule r, we use literal sets of the form

βP(r, p) = {Tβ(r)} ∪ {Fq | q ∈ head(r) \ {p}}, as is done in Gebser et al. (2013).3 The

truth of literals based on these sets are also enforced by conjunction nogoods.

We introduce a novel set of support nogoods corresponding to the support completion,

to prevent cases where there is no support from a rule or the ontology for some true atom

within an assignment.

Definition 12

The support nogood for any atom p∈KA(K), is defined as

ψK(p) = {Tp} ∪ {FβP(r, p) | r ∈P, p∈ head(r)} ∪ {FβO(p) | if p∈KA(O)}.
The support nogoods of K, are ΨK = {ψK(p) | p∈KA(K)}.

5.1.4 Conjunction nogoods

As aforementioned, conjunction nogoods are required to ensure that composite variables

consisting of other literals are assigned correctly within solutions. Here, we directly follow

Gebser et al. (2013).

Definition 13

The conjunction nogoods for a set of literals β are γP(β) = {{Fβ} ∪ β} ∪ {{Tβ, σ} | σ ∈
β}. The conjunction nogoods of K are ΓP =

⋃
β∈{β(r)|r∈P}∪{βP(r,p)|r∈P,p∈head(r)} γP(β).

5.1.5 Entailment nogoods

To ensure the literals of the form TβO(p) or FβO(p) appear within assignments in

accordance with whether p is supported via the ontology, we introduce entailment

nogoods .

Definition 14

Let βO(p) be a variable associated with an atom p∈KA(O). A positive entailment

nogood, of an atom p∈KA(O) and set S ⊆KA(O), is defined as γ+O(p, S) = {FβO(p)} ∪
{Ts | s∈ S}, whereas a negative entailment nogood, is defined as γ−O(p, S) = {TβO(p)} ∪
{Fs | s∈ S}. The entailment nogoods of K are

ΓO ={γ+O(p, S) | p∈KA(O)∪ {⊥}, S ⊆KA(O), OBO,S\{p} |= p}
∪ {γ−O(p, S) | p∈KA(O), S ⊆KA(O), OBO,KA(O)\(S∪{p}) �|= p}.

For some atom p∈KA(O) and set of atoms S ⊆KA(O), the purpose of a positive

entailment nogood γ+O(p, S) is to indicate that p is supported via O by true atoms within

an assignment, given it has all atoms in S as true. Conversely, the purpose of a negative

entailment nogood γ−O(p, S) is to indicate that p has no way of being supported via O
by true atoms within an assignment, given it has all atoms in S as false.

3 In Gebser et al. (2013) literal sets denoted as βP (r, p), are defined such that they are substituted for by
other literal sets of the form β(r), whenever they effectively coincide. This is a relevant consideration
for implementation efficiency; however it is omitted here for simplicity.
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5.1.6 Relation to MKNF models

So far we have discussed the relationship between assignments and K-interpretation s

using general language. The exact correspondence is given by the following definition.

Definition 15

Let Î a K-interpretation for K. The induced assignment of Î for K is

AÎ
K = {Tp | p∈ Î} ∪ {Fp | p∈KA(K) \ Î} ∪ {F⊥}
∪ {Tβ(r) | r ∈P, Î |=Body(r)} ∪ {Fβ(r) | r ∈P, Î �|=Body(r)}
∪ {TβP(r, p) | r ∈P, Î |=Body(r), head(r)∩ (Î ∪ {p}) = {p}}
∪ {FβP(r, p) | r ∈P, Î �|=Body(r), p∈ head(r)}
∪ {FβP(r, p) | r ∈P, p∈ head(r), head(r)∩ Î �⊆ {p}}
∪ {TβO(p) | p∈KA(O)∪ {⊥}, OBO,Î\{p} |= p}
∪ {FβO(p) | p∈KA(O)∪ {⊥}, OBO,Î\{p} �|= p}.

The nogoods we have defined thus far make up our completion nogoods.

Definition 16

The completion nogoods of π(K) are
ΔK =ΦP ∪ΦO ∪ΨK ∪ ΓP ∪ ΓO.

We have designed the induced assignment of any K-interpretation to be a total assign-

ment for the completion nogoods, and the nogoods themselves to occur in and only

in assignments induced by K-interpretation s which do not satisfy their completion

formulas. In showing this to be the case, we obtain the following result.

Theorem 3

Let Î be a K-interpretation for an HMKNF-KB K= (P,O), then we have that Î |=
Kcomp(Î) if and only if AÎ

K is a solution to ΔK ∪ {T⊥}.
The above theorem allows us to conclude that the K-interpretation s that induce solu-

tions to the completion nogoods are the ones which satisfy their completion formulas.

It naturally follows from Theorem 1 , that for tight HMKNF-KBs these are also the

K-interpretation s induced by MKNF models.

5.2 Loop nogoods

Loop nogoods are intended to parallel the loop formulas of Section 4.2 in ensuring non-

circular support. Directly following Gebser et al. (2013), we denote the external program

supports of a set of atoms L, by EP(L) = {r ∈P | head(r)∩L= ∅, body+(r)∩L �= ∅}.
Moreover, ρ(r, L) = {Fβ(r)} ∪ {Tp | p∈ head(r) \L}, collects all literals satisfying a rule

r, regardless of whether any atom from L is true.
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Definition 17

The loop nogoods for any L⊆KA(K) and S ⊆KA(O) are defined as

λK(L, S) = {{Tp, σ1, . . . , σk,Fs1, . . . ,Fsn} | p∈L, EP(L) = {r1, . . . , rk},
σ1 ∈ ρ(r1, L), . . . , σk ∈ ρ(rk, L), S = {s1, . . . , sn}}.

The loop nogoods of K are

ΛK =
⋃

L∈Loops(K),S⊆KA(O),
L∩S=∅,OBO,KA(O)\(S∪L) �|=∨

L

λK(L, S).

Above, ΛK includes a nogood for each loop, L, and subset of KA(O), S, for which

L cannot be supported via O whenever all atoms in S are false. Each nogood λ(L, S)

requires that the loop L must be supported by a rule if all atoms in S are false. We can

show that loop nogoods occur only within assignments induced by K-interpretation s

which do not satisfy their loop formulas, to obtain the following result.

Theorem 4

Let Î be a K-interpretation for an HMKNF-KB K= (P,O), then we have that Î |=
Kcomp(Î)∧Kloop(Î) if and only if AÎ

K is a solution to ΔK ∪ΛK ∪ {T⊥}.
Proof Sketch.

(⇒) It can be shown relatively easily that AÎ
K, the assignment Î induces, is a total

assignment for the nogoods ΔK ∪ΛK ∪ {⊥}.
The other condition which must be shown is that no nogood from ΔK ∪ΛK ∪ {⊥}

occurs within AÎ
K. This is done by considering each of ΦP , ΦO, ΨK, ΓO, ΓP , and ΛK

individually. For each of nogood set ∇ we make the assumption that δ ∈∇ is a subset

of AÎ
K, then show that the restrictions this imposes on Î also imply that for some literal

σ ∈ δ, σ ∈AÎ
K. This contradicts that A

Î
K is a total assignment and in doing so proves no

such nogood can exist.

For example: Assume there is a nogood γ+O(p, S)∈ ΓO for p∈KA(O)∪ {⊥}, S ⊆
KA(O) such that γ+O(p, S)⊆AÎ

K. Then by the fact that γ+O(p, S)∈ ΓO, OBO,S\{p} |=
p, moreover since γ+O(p, S) = {FβO(p)} ∪ {Ts | s∈ S} and γ+O(p, S)⊆AÎ

K, S ⊆AÎ
K.

Therefore OBO,Î\{p} |= p as well, so TβO(p)∈AÎ
K. This contradicts the fact that AÎ

K
is a total assignment proving that no such γ+O(p, S) exists. The inverse logic can be

applied to show that no nogood γ−O(p, S)∈ ΓO for p∈KA(O), S ⊆KA(O) can occur

in AÎ
K.

(⇐) We wish to show that Î must satisfy all of Prule, Osatr(Î), Ksup(Î), and Kloop(Î).

To do so we consider the case where Î fails to satisfy each of them individually, and show

that it would require a nogood to exist within AÎ
K, violating the initial assumptions.

For example: Assume that Î �|=Ksup(Î). Clearly there is some atom p∈ Î such that

OBO,Î\{p} �|= p for which for all r ∈P where p∈ head(r) Î �|=Body(r) or ∃a∈ head(r) \
{p} such that a∈ Î. From p∈ Î, Tp∈AÎ

K. From OBO,Î\{p} �|= p, either p∈ (KA(K) \
KA(O)) or FβO ∈AÎ

K. Finally, since for all r ∈P where p∈ head(r), Î �|=Body(r) or

∃a∈ head(r) \ {p} such that a∈ Î, FβP(r, p)∈AÎ
K. It follows that ψK(p)⊆AÎ

K, since
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ψK(p)∈ΨK this violates the assumption that AÎ
K is a solution for ΔK. Therefore Î |=

Ksup(Î).

This theorem, together with Theorem 2, implies that, for any HMKNF-KB, the K-

interpretations that induce solutions to the completion and loop nogoods are precisely

those that are induced by MKNF models.

Example 2

Consider the following HMKNF-KB K= (P,O) where only the K-interpretation Î =

{a, b} is induced by any MKNF model.

P =

{
r1 = a. r2 = a∨ d.
r3 = f ← d. r4 = e← f.

}

and π(O) = {(a⊃ b)∧ (c⊃ d)∧ (c⊃ e)∧ (e⊃ f)}. G(K) is shown below.

a b

c

d

e

f

We will show that AÎ
K, the assignment Î induces, is the only solution to our nogoods.

To do so we take A to be an arbitrary solution and prove that it contains every literal

within AÎ
K. Some steps are omitted for conciseness, for instance we leave it as an exercise

to the reader to show that:

AÎ
K = {Ta,Tb,Fc,Fd,Fe,Ff,

Tβ(r1) =Tβ(r2) =T∅,Fβ(r3) =F{d},Fβ(r4) =F{f},
Tβ(r1, a) =T{Tβ(r1)},Tβ(r2, a) =F{Tβ(r2),Fd},
Fβ(r2, d) =F{Tβ(r2),Fa},Fβ(r3, f) =F{Tβ(r3)},Fβ(r4, f),=F{Tβ(r4)},
FβO(a),TβO(b),FβO(c),FβO(d),FβO(e),FβO(f)}

Firstly, we show that Ta and Tb must be in A. Consider the conjunction nogood

γ(r1) = {{Fβ(r1)} ∪ β(r1)} ∪ {{Tβ(r1), σ} | σ ∈ β(r1)} ∈ ΓP . As the body of r1 is empty

β(r1) = ∅, thus γ(r1) = {F∅}, and so T∅ ∈A. Combined with the rule nogood φP(r1) =
{Fa,Tβ(r1)} ∈ΦP , this also means that Ta∈A. Due to the fact that OBO,a |= b, the

positive entailment nogood γ+O(b, {a}) occurs within ΓO. As γ+O(b, {a}) = {FβO(b),Ta}
it follows that TβO(b)∈A. Consequently, due to the saturation nogood φO(b) =
{Fb,TβO(b)} ∈ΦO, Tb∈A as well.

It is simple to show that Fc∈A, as such we focus on the more interesting case

of Fd. Turn your attention to the conjunction nogoods γP(βP(d, r2))⊆ ΓP , which are

{FβP(d, r2),Tβ(r2),Fa}, {TβP(d, r2),Fβ(r2)}, and {TβP(d, r2),Ta}. The last one

shows that FβP(d, r2)∈A. Also note that unless c is true d cannot be supported

by the ontology – OBO,KA(O)\{c,d} �|= d – therefore the negative entailment nogood

γ−O(d, {c}) = {TβO(d),Fc} is in ΓK and thereby FβO(d)∈A. Now consider the support

nogood ψK(d) = {Td,FβP(d, r2),FβO(d)} ∈ΨK, to see that Fd∈A.
Finally we show that Fe and Ff are in A. Clearly the set of both atoms is a loop

{e, f} ∈Loops(K), and since neither atom can be supported by the ontology unless c, e, or
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f is true – OBO,KA(O)\{c,e,f} �|=
∨{e, f} – the loop nogoods λ({e, f}, {c}) are in ΛK. The

external supports for {e, f} are simply E({e, f}) = {r3}, and ρ(r3, {e, f}) = {Fβ(r3)},
therefore λ({e, f}, {c}) = {{Te,Fβ(r3)}, {Tf,Fβ(r3)}}. From the fact that Fd∈A, it is
easy to show that F{d}=Fβ(r3)∈A. Consequently Fe and Ff both must be in A.

We have that {Ta,Tb,Fc,Fd,Fe,Ff} ⊆A which is the most essential aspect of AÎ
K’s

relationship to Î, the rest is left as an exercise.

6 Conflict-Driven solving

A conflict-driven solver which determines K-interpretation s induced by MKNF models

of an HMKNF-KB, can be built based on the completion and loop nogoods of Section 5,

following the same general approach of Gebser et al. (2012). The following is a sketch of

such a solver. Our goal is to provide an overview which is open to further specification.

6.1 Main procedures

Due to the similarity of their formulation to that of Gebser et al. (2012) the details of

the main conflict-driven procedures will be explained only at a high level, with some

comments on specific differences.

Algorithm 1 CDNL is primarily responsible for keeping track of an assignment repre-

senting a partial candidate solution, through a tree-like search procedure. Additionally,

it tracks a set of nogoods which are a subset of those introduced in Section 5, and a

decision level indicating the current depth of the search tree. It operates by calling the

reasoning procedure NogoodProp to deterministically extend the assignment, and track

additional nogoods which prove helpful in doing so. Following this it takes one of three

actions. If the current assignment is incomplete but compatible with the current nogood,

an arbitrary decision literal is added to the assignment increasing the decision level. If the

current assignment conflicts with the current nogoods, the search backtracks to a lower

decision level or returns “no model” if already at the lowest decision level. Finally, if the

assignment is total and compatible with all tracked nogoods, a model-checking oracle is

consulted. If the assignment is verified as a solution the K-interpretation that induces it

is returned. Otherwise, the trivial nogood – the full invalid assignment – is added to the

tracked set enabling backtracking.

The significant changes from the main algorithm of Gebser et al. (2012) are: the differ-

ent initial set of nogoods, and the final model check ultimately required for the soundness

of the algorithm. This check can only be avoided if we assume we can always determine a

nogood whenever one is a subset of a total assignment, however this requires substantial

procedures for determining loop nogoods.

Algorithm 2 NogoodProp is the core reasoning procedure. A unit-resulting nogood for an

assignment contains one literal which is not within the assignment. We use the term

unit-propagation to refer to the process of adding the complement of this literal to

the assignment which the nogood is unit-resulting for. NogoodProp unit-propagates the
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Algorithm 1. CDNL

1 let Δ be ΦP ∪ ΦO ∪ ΨK ∪ {⊥}
2 (∇, A, dl) ← (∅, {F⊥}, 0)

3 while True do
4 (A,∇) ← NogoodProp(dl,K,∇, A)
5 if E ⊆ A for some E ∈ Δ ∪∇ then
6 if dl = 0 then
7 return no model

8 (δ, dl) ← ConfAnal(E,K,∇, A)
∇ ← ∇∪ {δ}
A ← A \ {σ ∈ A | dl < dl(σ)}

9 else if AT ∪ AF is total then
10 if ModelCheck(A) then
11 return AT ∩ KA(K)

12 else
13 ∇ ← ∇∪ A

14 else
15 σd ← Select(K,∇, A)
16 dl ← dl + 1
17 dl(σd) ← dl
18 A ← A ◦ σd

Algorithm 2. NogoodProp

1 U ← ∅
2 while True do
3 if δ ⊆ A for some δ ∈ Δ ∪∇ then
4 return (A,∇)

5 Σ ← {δ ∈ Δ ∪∇ | δ \ A = {σ}, σ �∈ A}
6 if Σ �= ∅ then
7 let σ ∈ δ \ A for some δ ∈ Σ
8 dl(σ) ← dl
9 A ← A ◦ σ

10 (∇,ent) ← EntNogoods(A,K,∇)
11 if not ent then
12 U ← U \ AF

13 if U = ∅ then
14 (U, S) ← UnfoundedSet(K, A)

15 if U = ∅ then
16 return (A,∇)

17 else
18 let p ∈ U, δ ∈ λK(p, U, S)
19 ∇ ← ∇∪ δ
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current assignment based on the set of tracked nogoods, and adds additional nogoods

whenever propagation reaches a fixpoint. The novel feature of this procedure is that its

first resort after reaching a fixpoint is to call EntNogoods , which will attempt to add unit-

resulting entailment nogoods to ∇. If no such nogoods can be found based on the current

assignment, the procedure will instead attempt to generate a loop nogood, by calling the

procedure UnfoundedSet . This procedure returns a set U ∈Loops(K)4 for which U ⊆AT ,

and S ⊆AF such that OBO,KA(K)\(U∪S) �|=
∨
U . In principle, this can be a modification

of existing methods for detecting unfounded sets. Eventually, it reaches a point where

either a tracked nogood conflicts with the current assignment or no more unit-resulting

nogoods can be discovered. At this point, the procedure returns.

6.2 Determining entailment nogoods

Algorithm 3 EntNogoods is the novel procedure responsible for determining unit-

resulting entailment nogoods. It relies on the function Entailment , which takes a set

S ⊆KA(O) as an argument. It returns the set {⊥} if OBO,S is inconsistent, and other-

wise returns a set Ω= {p∈KA(O) | OBO,S |= p} ∪ {¬p | p∈KA(O), OBO,S |=¬p}. We

let Ω+ refer to {p∈Ω | p∈KA(O)∪ {⊥}} and Ω− refer to {¬p∈Ω | p∈KA(O)}. We

denote the set of atoms which some p∈KA(O) has an edge to in G(O) as ext(p).
The procedure determines the minimum set of entailable information Ω in line 2, by

calling Entailment with all atoms from KA(O) which are true in the current assignment.

It then checks if this set contains the contradiction atom ⊥ in line 3. If so it adds the

appropriate nogood, and returns indicating success. Otherwise, it checks whether any

atom not currently known to be true can be entailed as such in line 6. If so it adds a

nogood for each such atom, allowing the atom to be unit-propagated. Then in line 9,

the generated nogood is associated with the entailed atom p and the true atoms with

an edge from p within G(O), (AT ∩ ext(p)). Clearly, this set is sufficient to entail and

therefore support p. Conversely, the nogood added in line 13 represents that the atom p

cannot be true along with the true atoms of the current assignment, or else there would

be a contradiction.

The final section of the algorithm aims to generate negative entailment nogoods. For

each entailment atom βO(p) which is not yet assigned false, we check whether p is within

the set of entailed atoms O under the assumption that all atoms in KA(O) \ (AF ∪ {p})
are true, in line 15. If O contains neither p nor the contradiction atom ⊥, then we can be

certain that p cannot be supported via O whenever all atoms in AF ∩ ext({p}) are false.

Therefore, in line 18 we add the corresponding nogood. Finally, procedure then returns.

If any nogood was added during the process, entailed will be true, and otherwise false.

Example 3

Below are the results of calling EntNogoods with different assignments A as input for an

HMKNF-KB K= (P,O) where O= ((¬a∨¬b)∧ (¬a∨ c)) and KA(O) = {a, b, c}.

4 The condition that U be in Loops(K) is relaxable. As the dependency graph G(K) can contain extra
edges without affecting the completeness of Theorem 2, any S ⊆KA(K) may be added to Loops(K).
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Algorithm 3. EntNogoods

1 entailed ← False

2 Ω ← Entailment(AT ∩ KA(O))

3 if ⊥ ∈ Ω+ then

4 Δ ← Δ ∪ γ+
O(⊥, AT )

5 return (∇, T rue)

6 if Ω+ \ AT �= ∅ then
7 entailed ← True

8 for p ∈ Ω+ \ AT do

9 ∇ ← ∇∪ γ+
O(p, AT ∩ ext({p}))

10 if Ω− \ AF �= ∅ then
11 entailed ← True

12 for p ∈ Ω− \ AF do

13 ∇ ← ∇∪ γ+
O(⊥, AT ∪ {p})

14 for p ∈ KA(O) such that βO(p) �∈ AF do
15 O ← Entailment(KA(O) \ (AF ∪ {p}))
16 if ∈�⊥ O+ and p �∈ O+ then
17 entailed ← True

18 ∇ ← ∇∪ γ−
O(p, AF ∩ ext({p}))

19 return (∇, entailed)

AT AF Ω+ Ω− O+ p Added Nogood entailed Line

{a} {βO(a)} False 1
{a} {βO(a)} {a, c} {b} False 2
{a} {βO(a)} {a, c} {b} True 7
{a} {βO(a)} {a, c} {b} c γ+

O(c, {a}) True 9
{a} {βO(a)} {a, c} {b} b γ+

O(⊥, {a, b}) True 13
{a} {βO(a)} {a, c} {b} {a, c} b True 15
{a} {βO(a)} {a, c} {b} {⊥} c True 15
{a} {βO(a)} {a, c} {b} {⊥} True 19

{a, b} ∅ False 1
{a, b} ∅ {⊥} ∅ False 2
{a, b} ∅ {⊥} ∅ γ+

O(⊥, {a, b}) False 4
{a, b} ∅ {⊥} ∅ True 5

∅ {a, βO(a)} False 1
∅ {a, βO(a)} ∅ ∅ False 2
∅ {a, βO(a)} ∅ ∅ {c} b False 15
∅ {a, βO(a)} ∅ ∅ {c} b True 17
∅ {a, βO(a)} ∅ ∅ {c} b γ−

O(b, {a}) True 18
∅ {a, βO(a)} ∅ ∅ {b} c True 15
∅ {a, βO(a)} ∅ ∅ {b} c γ−

O(c, {a}) True 18
∅ {a, βO(a)} ∅ ∅ {b} c True 19

Above, the leftmost two columns AT and AF display the true and false atoms of the

input assignment respectively. The next two display the atoms entailed under minimal

assumptions as true Ω+ and false Ω−. Following that is the set of atoms entailed as true

under maximal assumptions O+. After that is the variable p, which reflects the current

value of the iterator within the active for-loop. Then, there is a column indicating which,

if any, nogood was added to the tracked set in the current step. Following which is the
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Boolean variable entailed indicating whether any nogood has been added. Finally, the

active line number is displayed on the right.

7 Related and future work

The first challenge in applying the theories of this work to the implementation of a

conflict-driven solver, involves procedures for the generation and management of unit-

resulting entailment and loop nogoods. Generation of entailment nogoods can follow the

approach of EntNogoods , but requires the integration of ontology reasoners. Generating

loop nogoods requires additional theoretical work, but in principle can be based on detec-

tion of unfounded sets. There must also be an investigation into the ideal policies for when

to attempt generation of these nogoods, and when they should be forgotten. It is essen-

tial to keep the set of tracked nogoods small in order to reduce time spent performing

unit-propagation. This is likely to be uniquely challenging for HMKNF-KBs.

The second is the practical challenge of integrating these theories with existing solvers.

The Clingo system includes a Theory-enhanced ASP solving API (Gebser et al. 2016),

allowing the user to introduce additional theory atoms , whose truth is regulated by user-

supplied theory nogoods . Using this approach for a tightly integrated framework such

as HMKNF-KBs is complicated by the support and loop nogoods already included by

Clingo. In principle these can be reduced to a subset of our proposed nogoods by adding

supporting rules, the bodies of whom are theory atoms semantically governed entirely

by theory nogoods. However, this approach is non-trivial. It requires determining both

which support rules to add and the additional theory nogoods required to construct a

set equivalent to our proposed one.

A direct implementation using Clingo’s source code is also possible but comes with its

own complexity. Another option is to build on the DLVHEX system, which despite its

existing integration with ontology reasoners is less straightforward to layer our framework

upon. Conversely, a translation plugin that allows DLVHEX to solve HMKNF-KBs as

dl-programs could provide a useful benchmark.

8 Conclusion

Our work establishes the critical foundation for the development of a native conflict-

driven solver of HMKNF-KBs. We have made significant theoretical contributions

including the first formulation of a dependency graph, and first adaption of a completion

and loop formulas for the formalism. These advancements have enabled us to derive a

set of nogoods, essential for implementing a conflict-driven solver. We have outlined the

architecture of such a solver and critically examined both the potential and challenges

in leveraging existing systems. Our findings have significant implications for enhancing

the efficiency and practicality of reasoning with HMKNF-KBs under the stable model

semantics. The immediate next steps include the implementation of a conflict-driven

solver based on our theoretical framework and further refinement of the characterizations

we have proposed.
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