
Forum of Mathematics, Sigma (2024), Vol. 12:e119 1–37
doi:10.1017/fms.2024.107

RESEARCH ARTICLE

Family Floer mirror space for local SYZ singularities
Hang Yuan

Beijing Institute of Mathematical Sciencens and Applications, No. 55, Hefangkou Village, Huaibei Town, Huairou District,
Beijing, 101408, China; E-mail: yuanhang@bimsa.cn.

Received: 19 September 2023; Revised: 22 July 2024; Accepted: 23 September 2024

2020 Mathematics Subject Classification: Primary – 53D37, 14J33; Secondary – 53D40

Abstract
We give a mathematically precise statement of the SYZ conjecture between mirror space pairs and prove it for
any toric Calabi-Yau manifold with the Gross Lagrangian fibration. To date, it is the first time we realize the SYZ
proposal with singular fibers beyond the topological level. The dual singular fibration is explicitly written and
proved to be compatible with the family Floer mirror construction. Moreover, we discover that the Maurer-Cartan
set of a singular Lagrangian is only a strict subset of the corresponding dual singular fiber. This responds negatively
to the previous expectation and leads to new perspectives of SYZ singularities. As extra evidence, we also check
some computations for a well-known folklore conjecture for the Landau-Ginzburg model.
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1. Introduction

Mirror symmetry is a mysterious relationship, discovered by string physicists, between pairs of Calabi-
Yau manifolds 𝑋, 𝑋∨. The mathematical interest in mirror symmetry began since the enumerative
prediction of Candelas et al [10]. Nowadays, the two major approaches to the mathematical mirror
symmetry are the Kontsevich’s Homological Mirror Symmetry (HMS) [48] and the Strominger-Yau-
Zaslow conjecture (SYZ) [58]. These two ideas focus on different aspects of mirror symmetry beyond
enumeration problems. The SYZ conjecture explains why a pair 𝑋, 𝑋∨ should be mirror to each other
geometrically based on the physical idea of the T-duality; meanwhile, the HMS conjecture predicts a
categorical equivalence between the Fukaya category of X (A side) and the derived category of coherent
sheaves of 𝑋∨ (B side). It is expected to be the underlying principle behind the enumerative prediction.

The work of Joyce [46] implies the strong form of the SYZ conjecture cannot hold yet [47, p191];
see also[4]. This is because there are serious issues to match singular loci. Another issue for the SYZ
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idea is that what we mean by ‘dual tori’ is unclear. If we want the T-duality to be useful in constructing
mirrors, Gross’s topological mirror symmetry [40] tells us that the SYZ conjecture may be somewhat
topological.

Following Fukaya’s family Floer program [30, 31] and Kontsevich-Soibelman’s non-archimedean
mirror symmetry proposal [49, 50], we propose a modified mathematically precise SYZ statement with
an emphasis on both the aspects of symplectic topology and non-archimedean analytic topology:

Conjecture I. Given any Calabi-Yau manifold X,

(a) there exists a Lagrangian fibration 𝜋 : 𝑋 → 𝐵 onto a topological manifold B such that the 𝜋-fibers
are graded with respect to a holomorphic volume form Ω;

(b) there exists a tropically continuous surjection 𝑓 : 𝒴 → 𝐵 from an analytic space 𝒴 over the
Novikov field Λ = C((𝑇R)) onto the same base B,

satisfying the following:

(i) 𝜋 and f have the same singular locus skeleton Δ in B;
(ii) 𝜋0 = 𝜋 |𝐵0 and 𝑓0 = 𝑓 |𝐵0 induce the same integral affine structures on 𝐵0 = 𝐵 \ Δ .

Theorem I. Conjecture I holds for the Gross special Lagrangian fibration 𝜋 (with singularities) in any
toric Calabi-Yau manifold. Moreover, the analytic space 𝒴 embeds into an algebraic variety.

Remark 1.1. The SYZ mirror construction has been well-studied by Auroux and many others [1, 5, 15,
16, 40, 42, 45, 49, 50], etc. We apologize for not being able to give a full list. This paper is indebted
to various strategies of our predecessors, but we also want to humbly highlight a key limitation of the
previous works: the lack of a good notion for the dual SYZ fibration, especially concerning singular
fibers. We aim to further explore this aspect. For example, a slightly new geometric input involves
the monodromy information for the A-side wall-crossing studies; cf. §2.2. Besides, to make a B-side
fibration with reasonable matching conditions, we utilize certain non-archimedean geometry; cf. §3.2.

Remark 1.2. The statement is briefly explained here. The tropical continuity of f in (b) is as introduced
by Chambert-Loir and Ducros [14, (3.1.6)]. However, for clarity, one might first interpret 𝑓 : 𝒴 → 𝐵 as
just a continuous map for the Berkovich analytic topology in 𝒴 [8, 9] and the usual manifold topology
in B. Due to Kontsevich and Soibelman, we can define the smooth/singular points of f, and the smooth
part 𝑓0 = 𝑓 |𝐵0 is called an affinoid torus fibration; see also [53, §3]. Just like the Arnold-Liouville’s
theorem, any affinoid torus fibration induces an integral affine structure on 𝐵0 [50, §4].

Remark 1.3. A referee raised doubts about Conjecture I, suggesting that certain cohomological ob-
structions might prevent a Calabi-Yau variety from admitting a Lagrangian torus fibration. The rigid
Calabi-Yau examples considered by Candelas-Derrick-Parkes [11] were cited as potential counterexam-
ples due to the absence of maximal degenerations, with the remark that such a case “does not have a
mirror space, only a mirror component in the derived category of some Fano variety.” In response, it
may be clarified that this work is directed towards exploring a precise definition of the “mirror space”.
The original SYZ conjecture has also consistently involved Lagrangian fibrations and related concepts.
In fact, the statement of Conjecture I should be seen as a guiding formulation rather than an absolute
claim, open to future refinement as new insights may emerge. While maximal degenerations are a ma-
jor method for constructing Lagrangian fibrations, prioritizing a single method and overlooking others
can lead to a narrow perspective. Other methods, including those using symplectic techniques, have
been explored in works such as [1, 12, 29]. For any program aiming to understand mirror symmetry
mathematically, we believe that the key question is whether there are sufficient examples to support the
program, rather than highlighting universality and exception from the outset. Developing constructions
without concrete examples risks creating theoretical “castles in the air”. The referee also expressed con-
cern that this work represents only an incremental step, as it does not provide a complete proof of mirror
symmetry. In response, we note that a purely algebro-geometric approach, while valuable, has inher-
ent limitations in addressing Lagrangian submanifolds within the Fukaya category. Thus, a symplectic
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method of mirror construction is essential for systematic progress toward the proof of homological
mirror symmetry. The originality of this approach lies in bridging symplectic and non-archimedean
geometry, supported by further examples [64, 65] of Conjecture I and related applications [63, 66, 62].

The statement of Conjecture I is mathematically precise and does not mention any mirror symmetry
actually. But, we should think (𝑋, 𝜋) and (𝒴, 𝑓 ) are mirror to each other, and we can make sense of
T-duality with an extra Floer-theoretic condition (iii) to specify what we mean by dual tori:

(iii) 𝑓0 is isomorphic to the canonical dual affinoid torus fibration 𝜋∨0 associated to 𝜋0.

In the set-theoretic level, if we set 𝐿𝑞 = 𝜋−1 (𝑞) and write𝑈Λ for the unit circle in Λ = C((𝑇R)) with
the non-archimedean norm, then the 𝜋∨0 is simply the following obvious map:

𝑋∨
0 ≡

⋃
𝑞∈𝐵0

𝐻1(𝐿𝑞;𝑈Λ) → 𝐵0. (1)

Family Floer theory with quantum correction further equips 𝑋∨
0 with a non-archimedean analytic

structure sheaf such that 𝜋∨0 becomes an affinoid torus fibration (see §4 or [61]). It is unique up to
isomorphism, so we can say it is canonical, and the meaning of (iii) is also precise. Note that a change
from 𝑈Λ to 𝑈 (1) exactly goes back to the conventional T-duality picture (e.g., [5, 40]). In the level of
non-archimedean analytic structure, while the local analytic charts of 𝜋∨0 have been predicted for a long
time [33, 34, 59], the local-to-global analytic gluing for 𝜋∨0 is recently achieved in [61]. Finally, we
introduce the following notion:

Definition 1.4. In the situation of Conjecture I, if the conditions (i) (ii) (iii) hold and the analytic space
𝒴 embeds into (the analytification 𝑌 an of) an algebraic variety Y over Λ of the same dimension, then
we say Y is SYZ mirror to X.

1.1. Main result

For clarity, we focus on a fundamental example of Theorem I, and the general result is stated later in
§1.5. We state the following:

Theorem 1.5. The algebraic variety

𝑌 = {(𝑥0, 𝑥1, 𝑦1, . . . , 𝑦𝑛−1) ∈ Λ2 × (Λ∗)𝑛−1 | 𝑥0𝑥1 = 1 + 𝑦1 + · · · + 𝑦𝑛−1}

is SYZ mirror to 𝑋 = C𝑛 \ {𝑧1 · · · 𝑧𝑛 = 1}.

Remark 1.6. The mirror space Y is expected by the works of Abouzaid-Auroux-Katzarkov [1] and
Chan-Lau-Leung [16]. If we take �̄� = C𝑛 instead of X without removing the divisor, the mirror will be
the same Y with an extra superpotential 𝑊 = 𝑥1 [5, 6]. It will be further discussed in §1.7.

1.2. Relation to the literature

The integral affine structure matching condition (ii) hinders the direct application of Kontsevich and
Soibelman’s construction [50]. Indeed, the integral affine coordinates from a Lagrangian fibration subtly
depends on the symplectic form; similarly, on the non-archimedean B-side, there is also a delicate story
about the induced integral affine structure from f. For instance, deforming 𝜓 in our solution (3) alters
the integral affine structure, even if the monodromy around the singular locus may be unchanged. This
subtle point necessitates detailed calculations, even though we are able to write down explicitly the
formula of the solution f as in (3) below (cf. Remark 1.7).

Within the literature, an approach has been presented to construct an affinoid torus fibration (away
from a singular locus) using Berkovich retraction. This method draws inspiration from birational
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Figure 1. The image 𝑗 (𝐵) = 𝐹 (𝒴) in R3 for 𝑛 = 2: It morally visualizes the integral affine structure.

geometry [53]. But, our construction of affinoid torus fibration uses a different method and is grounded
in the Floer-theoretic analysis of a Lagrangian fibration in view of (iii).

The underlying principle follows Auroux’s framework [5, 6] of wall-crossing (see also [18, 19, 45],
etc.). The primary differences are that Gromov’s compactness guarantees convergence only over the
Novikov field rather than C, and that non-archimedean geometry is required to interpret another version
of torus fibration, which also induces an integral affine structure on the base. In particular, we study two
fibrations on distinct spaces simultaneously, rather than focusing on a single fibration. To the best of our
knowledge, the existing literature of studying two singular fibrations simultaneously in the context of
the SYZ conjecture may trace back to Gross’s work on topological mirror symmetry [40].

1.3. Sketch of proof of Theorem 1.5 omitting Floer-theoretic condition (iii)

Let’s provide a glimpse into the structure of the solution to Conjecture I. Despite an explicit answer, a
comprehensive proof and detailed calculations are still necessary and deferred to the main body of this
paper.

We restrict the standard symplectic form in C𝑛 to X and consider the special Lagrangian fibration

𝜋 : 𝑋 → R𝑛, (𝑧1, . . . , 𝑧𝑛) ↦→ (
|𝑧1 |

2−|𝑧𝑛 |
2

2 , . . . , |𝑧𝑛−1 |
2−|𝑧𝑛 |

2

2 , log |𝑧1 · · · 𝑧𝑛 − 1|). (2)

Denote by 𝐵0 and Δ the smooth and singular loci of 𝜋 in the base 𝐵 = R𝑛. There is a continuous map
𝜓 : R𝑛 → R, smooth in 𝐵0, so that ( |𝑧1 |

2−|𝑧𝑛 |
2

2 , . . . , |𝑧𝑛−1 |
2−|𝑧𝑛 |

2

2 , 𝜓 ◦ 𝜋) forms a set of action coordinates
locally over 𝐵0. Roughly, the function 𝜓 indicates the symplectic areas of holomorphic disks in C𝑛
bounded by the 𝜋-fibers parameterized by the base points in R𝑛 (Figure 2).

Sketch of proof of Theorem 1.5 omitting (iii). Consider an analytic domain 𝒴 = {|𝑥1 | < 1} in 𝑌 an.
Define a topological embedding 𝑗 : R𝑛 → R𝑛+1 assigning 𝑞 = (𝑞1, . . . , 𝑞𝑛−1, 𝑞𝑛) = (𝑞, 𝑞𝑛) in R𝑛 to

𝑗 (𝑞) = (min{−𝜓(𝑞),−𝜓(𝑞, 0)} + min{0, 𝑞} , min{𝜓(𝑞), 𝜓(𝑞, 0)} , 𝑞).

Define a tropically continuous map 𝐹 : 𝑌 an → R𝑛+1 by

𝐹 (𝑥0, 𝑥1, 𝑦1, . . . , 𝑦𝑛−1) = (𝐹0, 𝐹1, v(𝑦1), . . . , v(𝑦𝑛−1)),

where v : Λ → R ∪ {∞} is the non-archimedean valuation and{
𝐹0 = min{v(𝑥0),−𝜓(v(𝑦1), . . . , v(𝑦𝑛−1), 0) + min{0, v(𝑦1), . . . , v(𝑦𝑛−1)}}

𝐹1 = min{v(𝑥1), 𝜓(v(𝑦1), . . . , v(𝑦𝑛−1), 0)}.
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Figure 2. Two types of quantum corrections in red and yellow, meeting the singular fibers at the interior
/ boundary points of the disk domain respectively. The right side concerns the Lagrangian fibration 𝜋
in (2) for 𝑛 = 2 and follows Auroux [5, 5.1].

We can check 𝑗 (R𝑛) = 𝐹 (𝒴) (cf. Figure 1). Then, we can define

𝑓 = 𝑗−1 ◦ 𝐹 |𝒴 : 𝒴 → R𝑛. (3)

This is a variant of [50, §8] that further includes the data of the symplectic form; see also §3.3. By
detailed calculations (Section 3.2.1 and Theorem 5.4), we will find that the smooth / singular loci and
the induced integral affine structure of f all precisely agree with those of 𝜋 (2). Except the duality
condition (iii), the proof is complete.

Remark 1.7. Here, we adopt the strategy of Kontsevich and Soibelman [50, §8]. Rather than seeking
the desired Berkovich-continuous map 𝑓 : 𝒴 → 𝐵, we find an alternative 𝐹 : 𝒴 → R𝑁 for some larger
N such that the image of F is identified with the singular integral affine manifold B through a map j. This
embeds B into a larger Euclidean space R𝑁 to unfold the singularities (Figure 1). While this approach
might seem ad-hoc for the singular part, the smooth part 𝑓0 � 𝜋∨0 remains canonical by the family Floer
condition (iii). We hypothesize that the tropical continuity condition might ensure the uniqueness of the
singular extension from 𝑓0 to f due to the piecewise-smooth nature of the reduced symplectic geometry,
but this will be addressed in future work. Without the guidance from Floer theory, constructing the
appropriate f is quite challenging. At least, directly replicating the example by Kontsevich-Soibelman
seems difficult to match the singular integral affine structure from the Lagrangian fibration 𝜋, given its
intricate dependence on the given symplectic form 𝜔 (cf. §1.2).

1.4. Outline of the construction

The existence of singular Lagrangian fibers may induce two types of quantum corrections of holomorphic
disks as illustrated in red and yellow in Figure 2. The red disk meets the singular fiber at an interior
point, while the yellow disk meets it at an boundary point. We will discuss the Floer aspect and the
non-archimedean analytic aspect about them, respectively.

1.4.1. Floer aspect: dual affinoid torus fibration.
Denote by 𝜋0 : 𝑋0 → 𝐵0 the smooth part of the Gross Lagrangian fibration 𝜋 : 𝑋 → 𝐵. The non-
archimedean dual torus fibration depends on the entire ambient space XX, as the disks may extend
beyond the region 𝑋0 = 𝜋−1 (𝐵0). By the Floer aspect of this type of quantum correction, we can
canonically associate to (𝑋, 𝜋0) an analytic space 𝑋∨

0 with an abstract dual affinoid torus fibration
𝜋∨0 : 𝑋∨

0 → 𝐵0 (§4 or [61]), unique up to isomorphism, so that its induced integral affine structure on 𝐵0
agrees with the one induced by 𝜋0 and the set of closed points in 𝑋∨

0 are given by (1). Meanwhile, there
is the other concrete affinoid torus fibration 𝑓0 : 𝒴0 → 𝐵0 (i.e., the smooth part of the analytic fibration
f in (3)).
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The initial step for our version of T-duality can be stated in a single relation as follows:

Proposition 1.8. There is an isomorphism of affinoid torus fibration 𝜋∨0 � 𝑓0.

The former 𝜋∨0 is constructed canonically but abstractly, while the latter 𝑓0 is ad hoc but concrete.
We can even explicitly write down an analytic embedding 𝑔 : 𝑋∨

0 → Λ2 × (Λ∗)𝑛−1 with 𝜋∨0 = 𝑓0 ◦ 𝑔.
The map g identifies 𝑋∨

0 with the analytic domain 𝒴0 in Y. In view of (1), any closed point in 𝒴0 can be
realized as a local 𝑈Λ-system y in some 𝐻1 (𝐿𝑞;𝑈Λ). The explicit definition formula of g is in §5.4.

𝑋∨
0

𝑔

�
��

𝜋∨
0 ��

��
��

��
�

𝒴0

𝑓0
����
��
��
��

𝐵0

(4)

Remark 1.9. The only place we need the Floer theory is basically an identification between the fam-
ily Floer mirror analytic space 𝑋∨

0 and an ‘adjunction’ analytic space 𝑇+ � 𝑇−/∼ obtained by gluing
two analytic open domains 𝑇± � (Λ∗)𝑛 which correspond to the Clifford / Chekanov tori respec-
tively (Remark 5.3). Such a simplification is not easy but now enables us to apply the idea in
[41, Lemma 3.1], where two copies of complex tori (C∗)𝑛 are glued instead; further combining the non-
archimedean picture in [50, p.44] enables us to discover the desired embedding g (see a reader guide in
Remark 5.3.)

Remark 1.10. The tropical polynomial min{0, 𝑞1, . . . , 𝑞𝑛−1} plays the leading roles in the singularities
of both the A and B sides. First, the induced tropical hypersurface (i.e., the above minimum value attains
at least twice) exactly describes the singular locus skeleton of the Gross Lagrangian fibration 𝜋 in (2).
Second, v(1 + 𝑦1 + · · · + 𝑦𝑛−1) is either > or = min{0, v(𝑦1), . . . , v(𝑦𝑛−1)} by the non-archimedean
triangle inequality. The ambiguity case > happens only if the minimum attains at least twice as well.
After some effort, one may find that this ambiguity is the very reason of the singularity of f in (3). In
general (§1.5), the desired dual map f is almost the same as (3) but using another tropical polynomial.

1.4.2. Non-archimedean analytic aspect: dual singular fibers.
The significance of Proposition 1.8 lies on the fact that the abstract affinoid torus fibration 𝜋∨0 : 𝑋∨

0 → 𝐵0
has an explicit model 𝑓0, via g, which naturally has an obvious tropically continuous extension f in (3)
fitting in the diagram below.

𝑋∨
0

� � 𝑔
��

𝜋∨
0
��

𝒴

𝑓

��

𝐵0
� � �� 𝐵

(5)

The left vertical arrow 𝜋∨0 is the family Floer dual affinoid torus fibration 𝜋∨0 in (iii). The upper
horizontal map g follows Gross-Hacking-Keel in [41, Lemma 3.1]. The right vertical arrow f generalizes
Kontsevich-Soibelman’s singular model in [50, §8]. Finally, the top right corner 𝒴 agrees with many
previous results: [1, 2, 5, 6, 16, 37], etc.

More importantly, the dual singular fibers do naturally capture the data of Lagrangian singular fibers.
The other type of quantum correction refers to the holomorphic disks whose boundary meet the singular
fibers (Figure 2, yellow), and they are all reflected by the formula of f (3). In summary, under the
control of the canonical analytic structure on (𝑋∨

0 , 𝜋
∨
0 ) from the Floer aspect of the first type of quantum

correction, the second type correction deduces the singular analytic extension. When we extend 𝑓0 to f
tropically continuously [14, (3.1.6)], the topological extension 𝐵0 ↩−→ 𝐵 controls the analytic extension
overhead (§3.2). Note that any affinoid torus fibration is tropically continuous.
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Our explicit description of the f in (3) can depict all the dual singular fibers simultaneously, and
the general results in §1.5 will even offer more local models of SYZ singularities. The aspects of non-
archimedean analytic topology seem to outweigh the Floer-theoretic considerations around the singular
locus Δ = 𝐵 \ 𝐵0. Moreover, we will astonishingly discover in the set level that (see §5.6)

Dual singular fiber � Maurer-Cartan set of the singular fiber (6)

based on the work of Hong-Kim-Lau [45]. This justifies our standpoint in [61] that going beyond the
usual Maurer-Cartan picture [32, 34, 59] is necessary to produce the global mirror analytic structure.
A well-known fact in the area of homological algebra is that the homotopy equivalences among 𝐴∞

algebras induce bijections of Maurer-Cartan sets. However, this offers merely a local or set-theoretic
approximation and is not sufficient for the local-to-global construction of a non-archimedean analytic
space. By definition, the latter is built by matching the affinoid spaces instead.

1.5. Main result in general

Our method is very powerful in that the same ideas for Theorem 1.5 with some basics of tropical and
toric geometry can obtain more general results with very little extra effort.

Denote by N and M two lattices of rank n that are dual to each other. Set 𝑁R = 𝑁⊗R and 𝑀R = 𝑀⊗R.
Let Σ be a simplicial smooth fan with maximal cones n-dimensional in 𝑁R. Assume 𝑣1, . . . , 𝑣𝑛 are the
primitive generators of the rays in a maximal cone in Σ, so they form a Z-basis of N. Denote by
𝑣∗1, . . . , 𝑣

∗
𝑛 the dual basis of M. Denote the remaining rays in Σ by 𝑣𝑛+1, . . . , 𝑣𝑛+𝑟 for 𝑟 ≥ 0, and we set

𝑣𝑛+𝑎 =
∑𝑛

𝑗=1 𝑘𝑎 𝑗𝑣 𝑗 for 𝑘𝑎 𝑗 ∈ Z and 1 ≤ 𝑎 ≤ 𝑟 . Assume the toric variety XΣ associated to Σ is Calabi-
Yau; namely, there exists 𝑚0 ∈ 𝑀 so that 〈𝑚0, 𝑣〉 = 1 for any ray v in Σ. Then, 𝑚0 = 𝑣∗1 + · · · + 𝑣∗𝑛 and∑𝑛

𝑗=1 𝑘𝑎 𝑗 = 1 for any 1 ≤ 𝑎 ≤ 𝑟 . Let 𝑤 = 𝑧𝑚0 be the toric character associated to 𝑚0, and 𝒟 := {𝑤 = 1}
is an anti-canonical divisor in XΣ. We equip XΣ with a toric Kähler form 𝜔, and the moment map
𝜇 : XΣ → 𝑀R is onto a polyhedral P described by a collection of inequalities as follows:

𝑃 : 〈𝑚, 𝑣𝑖〉 + 𝜆𝑖 ≥ 0 𝑚 ∈ 𝑀R, (7)

where the 𝑣𝑖’s run over all the rays in Σ and 𝜆𝑖 ∈ R. The sublattice �̄� = {𝑛 ∈ 𝑁 | 〈𝑚0, 𝑛〉 = 0} has
a basis 𝜎𝑠 = 𝑣𝑠 − 𝑣𝑛 for 1 ≤ 𝑠 < 𝑛. The action of �̄� ⊗ C∗ preserves 𝒟 and gives a moment map
�̄� onto �̄�R := 𝑀R/R𝑚0 such that 𝑝 ◦ 𝜇 = �̄� for the projection 𝑝 : 𝑀R → �̄�R. One can show p
induces a homeomorphism 𝜕𝑃 � �̄�R. We identify �̄�R := 𝑀R/R𝑚0 with a copy of R𝑛−1 in 𝑀R � R𝑛

consisting of (𝑚1, . . . , 𝑚𝑛) with 𝑚𝑛 = 0. Now, the Gross special Lagrangian fibration [39] refers to
𝜋 := ( �̄�, log |𝑤 − 1|) on 𝑋 := XΣ \ 𝒟 (see also [1, 16]). The singular locus of 𝜋 takes the form
Δ = Π × {0}, where Π is the tropical hypersurface (Figure 3) in �̄�R � R𝑛−1 associated to the tropical
polynomial that is decided by the data in (7):

ℎtrop (𝑞1, . . . , 𝑞𝑛−1) = min
{
𝜆𝑛, {𝑞𝑘 + 𝜆𝑘 }1≤𝑘<𝑛, {

∑𝑛−1
𝑠=1 𝑘𝑎𝑠𝑞𝑠 + 𝜆𝑛+𝑎}1≤𝑎≤𝑟

}
. (8)

Recall that the Novikov field Λ = C((𝑇R)) is algebraically closed. Let Λ0 and Λ+ be the valuation ring
and its maximal ideal. However, given the A side data above, we consider

ℎ(𝑦1, . . . , 𝑦𝑛−1) = 𝑇𝜆𝑛 (1 + 𝛿𝑛) +
𝑛−1∑
𝑠=1

𝑇𝜆𝑠 𝑦𝑠 (1 + 𝛿𝑠) +
∑
𝑎

𝑇𝜆𝑛+𝑎 (1 + 𝛿𝑛+𝑎)
𝑛−1∏
𝑠=1

𝑦𝑘𝑎𝑠𝑠 , (9)

where 𝛿𝑖 ∈ Λ+ is given by some virtual counts so that v(𝛿𝑖) is the smallest symplectic area of the sphere
bubbles meeting the toric divisor 𝐷𝑖 associated to 𝑣𝑖 (see §6 for the details).
Remark 1.11. In general, the Cho-Oh’s result [21] is not enough to decide the 𝛿𝑖’s. But, whenever 𝐷𝑖

is non-compact, one can use the maximal principle to show that 𝛿𝑖 = 0 (cf. [16, §5.2]). The expressions
of 𝛿𝑖 may be also interpreted via the inverse mirror maps due to [15].
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Figure 3. Tropical hypersurfaces of ℎtrop in §1.6.2 and §1.6.4, respectively.

A key observation is that the tropicalization of h in (9) is precisely ℎtrop in (8), since 𝛿𝑖 ∈ Λ+. This
picture is lost if we only work over C. By Definition 1.4, let’s state a more general result:

Theorem 1.12. The algebraic variety

𝑌 = {(𝑥0, 𝑥1, 𝑦1, . . . , 𝑦𝑛−1) ∈ Λ2 × (Λ∗)𝑛−1 | 𝑥0𝑥1 = ℎ(𝑦1, . . . , 𝑦𝑛−1)}

is SYZ mirror to 𝑋 = XΣ \𝒟.

The proof is almost identical to that of Theorem 1.5. The key dual singular fibration f is written in
the same way as (3), replacing the tropical polynomial min{0, 𝑞1, . . . , 𝑞𝑛−1} by ℎtrop (Remark 1.10). So,
for legibility, we focus on Theorem 1.5 in the main body and delay the generalization to §6.

1.6. Examples and SYZ converse

The statement of Theorem 1.12 gives rise to a lot of examples.

1.6.1.
We begin with a general remark for a version of SYZ converse. One can use the Laurent polynomial h
to recover the polyhedral P as follows. Consider the polyhedral 𝑃′ in �̄�R ⊕ R � R𝑛−1 ⊕ R defined by
𝑞𝑛 + ℎtrop (𝑞1, . . . , 𝑞𝑛−1) ≥ 0. Namely, it is defined by 𝑞𝑛 + 𝜆𝑛 ≥ 0, 𝑞𝑛 + 𝑞𝑠 + 𝜆𝑠 ≥ 0 (1 ≤ 𝑠 < 𝑛),
and 𝑞𝑛 +

∑𝑛−1
𝑠=1 𝑘𝑎𝑠𝑞𝑠 + 𝜆𝑛+𝑎 ≥ 0 (1 ≤ 𝑎 ≤ 𝑟) due to (8). Then, the isomorphism �̄�R ⊕ R � 𝑀R,

(𝑞1, . . . , 𝑞𝑛−1, 𝑞𝑛) ↦→ (𝑞1 + 𝑞𝑛, . . . , 𝑞𝑛−1 + 𝑞𝑛, 𝑞𝑛), can naturally identify 𝑃′ with P in (7).

1.6.2.
Back to Theorem 1.5, we have 𝑟 = 0, 𝜆𝑖 = 0, and 𝛿𝑖 = 0. Then, by (9), ℎ = 1 + 𝑦1 + · · · + 𝑦𝑛−1, and its
tropicalization is ℎtrop = min{0, 𝑞1, . . . , 𝑞𝑛−1}; see Figure 3. Compare also Remark 1.10. We can also
check the polyhedral 𝑃′ � 𝑃 is identified with the first quadrant in R𝑛.

1.6.3.
Consider the fan Σ in R3 generated by 𝑣1 = (1, 0, 0), 𝑣2 = (0, 1, 0), 𝑣3 = (0, 0, 1), and 𝑣4 = (1,−1, 1).
So, 𝑛 = 3 and 𝑟 = 1. Note that 𝑣4 = 𝑣1 − 𝑣2 + 𝑣3 (i.e., 𝑘11 = 𝑘13 = 1 and 𝑘12 = −1). The corresponding
toric variety is the conifold XΣ = OP1 (−1) ⊕ OP1 (−1). We equip XΣ with a toric Kähler form 𝜔, and
the moment polyhedral P is defined by (7) for some arbitrary 𝜆1, . . . , 𝜆4 ∈ R. By (9), ℎ(𝑦1, 𝑦2) =
𝑇𝜆3 + 𝑇𝜆1 𝑦1 + 𝑇

𝜆2 𝑦2 + 𝑇
𝜆4 𝑦1𝑦

−1
2 . First, we may assume 𝜆3 = 0. Also, replacing 𝑦𝑖 by 𝑇−𝜆𝑖 𝑦𝑖 , we may

assume 𝜆1 = 𝜆2 = 0. So, (𝜆1, 𝜆2, 𝜆3, 𝜆4) = (0, 0, 0, 𝜆) for some 𝜆 ∈ R, and ℎ = 1 + 𝑦1 + 𝑦2 + 𝑇
𝜆𝑦1𝑦

−1
2 .

This retrieves the case of [16, 5.3.2] if we replace the Novikov parameter T by some 𝑡 ∈ C. But, we
remark that the shapes of the tropical hypersurfaces of ℎtrop or the moment polyhedrals 𝑃′ � 𝑃 obtained
by §1.6.1 are different for 𝜆 > 0 and 𝜆 < 0, which seems lost over C.
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1.6.4.
Consider the Laurent polynomial ℎ(𝑦1, 𝑦2) = 𝑦1 +𝑇

−1𝑦2 +𝑇
3.14 +𝑇2𝑦2

1 + 𝑦1𝑦2 +𝑇
2𝑦2

2. By §1.6.1, we get
the fan Σ in R3 generated by 𝑣1 = (1, 0, 0), 𝑣2 = (0, 1, 0), 𝑣3 = (0, 0, 1), 𝑣4 = (2, 0,−1), 𝑣5 = (1, 1,−1),
𝑣6 = (0, 2,−1). Also, we get the polyhedral P defined by (7) with respect to these 𝑣𝑖’s and the numbers
𝜆1 = 0, 𝜆2 = −1, 𝜆3 = 3.14, 𝜆4 = 2, 𝜆5 = 0, 𝜆6 = 2. Note that the above h is carefully chosen so that the
tropical hypersurface associated to ℎtrop does not enclose a bounded region (Figure 3, right). This ensures
the toric variety XΣ has no compact irreducible toric divisor (cf. Remark 1.11). By Theorem 1.12 and
§1.6.1, we achieve a version of SYZ converse construction from B side to A side. Notice that we truly
have infinitely many such examples.

1.7. Further evidence: a folklore conjecture

We have extra evidence supporting our proposed SYZ statement for the following folklore conjecture,
recognized by Auroux, Kontsevich and Seidel [5, §6]:
Conjecture II. The critical values of the mirror Landau-Ginzburg superpotential on 𝑋∨ (B side) are
the eigenvalues of the quantum multiplication by the first Chern class on X (A side).

Recall the dual affinoid torus fibration 𝜋∨0 : 𝑋∨
0 → 𝐵0 only relies on the Maslov-0 holomorphic disks

in X bounded by 𝜋0-fibers. It often happens that the 𝜋0 can be placed in a larger ambient space 𝑋 , adding
more Maslov-2 holomorphic disks but adding no Maslov-0 ones. By the general theory in [61], the
family Floer mirror associated to the same fibration 𝜋0, placed in the larger 𝑋 yet, is given by the same
analytic space 𝑋∨

0 and the same affinoid torus fibration 𝜋∨0 : 𝑋∨
0 → 𝐵0 but equipped with an additional

function 𝑊∨
0 on 𝑋∨

0 (§4.6). Note that the 𝑊∨
0 as well as its critical points and critical values all depend

on the Kähler form 𝜔. When we deform 𝜔, the image of these critical points under the fibration map 𝜋
may wildly change. But, in the present paper, we only focus on the examples and refer to [62] for the
general theory.

Recall 𝒴0 = 𝑓 −1
0 (𝐵0) � 𝑋∨

0 via the analytic embedding g in (4). In our case, the LG superpotential
turns out to be polynomial, and from Definition 1.4, it follows that 𝒴0 is Zariski dense in the algebraic
variety Y (cf. [55]). Thus, the 𝑊∨

0 extends to a polynomial superpotential 𝑊∨ on the whole Y. Note that
the 𝑊∨ relies on the larger ambient space 𝑋 , although the Y does not. For various ambient spaces 𝑋 ,
we have various 𝑊∨. The computations in [63] over the Novikov field Λ = C((𝑇R)) rather than just
over C (e.g., [54]) are quite crucial to verify Conjecture II here. The details of computations will be in
Appendix §A, and we just write down the results here:
1. Suppose 𝑋 = C𝑛 \ {𝑧1 · · · 𝑧𝑛 = 1} and 𝑋 = CP𝑛. Then, the LG superpotential is

𝑊∨ = 𝑥1 +
𝑇𝐸 (H)𝑥𝑛0
𝑦1 · · · 𝑦𝑛−1

defined on the algebraic variety 𝑌 = {𝑥0𝑥1 = 1 + 𝑦1 + · · · + 𝑦𝑛−1}, where H is the class of a complex
line and 𝐸 (H) = 1

2𝜋𝜔∩H is the symplectic area. By direct computations, one can check the critical
points of this 𝑊∨ (for the logarithmic derivatives) are

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥0 = 𝑇−

𝐸 (H)
𝑛+1 𝑒−

2𝜋𝑖𝑠
𝑛+1

𝑥1 = 𝑛𝑇
𝐸 (H)
𝑛+1 𝑒

2𝜋𝑖𝑠
𝑛+1

𝑦1 = · · · = 𝑦𝑛−1 = 1
𝑠 ∈ {0, 1, . . . , 𝑛},

They are all contained in the same dual fiber over the base point that can be in either the Clifford or
Chekanov chambers, relying on 𝜔 and 𝜋. Moreover, one can check the critical values are

(𝑛 + 1)𝑇
𝐸 (H)
𝑛+1 𝑒

2𝜋𝑖𝑠
𝑛+1 , 𝑠 ∈ {0, 1, . . . , 𝑛},

which agrees with the 𝑐1-eigenvalues in the quantum cohomology 𝑄𝐻∗(CP𝑛;Λ).
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2. Suppose 𝑋 = C𝑛 \ {𝑧1 · · · 𝑧𝑛 = 1} and 𝑋 = CP𝑚 × CP𝑛−𝑚 for 0 < 𝑚 < 𝑛. Then,

𝑊∨ = 𝑥1 +
𝑇𝐸 (H1)𝑥𝑚0
𝑦1 · · · 𝑦𝑚

+
𝑇𝐸 (H2)𝑥𝑛−𝑚0
𝑦𝑚+1 · · · 𝑦𝑛−1

on the same Y, where H1,H2 are the classes of a complex line in CP𝑚 and CP𝑛−𝑚, respectively. The
corresponding critical values are

(𝑚 + 1)𝑇
𝐸 (H1 )
𝑚+1 𝑒

2𝜋𝑖𝑟
𝑚+1 + (𝑛 − 𝑚 + 1)𝑇

𝐸 (H2 )
𝑛−𝑚+1 𝑒

2𝜋𝑖𝑠
𝑛−𝑚+1

for 𝑟 ∈ {0, 1, . . . , 𝑚} and 𝑠 ∈ {0, 1, . . . , 𝑛 − 𝑚} and agree with the 𝑐1-eigenvalues. Moreover, we
want to further study the locations of the critical points of𝑊∨. For simplicity, let’s assume 𝑛 = 2 and
𝑚 = 1. Then 𝑊∨ = 𝑥1 +

𝑇 𝐸 (H1 ) 𝑥0
𝑦 +𝑇𝐸 (H2)𝑥0 is defined on 𝑌 = {𝑥0𝑥1 = 1 + 𝑦}. We have four critical

points of 𝑊∨ given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑥0 = ±𝑇

−𝐸 (H2 )
2

𝑥1 = ±𝑇
𝐸 (H1 )

2 ± 𝑇
𝐸 (H2 )

2

𝑦1 = ±𝑇
𝐸 (H1 )−𝐸 (H2 )

2 .

They are contained in the f -fiber over the base point 𝑞 =
(
𝐸 (H1)−𝐸 (H2)

2 , 𝑎𝜔

)
in 𝐵 ≡ R2, where 𝑎𝜔

is some value that relies on the Kähler form 𝜔.

We really obtain infinitely many LG superpotentials on Y parameterized by the various Kähler
forms, and all of them will satisfy the folklore conjecture. In the case (2) above, it may happen that
𝐸 (H1) ≠ 𝐸 (H2) while 𝑎𝜔 = 0; then the base point 𝑞 meets the wall. In general, the base points of critical
points rely on 𝜔 or 𝜋, and the walls of Maslov-0 disks rely on J. The family Floer non-archimedean
analytic structure does not rely on J up to isomorphism [61]. For instance, the formula of f in (3)
clearly does not rely on J and cannot detect the walls of Maslov-0 disks (relying on J). To sum up, the
Maslov-0 correction is usually unavoidable (cf. [7, §5] [6, Example 3.3.2]) and gives rise to some non-
archimedean analytic structure which needs to be remembered in the Floer theory along the way. Given
nontrivial Maslov-0 disks, all the previous arguments for Conjecture II will fail. A major new challenge
is that the LG superpotential is now locally only well-defined up to affinoid algebra isomorphisms, or
more precisely up to family Floer transition maps in the language of [61]. Fortunately, based on the ud-
homotopy and canceling tricks in [61], a conceptual proof of Conjecture II with Maslov-0 corrections
has been achieved in [62]. Admittedly, its value may rely on future examples we would find, but there
are clearly other examples by Theorem 1.12 with similar computations. The new ideas in [62] will also
inspire future studies, such as a more global picture of the closed-string mirror symmetry that asserts
the quantum cohomology of X is isomorphic to the Jacobian ring of 𝑊∨ (cf. [36]).

2. A side: the Gross Lagrangian fibration

2.1. Lagrangian fibration

We begin with the Gross’s construction in [39]. Define the divisors 𝐷 𝑗 = {𝑧 𝑗 = 0} (1 ≤ ℓ ≤ 𝑛) and
𝒟 = {𝑧1𝑧2 · · · 𝑧𝑛 = 1} in C𝑛. We set 𝑋 = C𝑛 \𝒟. Consider the 𝑇𝑛−1-action given by

𝑡 · (𝑧1, . . . , 𝑧𝑛) ↦→ (𝑧1, . . . , 𝑧𝑘−1, 𝑒
𝑖𝑡 𝑧𝑘 , 𝑧𝑘+1, . . . , 𝑧𝑛−1, 𝑒

−𝑖𝑡 𝑧𝑛) 1 ≤ 𝑘 < 𝑛 (10)
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for 𝑡 ∈ 𝑆1 � R/2𝜋Z. Take the standard symplectic form 𝜔 = 𝑑𝜆 on C𝑛. Let �̄� = (ℎ1, . . . , ℎ𝑛−1) :
C𝑛 → R𝑛−1 be a moment map for the 𝑇𝑛−1-action in (10). One can check the vector fields

𝔛𝑘 = 𝑖
(
𝑧𝑘

𝜕
𝜕�̄�𝑘

− 𝑧𝑘
𝜕
𝜕𝑧𝑘

)
− 𝑖

(
𝑧𝑛

𝜕
𝜕�̄�𝑛

− 𝑧𝑛
𝜕
𝜕𝑧𝑛

)
satisfy 𝜄(𝔛𝑘 )𝜔 = 𝑑ℎ𝑘 for the Hamiltonian functions

ℎ𝑘 (𝑧) = 1
2
(
|𝑧𝑘 |

2 − |𝑧𝑛 |
2) 1 ≤ 𝑘 < 𝑛.

Define ℎ𝑛 (𝑧) = log |𝑧1 · · · 𝑧𝑛 − 1| and 𝐵 = R𝑛. The Gross Lagrangian fibration (with respect to the
holomorphic n-form Ω = (𝑧1 · · · 𝑧𝑛 − 1)−1𝑑𝑧1 ∧ · · · ∧ 𝑑𝑧𝑛, cf. [39]) refers to the following:

𝜋 ≡ ( �̄�, ℎ𝑛) : 𝑋 → 𝐵, (𝑧1, . . . , 𝑧𝑛) ↦→
(
ℎ1, . . . , ℎ𝑛−1, ℎ𝑛

)
.

Note that the 𝜋 maps X onto B. Note also that the 𝜋-fibers are preserved by the complex conjugation
𝑧𝑖 ↦→ 𝑧𝑖 . The 𝜋-fiber over 𝑞 ∈ 𝐵 is denoted by 𝐿𝑞 := 𝜋−1 (𝑞), and we write

𝑞 = (𝑞, 𝑞𝑛) = (𝑞1, . . . , 𝑞𝑛−1, 𝑞𝑛)

for the standard Euclidean coordinates in 𝐵 ≡ R𝑛. Let 𝑃𝑖 𝑗 = {𝑧𝑖 = 𝑧 𝑗 = 0} = 𝐷𝑖 ∩𝐷 𝑗 and Δ 𝑖 𝑗 = 𝜋(𝑃𝑖 𝑗 ).
The discriminant locus of 𝜋 is precisely Δ =

⋃
Δ 𝑖 𝑗 , and the smooth locus of 𝜋 is 𝐵0 := 𝐵 \ Δ . We

denote the restriction of 𝜋 over 𝐵0 by

𝜋0 := 𝜋 |𝐵0 : 𝑋0 → 𝐵0

where 𝑋0 := 𝜋−1
0 (𝐵0) ⊂ 𝑋 . Moreover, we actually have Δ = Π×{0}, where Π is the tropical hyperplane

that consists of those 𝑞 ∈ R𝑛−1 such that min{0, 𝑞1, . . . , 𝑞𝑛−1} is attained twice. The tropical hyperplane
Π separates the subset 𝐻 := (R𝑛−1 \ Π) × {0} of the base B into n different connected components

𝐻𝑘 = {𝑞 ∈ R𝑛−1 \ Π | min(0, 𝑞1, . . . , 𝑞𝑛−1) = 𝑞𝑘 } (11)

for 1 ≤ 𝑘 < 𝑛 and

𝐻𝑛 = {𝑞 ∈ R𝑛−1 \ Π | min(0, 𝑞1, . . . , 𝑞𝑛−1) = 0}.

For example, when 𝑛 = 3, we have 𝐻1 = {𝑞1 < 0, 𝑞1 < 𝑞2}, 𝐻2 = {𝑞2 < 0, 𝑞1 > 𝑞2} and 𝐻3 = {𝑞1 > 0,
𝑞2 > 0} (see the left side of Figure 3). When 𝑛 = 2, we have 𝐻1 = (−∞, 0) and 𝐻2 = (0, +∞). Notice
that �̄�𝑖 ∩ �̄� 𝑗 = Δ 𝑖 𝑗 = 𝜋(𝐷𝑖 ∩ 𝐷 𝑗 ), and 𝐻 𝑗 ⊂ 𝜋(𝐷 𝑗 ) for 1 ≤ 𝑗 ≤ 𝑛.

We usually call the subset H in 𝐵0 the wall because a torus fiber 𝐿𝑞 over 𝑞 = (𝑞, 𝑞𝑛) ∈ 𝐵0 bounds
a nontrivial Maslov index zero holomorphic disk if and only if 𝑞𝑛 = 0 (i.e., 𝑞 ∈ 𝐻) (see, for example
[6, Example 3.3.1] or [5, §5]). Next, we define

𝐵+ = {𝑞 = (𝑞1, . . . , 𝑞𝑛) | 𝑞𝑛 > 0} = R𝑛−1 × (0, +∞)

𝐵− = {𝑞 = (𝑞1, . . . , 𝑞𝑛) | 𝑞𝑛 < 0} = R𝑛−1 × (−∞, 0).

Then, 𝐵0 = 𝐵+ � 𝐵− �
⊔𝑛

𝑗=1 𝐻 𝑗 . We call the 𝐵+ (resp. 𝐵−) the chamber of Clifford tori (resp. Chekanov
tori). We say the torus fiber 𝐿𝑞 is of Clifford type if 𝑞𝑛 > 0 and it is of Chekanov type if 𝑞𝑛 < 0, which
is introduced in [17, 27] and many others.

The Arnold-Liouville’s theorem implies the existence of the action-angle coordinates near any
Lagrangian torus fiber. Let (𝑀,𝜔) be a symplectic manifold of dimension 2𝑛. Let 𝑀𝑈 ⊂ 𝑀 be an open
subset. The following two theorems are standard; see [24] and [28].
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Theorem 2.1. Let 𝜋 = (𝐻1, . . . , 𝐻𝑛) : 𝑀𝑈 → 𝑈 be an integrable Hamiltonian system over a con-
tractible domain U with only smooth torus fibers. Then, there exists a diffeomorphism 𝜒 : 𝑈 → 𝑉 ⊂ R𝑛

such that 𝜒 ◦ 𝜋 generates a Hamiltonian torus action on M. In other words, there is a local coordi-
nate system (𝐼, 𝛼) = (𝐼1, . . . , 𝐼𝑛, 𝛼1, . . . , 𝛼𝑛) : 𝜋−1 (𝑈) → 𝑈 × (R/2𝜋Z)𝑛 such that 𝐼 = 𝜒 ◦ 𝜋 and
𝜔 =

∑𝑛
𝑖=1 𝑑𝐼𝑖 ∧ 𝑑𝛼𝑖 on 𝜋−1(𝑈).

We call 𝐼 = (𝐼1, . . . , 𝐼𝑛) and 𝛼 = (𝛼1, . . . , 𝛼𝑛) the action-angle coordinates. Two sets of them differ
by an integral affine transformation. If 𝜋 : 𝑀𝑈 → 𝑈 is a smooth Lagrangian torus fibration in 𝑀𝑈 ⊂ 𝑀
over a contractible domain U, then a set of the action coordinates is decided by a choice of the Z-basis
of 𝐻1 (𝜋

−1 (𝑞);Z) for some 𝑞 ∈ 𝑈. In reality, we have the following.

Theorem 2.2. Let 𝜆 be some 1-form in 𝑀𝑈 such that 𝜔 = 𝑑𝜆. Assume 𝜎𝑖 = 𝜎𝑖 (𝑞) are closed curves in
the torus fiber 𝜋−1 (𝑞) � 𝑇𝑛, depending smoothly on q, such that they form a basis in 𝐻1(𝜋

−1 (𝑞);Z).
Then 𝜓𝑖 = 1

2𝜋

∫
𝜎𝑖
𝜆 defines a diffeomorphism 𝜒 = (𝜓1, . . . , 𝜓𝑛) : 𝑈 → R𝑛 such that a set of action

coordinates on 𝑀𝑈 are given by 𝐼𝑖 = 𝜓𝑖 ◦ 𝜋.

We will call such a 𝜒 an integral affine chart. If we pick a different 𝜆′ with 𝑑𝜆′ = 𝑑𝜆, then by
Stokes’ theorem,

∫
𝜎𝑖
(𝜆′ − 𝜆) is constant, and the action coordinates just differ by constants. The 𝜓𝑖’s

in Theorem 2.2 are also called the flux maps. The formula for a set of action coordinates can be
complicated in general (cf. [60], see also [28, Theorem 6.7]). A key idea used in this paper is that the
action coordinates can be often described by linear combinations of symplectic areas of disks in some
(possibly larger) ambient space; see §2.3 below. The advantage is that one can intuitively see an integral
affine transformation in terms of disk bubbling.

2.2. Topological disks

Now, we go back to our situation. To connect with the Floer theory, we are interested in whether the
loops in 𝜋1 (𝐿𝑞) can be realized as (linear combinations of) the boundaries of disks in 𝑋 = C𝑛 \ 𝒟

or in other reasonable larger ambient symplectic manifold 𝑋 (e.g., C𝑛 or CP𝑛). Beware that at this
moment, we just focus on topological disks rather than holomorphic disks. We consider the following
local systems over 𝐵0:

ℛ1 := 𝑅1𝜋∗(Z) ≡
⋃
𝑞∈𝐵0

𝜋1 (𝐿𝑞), ℛ2 := ℛ2(𝑋) :=
⋃
𝑞∈𝐵0

𝜋2 (𝑋, 𝐿𝑞). (12)

We must understand the monodromy behavior of the above local systems across multiple components
of the walls (cf. Figure 3). In contrast, most of existing literature only studies these disks across a single
component. Although the latter is sufficient for mirror space identifications (cf. [1, 16] and §1.2), we must
understand the former monodromy data for mirror fibration realizations. Note also that the monodromy
for ℛ2 contains more information than the monodromy for ℛ1 or the integral affine structure. This
justifies why we need to provide many additional details here, although it may be not so difficult.

The local system ℛ2 = ℛ2 (𝑋) generally depends on the ambient space 𝑋 . But, we will often make
this point implicit. Taking the boundaries gives rise to a morphism 𝜕 : ℛ2 → ℛ1. A class in 𝜋1 (𝐿𝑞)

or 𝜋2 (𝑋, 𝐿𝑞) determines a local section of ℛ1 or ℛ2 over some contractible domain that contains q.
Recall that we have a natural Hamiltonian 𝑇𝑛−1-action that preserves the Lagrangian torus fibers. Then,
for 𝑞 ∈ 𝐵0, we use 𝜎𝑘 = 𝜎𝑘 (𝑞) (1 ≤ 𝑘 ≤ 𝑛 − 1) to denote the class of the orbit of the 𝑆1-action in (10).
They can be regarded as the global sections of ℛ1.

To avoid the monodromy ambiguity, we will work with a covering of the base manifold 𝐵0 by
the contractible domains, such as 𝐵+ ∪ 𝐻ℓ ∪ 𝐵− for 1 ≤ ℓ ≤ 𝑛. Let 𝒩ℓ denote a sufficiently small
neighborhood of 𝐻ℓ in the smooth locus 𝐵0. The following two contractible domains can cover 𝐵0:

𝐵′
± := 𝐵± ∪

⊔𝑛
ℓ=1 𝒩ℓ .
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Whenever 𝑞 ∈ 𝐵+, the Lagrangian torus fiber 𝐿𝑞 can deform into a product torus by a Hamiltonian
isotopy inside (C∗)𝑛. So, 𝜋2 (C

𝑛, 𝐿𝑞) � 𝜋2 (C
𝑛, (C∗)𝑛) � Z𝑛 has an obvious basis 𝛽1, . . . , 𝛽𝑛 such that

𝛽𝑖 · 𝐷 𝑗 = 𝛿𝑖 𝑗 . We can represent 𝜕𝛽 𝑗 by a loop in the form 𝑡 ↦→ (𝑧0
1, . . . , 𝑧

0
𝑗𝑒
𝑖𝑡 , . . . , 𝑧0

𝑛) in the product
torus. But abusing the notations, we still write 𝜕𝛽 𝑗 (resp. 𝛽 𝑗 ) for the induced local sections of ℛ1 (resp.
ℛ2) over 𝐵′

+. To emphasize the base point, we may write 𝜕𝛽 𝑗 (𝑞) and 𝛽 𝑗 (𝑞). By (10), we have

𝜎𝑘 |𝐵′
+
= 𝜕𝛽𝑘 − 𝜕𝛽𝑛 1 ≤ 𝑘 < 𝑛. (13)

However, there is a preferred local section of ℛ2 over 𝐵−, denoted by 𝛽 : 𝐵− → ℛ2, such that any
Maslov index 2 holomorphic disk u bounding 𝐿𝑞 for 𝑞 ∈ 𝐵− must have [𝑢] = 𝛽(𝑞); see, for example,
[27, Proposition 4.2. C], [16, Lemma 4.31] or [63]. It can be represented by a section of 𝑧1 · · · 𝑧𝑛 over a
disk in C. Note that 𝛽 · 𝐷𝑖 = 0 for all i. Abusing the notation, we still denote by 𝛽 the extension section
of ℛ2 over 𝐵′

−. By studying the intersection numbers with the various divisors, it is direct to show the
following purely topological result (see, for example, [63, Lemma B.7]):

𝛽ℓ |𝒩ℓ = 𝛽 |𝒩ℓ . (14)

Convention 2.3. From now on, we will adopt a slightly different convention compared to our previous
works [61, 62, 63]: We define 𝐸 (𝛽) = 1

2𝜋𝜔 ∩ 𝛽 instead of 𝐸 (𝛽) = 𝜔 ∩ 𝛽 for 𝛽 ∈ 𝜋2 (𝑋, 𝐿).

2.3. Action coordinates

Recall that 𝑞 = (𝑞1, . . . , 𝑞𝑛) =: (𝑞, 𝑞𝑛) are the standard coordinates on B, but we aim to find the different
action coordinates. On the one hand, a natural trivialization of ℛ1 |𝐵′

−
is given by the sections

{𝜎𝑘 |𝐵′
−

: 1 ≤ 𝑘 < 𝑛} ∪ {𝜕𝛽}.

By Theorem 2.2, they give rise to a set of the action coordinates in 𝐵′
− by the flux maps. The first 𝑛 − 1

fluxes are given by 1
2𝜋

∫
𝜎𝑘

𝜆 = 1
2 (|𝑧𝑘 |

2 − |𝑧𝑛 |
2) = ℎ𝑘 (𝑧) = 𝑞𝑘 . The last flux for 𝜕𝛽 = 𝜕𝛽(𝑞) is hard to

make explicit, but it can have a geometric meaning by the Stokes’ formula:

𝜓−(𝑞) := 1
2𝜋

∫
𝜕𝛽

𝜆 = 1
2𝜋

∫
𝛽
𝑑𝜆 = 𝐸 (𝛽),

which is regarded as a map 𝜓− : 𝐵′
− → R. To sum up, we get an integral affine coordinate chart

𝜒− : 𝐵′
− → R𝑛, 𝑞 ↦→ (𝑞1, . . . , 𝑞𝑛−1, 𝜓−(𝑞)) = (𝑞, 𝜓−(𝑞)). (15)

On the other hand, a natural trivialization of ℛ1 |𝐵′
+

is given by

{𝜎𝑘 |𝐵′
+

: 1 ≤ 𝑘 < 𝑛} ∪ {𝜕𝛽𝑛}.

Recall that 𝜎𝑘 |𝐵′
+
= 𝜕𝛽𝑘 − 𝜕𝛽𝑛 for 1 ≤ 𝑘 < 𝑛. The first 𝑛 − 1 fluxes are as above, and moreover,

𝐸 (𝛽𝑘 ) − 𝐸 (𝛽𝑛) = 1
2𝜋

∫
𝛽𝑘−𝛽𝑛

𝑑𝜆 = 1
2𝜋

∫
𝜕𝛽𝑘−𝜕𝛽𝑛

𝜆 = 1
2𝜋

∫
𝜎𝑘

𝜆 = 𝑞𝑘 . (16)

Define 𝜓+(𝑞) = 𝐸 (𝛽𝑛) : 𝐵′
+ → R. By Theorem 2.2, the associated integral affine coordinate chart is

𝜒+ : 𝐵′
+ → R𝑛, 𝑞 ↦→

(
𝑞1, . . . , 𝑞𝑛−1, 𝜓+(𝑞)

)
= (𝑞, 𝜓+(𝑞)). (17)

We can use (14) and (16) to conclude that 𝜓+(𝑞) = 𝜓−(𝑞) on 𝒩𝑛 and 𝜓+(𝑞) + 𝑞ℓ = 𝜓−(𝑞) on 𝒩ℓ for
ℓ ≠ 𝑛, respectively. By (11), this means that for 𝑞 ∈ 𝐵′

+ ∩ 𝐵′
− ≡

⊔
ℓ 𝒩ℓ ,

𝜓−(𝑞) = 𝜓+(𝑞) + min{0, 𝑞1, . . . , 𝑞𝑛−1}. (18)
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The two charts 𝜒± give rise to an integral affine structure on 𝐵0 which is different from the standard
Euclidean one in 𝐵 = R𝑛. In particular, the former integral affine structure cannot be extended to B.
Define χℓ := 𝜒− ◦ 𝜒−1

+ : 𝜒+(𝒩ℓ) → 𝜒−(𝒩ℓ) for each ℓ, and we can check

χℓ (𝑐1, . . . , 𝑐𝑛) = (𝑐1, . . . , 𝑐𝑛−1, 𝑐𝑛 + min{0, 𝑐1, . . . , 𝑐𝑛−1}). (19)

2.4. The embedding j

We aim to embed the integral affine manifold with singularities B into a higher-dimensional Euclidean
space R𝑛+1. This is actually inspired by the work of Kontsevich-Soibelman (cf. [50, p27 & p45]). To
some degree, this helps us to visualize the integral affine structure.

2.4.1. Symplectic area.
Thanks to (18), we have a well-defined continuous function on 𝐵0 given by

𝜓(𝑞) = 𝜓(𝑞, 𝑞𝑛) =

{
𝜓+(𝑞) + min{0, 𝑞1, . . . , 𝑞𝑛−1}, 𝑞 ∈ 𝐵′

+

𝜓−(𝑞), 𝑞 ∈ 𝐵′
−.

(20)

If 𝑞 ∈ 𝐵′
+, then 𝜓(𝑞) = min{𝐸 (𝛽1), . . . , 𝐸 (𝛽𝑛)}; if 𝑞 ∈ 𝐵′

−, then 𝜓(𝑞) = 𝐸 (𝛽). The existence of the
Lagrangian fibration with singularities over the whole 𝐵 = R𝑛 tells that the 𝜓 can extend continuously
from 𝐵0 to B, still denoted by 𝜓 : 𝐵 → R (cf. the yellow disks in Figure 2). The value of 𝜓(𝑞) can be
represented by the symplectic area of a topological disk

𝑢 = 𝑢(𝑞) : (D, 𝜕D) → (C𝑛, 𝐿𝑞)

by 𝜓(𝑞) = 1
2𝜋

∫
𝑢∗𝜔 (cf. Convention 2.3). It is not necessarily a holomorphic disk at this moment, and

the symplectic area is purely topological.

Lemma 2.4. The function 𝑞𝑛 ↦→ 𝜓(𝑞, 𝑞𝑛) is an increasing diffeomorphism from R to (0,∞).

Proof. We first show the monotonicity. We may assume that 𝑞 is a regular value of �̄� (otherwise, since
we only compare the symplectic areas, we may take a sequence of regular values approaching it). We
study the symplectic reduction space Σ := �̄�−1 (𝑞)/𝑇𝑛−1. It has real dimension 2 and is endowed with the
reduction form 𝜔𝑟𝑒𝑑 . If we write 𝑖 : �̄�−1 (𝑞) ↩−→ C𝑛 and 𝑝 : �̄�−1(𝑞) → Σ for the inclusion and quotient
maps, then 𝑖∗𝜔 = 𝑝∗𝜔𝑟𝑒𝑑 . The Lefschetz fibration map 𝑤 = 𝑧1 · · · 𝑧𝑛 is invariant under the 𝑇𝑛−1 action
and naturally induces a diffeomorphism 𝑣 : Σ → C with 𝑤 ◦ 𝑖 = 𝑣 ◦ 𝑝. Note that 𝐿𝑞 is contained in
�̄�−1 (𝑞), and the topological disk u is a section of w. Up to a homotopy in C𝑛 (relative to 𝐿𝑞), we may
require u has its image contained in �̄�−1(𝑞) as well. Recall ℎ𝑛 = log |𝑤 − 1|, so |𝑤 − 1| = 𝑒𝑞𝑛 on 𝐿𝑞 .
Now, we have the following maps of topological space-pairs:

(D, 𝜕D)
𝑢
−→ ( �̄�−1(𝑞), 𝐿𝑞)

𝑝
−→ (Σ, 𝑝(𝐿𝑞))

𝑣
−→
�

(C, 𝜕𝐷 (𝑞𝑛)),

where 𝑝(𝐿𝑞) is identified via v with the boundary circle of the disk 𝐷 (𝑞𝑛) = {𝜁 ∈ C | |𝜁 − 1| ≤ 𝑒𝑞𝑛 }.
Let �̌� is a symplectic form on C determined by 𝑣∗�̌� = 𝜔𝑟𝑒𝑑 . Then,

∫
𝑢∗𝜔 =

∫
𝑢∗𝑝∗𝜔𝑟𝑒𝑑 =

∫
𝑢∗𝑝∗𝑣∗�̌�.

In other words, 2𝜋𝜓(𝑞) =
∫
𝑢∗𝜔 can be viewed as the symplectic area of the disk 𝐷 (𝑞𝑛) in (C, �̌�). No

matter how �̌� looks like, we have the subset inclusion 𝐷 (𝑞1
𝑛) ⊂ 𝐷 (𝑞2

𝑛) if 𝑞1
𝑛 < 𝑞2

𝑛, so the �̌�-area of
𝐷 (𝑞𝑛) is increasing in 𝑞𝑛. Namely, this says 𝜓(𝑞, 𝑞𝑛) is increasing in 𝑞𝑛. Finally, notice that we also
have lim𝑞𝑛→∞ 𝜓(𝑞, 𝑞𝑛) = ∞ and lim𝑞𝑛→−∞ 𝜓(𝑞, 𝑞𝑛) = 0. �

Recall that 𝑞 = (𝑞, 𝑞𝑛). We write

𝜓0(𝑞) = 𝜓(𝑞, 0), (21)
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and we define a continuous embedding

𝑗 : 𝐵 → R𝑛+1 𝑞 ↦→ (𝜃0(𝑞), 𝜃1 (𝑞), 𝑞), (22)

where

𝜃0 (𝑞1, . . . , 𝑞𝑛) := min{−𝜓(𝑞),−𝜓0(𝑞)} + min{0, 𝑞}
𝜃1 (𝑞1, . . . , 𝑞𝑛) := min{ 𝜓(𝑞), 𝜓0 (𝑞)}

(23)

are continuous maps from R𝑛 to R. Using Lemma 2.4 implies that j is injective. The manifold structure
on B induces a one on the image 𝑗 (𝐵). Later, we will see the motivation behind j in Section 3.

2.4.2. Description of the image of j.
We think of 𝐵 ≡ R𝑛 as the union of the 𝑞-slices for all 𝑞 ∈ R𝑛−1. Notice that the map j is ‘slice-
preserving’ in the sense that the following diagram commutes:

𝐵 ≡ R𝑛
� � 𝑗

��

���
��

��
��

��
R𝑛+1

����
��
��
��

R𝑛−1 ,

where the left vertical arrow is (𝑞, 𝑞𝑛) ↦→ 𝑞 and the right one is (𝑢0, 𝑢1, 𝑞) ↦→ 𝑞. Thus, we just need to
understand the restriction of j on a fixed slice 𝑞×R composed with the projectionR𝑛+1 � R2×R𝑛−1

�̄� → R2.
After taking 𝜓(𝑞, ·) : R � (0, +∞) in Lemma 2.4, this amounts to study the induced map

𝑟�̄� : (0, +∞) → R2 (24)

defined by

(0, +∞) � 𝑐 ↦→ (min{0, 𝑞} + min{−𝑐,−𝜓0(𝑞)},min{𝑐, 𝜓0 (𝑞)}).

Here, c represents 𝜓(𝑞, 𝑞𝑛). The image of 𝑟�̄� is a (half) broken line, denoted by 𝑅�̄� , in R2. Define

𝐴 = 𝐴(𝑞) = (𝑎0 (𝑞), 𝑎1 (𝑞)) :=
(
min{0, 𝑞} − 𝜓0 (𝑞) , 𝜓0 (𝑞)

)
(25)

to be the corner point of 𝑅�̄� parameterized by 𝑞 ∈ R𝑛−1. Note that (𝑞, 0) ∈ Δ if and only if 𝑞 ∈ Π. Note
also that 𝑎1 (𝑞) = 𝜓0(𝑞) > 0, so this broken line 𝑅�̄� always contains the corner point 𝐴(𝑞).

Remark 2.5. Intuitively, we may imagine drawing 𝑅�̄� in R2 with a pen as follows: as c decreases from
+∞ to 0+, we draw from (−∞, 𝑎1 (𝑞)) horizontally to the corner point 𝐴(𝑞) (see Figure 4). Then, we
turn the pen and continue drawing vertically downwards until (𝑎0 (𝑞), 0), as 𝑐 → 0+.

The image 𝑗 (𝐵) can be identified with the graph in R2 × R𝑛−1 of a family of broken lines 𝑅�̄� in R2

parameterized by 𝑞 ∈ R𝑛−1 (see Figure 1 in the introduction). The image 𝑗 (Δ) of the singular locus
Δ ≡ Π × {0} consists of the corner points in 𝑅�̄� for those 𝑞 in the tropical hyperplane Π. To sum up,

𝑗 (𝐵) =
⋃

�̄�∈R𝑛−1

𝑅�̄� × {𝑞}, 𝑗 (Δ) = {(𝐴(𝑞), 𝑞) | 𝑞 ∈ Π}. (26)

In particular, when 𝑛 = 2, the 𝑗 (Δ) only consists of a single point (i.e., the blue point S in Figure 1).

Remark 2.6. The ‘singular locus’ 𝑗 (Δ) in 𝑗 (𝐵) is curved just like [50, p27]. Something similar is also
considered in [12, Example 3.9]. Intuitively, we start the cuts at points on a graph of a continuous
function (rather than an affine one) and make the gluing in a one-dimension-higher Euclidean space.
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Figure 4. The corner point 𝐴 = 𝐴(𝑞) in the broken line 𝑅�̄� .

3. B side: Kontsevich-Soibelman’s analytic fibration

In this section, we aim to develop an ‘analytic torus fibration with singularities’ on the algebraic
Λ-variety Y such that its smooth part becomes the affinoid torus fibration in the sense of [50, §4.1].

3.1. Tropicalization map

In this paper, we exclusively consider the Novikov field Λ = C((𝑇R)), a non-archimedean field that
consists of all the infinite series

∑∞
𝑖=0 𝑎𝑖𝑇

𝜆𝑖 , where 𝑎𝑖 ∈ C, T is a formal symbol, and {𝜆𝑖} is a divergent
strictly-increasing sequence in R. It has a non-archimedean valuation

v : Λ → R ∪ {∞}

defined by sending the above series to the smallest 𝜆𝑖 with 𝑎𝑖 ≠ 0 and sending the zero series to ∞. It is
equivalent to the non-archimedean norm defined by |𝑥 | = exp(− v(𝑥)). The multiplicative group is the
subset 𝑈Λ = v−1(0) = {𝑥 ∈ Λ | |𝑥 | = 1} that resembles the subgroup 𝑈 (1) ≡ 𝑆1 in C∗.

Consider the tropicalization map

𝔱𝔯𝔬𝔭 : (Λ∗)𝑛 → R𝑛, (𝑧𝑖) ↦→ (v(𝑧𝑖)). (27)

It is a continuous map with respect to the analytic topology in (Λ∗)𝑛 and the Euclidean topology.
Note that a fiber of 𝔱𝔯𝔬𝔭 is simply a copy of 𝑈𝑛

Λ ≡ 𝔱𝔯𝔬𝔭−1(0) up to a translation 𝑦𝑖 ↦→ 𝑇𝑐𝑖 𝑦𝑖; cf. (1).

3.2. Non-archimedean integrable system

Following Kontsevich and Soibelman [50, §4], we introduce an analog of the notion of an integrable
system in the non-archimedean analytic setting.

Let Y be an analytic space over Λ of dimension n, and let B be an n-dimensional topological manifold
or a CW complex. Let 𝑓 : Y → 𝐵 a proper continuous map with respect to the analytic topology and
Euclidean topology. We call a point 𝑝 ∈ 𝐵 smooth (or f-smooth) if there is a neighborhood U of p in B
such that the fibration 𝑓 −1(𝑈) → 𝑈 is isomorphic to 𝔱𝔯𝔬𝔭−1 (𝑉) → 𝑉 for some open subset 𝑉 ⊂ R𝑛.
Here, 𝑓 −1(𝑈) � 𝔱𝔯𝔬𝔭−1(𝑉) is an isomorphism of Λ-analytic spaces while𝑈 � 𝑉 is a homeomorphism.

𝑓 −1(𝑈) ��

𝑓

��

𝔱𝔯𝔬𝔭−1(𝑉)

𝔱𝔯𝔬𝔭

��

𝑈 �� 𝑉

Let’s call it an affinoid tropical chart, which may be also viewed as a tropical chart in the language of
Chambert-Loir and Ducros [14, (3.1.2)].
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Let 𝐵0 denote the open subset of f -smooth points of B. We call f an affinoid torus fibration if
𝐵0 = 𝐵 (see [53, §3.3]). In general, we only have 𝐵0 � 𝐵, but the restriction of f over 𝐵0, denoted by
𝑓0 : 𝑓 −1(𝐵0) → 𝐵0, is always an affinoid torus fibration simply by definition.

The following construction is greatly influenced by Kontsevich-Soibelman [50, §8]. But, we have to
substantially generalize and modify it for our T-duality purpose in the sense of Definition 1.4. Let

𝜓0 : R𝑛−1 → (0, +∞)

be a continuous function. In practice, we choose 𝜓0 (𝑞) = 𝜓(𝑞, 0) to be the one in (20, 21); in this case,
𝜓0 > 0 as the symplectic area of a holomorphic disk.

Remark 3.1. This section can be considered in the pure non-archimedean world. The constructions still
hold if the Novikov field Λ is replaced by another non-archimedean field. The existence of affinoid torus
fibrations is also a central topic in non-archimedean geometry, and such research is very sparse [50, 53].
Now, we give a large class of new examples inspired by symplectic methods and SYZ picture.

Recall that the Λ-algebraic variety Y is given by the equation 𝑥0𝑥1 = 1 + 𝑦1 + · · · + 𝑦𝑛−1 in Λ2
(𝑥0 ,𝑥1)

×

(Λ∗)𝑛−1
(𝑦1 ,...,𝑦𝑛−1)

. As said, we will not always distinguish Y and its analytification. We define

𝐹 = (𝐹0, 𝐹1;𝐺1, . . . , 𝐺𝑛−1) : 𝑌 → R𝑛+1 (28)

as follows: given 𝑧 = (𝑥0, 𝑥1, 𝑦1, . . . , 𝑦𝑛−1), we set

𝐹0 (𝑧) = min{v(𝑥0),−𝜓0 (v(𝑦1), . . . , v(𝑦𝑛−1)) + min{0, v(𝑦1), . . . , v(𝑦𝑛−1)}}

𝐹1 (𝑧) = min{v(𝑥1), 𝜓0 (v(𝑦1), . . . , v(𝑦𝑛−1))}

𝐺𝑘 (𝑧) = v(𝑦𝑘 ) for 1 ≤ 𝑘 < 𝑛.

This is a tropically continuous map in the sense of Chambert-Loir and Ducros [14, (3.1.6)]. Roughly,
this means F locally takes the form 𝜑(v( 𝑓1), . . . , v( 𝑓𝑛)), where 𝑓𝑖’s are local invertible analytic functions
and 𝜑 : 𝑈 → R𝑚 is a continuous map for the Euclidean topology for some open subset U of R𝑛. By
adding other constraints on the 𝜑, one may define the notion of tropically piecewise-linear / 𝐶𝑘 , etc.

3.2.1. Description of the image of F.
Fix 𝑞 = (𝑞1, . . . , 𝑞𝑛−1), and define

𝑆�̄� := {(𝑢0, 𝑢1) ∈ R
2 | (𝑢0, 𝑢1, 𝑞) ∈ 𝐹 (𝑌 )}.

In other words, the image of Y in R𝑛+1 ≡ R2 × R𝑛−1 under F is given by

𝔅 := 𝐹 (𝑌 ) =
⋃

�̄�∈R𝑛−1

𝑆�̄� × {𝑞}. (29)

It suffices to describe each 𝑆�̄� . Just like §2.1, let Π ⊂ R𝑛−1 be the tropical hyperplane associated to
min{0, 𝑞}, consisting of those points for which min{0, 𝑞} is attained twice. Just as (25), we define

𝑎0 (𝑞) = min{0, 𝑞} − 𝜓0(𝑞) and 𝑎1 (𝑞) = 𝜓0 (𝑞).

Let 𝑧 = (𝑥0, 𝑥1, 𝑦1, . . . , 𝑦𝑛−1) be an arbitrary point in Y with 𝑞𝑘 := v(𝑦𝑘 ) for 1 ≤ 𝑘 < 𝑛. We write
𝑝 = (𝑢0, 𝑢1, 𝑞) = 𝐹 (𝑧) for the image point.

(i) Assume 𝑞 ∉ Π. Then, v(𝑥0) + v(𝑥1) = v(1 + 𝑦1 + · · · + 𝑦𝑛−1) = min{0, 𝑞}. Eliminating v(𝑥0), we
get 𝐹0 (𝑧) = min{0, 𝑞} + min{− v(𝑥1),−𝜓0 (𝑞)} and 𝐹1 (𝑧) = min{v(𝑥1), 𝜓0 (𝑞)}. Hence, the 𝑆�̄� is
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simply the image of the broken line in R2 given by

𝑠�̄� : R→ R2, 𝑐 ↦→
(
min{0, 𝑞} + min{−𝑐,−𝜓0(𝑞)}, min{𝑐, 𝜓0 (𝑞)}

)
(30)

with a corner point at (𝑎0 (𝑞), 𝑎1 (𝑞)). Here, c represents v(𝑥1). We take a small neighborhood �̄�
of 𝑞 in the complement of Π in R𝑛−1. Given the c with 𝑠�̄� (𝑐) = (𝑢0, 𝑢1) and a sufficiently small
𝜖 > 0, we can find a neighborhood U of p in 𝔅 that is homeomorphic to 𝑉 := (𝑐 − 𝜖, 𝑐 + 𝜖) × �̄�
in R𝑛 via the various 𝑠�̄�′ for 𝑞′ ∈ �̄� . Then, under this identification 𝑈 � 𝑉 , 𝐹−1 (𝑈) is isomorphic
to 𝔱𝔯𝔬𝔭−1 (𝑉) by forgetting 𝑥0 (i.e., 𝑧 ↦→ (𝑥1, 𝑦1, . . . , 𝑦𝑛−1)). In this way, the fibration F also agrees
with 𝔱𝔯𝔬𝔭. In conclusion, this means p is an F-smooth point in the sense of §3.2.

(ii) Assume 𝑞 ∈ Π. Recall 𝐹0 (𝑧) = min{v(𝑥0), 𝑎0 (𝑞)} and 𝐹1 (𝑧) = min{v(𝑥1), 𝑎1 (𝑞)}. As v(𝑥0) +
v(𝑥1) ≥ min{v(1), v(𝑦1), . . . , v(𝑦𝑛−1)} = 𝑎0 (𝑞) + 𝑎1 (𝑞), one of the following cases must hold:
(ii-a) If v(𝑥0) < 𝑎0 (𝑞), then v(𝑥1) > 𝑎1 (𝑞). Hence, 𝐹0 (𝑧) = v(𝑥0) ≡ 𝑢0, and 𝐹1 (𝑧) = 𝑎1 (𝑞). Find

a neighborhood U of p in 𝔅 in the form 𝑈 = {(𝑢′0, 𝑎1 (𝑞
′), 𝑞′) | 𝑢′0 ∈ 𝐼, 𝑞′ ∈ �̄�}, where a

neighborhood �̄� of 𝑞 and an open interval I centered at 𝑢0 are both chosen small enough so
that 𝑢′0 < 𝑎0 (𝑞

′) always holds. Let 𝑉 := 𝐼 × �̄� � 𝑈, and 𝐹−1 (𝑈) is isomorphic to 𝔱𝔯𝔬𝔭−1 (𝑉)
by forgetting 𝑥1. Therefore, p is F-smooth.

(ii-b) If v(𝑥1) < 𝑎1 (𝑞), then v(𝑥0) > 𝑎0 (𝑞). Hence, 𝐹0 (𝑧) = 𝑎0 (𝑞), and 𝐹1 (𝑧) = v(𝑥1) ≡ 𝑢1. In a
similar way, we can show p is also F-smooth.

(ii-c) If both v(𝑥0) ≥ 𝑎0 (𝑞) and v(𝑥1) ≥ 𝑎1 (𝑞), then (𝑢0, 𝑢1) = (𝐹0 (𝑧), 𝐹1 (𝑧)) = (𝑎0 (𝑞), 𝑎1 (𝑞)) is
exactly the corner point of the broken line 𝑠�̄� in (30). One can also check p is not F-smooth.

Hence, the 𝑆�̄� is still given by the broken line 𝑠�̄� defined in the same way as (30). Moreover,
by (ii-a) and (ii-b), the set of F-smooth points in 𝑆�̄� � 𝑆�̄� × {𝑞} includes the union of 𝑆+�̄� :=
(−∞, 𝑎0 (𝑞)) × {𝑎1 (𝑞)} and 𝑆−�̄� := {𝑎0 (𝑞)} × (−∞, 𝑎1 (𝑞)).

Combining (i) and (ii) above, we have proved the following structural result:

Theorem 3.2. The map F restricts to an affinoid torus fibration over 𝔅0 ≡ 𝔅 \ Δ̂ , where

Δ̂ :=
⊔
�̄�∈Π

{
(
𝑎0 (𝑞), 𝑎1 (𝑞)

)
} × {𝑞}.

3.3. Definition of f

Notice that if 𝚥 : 𝔘 ↩−→ 𝔅0 is a topological embedding, then 𝚥−1 ◦ 𝐹 is also an affinoid torus fibration
on its domain, by definition (§3.2). For the base 𝐵 ≡ R𝑛 in §2.1 and the 𝑗 : 𝐵 → R𝑛+1 in §2.4, a
comparison between §2.4.2 and §3.2.1 implies the following

Lemma 3.3. 𝑗 (𝐵) agrees with the open subset

�̂� := {(𝑢0, 𝑢1, 𝑞) ∈ 𝔅 | 𝑢1 > 0} ⊂ R𝑛+1. (31)

Moreover, we have 𝑗 (Δ) = Δ̂ . In particular, 𝐵 = 𝑗−1(�̂�) and 𝐵0 = 𝑗−1(�̂� \ Δ̂).

Proof. It suffices to compare the 𝑞-slices for any fixed 𝑞 ∈ R𝑛−1. First, let’s indicate the coincidence
between the 𝑟�̄� in (24) and the 𝑠�̄� in (30). The only difference is the domains are (0, +∞) and R,
respectively, and 𝑅�̄� = {(𝑢0, 𝑢1) ∈ 𝑆�̄� | 𝑢1 > 0}. Finally, using (26) and (29) completes the proof. �

Define 𝒴 := 𝐹−1(�̂�), and it is exactly given by v(𝑥1) > 0 or, equivalently, |𝑥1 | < 1. In particular,
𝑗 (𝐵) = 𝐹 (𝒴). Using the topological embedding j in (22), we define 𝑓 := 𝑗−1 ◦ 𝐹 |𝒴 . By Theorem 3.2,
𝑓0 := 𝑓 |𝐵0 is an affinoid torus fibration. We set 𝒴0 := 𝑓 −1

0 (𝐵0). It is not hard to show 𝒴0 is Zariski
dense in Y (e.g., by dimension reasons; compare also [55]). Notably, our construction of f here is purely
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non-archimedean and does not use any Floer theory so far.

𝒴

𝑓

���
�
�
�

𝐹
��

𝐵
𝑗

�
�� �̂�

(32)

4. Family Floer mirror construction: an easy-to-use review

One may first skip §4 for the mere affine geometry matching in §1.3 (see a reader guide in Remark 5.3).
For the legibility, we plan to substantially simplify the exposition of the mirror construction in [61] in
an easy-to-use way. These costs we pay are briefly explained in Remark 4.2, 4.3, 4.5 for serious readers.

4.1. Statement

Let (𝑋, 𝜔, 𝐽) be a Kähler manifold of real dimension 2𝑛. Suppose there is a Lagrangian torus fibration
𝜋0 : 𝑋0 → 𝐵0 on some open domain 𝑋0 ⊂ 𝑋; we require it is semipositive in the sense that there
is no holomorphic stable disk of negative Maslov index bounding a Lagrangian fiber. By [5, Lemma
3.1], every special Lagrangian (or graded Lagrangian) satisfies this condition. Further, we require that
all Lagrangian fibers are weakly unobstructed (see, for example, [6, Page 7]) in the sense that their
associated minimal model 𝐴∞ algebras have vanishing obstruction ideal (slightly different from the
Maurer-Cartan equations in the literature). Thanks to Solomon [57], a nice sufficient condition is when
each Lagrangian fiber is preserved by an anti-symplectic involution 𝜑 (see also [13]). For example, the
Gross Lagrangian fibration in §2.1 or in (2) admits the involution given by the complex conjugations
𝑧𝑖 ↦→ 𝑧𝑖 . In general, such an involution 𝜑 gives a pairing on 𝜋2 (𝑋, 𝐿𝑞) via 𝛽 ↔ −𝜑∗𝛽, inducing a
pairwise canceling for the obstruction formal power series. Beware that it does not mean the virtual
counts of Maslov-0 disks vanish, and they do still contribute to the homological perturbations for the
minimal model 𝐴∞ algebras and the wall-crossing 𝐴∞ homotopy equivalence.

Now, the family Floer mirror construction in [61] can be stated as follows:

Theorem 4.1. Given (𝑋, 𝜋0) as above, there is a triple (𝑋∨
0 ,𝑊

∨
0 , 𝜋

∨
0 ) consisting of a non-archimedean

analytic space 𝑋∨
0 over Λ, a global analytic function 𝑊∨

0 , and a dual affinoid torus fibration
𝜋∨0 : 𝑋∨

0 → 𝐵0 such that

1. The non-archimedean analytic structure of (𝑋∨
0 ,𝑊

∨
0 , 𝜋

∨
0 ) is unique up to isomorphism.

2. The integral affine structure on 𝐵0 induced by 𝜋∨0 coincides with the one induced by 𝜋0.
3. The set of closed points in 𝑋∨

0 coincides with⋃
𝑞∈𝐵0 𝐻

1(𝐿𝑞;𝑈Λ), (33)

where 𝑈Λ is the unit circle in the Novikov field Λ.

Beware that the mere homotopy invariance of Maurer-Cartan sets is quite insufficient to develop the
analytic topology on 𝑋∨

0 for which we must seek more structure and information. In our specific SYZ
context, the Maurer-Cartan sets are simply 𝐻1 (𝐿𝑞;Λ0), which can at most give certain set-theoretic or
local approximation. This is one key point missing in [59]; see Remark 4.2, 4.3 for more discussions.
Indeed, the new ud-homotopy theory in [61] is necessary to upgrade the conventional Maurer-Cartan
picture to a higher level, matching adic-convergent formal power series instead of just bijection of sets.
The virtual counts of Maslov-0 disks lead to an analytic space structure on the above fiber-wise union
(33) of the space of 𝑈Λ-local systems. Moreover, the counts of Maslov-2 disks give rise to the global
potential function 𝑊∨

0 on 𝑋∨
0 .
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4.2. Local affinoid tropical charts

Let𝑈 ⊂ 𝐵0 be a contractible open subset, and choose a point 𝑞0 near U (𝑞0 ∉ 𝑈 is possible). We require
U is sufficiently small and 𝑞0 is sufficiently close to U so that the reverse isoperimetric inequalities hold
uniformly over a neighborhood of 𝑈 ∪ {𝑞0}. Let

𝜒 : (𝑈, 𝑞0)
�
−→ (𝑉, 𝑐) ⊂ R𝑛

be a (pointed) integral affine coordinate chart such that 𝜒(𝑞0) = 𝑐. Then, we have an identification

𝜏 : (𝜋∨0 )
−1(𝑈)

�
−→ 𝔱𝔯𝔬𝔭−1(𝑉 − 𝑐) (34)

with 𝔱𝔯𝔬𝔭 ◦ 𝜏 = 𝜒 ◦ 𝜋∨0 . Let’s call 𝜏 a (pointed) affinoid tropical chart as in §3.2. Recall that the left
side is the disjoint union (𝜋∨0 )

−1(𝑈) ≡
⋃

𝑞∈𝑈 𝐻1(𝐿𝑞;𝑈Λ) set-theoretically. A closed point y in the dual
fiber 𝐻1 (𝐿𝑞;𝑈Λ) can be viewed as a group homomorphism 𝜋1 (𝐿𝑞) → 𝑈Λ (i.e., a flat 𝑈Λ-connection
modulo gauge equivalence), and we have the natural pairing

𝜋1 (𝐿𝑞) × 𝐻1 (𝐿𝑞;𝑈Λ) → 𝑈Λ, (𝛼, y) ↦→ y𝛼 . (35)

Write 𝜒 = (𝜒1, . . . , 𝜒𝑛), and it gives rise to a continuous family 𝑒𝑖 = 𝑒𝑖 (𝑞) of Z-bases of 𝜋1 (𝐿𝑞) for all
𝑞 ∈ 𝑈, cf. (12). Then, the corresponding affinoid tropical chart 𝜏 has a very concrete description:

𝜏(y) = (𝑇 𝜒1 (𝑞)y𝑒1 (𝑞) , . . . , 𝑇 𝜒𝑛 (𝑞)y𝑒𝑛 (𝑞) ). (36)

Remark 4.2. The above picture is oversimplified. To develop the analytic topology, we must study local
affinoid spaces or equivalently the corresponding affinoid algebras. Specifically, in the above (34), we
may first assume𝑉 = 𝜒(𝑈) is a rational polytope in R𝑛. Given a base point 𝑞0, any 𝑞 ∈ 𝑈 can be viewed
as a vector, denoted by 𝑞− 𝑞0, in 𝐻1(𝐿𝑞0 ;R) � 𝑇𝑞0𝐵. Instead of (34), we should more precisely identify
(𝜋∨0 )

−1(𝑈) with the maximal ideal spectrum (or the multiplicative seminorm spectrum) of the polyhedral
affinoid algebra Λ〈𝑈, 𝑞0〉 [26]. It consists of the Laurent formal power series inside Λ[[𝜋1 (𝐿𝑞0 )]] that
have the form

∑
𝛼∈𝜋1 (𝐿𝑞0 )

𝑐𝛼𝑌
𝛼 with 𝑐𝛼 ∈ Λ and v(𝑐𝛼) + 〈𝛼, 𝑞 − 𝑞0〉 → ∞ as |𝛼 | → ∞ for any

𝑞 ∈ 𝑈. Here, Y is a symbol and 𝑌 𝛼 are the monomials. Now, a closed point y ∈ 𝐻1 (𝐿𝑞;𝑈Λ) for
some 𝑞 ∈ 𝑈 corresponds to the maximal ideal in Λ〈𝑈, 𝑞0〉 generated by 𝑌 𝛼 − 𝑇 〈𝛼,𝑞−𝑞0 〉y𝛼(𝑞) for all
𝛼 ∈ 𝜋1 (𝐿𝑞0 ), where 𝛼(𝑞) ∈ 𝜋1 (𝐿𝑞) denotes the induced class; cf. (12). Finally, we must choose U
to be sufficiently small, subject to Groman-Solomon’s reverse isoperimetric inequality [28, 38] for the
non-archimedean convergence. We also need to generalize it to a uniform version as in [61]; otherwise,
as this inequality depends on the base point, we cannot ensure the convergence for the analytic gluing
(cf. Remark 4.3).

4.3. Gluing

In the construction of Theorem 4.1, we start with various local affinoid tropical charts as above, and
then we can develop transition maps (or call gluing maps) among them in a choice-independent manner.
This process encodes the quantum corrections of the pseudo-holomorphic disks bounded by smooth
𝜋-fibers but possibly meeting the singular 𝜋-fibers (Red disks in Figure 2).

Let’s take two pointed integral affine charts. Replacing the two domains by their intersection, we may
assume the two charts have the same domain 𝑈 ⊂ 𝐵0, but the base points may be different and outside
of U. Namely, as before in Section 4.2, we take two pointed integral affine charts

𝜒𝑎 = (𝜒𝑎1, . . . , 𝜒𝑎𝑛) : (𝑈, 𝑞𝑎) → (𝑉𝑎, 𝑐𝑎)

for 𝑎 = 1, 2. Then, χ := 𝜒2 ◦ 𝜒−1
1 : 𝑉1 → 𝑉2 is an integral affine transformation. Due to (34) above, we

have two affinoid tropical charts on the same domain:
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𝜏𝑎 : (𝜋∨0 )
−1(𝑈) → 𝔱𝔯𝔬𝔭−1 (𝑉𝑎 − 𝑐𝑎)

such that 𝜒𝑎 ◦ 𝜋∨0 = 𝔱𝔯𝔬𝔭 ◦ 𝜏𝑎 for 𝑎 = 1, 2.
The transition map between the two charts 𝜏1 and 𝜏2 is an automorphism map 𝜙 that, concerning the

Fukaya’s trick, captures the wall-crossing information of a Lagrangian isotopy from 𝐿𝑞1 to 𝐿𝑞2 . In brief,
we can view it as a fiber-preserving map:

𝜙 :
⋃
𝑞∈𝑈

𝐻1(𝐿𝑞;𝑈Λ) →
⋃
𝑞∈𝑈

𝐻1(𝐿𝑞;𝑈Λ). (37)

But, be careful. The source and the target of 𝜙 should correspond to the two different affinoid tropical
charts 𝜏1 and 𝜏2, respectively, although they are set-theoretically the same. In particular, the base points
𝑞𝑎 for 𝜏𝑎 matter a lot for the analytic structure. Indeed, by the two affinoid tropical charts 𝜏1 and 𝜏2, the
gluing map 𝜙 can be regarded an analytic map between open subdomains in (Λ∗)𝑛 as follows:

Φ := 𝜏2 ◦ 𝜙 ◦ 𝜏−1
1 : 𝔱𝔯𝔬𝔭−1(𝑉1 − 𝑐1) → 𝔱𝔯𝔬𝔭−1(𝑉2 − 𝑐2). (38)

By definition, if y is a point in 𝐻1(𝐿𝑞;𝑈Λ) for some 𝑞 ∈ 𝑈, then ỹ := 𝜙(y) is a point in the same
fiber 𝐻1 (𝐿𝑞;𝑈Λ) and is subject to the following condition:

ỹ𝛼 = y𝛼 exp〈𝛼,𝔉𝔉𝔉(y)〉, (39)

where we use the pairing in (35) and𝔉𝔉𝔉 is a vector-valued formal power series1 inΛ[[𝜋1 (𝐿𝑞)]]⊗̂𝐻
1(𝐿𝑞).

Roughly, the𝔉𝔉𝔉 is decided by the virtual counts of Maslov-0 disks2 along a Lagrangian isotopy from 𝐿𝑞1

to 𝐿𝑞2 . The existence and uniqueness of such a𝔉𝔉𝔉 is proved in [61]. By definition, the Novikov coefficients
of𝔉𝔉𝔉 have positive valuations, and one can prove the exp〈𝛼,𝔉𝔉𝔉〉 has valuation zero for sufficiently small
U by the reverse isoperimetric inequality again. In particular, 𝜙 preserves the fibers.

Remark 4.3. Again, we must work with the category of affinoid algebras to be completely rigorous.
The gluing map 𝜙 ≡ 𝜓∗ comes from an affinoid algebra homomorphism:

𝜓 : Λ〈𝑈, 𝑞2〉 → Λ〈𝑈, 𝑞1〉, 𝑌 𝛼(𝑞2) ↦→ 𝑇 〈𝛼,𝑞1−𝑞2 〉𝑌 𝛼(𝑞1) exp〈𝛼,𝔉𝔉𝔉(𝑌 )〉 (40)

for

𝔉𝔉𝔉 =
∑

𝜇 (𝛽)=0
𝑇𝐸 (𝛽)𝑌𝜕𝛽𝔣0,𝛽 , (41)

where 𝔣 = {𝔣𝑘,𝛽} (𝑘 ≥ 0, 𝛽 ∈ 𝜋2 (𝑋, 𝐿𝑞)) is, up to Fukaya’s trick, some 𝐴∞ (ud-)homotopy equivalence
between two 𝐴∞ algebras associated to 𝐿𝑞1 and 𝐿𝑞2 . We can finally check that the simplified description
(39) agrees with (40) using the perspective of Remark 4.2.

The idea of finding (40) is to use the coordinate change in [33, (1.6)] to the morphism [35, (3.6.37)],
and it is first discovered by J. Tu in [59]. But, we cannot just naively use the homotopy invariance of
Maurer-Cartan sets to get the analytic topology on 𝑋∨

0 . Indeed, the idea of Maurer-Cartan invariance
is overall correct but needs to be carried out in a more precise level, matching adic-convergent formal
power series rather than just bijections of sets. For this, we need the stronger ud-homotopy in [61]; we
also need a uniform version of reverse isoperimetric inequality (cf. Remark 4.2) for the non-archimedean
convergence issues when we move between adjacent local tropical charts.

Finally, note that the 𝐴∞ morphism 𝔣 is obtained by a parameterized moduli space of holomorphic
disks and is highly choice-sensitive. But surprisingly, the gluing map 𝜙 is actually unchanged for

1Abusing the notations, this really means𝔗∗𝔉𝔉𝔉 for the𝔉𝔉𝔉 ∈ Λ[ [𝜋1 (𝐿𝑞1 ) ] ] ⊗̂𝐻
1 (𝐿𝑞1 ) in Remark 4.3 and for the homomorphism

𝔗 : 𝑌 𝛼(𝑞) ↦→ 𝑇 〈𝛼,𝑞−𝑞1〉𝑌 𝛼(𝑞1 ) . But, we often suppress this to make the notations simpler.
2Unless we use Fukaya’s trick, one can roughly think only J-holomorphic curves for a fixed J are considered.
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any such 𝐴∞ (ud-)homotopy equivalence. This is missed in [59] but is proved in [61] by the ud-
homotopy relations. In our opinion, the choice-independence of the gluing maps is the cornerstone of
everything about the family Floer mirror construction, including the results in this paper as well as those
in [63] [62].

4.4. Void wall-crossing

Let 𝐵1 ⊂ 𝐵0 be a contractible open set. Let 𝐵2 = {𝑥 ∈ 𝐵0 | dist(𝑥, 𝐵1) < 𝜖} be a slight thickening of
𝐵1 in 𝐵0. We assume it is also contractible and 𝜖 > 0 is a sufficiently small number so that the estimate
constant in the reverse isoperimetric inequalities for any Lagrangian fiber over 𝐵1 exceeds 𝜖 uniformly
(cf. Remark 4.2, 4.3, and [61]). Then, we have the following:

Proposition 4.4. Let 𝜒 : 𝐵2 ↩−→ R𝑛 be an integral affine coordinate chart. If for every 𝑞 ∈ 𝐵1, the
Lagrangian fiber 𝐿𝑞 bounds no non-constant Maslov index zero holomorphic disk, then there is an
affinoid tropical chart (𝜋∨0 )

−1(𝐵2) � 𝔱𝔯𝔬𝔭−1(𝜒(𝐵2)).
Proof. First, since 𝐵2 is contractible, we can first single out a fixed pointed integral affine chart
𝜒 : (𝐵2, 𝑞0) → (𝑉, 𝑐) ⊂ R𝑛 for some point 𝑞0 ∈ 𝐵2. Next, we can cover 𝐵2 by pointed integral affine
coordinate charts 𝜒𝑖 : (𝑈𝑖 , 𝑞𝑖) → (𝑉𝑖 , 𝑣𝑖), 𝑖 ∈ I. We may require 𝜒𝑖 = 𝜒 |𝑈𝑖 and the diameters of 𝑈𝑖 are
less than 𝜖 . In particular, we may require all 𝑞𝑖’s are contained in 𝐵1, and there will be no Maslov-0
disks along a Lagrangian isotopy among the fibers between any pair of 𝑞𝑖’s inside 𝐵1. However, just
like (34), we have many affinoid tropical charts 𝜏𝑖 : (𝜋∨0 )

−1(𝑈𝑖) � 𝔱𝔯𝔬𝔭−1(𝑉𝑖 − 𝑣𝑖). The gluing maps
among these tropical charts take the form as in (38). However, due to the non-existence of the Maslov-0
holomorphic disks, they have no twisting terms and take the simplest form 𝑦𝑖 ↦→ 𝑇𝑐𝑖 𝑦𝑖 . In conclusion,
we can get a single affinoid tropical chart by gluing all these 𝜏𝑖’s. �

4.5. Superpotential

Assume 𝛽 ∈ 𝜋2 (𝑋, 𝐿𝑞0 ) has Maslov index two (i.e., 𝜇(𝛽) = 2, and it also induces 𝛽 ≡ 𝛽(𝑞) ∈ 𝜋1 (𝐿𝑞)
for any q in a small contractible neighborhood of 𝑞0 in 𝐵0). Denote by n𝛽 ≡ n𝛽 (𝑞) the corresponding
open Gromov-Witten invariant.3 It depends on the base point q and the almost complex structure J in
use. For our purpose, unless the Fukaya’s trick is applied, we always use the same J in this paper. Then,
due to the wall-crossing phenomenon, one may roughly think the numbers n𝛽 (𝑞) will vary dramatically
in a discontinuous manner when we move q.

Now, we describe the superpotential 𝑊∨ := 𝑊∨
0 in Theorem 4.1. Fix a pointed integral affine chart

𝜒 : (𝑈, 𝑞0) → (𝑉, 𝑐), and pick an affinoid tropical chart 𝜏 that covers 𝜒 as in (34). Recall that the
domain U must be sufficiently small. Then, the local expression of 𝑊∨ with respect to 𝜏 is given by

𝑊∨|𝜏 :
⋃
𝑞∈𝑈

𝐻1(𝐿𝑞;𝑈Λ) → Λ, y ↦→
∑

𝛽∈𝜋2 (𝑋,𝐿𝑞 ) ,𝜇 (𝛽)=2
𝑇𝐸 (𝛽)y𝜕𝛽n𝛽 (𝑞0) , (42)

where y ∈ 𝐻1(𝐿𝑞;𝑈Λ) for any 𝑞 ∈ 𝑈 and we use n𝛽 (𝑞0) for the fixed 𝑞0. Alternatively, by (34), one may
think of 𝑊∨|𝜏 as

W𝜏 ≡ 𝑊∨ ◦ 𝜏−1 : 𝔱𝔯𝔬𝔭−1 (𝑉 − 𝑐) → (𝜋∨0 )
−1(𝑈) → Λ.

The delicate story of the wall-crossing uncertainty can be well narrated by the gluing maps (39)
among the atlas of various affinoid tropical charts (34) in view of Theorem 4.1. Specifically, we take two
pointed integral affine charts 𝜒𝑎 : (𝑈, 𝑞𝑎) → (𝑉𝑎, 𝑐𝑎) and two corresponding affinoid tropical charts
𝜏𝑎 : (𝜋∨0 )

−1(𝑈) → 𝔱𝔯𝔬𝔭−1 (𝑉𝑎 − 𝑐𝑎) for 𝑎 = 1, 2 as before in §4.3. Let 𝜙 be the gluing map from the

3Briefly, it is the ‘count’ of Maslov-2 holomorphic disks. Specifically, it comes from the 𝐴∞ algebra associated to 𝐿𝑞 , and in
general, we need to go to its minimal model 𝐴∞ algebra to define it. See [61].
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chart 𝜏1 to the 𝜏2 as in (37, 39). Then, we must have 𝑊∨|𝜏2 (𝜙(y)) = 𝑊∨|𝜏1 (y). Equivalently, if we set
Φ = 𝜏2 ◦ 𝜙 ◦ 𝜏−1

1 like (38), this means

W𝜏2 (Φ(𝑦)) = W𝜏1 (𝑦). (43)

Remark 4.5. To make it precise, we need to view 𝑊∨|𝜏𝑎 as elements in the affinoid algebra Λ〈𝑈, 𝑞𝑎〉
as in Remark 4.2 again. Denote them by 𝑊𝑎 (𝑎 = 1, 2), respectively. If 𝜓 is the affinoid algebra
homomorphism such that 𝜙 ≡ 𝜓∗ as in Remark 4.3, then equation (43) means 𝜓(𝑊2) = 𝑊1.

4.6. Maslov-0 determinism

In our Floer-theoretic mirror construction, the counts of the Maslov-0 disks are overwhelmingly more
important than that of Maslov-2 disks. Although the mirror superpotential 𝑊∨ is given by the counts
of Maslov-2 disks locally in each chart, the local-to-global gluing among the various local expressions
(42) is given by the counts of Maslov-0 disks.

In practice, there is a very useful observation as follows: The Lagrangian fibration 𝜋0 can be placed
in different ambient symplectic manifolds, say 𝑋1 and 𝑋2. It often happens that the Maslov-0 disks are
the same in both situations, and then the mirrors associated to (𝑋𝑖 , 𝜋0), 𝑖 = 1, 2, in Theorem 4.1 can be
denoted by (𝑋∨

0 ,𝑊
∨
𝑖 , 𝜋

∨
0 ), sharing the same mirror analytic space 𝑋∨

0 and the same dual affinoid torus
fibration 𝜋∨0 : 𝑋∨

0 → 𝐵0 but having different superpotentials 𝑊∨
𝑖 .

The ‘Maslov-0 open Gromov-Witten invariant’ should be all the counting as a whole rather than any
single of them. All the virtual counts of the Maslov-0 disks along an isotopy, only taken together, can
form an invariant. Roughly, it forms the ud-homotopy class of a morphism in the category 𝒰𝒟 in [61].

5. T-duality matching and dual singular fibers

By Theorem 4.1, we denote the mirror triple associated to 𝜋0 (§2.1), placed in X rather than 𝑋0, by
(𝑋∨

0 ,𝑊
∨
0 , 𝜋

∨
0 ). Alternatively, by Remark 5.3, the reader may first skip all of §4, §5.1, §5.2, §5.3 to get

some preliminary ideas.

5.1. Affinoid tropical charts for the Clifford and Chekanov chambers

In §2.3, we have introduced the two integral affine charts 𝜒± on 𝐵′
±. By Proposition 4.4, we have the

following two affinoid tropical charts on (𝜋)−1(𝐵′
±): (cf. (36))

𝜏+ :
⋃
𝑞∈𝐵′

+

𝐻1 (𝐿𝑞;𝑈Λ) → (Λ∗)𝑛, y ↦→
(
𝑇𝑞1 y𝜎1 , . . . , 𝑇𝑞𝑛−1 y𝜎𝑛−1 , 𝑇𝜓+ (𝑞)y𝜕𝛽𝑛

)
(44)

𝜏− :
⋃
𝑞∈𝐵′

−

𝐻1(𝐿𝑞;𝑈Λ) → (Λ∗)𝑛, y ↦→
(
𝑇𝑞1 y𝜎1 , . . . , 𝑇𝑞𝑛−1 y𝜎𝑛−1 , 𝑇𝜓− (𝑞)y𝜕𝛽

)
. (45)

The images of 𝜏± in (Λ∗)𝑛 are just given by the explicit integral affine charts 𝜒± (15, 17) as follows:

𝑇± := 𝔱𝔯𝔬𝔭−1(𝜒±(𝐵
′
±)), (46)

which are the analytic open subdomains in (Λ∗)𝑛. Clearly, we have 𝔱𝔯𝔬𝔭 ◦ 𝜏± = 𝜒± ◦ 𝜋∨0 ; that is,

(𝜋∨0 )
−1(𝐵′

±)
𝜏± ��

𝜋∨
0

��

𝑇±

𝔱𝔯𝔬𝔭

��

𝐵′
±

𝜒±
�� 𝜒±(𝐵

′
±).
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5.2. Gluing with a symmetry

By Theorem 4.1, the above two local expressions over 𝐵′
± must be glued by some nontrivial automor-

phisms over 𝐵′
+ ∩ 𝐵′

− ≡
⊔

1≤ℓ≤𝑛𝒩ℓ . We denote them by

𝜙ℓ :
⋃
𝑞∈𝒩ℓ

𝐻1(𝐿𝑞;𝑈Λ) →
⋃
𝑞∈𝒩ℓ

𝐻1(𝐿𝑞;𝑈Λ). (47)

Be cautious that, despite of the same underlying sets, the two sides should refer to the two affinoid
tropical charts 𝜏+ and 𝜏− separately; in fact, we adopt a simplified expression as in (37). Given a point
y ∈ 𝐻1 (𝐿𝑞;𝑈Λ), the image point ỹ := 𝜙ℓ (y) is contained in 𝐻1(𝐿𝑞;𝑈Λ) and satisfies (cf. (39))

ỹ𝛼 = y𝛼 exp〈𝛼,𝔉𝔉𝔉ℓ (y)〉 (48)

for a formal power series 𝔉𝔉𝔉ℓ (𝑌 ). Basically, the mirror analytic space 𝑋∨
0 is completely determined by

these gluing maps 𝜙ℓ . There is no general algorithm for the gluing maps, and only the existence and
uniqueness are proved in [61]. But, in our case, we first have a natural fiber-preserving 𝑇𝑛−1-action (10),
and the 𝑇𝑛−1-symmetry makes the gluing maps much simpler: (cf. [63] or [1, Theorem 8.4])

Lemma 5.1. 〈𝜎𝑘 ,𝔉𝔉𝔉ℓ〉 = 0, for 1 ≤ 𝑘 ≤ 𝑛 − 1 and 1 ≤ ℓ ≤ 𝑛. In particular, if we set ỹ = 𝜙ℓ (y), then

ỹ𝜎𝑘 = y𝜎𝑘 .

Proof. Consider the Lefschetz fibration 𝑤 = 𝑧1 · · · 𝑧𝑛. Let u be a holomorphic disk bounded by a 𝜋-fiber
𝐿 = 𝐿𝑞 for some q in the wall 𝐻ℓ , and 𝛾 := [𝑢] has Maslov index 0. Then, one can show 𝑤 ◦ 𝑢 ≡ 0 (cf.
[5, Lemma 5.4]). Thus, the boundary 𝜕𝑢 is contained in the sub-torus 𝑇 ′ := 𝐿 ∩

⋃
𝑖 𝐷𝑖 � 𝑇𝑛−1, and the

evaluation map ev : M1,𝛾 (𝐿) → 𝐿 is supported in this sub-torus 𝑇 ′. Recall that a monomial in𝔉𝔉𝔉ℓ is a
class in 𝐻1(𝐿) � 𝐻𝑛−1(𝐿) contributed by the counts of Maslov-zero disks. Namely, it is given by the
pushforward of the evaluation map of the moduli spaces and is therefore dual to 𝑇 ′ � 𝑇𝑛−1 in 𝐿 � 𝑇𝑛.
Since 𝜋1 (𝑇

′) = 𝐻1 (𝑇
′) � Z𝑛−1 is generated by 𝜎1, . . . , 𝜎𝑛−1, this means the 𝔉𝔉𝔉ℓ vanishes along these

directions. Finally, we use (48). �

We can express the 𝜙ℓ’s explicitly with respect to the two affinoid tropical charts 𝜏±. Define

Φℓ := 𝜏− ◦ 𝜙ℓ ◦ 𝜏
−1
+ : 𝑇ℓ+ → 𝑇ℓ− , (49)

where 𝑇ℓ± := 𝔱𝔯𝔬𝔭−1(𝜒±(𝒩ℓ)) are analytic open subdomains in 𝑇± ⊂ (Λ∗)𝑛. Specifically, there exist
formal power series 𝑓ℓ (𝑦1, . . . , 𝑦𝑛−1) for 1 ≤ ℓ ≤ 𝑛 such that

Φℓ (𝑦1, . . . , 𝑦𝑛) =

{
(𝑦1, . . . , 𝑦𝑛−1, 𝑦𝑘 𝑦𝑛 exp( 𝑓𝑘 (𝑦1, . . . , 𝑦𝑛−1)) if (𝑦1, . . . , 𝑦𝑛) ∈ 𝑇 𝑘

+ , 1 ≤ 𝑘 < 𝑛

(𝑦1, . . . , 𝑦𝑛−1, 𝑦𝑛 exp( 𝑓𝑛 (𝑦1, . . . , 𝑦𝑛−1)) if (𝑦1, . . . , 𝑦𝑛) ∈ 𝑇𝑛
+ .

(50)

Indeed, the first 𝑛 − 1 coordinates are preserved by Lemma 5.1. Since the boundary of any Maslov-0
disk is spanned by 𝜎𝑘 (1 ≤ 𝑘 < 𝑛), the definition formula (41) implies that each 𝑓ℓ does not involve 𝑦𝑛.
We also recall that 𝜕𝛽 = 𝜕𝛽𝑛 over 𝒩𝑛 but 𝜕𝛽 = 𝜎𝑘 + 𝜕𝛽𝑛 over 𝒩𝑛.

5.3. Mirror analytic space

As there are no Maslov-2 holomorphic disks in 𝑋 = C𝑛 \𝒟 bounded by the 𝜋-fibers, the mirror Landau-
Ginzburg superpotential vanishes 𝑊∨ ≡ 0 identically. But, as indicated in §4.6, we can choose some
larger ambient symplectic manifold 𝑋 without adding new Maslov-0 disks. No matter what 𝑋 is, the
structure of the mirror affinoid torus fibration (𝑋∨

0 , 𝜋
∨
0 ) will stay the same. In contrast, there can be new

Maslov-2 disks that give rise to a new mirror superpotential 𝑊∨ on 𝑋∨
0 .
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Here, we are mainly interested in the case 𝑋 = C𝑛. But, we will study many others like 𝑋 = CP𝑛 in
§A. We place the Gross Lagrangian fibration 𝜋0 : 𝑋0 → 𝐵0 (§2.1) in C𝑛. By §4.6, the mirror space and
the affinoid torus fibration associated to (𝑋, 𝜋0) and (C𝑛, 𝜋0) is actually the same, denoted by (𝑋∨

0 , 𝜋
∨
0 ).

But, the latter is equipped with an extra superpotential 𝑊∨ := 𝑊∨
C𝑛

.
For 𝑞 ∈ 𝐵+, the fiber 𝐿𝑞 is Hamiltonian isotopic to a product torus in (C∗)𝑛. It follows from [21] that

the open GW invariants (§4.5) are n𝛽 𝑗 = 1 for the disks 𝛽 𝑗 ’s (§2.2). For 𝑞 ∈ 𝐵−, we use the maximal
principle to show the only nontrivial open GW invariant is n𝛽 = 1 (see [5] [16, Lemma 4.31]). Now, by
(42), the restrictions 𝑊∨

± of 𝑊∨ on the two chambers (𝜋∨0 )
−1(𝐵±) are as follows:

𝑊∨
+ (y) =

∑𝑛
𝑗=1 𝑇

𝐸 (𝛽 𝑗 )y𝜕𝛽 𝑗 n𝛽 𝑗 = 𝑇𝜓+ (𝑞)y𝜕𝛽𝑛
(
1 +

∑
𝑘≠𝑛 𝑇

𝑞𝑘 y𝜎𝑘
)

𝑊∨
− (y) = 𝑇𝐸 (𝛽)y𝜕𝛽n𝛽 = 𝑇𝜓− (𝑞)y𝜕𝛽 .

(51)

Moreover, in view of Proposition 4.4, both of them can be extended slightly to the thickened domains
(𝜋∨0 )

−1(𝐵′
±). Then, for the affinoid tropical charts 𝜏± (44), we write W± := 𝑊∨

± ◦ 𝜏−1
± and obtain

W+(𝑦) = 𝑦𝑛 (1 + 𝑦1 + · · · + 𝑦𝑛−1) if 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ 𝑇+

W−(𝑦) = 𝑦𝑛 if 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ 𝑇−.
(52)

According to the wall-crossing property (43), we must have W−(Φℓ (𝑦)) = W+(𝑦) for any 𝑦 ∈ 𝑇ℓ+ .
Along with (50), this completely determines all Φℓ for any 1 ≤ ℓ ≤ 𝑛 as follows:

Φℓ : 𝑇ℓ+ → 𝑇ℓ− (𝑦1, . . . , 𝑦𝑛) ↦→
(
𝑦1, . . . , 𝑦𝑛−1, 𝑦𝑛 (1 + 𝑦1 + · · · + 𝑦𝑛−1)

)
. (53)

Remark that although the Φℓ’s have the same formula, the domains and targets differ and depend on ℓ.
Note that Φℓ ◦ 𝜏+ = 𝜏− ◦ 𝜙ℓ and 𝔱𝔯𝔬𝔭 ◦ Φℓ = χℓ ◦ 𝔱𝔯𝔬𝔭.

In conclusion, the mirror analytic space 𝑋∨
0 is isomorphic to the quotient of the disjoint union 𝑇+ �𝑇−

modulo the relation ∼: we say 𝑦 ∼ 𝑦′ if there exists some 1 ≤ ℓ ≤ 𝑛 such that 𝑦 ∈ 𝑇ℓ+ , 𝑦′ ∈ 𝑇ℓ− , and
Φℓ (𝑦) = 𝑦′. That is to say, we have an identification

𝑋∨
0 � 𝑇+ � 𝑇−/∼, (54)

which is the adjunction space obtained by gluing 𝑇+ and 𝑇− via all these Φℓ’s. By (19), one can check
𝔱𝔯𝔬𝔭 ◦ Φℓ = 𝜒− ◦ 𝜒−1

+ ◦ 𝔱𝔯𝔬𝔭 on the domains, so the dual affinoid torus fibration 𝜋∨0 : 𝑋∨
0 → 𝐵0 can be

identified with the gluing of the two maps 𝜒−1
± ◦ 𝔱𝔯𝔬𝔭 via the Φℓ’s. Under this identification, if we write

𝜋∨0 = (𝜋∨1 , . . . , 𝜋
∨
𝑛 ), then for 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ 𝑇±, one can check

v(𝑦𝑘 ) = 𝜋∨𝑘 (𝑦) (1 ≤ 𝑘 < 𝑛) and v(𝑦𝑛) = 𝜓±(𝜋
∨
0 (𝑦)). (55)

𝐵0

𝑇+ ��

𝜒−1
+ ◦𝔱𝔯𝔬𝔭 ��

𝑋∨
0 ≡ 𝑇+ � 𝑇−/∼

𝜋∨
0

		������

⊔
ℓ 𝑇

ℓ
+

�ℓΦℓ ��
��

Incl





𝑇−




𝜒−1
− ◦𝔱𝔯𝔬𝔭

��
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5.4. The analytic embedding g

From now on, we will always identify the 𝑋∨
0 with 𝑇+ �𝑇−/∼ and identify the 𝜋∨0 with the one obtained

as above (54, 55). See the above diagram. Next, we define

𝑔+ : 𝑇+ → Λ2 × (Λ∗)𝑛−1 (56)

(𝑦1, . . . , 𝑦𝑛−1, 𝑦𝑛) ↦→

(
1
𝑦𝑛

, 𝑦𝑛 ℎ , 𝑦1, . . . , 𝑦𝑛−1

)
and define

𝑔− : 𝑇− → Λ2 × (Λ∗)𝑛−1 (57)

(𝑦1, . . . , 𝑦𝑛−1, 𝑦𝑛) ↦→

(
ℎ

𝑦𝑛
, 𝑦𝑛 , 𝑦1, . . . , 𝑦𝑛−1

)
.

Recall that 𝑇± � (Λ∗)𝑛 correspond to the Clifford and Chekanov tori, respectively. For all 1 ≤ ℓ ≤ 𝑛,
it is direct to check that 𝑔+ = 𝑔− ◦Φℓ on their various domains. Hence, by (54), we can glue 𝑔± to obtain
an embedding analytic map

𝑔 : 𝑋∨
0 → Λ2 × (Λ∗)𝑛−1 (58)

such that the following diagrams commute:

Λ2 × (Λ∗)𝑛−1

𝑇+ ��

𝑔+
��

𝑋∨
0 ≡ 𝑇+ � 𝑇−/∼

𝑔
�������

⊔
ℓ 𝑇

ℓ
+

�ℓΦℓ ��
��

Incl





𝑇−




𝑔−

��

The image 𝑔(𝑋∨
0 ) is clearly contained in the algebraic variety𝑌 defined by 𝑥0𝑥1 = 1+ 𝑦1 + · · · + 𝑦𝑛−1.

Remark 5.2. The above formula of g is given by Gross-Hacking-Keel in [41, Lemma 3.1]. However, the
difference is that 𝑇± are merely analytic subdomains of the torus (Λ∗)𝑛 in the finer Berkovich topology,
as opposed to the Zariski topology, making them inaccessible using just algebraic geometry. Finally,
this inspires us to modify Kontsevich-Soibelman’s model [50, Page 44-45] for the sake of integral affine
structure matching (cf. §1.2). In turn, unlike [41], we follow the non-archimedean perspective in [50]
more closely.

Remark 5.3. The only place we use the family Floer theory [61] is the identification 𝑋∨
0 � 𝑇+ � 𝑇−/∼

in (54) together with the corresponding characterization for 𝜋∨0 . The reader’s guide is as follows: all
of the analytic subdomains 𝑇± in (46), the gluing relation ∼ from Φℓ in (49, 53), the dual fibration
f in (32), and the analytic embedding g in (58) can be defined directly, regardless of the whole §4.
The key Theorem 5.4 below is also a purely non-archimedean statement. All these non-Floer-theoretic
ingredients are already sufficient to prove a weaker version of Theorem 1.5 dropping the T-duality
condition (b) in Definition 1.4. Moreover, we stress again that it is still very difficult to achieve the
various coincidences in Definition 1.4 (a). Compare Remark 1.9 and the discussions around (3).
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5.5. Fibration preserving

Recall 𝐹 = (𝐹0, 𝐹1, 𝐺1, . . . , 𝐺𝑛−1) : 𝑌 → R𝑛+1 is defined in §3.2 as follows: for 𝑧 =
(𝑥0, 𝑥1, 𝑦1, . . . , 𝑦𝑛−1),

𝐹0 (𝑧) = min{v(𝑥0),−𝜓0 (v(𝑦1), . . . , v(𝑦𝑛−1)) + min{0, v(𝑦1), . . . , v(𝑦𝑛−1)}}

𝐹1 (𝑧) = min{v(𝑥1), 𝜓0 (v(𝑦1), . . . , v(𝑦𝑛−1))}

𝐺𝑘 (𝑧) = v(𝑦𝑘 ) for 1 ≤ 𝑘 < 𝑛.

The next is the key result that puts all the previous constructions together and will prove Theorem 1.5.

Theorem 5.4. 𝐹 ◦ 𝑔 = 𝑗 ◦ 𝜋∨0 . Namely, we have the following commutative diagram

𝑋∨
0

𝑔
��

𝜋∨
0

��

𝑌

𝐹
��

𝐵0
𝑗

�� R𝑛+1.

Proof. Fix y in 𝑋∨
0 ≡ 𝑇+ ∪ 𝑇−/∼ (54), and set 𝑞 = 𝜋∨0 (y). Then, 𝑗 ◦ 𝜋∨0 (y) = 𝑗 (𝑞) = (𝜃0 (𝑞), 𝜃1 (𝑞), 𝑞),

where (recalling (22))

𝜃0(𝑞) := min{−𝜓(𝑞),−𝜓0 (𝑞)} + min{0, 𝑞}
𝜃1(𝑞) := min{ 𝜓(𝑞), 𝜓0 (𝑞)},

where 𝜓(𝑞) and 𝜓0 (𝑞) ≡ 𝜓(𝑞, 0) are given in (20,21). Recall that Π is the tropical hypersurface
associated to min{0, 𝑞} (see §2.1). We aim to check (𝜃0 (𝑞), 𝜃1 (𝑞), 𝑞) always agrees with 𝐹 ◦ 𝑔(y):

1. If 𝑞 ∈ 𝐵′
+, then y is identified with a point 𝑦 = (𝑦1, . . . , 𝑦𝑛) in 𝑇+. By (55), v(𝑦𝑘 ) = 𝑞𝑘 for 1 ≤ 𝑘 < 𝑛

and v(𝑦𝑛) = 𝜓+(𝑞). Therefore, as desired, we get 𝐺𝑘 (𝑔+(𝑦)) = 𝑞𝑘 , and by (20),

𝐹0 (𝑔+(𝑦)) = min{−𝜓+(𝑞),−𝜓0 (𝑞) + min{0, 𝑞}} = min{−𝜓(𝑞),−𝜓0(𝑞)} + min{0, 𝑞} = 𝜃0 (𝑞).

However,

𝐹1 (𝑔+(𝑦)) = min{𝜓+(𝑞) + v(1 + 𝑦1 + · · · + 𝑦𝑛−1), 𝜓0(𝑞)},

and we need to further deal with the ambiguity of v(1 + 𝑦1 + · · · + 𝑦𝑛−1) as follows:
(1a) If 𝑞 ∈ Π, then since 𝑞 ∈ 𝐵′

+, we must have 𝑞𝑛 > 0. Using the non-archimedean triangle
inequality and Lemma 2.4 infers that 𝜓+(𝑞) + v(1 + 𝑦1 + · · · + 𝑦𝑛−1) ≥ 𝜓+(𝑞) + min{0, 𝑞} ≡

𝜓(𝑞) > 𝜓0 (𝑞). Hence,

𝐹1 (𝑔+(𝑦)) = 𝜓0 (𝑞) = min{𝜓(𝑞), 𝜓0 (𝑞)} = 𝜃1 (𝑞).

(1b) If 𝑞 ∉ Π, then the minimum of the values v(𝑦𝑘 ) = 𝑞𝑘 for 1 ≤ 𝑘 < 𝑛 cannot be attained twice.
Thus,

v(1 + 𝑦1 + · · · + 𝑦𝑛−1) = min{v(1), v(𝑦1), . . . , v(𝑦𝑛−1)} = min{0, 𝑞}

and 𝐹1 (𝑔+(𝑦)) = 𝜃1(𝑞).
2. If 𝑞 ∈ 𝐵′

−, then y is identified with a point 𝑦 = (𝑦1, . . . , 𝑦𝑛) in 𝑇−. By (55), v(𝑦𝑘 ) = 𝑞𝑘 for 1 ≤ 𝑘 < 𝑛
and v(𝑦𝑛) = 𝜓−(𝑞). Hence, as desired, we also get 𝐺𝑘 (𝑔−(𝑦)) = 𝑞𝑘 and

𝐹1 (𝑔−(𝑦)) = min{𝜓−(𝑞), 𝜓0(𝑞)} ≡ min{𝜓(𝑞), 𝜓0 (𝑞)} = 𝜃1 (𝑞).
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However, in turn,

𝐹0 (𝑔−(𝑦)) = min{−𝜓−(𝑞) + v(1 + 𝑦1 + · · · + 𝑦𝑛−1),−𝜓0 (𝑞) + min{0, 𝑞}}

has some ambiguity, and we similarly argue by cases:
(2a) If 𝑞 ∈ Π, then 𝑞𝑛 < 0. By the non-archimedean triangle inequality and Lemma 2.4, we similarly

obtain −𝜓−(𝑞) + v(1 + 𝑦1 · · · + 𝑦𝑛−1) ≥ −𝜓0 (𝑞) + min{0, 𝑞}. Hence,

𝐹0 (𝑔−(𝑦)) = −𝜓0 (𝑞) + min{0, 𝑞} = min{−𝜓(𝑞),−𝜓0 (𝑞)} + min{0, 𝑞} = 𝜃0(𝑞).

(2b) If 𝑞 ∉ Π, then we similarly get v(1 + 𝑦1 + · · · + 𝑦𝑛−1) = min{0, 𝑞} and 𝐹0 (𝑔−(𝑦)) = 𝜃0(𝑞).

(In the sense of Remark 5.3, all the proof here does not rely on any family Floer theory in §4.) �

Proof of Theorem 1.5. Recall the 𝑓 : 𝒴 → 𝐵 constructed in §3.3 satisfies that 𝐹 = 𝑗 ◦ 𝑓 . The key
Theorem 5.4 above implies that the image 𝑔(𝑋∨

0 ) is exactly given by the total space of the affinoid
torus fibration F restricted over 𝑗 (𝐵0). In other words, this image coincides with the𝒴0 defined in §3.3.
Moreover, it also implies that 𝜋∨0 = 𝑓0 ◦ 𝑔, where 𝑓0 := 𝑓 |𝐵0 is the restriction of f over 𝐵0. �

5.6. Dual singular fiber is not a Maurer-Cartan set

It has been long expected that, at least set-theoretically, the mirror dual fiber of a Lagrangian fiber L
should be the set MC (𝐿) of Maurer-Cartan solutions (also known as the bounding cochains) for an
𝐴∞ algebra associated to L. This is mostly correct for the smooth fibers, although we need to be more
careful for the analytic topology as indicated in Remark 4.2, 4.3. This is also a basic point of the original
family Floer homology program. Thus, it is natural for us to believe the ‘dual singular fibers’ are also
the corresponding Maurer-Cartan sets.

Nevertheless, our result responds negatively to this expected Maurer-Cartan picture.
We have obtained the non-archimedean analytic fibration f over B, extending the affinoid torus

fibration 𝑓0 � 𝜋∨0 tropically continuously. Besides, as explained in §1.4.2, its construction is compatible
with the above Maurer-Cartan picture over 𝐵0 [61] and is meanwhile backed up by lots of evidence
[1, 2, 5, 6, 37, 41, 49, 50]. Therefore, the f -fibers over the singular locus Δ = 𝐵 \ 𝐵0 are basically the
only reasonable candidates for the ‘dual singular fibers’. But unfortunately, they are indeed larger than
the Maurer-Cartan sets as shown in (59) below.

Let’s elaborate this as follows. For clarity, let’s assume 𝑛 = 2; then, 𝐵 = R2 and the singular
locus Δ consists of a single point 0 = (0, 0). Let’s also forget about the analytic topology again and
just look at the sets of closed points. Notice that 𝑓 −1(0) = 𝐹−1 ( 𝑗 (0)) = 𝐹−1(0,−𝜓0, 𝜓0), where
𝜓0 := 𝜓0 (0) > 0 is represented by the symplectic area of a holomorphic disk bounding the immersed
Lagrangian 𝐿0 = 𝜋−1(0) (Figure 2, yellow). By definition, this consists of points (𝑥0, 𝑥1, 𝑦) in the variety
𝑌 = {𝑥0𝑥1 = 1 + 𝑦} in Λ2 ×Λ∗ so that v(𝑦) = 0, min{v(𝑥0),−𝜓0} = −𝜓0 and min{v(𝑥1), 𝜓0} = 𝜓0. The
last two conditions mean v(𝑥0) ≥ −𝜓0 and v(𝑥1) ≥ 𝜓0. We can take the coordinate change 𝑧0 := 𝑇𝜓0𝑥0,
𝑧1 := 𝑇−𝜓0𝑥1 so that 𝑧0𝑧1 = 𝑥0𝑥1. Then, the dual singular fiber becomes

S := 𝑓 −1(0) = {(𝑧0, 𝑧1, 𝑦) ∈ 𝑌 | v(𝑧0) ≥ 0, v(𝑧1) ≥ 0, v(𝑦) = 0}.

Recall that Λ0 = {𝑧 ∈ Λ | v(𝑧) ≥ 0} denotes the Novikov ring and Λ+ = {𝑧 ∈ Λ | v(𝑧) > 0}
is its maximal ideal. Recall also that 𝑈Λ = {𝑧 ∈ Λ | v(𝑧) = 0}, so the condition v(𝑦) = 0 means
𝑦 ∈ 𝑈Λ ≡ C∗ ⊕ Λ+. Next, we decompose S by considering the two cases of the variable 𝑦 ∈ 𝑈Λ:

◦ If 𝑦 ∈ −1 + Λ+, then v(𝑧0) + v(𝑧1) = v(1 + 𝑦) > 0, and (𝑧0, 𝑧1) ∈ Λ0 × Λ+ ∪ Λ+ × Λ0. In turn, such a
pair (𝑧0, 𝑧1) determines 𝑦 = −1 + 𝑧0𝑧1 in −1 + Λ+.

◦ If 𝑦 ∉ −1 + Λ+, then 0 ≤ v(𝑧0) + v(𝑧1) = v(1 + 𝑦) = 0, so 𝑧0, 𝑧1 ∈ 𝑈Λ. In turn, for all these pairs
(𝑧0, 𝑧1), the number 𝑦 = −1+ 𝑧0𝑧1 can run over all the values inC∗ \ {−1}⊕Λ+. If we write 𝑧0, 𝑧1 ∈ C∗

for the reductions of 𝑧0, 𝑧1 with respect to 𝑈Λ � C∗, then this says 𝑧0𝑧1 ≠ 1.
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Therefore,

S = S1 � S2,

where S1 and S2 correspond to the above two bullets and are thus given by

S1 � Λ0 × Λ+ ∪ Λ+ × Λ0

S2 � {(𝑧0, 𝑧1) ∈ 𝑈Λ ×𝑈Λ | 𝑧0𝑧1 ≠ 1} � 𝑈Λ ×
(
C
∗ \ {−1} ⊕ Λ+

)
.

Going back to the A side, we can define the Maurer-Cartan set MC (𝐿0) by the Akaho-Joyce theory
[3]. Moreover, Hong, Kim and Lau [45, §3.2] prove that we only have

MC (𝐿0) = S1 � 𝑓 −1(0) (59)

(compare also many related papers [18, 19, 20]). In conclusion, as the points in S2 are missed, the Maurer-
Cartan picture fails over the singular locus. One possibility is that we need additional ‘deformation data’
for the conventional Maurer-Cartan sets. Moreover, as discussed in §1.4.2, the non-archimedean analytic
topology may be more relevant for the singular part.

The framework of Definition 1.4 offers a preliminary attempt and should be sufficient when the
mirror space is expected to be algebraic rather than transcendental. But admittedly, an ultimate answer
would require further researches.

6. Generalizations

By combining the ideas in §2, 3, 5 with some basics of tropical and toric geometry, we can obtain quite
a lot of generalizations with little change of ideas.

Let 𝑁 � Z𝑛 be a lattice and 𝑀 = Hom(𝑁,Z). Set 𝑁R = 𝑁 ⊗ R and 𝑀R = 𝑀 ⊗ R. Let Σ ⊂ 𝑁R be a
simplicial smooth fan with all maximal cones n-dimensional. Then, the primitive generators 𝑣1, . . . , 𝑣𝑛
of rays in a maximal cone form a Z-basis of N. Denote by 𝑣∗1, . . . , 𝑣

∗
𝑛 the dual basis of M, so 𝑀R � R𝑛.

Denote the remaining rays in Σ by 𝑣𝑛+1, . . . , 𝑣𝑛+𝑟 for a fixed 𝑟 ≥ 0.
Suppose the toric variety XΣ associated to Σ is Calabi-Yau. This means there exists 𝑚0 ∈ 𝑀 such

that 〈𝑚0, 𝑣〉 = 1 for any generator v of a ray in Σ. It follows that 𝑚0 = 𝑣∗1 + · · · + 𝑣∗𝑛 = (1, . . . , 1). If we
set 𝑣𝑛+𝑎 =

∑𝑛
𝑗=1 𝑘𝑎 𝑗𝑣 𝑗 for 𝑘𝑎 𝑗 ∈ Z, then we have

∑𝑛
𝑗=1 𝑘𝑎 𝑗 = 1. Denote the corresponding toric divisors

by 𝐷1, . . . , 𝐷𝑛+𝑟 . Then, 𝐷𝑖 +
∑𝑟
𝑎=1 𝑘𝑎𝑖𝐷𝑛+𝑎 = (𝜒𝑣

∗
𝑖 ) ∼ 0 for 1 ≤ 𝑖 ≤ 𝑛 and

∑𝑛+𝑟
𝑗=1 𝐷 𝑗 = (𝜒𝑚0) ∼ 0.

6.1. Lagrangian fibration

Let 𝑤 = 𝜒𝑚0 be the character of 𝑚0, and define 𝒟 = 𝑤−1(1). We equip XΣ with a toric Kähler form
𝜔, and the corresponding moment map 𝜇 : XΣ → 𝑃 is onto an unbounded polyhedral 𝑃 = 𝑃𝜔 in 𝑀R
described by a set of inequalities of the form

ℓ𝑖 (𝑚) := 〈𝑚, 𝑣𝑖〉 + 𝜆𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛 + 𝑟, 𝑚 ∈ 𝑀R (60)

for some 𝜆𝑖 ∈ R. The sublattice �̄� := {𝑛 ∈ 𝑁 | 〈𝑚0, 𝑛〉 = 0} has a basis 𝜎𝑘 = 𝑣𝑘 − 𝑣𝑛 for 1 ≤ 𝑘 < 𝑛.
Consider its dual �̄� := Hom(�̄�,Z) ≡ 𝑀/Z𝑚0. We identify �̄�R := 𝑀R/R𝑚0 with a copy of R𝑛−1 in
𝑀R � R𝑛 consisting of (𝑚1, . . . , 𝑚𝑛) with 𝑚𝑛 = 0. Then, the projection 𝑝 : 𝑀R → �̄�R takes the
form (𝑚1, . . . , 𝑚𝑛) ↦→ (𝑚1 −𝑚𝑛, . . . , 𝑚𝑛−1 −𝑚𝑛). We can also show that p induces a homeomorphism
from 𝜕𝑃 to �̄�R. Note that �̄� := 𝑝 ◦ 𝜇 is the moment map associated to the action of the subtorus
𝑇�̄� ≡ (R/2𝜋Z) · {𝜎1, . . . , 𝜎𝑛−1}. The critical points of �̄� are the codimension-two toric strata in X, so
the image Π in �̄�R of them is the union of Δ 𝑖 𝑗 := 𝑝(𝑃𝑖 𝑗 ) for all 𝑖 ≠ 𝑗 , where 𝑃𝑖 𝑗 := {ℓ𝑖 = ℓ 𝑗 = 0}. By
(60), we can explicitly describe each Δ 𝑖 𝑗 in �̄�R � R𝑛−1 with coordinates 𝑞 = (𝑞1, . . . , 𝑞𝑛−1):
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ 𝑖 𝑗 = {𝑞𝑖 + 𝜆𝑖 = 𝑞 𝑗 + 𝜆 𝑗 } if 1 ≤ 𝑖 < 𝑗 < 𝑛

Δ 𝑖 𝑗 = {𝑞𝑖 + 𝜆𝑖 = 𝜆𝑛} if 1 ≤ 𝑖 < 𝑗 = 𝑛

Δ 𝑖 𝑗 = {𝑞𝑖 + 𝜆𝑖 =
∑𝑛−1
𝑠=1 𝑘 𝑗−𝑛,𝑠 𝑞𝑠 + 𝜆 𝑗 } if 1 ≤ 𝑖 < 𝑛 < 𝑗

Δ 𝑖 𝑗 = {𝜆𝑛 =
∑𝑛−1
𝑠=1 𝑘 𝑗−𝑛,𝑠 𝑞𝑠 + 𝜆 𝑗 } if 𝑖 = 𝑛 < 𝑗

Δ 𝑖 𝑗 = {
∑𝑛−1
𝑠=1 𝑘𝑖−𝑛,𝑠 𝑞𝑠 + 𝜆𝑖 =

∑𝑛−1
𝑠=1 𝑘 𝑗−𝑛,𝑠 𝑞𝑠 + 𝜆 𝑗 } if 𝑛 < 𝑖 < 𝑗 .

It turns out that Π ≡
⋃

𝑖< 𝑗 Δ 𝑖 𝑗 is the tropical hypersurface in R𝑛−1 associated to the tropical polynomial

ℎtrop (𝑞1, . . . , 𝑞𝑛−1) = min
{
𝜆𝑛, {𝑞𝑘 + 𝜆𝑘 }1≤𝑘<𝑛, {

∑𝑛−1
𝑠=1 𝑘𝑎𝑠𝑞𝑠 + 𝜆𝑛+𝑎}1≤𝑎≤𝑟

}
. (61)

We will realize it as the tropicalization of the Laurent polynomial h in (65) later.
Define 𝑋 = XΣ \𝒟, and the Gross special Lagrangian fibration [39] is given by

𝜋 = ( �̄�, log |𝑤 − 1|) : 𝑋 → 𝐵, (62)

which maps onto 𝐵 := �̄�R × R � R𝑛 for the above-mentioned identification. The discriminant locus of
𝜋 is Δ = Π × {0}, and define 𝐵0 := 𝐵 \ Δ . Let �̂�𝑖 = 𝑝(ℓ−1

𝑖 (0) ∩ 𝑃) × {0}, and 𝐻𝑖 := �̂�𝑖 \
⋃

𝑗 Δ 𝑖 𝑗 . The
set 𝐻 =

⋃
𝑖 𝐻𝑖 in 𝐵0 is called the wall in the sense that the Lagrangian fiber 𝐿𝑞 := 𝜋−1 (𝑞) bounds a

nontrivial Maslov-0 holomorphic disk if and only if 𝑞 ∈ 𝐻.

Remark 6.1. Although the recent developments of the SYZ conjecture (e.g., [22, 23, 29, 51]) focus
mainly on the existence of special Lagrangian fibration, their techniques should be very useful to find
graded or zero Maslov class Lagrangian fibrations as well (cf. [52], [56, Example 2.9]). The latter is
easier to achieve and already sufficient to ensure the existence of the dual affinoid torus fibration 𝜋∨0 [61].

6.2. Action coordinates

Let 𝒩𝑖 be a sufficiently small neighborhood of 𝐻𝑖 in 𝐵0. Let 𝐵± be the open subset of 𝐵0 consisting of
those points whose last coordinate is > 0 or < 0. Set 𝐵′

± = 𝐵± ∪
⋃

𝑖 𝒩𝑖 .
The fiber 𝐿𝑞 for 𝑞 ∈ 𝐵+ is of Clifford type and can deform into a product torus in (C∗)𝑛 � 𝑁 ⊗ C∗.

So, there is a canonical isomorphism 𝜋1 (𝐿𝑞) � 𝑁 . Also, 𝜋2 (XΣ, 𝐿𝑞) is naturally isomorphic to Z𝑛+𝑟
via 𝛽 ↦→ (𝛽 · 𝐷𝑖)1≤𝑖≤𝑛+𝑟 , and let {𝛽𝑖} denote the corresponding basis of 𝜋2 (XΣ, 𝐿𝑞). Under these
identifications, the boundary map 𝜕 : 𝜋2 (XΣ, 𝐿𝑞) → 𝜋1 (𝐿𝑞) now satisfies 𝜕𝛽𝑖 = 𝑣𝑖 for 1 ≤ 𝑖 ≤ 𝑛 + 𝑟 .
There is an exact sequence 0 → 𝜋2 (XΣ) → 𝜋2 (XΣ, 𝐿𝑞) → 𝜋1 (𝐿𝑞) → 0, so we may choose a basis
{S𝑎}0≤𝑎≤𝑟 in 𝜋2 (XΣ) such that S𝑎 = 𝛽𝑛+𝑎 − (𝑘𝑎1𝛽1 + · · · + 𝑘𝑎𝑛𝛽𝑛). It is a standard result (see, for
example, [44]) that 1

2𝜋 [𝜔] =
∑𝑛+𝑟
𝑖=1 𝜆𝑖 · PD(𝐷𝑖). Hence,

𝐸 (S𝑎) = 𝜆𝑛+𝑎 −
𝑛∑
𝑗=1

𝑘𝑎 𝑗𝜆 𝑗 . (63)

Just like §2.3, we use the natural action of 𝑇�̄� = �̄� ⊗ R/2𝜋Z and 𝜕𝛽𝑛 to determine a local chart
𝜒+(𝑞) = (𝑞1, . . . , 𝑞𝑛−1, 𝜓+(𝑞)) of action coordinates over 𝐵′

+. Changing it by constants if necessary, we
may assume 𝑞𝑘 + 𝜆𝑘 − 𝜆𝑛 = 𝐸 (𝛽𝑘 ) − 𝐸 (𝛽𝑛) for 1 ≤ 𝑘 < 𝑛 and 𝜓+(𝑞) + 𝜆𝑛 = 𝐸 (𝛽𝑛).

However, the fiber 𝐿𝑞 for 𝑞 ∈ 𝐵− is of Chekanov type, and |𝑤 − 1| < 1 over here. As before, there
is a natural topological disk 𝛽 in 𝜋2 (XΣ, 𝐿𝑞) that is a section of w over a disk centered at 1 ∈ C.
Similarly, we use the 𝑇�̄� -action and 𝜕𝛽 to determine a local chart 𝜒−(𝑞) = (𝑞1, . . . , 𝑞𝑛−1, 𝜓−(𝑞)) of
action coordinates over 𝐵′

−. We may assume 𝜓−(𝑞) = 𝐸 (𝛽) up to a constant change. As before, we may
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extend 𝛽 over 𝐵′
− and check 𝛽 |𝒩𝑖 equals 𝛽𝑖 for 1 ≤ 𝑖 ≤ 𝑛 + 𝑟 . Besides, similar to (18), we can show that

𝜓−(𝑞) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜓+(𝑞) + 𝑞𝑘 + 𝜆𝑘 if 𝑞 ∈ 𝒩𝑘 , 1 ≤ 𝑘 < 𝑛

𝜓+(𝑞) + 𝜆𝑛 if 𝑞 ∈ 𝒩𝑛,

𝜓+(𝑞) +
∑𝑛−1
𝑠=1 𝑘𝑎𝑠𝑞𝑠 + 𝜆𝑛+𝑎 if 𝑞 ∈ 𝒩𝑛+𝑎, 1 ≤ 𝑎 ≤ 𝑟.

In other words,

𝜓−(𝑞) = 𝜓+(𝑞) + ℎtrop (𝑞)

on their overlapping domains
⊔

𝑖 𝒩𝑖 . Similar to (20), we obtain a continuous map 𝜓 : 𝐵 → R such that
𝜓 |𝐵′

−
= 𝜓− and 𝜓 |𝐵′

+
= 𝜓+(𝑞) + ℎtrop(𝑞). Set 𝜓0(𝑞) := 𝜓(𝑞, 0).

Just as §2.4, we define a topological embedding 𝑗 : 𝐵 → R by 𝑞 ↦→ (𝜃0(𝑞), 𝜃1 (𝑞), 𝑞), where

𝜃0(𝑞1, . . . , 𝑞𝑛) := min{−𝜓(𝑞),−𝜓0 (𝑞)} + ℎtrop (𝑞)

𝜃1(𝑞1, . . . , 𝑞𝑛) := min{ 𝜓(𝑞), 𝜓0(𝑞)}.

The image 𝑗 (𝐵) can be described as in §2.4.2: let 𝑅�̄� ⊂ R2 be the half broken line 𝑟�̄� in (24) with ℎtrop
in (61) replacing min{0, 𝑞}, and then the image 𝑗 (𝐵) is the union of all 𝑅�̄� × {𝑞} in R𝑛+1 like (26).

6.3. Mirror analytic structure

According to Theorem 4.1, we can build up an analytic space 𝑋∨
0 , which is set-theoretically⋃

𝑞∈𝐵0 𝐻
1 (𝐿𝑞;𝑈Λ), and the natural map 𝜋∨0 : 𝑋∨

0 → 𝐵0 becomes an affinoid torus fibration. By the
same formulas as (44, 45), the above two integral affine charts 𝜒± give rise to two affinoid tropical
charts

𝜏± : (𝜋∨0 )
−1(𝐵′

±)
�
−→ 𝑇± ⊂ (Λ∗)𝑛,

and their images are 𝑇± := 𝔱𝔯𝔬𝔭−1(𝜒±(𝐵
′
±)) � (Λ∗)𝑛 just like (46). The two charts 𝜏± are glued

by several automorphisms 𝜙𝑖 on (𝜋∨0 )
−1(𝒩𝑖) as (47); equivalently, we use Φ𝑖 := 𝜏− ◦ 𝜙𝑖 ◦ 𝜏−1

+ :
𝑇 𝑖+ → 𝑇 𝑖− to glue the analytic subdomains 𝑇 𝑖± ≡ 𝔱𝔯𝔬𝔭−1 (𝜒±(𝒩𝑖)) in 𝑇± (49). Roughly, placing the 𝜋
in the larger ambient manifold XΣ, one can check the Maslov-0 holomorphic disks keep the same.
Thus, the analytic space 𝑋∨

0 and the affinoid torus fibration 𝜋∨0 are unchanged. In particular, the
gluing maps 𝜙𝑖 and Φ𝑖 are also unchanged. However, there are new Maslov-2 disks that contribute
to two analytic functions 𝑊± on the two affinoid tropical charts (𝜋∨0 )

−1(𝐵′
±) � 𝑇± (51). By maximal

principle, one can show that 𝑊−(y) = 𝑇𝜓− (𝑞)y𝜕𝛽 for y ∈ 𝐻1(𝐿𝑞;𝑈Λ) with 𝑞 ∈ 𝐵′
−. Hence, W−(𝑦) :=

𝑊−(𝜏
−1
− (𝑦)) = 𝑦𝑛 for 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ 𝑇−. It follows from [21] that𝑊+(y) =

∑𝑛+𝑟
𝑖=1 𝑇𝐸 (𝛽𝑖)y𝜕𝛽𝑖 (1+ 𝛿𝑖),

where

𝛿𝑖 :=
∑

𝛼∈𝐻2 (XΣ)\{0}
𝑇𝐸 (𝛼)n𝛽𝑖+𝛼 ∈ Λ+ (64)

and n𝛽 is the count of holomorphic stable disks of class 𝛽. Unlike the previous case when XΣ = C𝑛,
the Cho-Oh’s result is not strong enough to determine the coefficients 𝛿𝑖’s in general, as the sphere
bubbles can contribute if the corresponding toric divisor is compact [16, Proposition 5.3]. But, if 𝐷𝑖 is
non-compact, then we can use the maximal principle to prove that 𝛿𝑖 = 0. Anyway, regarding the chart
𝜏+, we can check that W+(𝑦) := 𝑊+(𝜏

−1
+ (𝑦)) = 𝑦𝑛 · ℎ(𝑦1, . . . , 𝑦𝑛−1), where 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ 𝑇+ and

ℎ(𝑦1, . . . , 𝑦𝑛−1) = 𝑇𝜆𝑛 (1 + 𝛿𝑛) +
𝑛−1∑
𝑠=1

𝑇𝜆𝑠 𝑦𝑠 (1 + 𝛿𝑠) +
∑
𝑎

𝑇𝜆𝑛+𝑎 (1 + 𝛿𝑛+𝑎)
𝑛−1∏
𝑠=1

𝑦𝑘𝑎𝑠𝑠 . (65)
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Remark that this more or less agrees with many previous works (e.g., [5] [6] [16]). However, working
over the non-archimedean field 𝜆 is very crucial for the following observation: the tropicalization of h
is precisely the tropical polynomial (61). This picture would be totally missed over C; cf. §1.6.1.

Due to (43), we have W−(Φ𝑖 (𝑦)) = W+(𝑦) for any 𝑦 ∈ 𝑇 𝑖+. Besides, as before, the 𝑇�̄� -symmetry of
the Lagrangian fibration 𝜋 implies that Φ𝑖 preserves the first 𝑛 − 1 coordinates (50). Finally, just like
(53), we can show that

Φ𝑖 (𝑦1, . . . , 𝑦𝑛) =
(
𝑦1, . . . , 𝑦𝑛−1, 𝑦𝑛ℎ(𝑦1, . . . , 𝑦𝑛−1)

)
for any 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ 𝑇 𝑖+ and 1 ≤ 𝑖 ≤ 𝑛 + 𝑟 . In the same way as (54), we have an identification
𝑋∨

0 � 𝑇+ � 𝑇−/∼ for a similar gluing relation defined by the above Φ𝑖’s. There is also a similar
characterization of 𝜋∨0 as (55). Note that the viewpoint of Remark 5.3 still works here.

Just as §5.4, we obtain an embedding g from 𝑋∨
0 into (the analytification of) the algebraic

Λ-variety:

𝑌 :=
{
(𝑥0, 𝑥1, 𝑦1, . . . , 𝑦𝑛−1) ∈ Λ2 × (Λ∗)𝑛−1 | 𝑥0𝑥1 = ℎ(𝑦1, . . . , 𝑦𝑛−1)

}
.

6.4. Dual analytic fibration

Given 𝑧 = (𝑥0, 𝑥1, 𝑦1, . . . , 𝑦𝑛−1) in Λ2 × (Λ∗)𝑛−1, we define

𝐹0 (𝑧) = min{v(𝑥0),−𝜓0(v(𝑦1), . . . , v(𝑦𝑛−1)) + ℎtrop(v(𝑦1), . . . , v(𝑦𝑛−1))}

𝐹1 (𝑧) = min{v(𝑥1), 𝜓0 (v(𝑦1), . . . , v(𝑦𝑛−1))}

𝐺𝑘 (𝑧) = v(𝑦𝑘 ) for 1 ≤ 𝑘 < 𝑛.

This is only a slight modification of (28) with ℎtrop in (61) replacing min{0, 𝑞1, . . . , 𝑞𝑛−1}. Now, we
define 𝐹 := (𝐹0, 𝐹1, 𝐺1, . . . , 𝐺𝑛−1) : 𝑌 → R𝑛+1. One can similarly describe the image of F as before in
§3.2.1. Roughly, the image 𝔅 = 𝐹 (𝑌 ) also takes the form of (29) as is the union of all 𝑆�̄� × {𝑞} in R𝑛+1,
but the broken line 𝑠�̄� in (30) is modified by replacing min{0, 𝑞} by ℎtrop. The image 𝑗 (𝐵) then agrees
with the open subset �̂� = {(𝑢0, 𝑢1, 𝑞) ∈ 𝔅 | 𝑢1 > 0}, and j exactly sends the singular locus Δ of 𝜋 to the
singular locus of F as in Lemma 3.3. Just like §3.3, we define 𝒴 = 𝐹−1 (�̂�) and 𝑓 = 𝑗−1 ◦ 𝐹 : 𝒴 → 𝐵;
also, the restriction 𝑓0 := 𝑓 |𝐵0 gives an affinoid torus fibration. In the end, the proof of Theorem 5.4 can
be repeated verbatim here, obtaining 𝐹 ◦ 𝑔 = 𝑗 ◦ 𝜋∨0 and thus 𝜋∨0 = 𝑓0 ◦ 𝑔. This completes the proof of
Theorem 1.12.

A. Folklore conjecture for the critical values of Landau-Ginzburg models

In this appendix, we check some computations for the well-known folklore Conjecture II as mentioned
in §1.7. A conceptual proof of the folklore conjecture is also given in [62] with much generalities. We
recommend a brief reading of §4 in advance.

A.1. General aspects

Let (𝑋∨
0 , 𝜋

∨
0 ,𝑊

∨
0 ) be given in Theorem 4.1, and we often omit the subscript 0 if there is no confusion.

By Remark 4.5, the superpotential should be (locally) viewed as a formal power series in Λ[[𝜋1 (𝐿𝑞0 )]]

for some base point 𝑞0. In general, let’s take an arbitrary formal power series 𝐹 =
∑∞

𝑗=1 𝑐 𝑗𝑌
𝛼𝑗 in

Λ[[𝜋1 (𝐿𝑞0 )]] for 𝑐 𝑗 ∈ Λ and 𝛼 𝑗 ∈ 𝜋1 (𝐿𝑞0 ). Given 𝜃 ∈ 𝐻1 (𝐿𝑞0 ) � Hom(𝜋1 (𝐿𝑞0 ),R), we define the
logarithmic derivative along 𝜃 of F by

𝐷 𝜃𝐹 =
∑∞

𝑗=1 𝑐 𝑗 〈𝛼 𝑗 , 𝜃〉𝑌
𝛼𝑗 .
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By §4.2, we take a local affinoid tropical chart of the affinoid torus fibration 𝜋∨0

𝜏 : (𝜋∨0 )
−1(𝑈) � 𝔱𝔯𝔬𝔭−1(𝑉 − 𝑐)

that covers a pointed integral affine chart 𝜒 : (𝑈, 𝑞0) → (𝑉, 𝑐). By §4.5, the superpotential 𝑊∨ in this
chart is given by

𝑊∨|𝜏 (y) =
∑

𝛽∈𝜋2 (𝑋,𝐿𝑞 ) , 𝜇 (𝛽)=2
𝑇𝐸 (𝛽)y𝜕𝛽n𝛽 (𝑞0)

for y ∈ 𝐻1(𝐿𝑞;𝑈Λ) with 𝑞 ∈ 𝑈. Its logarithmic derivative along 𝜃 = 𝜃𝑞 ∈ 𝐻1 (𝐿𝑞;R) is given by

𝐷 𝜃𝑊
∨|𝜏 (y) =

∑
𝜇 (𝛽)=2

〈𝜕𝛽, 𝜃〉𝑇𝐸 (𝛽)y𝜕𝛽n𝛽 (𝑞0) .

Definition A.1. A point y in 𝐻1 (𝐿𝑞;𝑈Λ) ⊂ 𝑋∨
0 is called a critical point of 𝑊∨ if 𝐷 𝜃𝑊

∨|𝜏 (y) = 0 for
all 𝜃 and for some affinoid tropical chart 𝜏.

This definition does not depend on the choice of the affinoid tropical chart 𝜏 as proved in [62]. So,
we often omit writing the 𝜏 in the notations. In our situation, we just have two affinoid tropical charts:

𝜏± : (𝜋∨0 )
−1(𝐵′

±)
�
−→ 𝑇± ⊂ (Λ∗)𝑛

as in (44, 45). We will use 𝑋 to denote a compactification of X and use 𝑊∨ to denote the consequent
LG superpotential. Denote by 𝑊∨

± := 𝑊∨

𝑋,±
the restrictions of 𝑊∨ on (𝜋∨0 )

−1(𝐵′
±).

The superpotential on the Clifford chamber 𝑇+ is usually easy to find by [21]. The superpotential
on the Chekanov chamber 𝑇− is hard to compute by the classic ideas. But, it can be now computed
by the superpotential-preserving property (43) of the family Floer gluing maps as did in [63]. Another
approach over C using the Lagrangian mutations has been studied in [54]. However, the computations
in [63] over Λ rather than over C is crucial to check the folklore conjecture.

A.2. Examples

For clarity, we only study the case 𝑋 = C𝑛 \ 𝒟 as in Theorem 1.5. But, one may obtain many other
computations in the case of Theorem 1.12 using similar arguments.

A.2.1.
Assume 𝑋 = CP𝑛. There is a topological disk 𝛽′ ≡ 𝛽′(𝑞) ∈ 𝜋2 (CP

𝑛, 𝐿𝑞) that intersects the divisor
CP

𝑛 \ C𝑛 once and satisfies

𝛽′ = H − 𝛽1 − · · · − 𝛽𝑛, (A.1)

where H is the complex line that generates 𝜋2 (CP
𝑛). We also view 𝛽′ as a local section of ℛ2 in (12)

over 𝐵′
+. Adding an extra subscript to distinguish, we use 𝑊∨

C𝑛 ,± to denote the superpotentials obtained
before in (51). First, by [21], the superpotential over 𝐵′

+ is easy to find:

𝑊∨
+ (y) = 𝑇𝐸 (𝛽′)y𝜕𝛽′n𝛽′ +

𝑛∑
𝑗=1

𝑇𝐸 (𝛽 𝑗 )y𝜕𝛽 𝑗 n𝛽 𝑗 = 𝑇𝐸 (𝛽′)y𝜕𝛽′ +𝑊∨
C𝑛 ,+(y)

= 𝑇𝐸 (H)−𝑞1−···−𝑞𝑛−1−𝑛𝜓+ (𝑞)y−𝑛𝜕𝛽𝑛−(𝜎1+···+𝜎𝑛−1) + 𝑇𝜓+ (𝑞)y𝜕𝛽𝑛
(
1 +

∑
𝑘≠𝑛

𝑇𝑞𝑘 y𝜎𝑘
)
.
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We can also use [21] again to conclude n𝛽′ = 1. By [63], the superpotential over 𝐵′
− is

𝑊∨
− (y) = 𝑇𝜓−y𝜕𝛽 + 𝑇−𝑛𝜓−+𝐸 (H)y−𝑛𝜕𝛽−(𝜎1+···+𝜎𝑛−1)

(
1 + 𝑇𝑞1 y𝜎1 + · · · + 𝑇𝑞𝑛−1 y𝜎𝑛−1

)𝑛
. (A.2)

Under the identifications (𝜋∨0 )
−1(𝐵′

±) � 𝑇± via 𝜏±, they have the following expressions: For
𝑦 = (𝑦1, . . . , 𝑦𝑛) in 𝑇+ or 𝑇−, we respectively have

𝑊∨
+ (𝑦) = 𝑦𝑛 (1 + 𝑦1 + · · · + 𝑦𝑛−1) +

𝑇𝐸 (H)

𝑦1 · · · 𝑦𝑛−1 · 𝑦
𝑛
𝑛

𝑊∨
− (𝑦) = 𝑦𝑛 +

𝑇𝐸 (H) (1 + 𝑦1 + · · · + 𝑦𝑛−1)
𝑛

𝑦1 · · · 𝑦𝑛−1 · 𝑦
𝑛
𝑛

.

(A.3)

Moreover, under the analytic embedding g in (58) into the Λ-variety

𝑌 = {𝑧𝑧𝑧 = (𝑥0, 𝑥1, 𝑦1, . . . , 𝑦𝑛−1) ∈ Λ2 × (Λ∗)𝑛−1 | 𝑥0𝑥1 = 1 + 𝑦1 + · · · + 𝑦𝑛−1},

we can check that the 𝑊∨
± together give rise to a single expression

𝑊∨(𝑧𝑧𝑧) = 𝑥1 +
𝑇𝐸 (H) · 𝑥𝑛0
𝑦1 · · · 𝑦𝑛−1

. (A.4)

It is first only defined on a subdomain 𝒴0 in Y; but thanks to Theorem 1.5, its domain can be extended
to the whole Y.

Next, we aim to find the critical points of 𝑊∨. The methods are not unique. For instance, we may use
various tropical charts of Y in the sense of [14, §3] (cf. the recent [43]). The critical points are actually
coordinate-free. Anyway, for clarity, let’s use the two familiar charts 𝜏±.
◦ In the affinoid tropical chart 𝜏+, we have

𝐷𝑘𝑊
∨
+ = −

𝑇𝐸 (H)

𝑦1 · · · 𝑦𝑛−1𝑦
𝑛
𝑛
+ 𝑦𝑛𝑦𝑘 1 ≤ 𝑘 < 𝑛

𝐷𝑛𝑊
∨
+ = −

𝑛 𝑇𝐸 (H)

𝑦1 · · · 𝑦𝑛−1𝑦
𝑛
𝑛
+ 𝑦𝑛 (1 + 𝑦1 + · · · + 𝑦𝑛−1)

for 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ 𝑇+. Then, we can solve and obtain the critical points (if exist in 𝑇+):{
𝑦𝑘 = 1 1 ≤ 𝑘 < 𝑛

𝑦𝑛 = 𝑇
1

𝑛+1 𝐸 (H)𝑒
2𝜋𝑖𝑠
𝑛+1 𝑠 ∈ {0, 1, . . . , 𝑛}.

The corresponding critical values are (𝑛 + 1)𝑇 1
𝑛+1 𝐸 (H)𝑒

2𝜋𝑖𝑠
𝑛+1 .

◦ In the affinoid tropical chart 𝜏−, we also have

𝐷𝑘𝑊
∨
− = −

𝑇𝐸 (H) (1 + 𝑦1 + · · · + 𝑦𝑛−1)
𝑛

𝑦1 · · · 𝑦𝑛−1𝑦
𝑛
𝑛

+ 𝑛
𝑇𝐸 (H) (1 + 𝑦1 + · · · + 𝑦𝑛−1)

𝑛−1𝑦𝑘
𝑦1 · · · 𝑦𝑛−1𝑦

𝑛
𝑛

𝐷𝑛𝑊
∨
− = 𝑦𝑛 −

𝑛𝑇𝐸 (H) (1 + 𝑦1 + · · · + 𝑦𝑛−1)
𝑛

𝑦1 · · · 𝑦𝑛−1𝑦
𝑛
𝑛

for 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ 𝑇−. Then, we can solve and obtain the critical points (if any):{
𝑦𝑘 = 1 1 ≤ 𝑘 < 𝑛

𝑦𝑛 = 𝑛𝑇
1

𝑛+1 𝐸 (H)𝑒
2𝜋𝑖𝑠
𝑛+1 𝑠 ∈ {0, 1, . . . , 𝑛}.

The corresponding critical values are also (𝑛 + 1)𝑇 1
𝑛+1 𝐸 (H)𝑒

2𝜋𝑖𝑠
𝑛+1 .
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In either case, the critical values agree with the known eigenvalues of the quantum product in CP𝑛
of the first Chern class. Under the analytic embedding g, the critical points in either bullets have the
uniform expressions as follows:

z(𝑠) = (𝑥0, 𝑥1, 𝑦1, . . . , 𝑦𝑛−1) ∈ 𝑌 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥0 = 𝑇−

𝐸 (H)
𝑛+1 𝑒−

2𝜋𝑖𝑠
𝑛+1

𝑥1 = 𝑛𝑇
𝐸 (H)
𝑛+1 𝑒

2𝜋𝑖𝑠
𝑛+1

𝑦𝑘 = 1 1 ≤ 𝑘 < 𝑛

for 𝑠 ∈ {0, 1, . . . , 𝑛}. Since v(𝑦𝑘 ) = 0, the critical points are all contained in the dual fiber over a
fixed single point 𝑞 = (0, . . . , 0, 𝑎𝜔) in 𝐵 ≡ R𝑛 for some 𝑎𝜔 ∈ R, and v(𝑥1) = 𝜓(𝑞) = 1

𝑛+1𝐸 (H) =
1

2𝜋 (𝑛+1)𝜔(H). In particular, the Kähler form 𝜔 determines 𝑎𝜔 and the base point 𝑞. Besides, the critical
points are in 𝑇+ if 𝑎𝜔 > 0 and in 𝑇− if 𝑎𝜔 < 0. But, it is not completely clear when 𝑎𝜔 = 0 and 𝑞 lies
on the singular locus.

A.2.2.
Assume 𝑋 = CP𝑚 × CP𝑛−𝑚 for 1 ≤ 𝑚 < 𝑛. Let H1 (resp. H2) be the class of a complex line in
CP

𝑚 (resp. CP𝑛−𝑚). There are two new disk classes 𝛽′1 and 𝛽′2 bounding the 𝜋-fibers over 𝐵+. Besides,
H1 = 𝛽′1 +

∑𝑚
𝑖=1 𝛽𝑖 and H2 = 𝛽′2 +

∑𝑛
𝑖=𝑚+1 𝛽𝑖 . One can finally show that the superpotential under the

analytic embedding g is given by

𝑊∨(𝑧𝑧𝑧) = 𝑥1 +
𝑇𝐸 (H1)𝑥𝑚0
𝑦1 · · · 𝑦𝑚

+
𝑇𝐸 (H2)𝑥𝑛−𝑚0
𝑦𝑚+1 · · · 𝑦𝑛−1

for 𝑧𝑧𝑧 = (𝑥0, 𝑥1, 𝑦1, . . . , 𝑦𝑛−1) on the same variety Y. We have (𝑚 + 1) (𝑛 − 𝑚 + 1) critical points

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑥0 =
(
𝑇

𝐸 (H2 )
𝑛−𝑚+1 𝑒

2𝜋𝑖𝑠
𝑛−𝑚+1

)−1

𝑥1 = 𝑇
𝐸 (H2 )
𝑛−𝑚+1 𝑒

2𝜋𝑖𝑠
𝑛−𝑚+1 ·

(
𝑚 𝑇

𝐸 (H1 )
𝑚+1 𝑒

2𝜋𝑖𝑟
𝑚+1 ·

(
𝑇

𝐸 (H2 )
𝑛−𝑚+1 𝑒

2𝜋𝑖𝑠
𝑛−𝑚+1

)−1
+ 𝑛 − 𝑚

)
𝑦𝑘 = 𝑇

𝐸 (H1 )
𝑚+1 𝑒

2𝜋𝑖𝑟
𝑚+1 ·

(
𝑇

𝐸 (H2 )
𝑛−𝑚+1 𝑒

2𝜋𝑖𝑠
𝑛−𝑚+1

)−1 1 ≤ 𝑘 ≤ 𝑚

𝑦ℓ = 1 𝑚 < ℓ < 𝑛

for 𝑟 ∈ {0, 1, . . . , 𝑚} and 𝑠 ∈ {0, 1, . . . , 𝑛 − 𝑚}. Then, the corresponding critical values are

(𝑚 + 1)𝑇
𝐸 (H1 )
𝑚+1 𝑒

2𝜋𝑖𝑟
𝑚+1 + (𝑛 − 𝑚 + 1)𝑇

𝐸 (H2 )
𝑛−𝑚+1 𝑒

2𝜋𝑖𝑠
𝑛−𝑚+1 .

Let’s further look into a special case when 𝑚 = 1 and 𝑛 = 2. Namely, 𝑋 = CP1 × CP1. Then,

𝑊∨ = 𝑥1 +
𝑇𝐸 (H1)𝑥0

𝑦1
+ 𝑇𝐸 (H2)𝑥0.

By the above computation, we have four critical points given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑥0 =

(
𝑇

𝐸 (H2 )
2 𝑒𝜋𝑖𝑠

)−1

𝑥1 = 𝑇
𝐸 (H2 )

2 𝑒𝜋𝑖𝑠
(
𝑇

𝐸 (H1 )−𝐸 (H2 )
2 𝑒𝜋𝑖𝑠𝑒𝜋𝑖𝑟 + 1

)
𝑦1 = 𝑇

𝐸 (H1 )−𝐸 (H2 )
2 𝑒𝜋𝑖𝑟 𝑒𝜋𝑖𝑠

for 𝑟, 𝑠 ∈ {0, 1}. The base point in 𝐵 ≡ R2 is given by 𝑞 =
(
𝐸 (H1)−𝐸 (H2)

2 , 𝑎𝜔

)
for some 𝑎𝜔 ∈ R. More

examples can be similarly found out by either choosing a different compactification 𝑋 or working with
a more general X as Theorem 1.12; compare also [63].
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[60] S. Vũ Ngoc, ‘On semi-global invariants for focus–focus singularities’, Topology 42(2) (2003), 365–380.
[61] H. Yuan, ‘Family Floer program and non-archimedean SYZ mirror construction’, Preprint, 2020, arXiv:2003.06106.
[62] H. Yuan, ‘Family Floer superpotential’s critical values are eigenvalues of quantum product by c_1’, Preprint, 2021,

arXiv:2112.13537.
[63] H. Yuan, ‘Disk counting and wall-crossing phenomenon via family Floer theory’, J. Fixed Point Theory Appl. 24(4)

(2022), 77.
[64] H. Yuan, Family Floer SYZ singularities for the conifold transition. arXiv preprint arXiv:2212.13948, 2022.
[65] H. Yuan, Family Floer SYZ conjecture for An singularity. arXiv preprint arXiv:2305.13554, 2023.
[66] H. Yuan, Non-archimedean analytic continuation of unobstructedness. arXiv preprint arXiv:2401.02577, 2024.

https://doi.org/10.1017/fms.2024.107 Published online by Cambridge University Press

https://www.math.kyoto-u.ac.jp/fukaya/Berkeley.pdf
https://arxiv.org/abs/2105.12863
https://arxiv.org/abs/1309.2573
https://arxiv.org/abs/2111.05741
https://arxiv.org/abs/1805.11738
https://arxiv.org/abs/1912.02360
https://arxiv.org/abs/2003.06106
https://arxiv.org/abs/2112.13537
https://arxiv.org/abs/2212.13948
https://arxiv.org/abs/2305.13554
https://arxiv.org/abs/2401.02577
https://doi.org/10.1017/fms.2024.107

	1 Introduction
	1.1 Main result
	1.2 Relation to the literature
	1.3 Sketch of proof of Theorem 1.5 omitting Floer-theoretic condition (iii)
	1.4 Outline of the construction
	1.4.1 Floer aspect: dual affinoid torus fibration.
	1.4.2 Non-archimedean analytic aspect: dual singular fibers.

	1.5 Main result in general
	1.6 Examples and SYZ converse
	1.6.1 
	1.6.2 
	1.6.3 
	1.6.4 

	1.7 Further evidence: a folklore conjecture

	2 A side: the Gross Lagrangian fibration
	2.1 Lagrangian fibration
	2.2 Topological disks
	2.3 Action coordinates
	2.4 The embedding j
	2.4.1 Symplectic area.
	2.4.2 Description of the image of j.


	3 B side: Kontsevich-Soibelman's analytic fibration
	3.1 Tropicalization map
	3.2 Non-archimedean integrable system
	3.2.1 Description of the image of F.

	3.3 Definition of f

	4 Family Floer mirror construction: an easy-to-use review
	4.1 Statement
	4.2 Local affinoid tropical charts
	4.3 Gluing
	4.4 Void wall-crossing
	4.5 Superpotential
	4.6 Maslov-0 determinism

	5 T-duality matching and dual singular fibers
	5.1 Affinoid tropical charts for the Clifford and Chekanov chambers
	5.2 Gluing with a symmetry
	5.3 Mirror analytic space
	5.4 The analytic embedding g
	5.5 Fibration preserving
	5.6 Dual singular fiber is not a Maurer-Cartan set

	6 Generalizations
	6.1 Lagrangian fibration
	6.2 Action coordinates
	6.3 Mirror analytic structure
	6.4 Dual analytic fibration

	A Folklore conjecture for the critical values of Landau-Ginzburg models
	A.1 General aspects
	A.2 Examples
	A.2.1 
	A.2.2 


	References

