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We give a tour de force through select powerful methods of machine learning for
data analysis, dynamic modeling, model-based control, and model-free control. Focus
is placed on a few Swiss army knife methods that have proven capable of solving
a large variety of flow problems. Examples are proximity maps, manifold learning,
proper orthogonal decomposition, clustering, dynamic modeling, and control theory
methods as contrasted with machine learning control (MLC). In Chapters 14 and 17
of this book, the mentioned machine learning approaches are detailed for reduced-
order modeling and for turbulence control. All methods are applied to a classical,
innocent looking benchmark: the oscillatory two-dimensional incompressible wake
behind a circular cylinder at Re = 100 without and with actuation. This example has
the advantage of being visually accessible to interpretation and foreshadows already
key challenges and opportunities with machine learning.

1.1 Introduction

Machine learning, and more generally, artificial intelligence, is increasingly trans-
forming fluid mechanics (Brunton et al. 2020). This change is based on several trends.
First, the efforts from first principles to new theoretical insights have diminishing
returns after hundreds of years of theoretical research. Second, multiphysics mul-
tiscale problems of engineering interest significantly increase in complexity. Third,
fluid mechanics creates increasing amounts of high-quality data from experiments,
for example, participle image velocimetry, to simulations. Finally, the methods of
computer science become increasingly powerful with increasing performance of
computers and with continual discoveries of new algorithms and their improvements.

In this chapter, we focus on machine learning methods for three classical fields
of fluid mechanics: analysis of snapshot data, dynamic reduced-order modeling, and
the control of a given configuration. Following the literature, we take the transient
oscillatory cylinder wake as the most simple, yet nontrivial benchmark. The flow
physics is phenomenologically easy to visualize and can be conceptualized as a
nonlinear oscillator. Yet, an accurate description poses already challenges. Section
1.2 describes the employed configuration and data.
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4 Data-Driven Fluid Mechanics Chapter 1

Analysis may start with the search of a few features helping to categorize or explain
fluid mechanics. In the case of the cylinder wake, the amplitude and phase are two
such features helping to parameterize drag, lift, and even the flow with good accuracy.
Section 1.3 presents two tools for this purpose. First, the proximity map cartographs
all snapshot data in a two-dimensional plane with classical multidimensional scaling
(CMDS) as the prominent approach. Second, an automated manifold extraction, local
linear embedding (LLE), is presented. Both methods allow us to extract the amplitude
and the phase of vortex shedding. CMDS can be applied to arbitrary even turbulent
data. LLE comes with an estimate of the embedding dimension, if the dynamics is
simple enough.

The analysis may continue with the search of a low-dimensional representation of
the flow data – as described in Section 1.4. Two different approaches are presented.
First, the flow data is represented by a data-driven Galerkin expansion with proper
orthogonal decomposition (POD). POD minimizes the averaged error of the expansion
residual. Second, the flow data may also be represented by a small number of
representative state, called centroids. K-means++ clustering achieves this goal by
minimizing the averaged representation error between the snapshots and their closest
centroids.

The dynamics may be understood by reduced-order models (ROM) building on
such low-dimensional representations. The spectrum of ROM has a bewildering
richness with a myriad of enabling auxiliary methods. Hence, an overview is
postponed until Chapter 14. We focus on simple dynamical models of the cylinder
wake, illustrating the analytical insights that may be gained (see Section 1.5).

The stabilization of the wake is discussed in Section 1.6. This discussion starts with
a classical approach employing ROM for the derivation of the control law. A powerful
model-free alternative is MLC, which learns the control laws in hundreds or thousands
of test runs.

Finally, Section 1.7 summarizes some good practices of analysis, modeling, and
control. The chapter cannot be an exhaustive state-of-the-art compendium of machine
learning approaches. Instead, the presented methods can be seen as the Swiss army
knife of machine learning. They are simple yet powerful and can already be applied
in experimental projects with no or limited availability to first principle equations.

1.2 The Cylinder Wake: A Classical Benchmark

This section describes a classical, innocent looking benchmark of modeling and
control, the two-dimensional oscillatory flow behind a circular cylinder. The first wake
models were proposed over 100 years ago (von Kármán 1911), giving the von Kármán
vortex street its name. The configuration and direct numerical simulation are described
in Section 1.2.1. The transient flow behavior is outlined in Section 1.2.2. A sketch of
the dynamics is previewed in Section 1.2.3.
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1.2.1 Configuration and Direct Numerical Simulation

The two-dimensional viscous, incompressible wake behind a circular cylinder is
computed. This flow is characterized by the Reynolds number Re = UD/ν where
D represents the cylinder diameter, U the oncoming velocity, and ν the kinematic
viscosity of the fluid. The reference Reynolds number is set to Re = 100, which is
significantly above the onset of vortex shedding at Re = 47 (Jackson 1987, Zebib
1987) and also far below the onset of three-dimensional instabilities around Re = 160
(Zhang et al. 1995, Barkley & Henderson 1996).

In the following, all quantities are assumed to be normalized with the cylinder
diameter D, the oncoming velocity U, and the density of the fluid ρ. The two-
dimensional cylinder wake is described by a Cartesian coordinate system (x, y)
with the origin in the cylinder center, the x-axis pointing in streamwise, and the
y-axis in the transverse direction. The incompressibility condition and Navier–Stokes
equations read

∇ · u = 0, (1.1a)

∂tu + u · ∇u = −∇p +
1

Re
4u, (1.1b)

where p represents the pressure, “∂t” partial differentiation with respect to time, “∇”
the Nabla operator, “4” the Laplace operator, and “·” an inner product or contraction
in tensor algebra.

The rectangular computational domain ΩDNS has a length and width of 50 and 20
diameters, respectively. The cylinder center has a distance of 10 diameter to the front
and lateral sides. Summarizing,

ΩDNS =
{
(x, y) ∈ R2 : x2 + y2 ≥ 1/4 ∩ −10 ≤ x ≤ 40 ∩ |y | ≤ 10

}
.

On the cylinder, the no-slip condition u = 0 is enforced. At the front x = −10 and
lateral sides of the domain y = ±10 , a uniform oncoming flow u∞ = (1,0) is assumed.
A vanishing stress condition is employed at the outflow boundary x = 40.

Simulations are performed with a finite-element method on an unstructured grid
with implicit time integration. This solver is third-order accurate in time and second-
order accurate in space. Details about the Navier–Stokes and stability solvers are
described in Morzyński et al. (1999) and Noack et al. (2003). The triangular mesh
consists of 59 112 elements.

The employed initial conditions are based on the unstable steady solution us and
a small disturbance with the most unstable eigenmode f1. The steady solution is
computed with a Newton gradient solver. The eigenmode computation is described
in our earlier work (Noack et al. 2003). The disturbance is the real part of the product
of the eigenmode and unit phase factor ejφ . Here, “j” denotes the imaginary unit and φ
the phase. The amplitude ε is chosen to create a perturbation with a fluctuation energy
of 10−4. The resulting initial condition reads

u(x, t = 0) = us(x) + εR
{
f1(x) ejφ} . (1.2)

Sixteen initial conditions are considered. These correspond to equidistantly sam-
pled phases φ ∈ [22.5◦,45◦, . . . ,337.5◦,360◦]. Integration is performed from t = 0
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to t = 200, capturing the complete transient and post-transient state. The time step is
∆t = 0.1, corresponding to roughly one 50th of the period.

1.2.2 Unforced Transients

In this section, the transients from the steady solution to periodic vortex shedding are
investigated. The flow is analyzed in the observation domain

Ω := {(x, y) ∈ ΩDNS : 5 ≤ x ≤ 15 ∧ 5 ≤ y ≤ 5} . (1.3)

This domain is about twice as long as the vortex bubble of the steady solution. The
streamwise extent is large enough to resolve over one wavelength of the initial vortex
shedding as characterized by the stability eigenmode. A larger domain is not desirable,
because a small increase in wavenumber during the transient will give rise to large
phase differences in the outflow region, complicating the comparison between flow
states. The domain is consistent with earlier investigations by the authors (Gerhard
et al. 2003, Noack et al. 2003) and similar to the domains of other studies (Deane
et al. 1991).

The analysis is based on the inner product of the Hilbert space of square-integrable
functions over the observation domain Ω. This inner product between two velocity
fields v and w is defined by

(v,w)Ω =

∫
Ω

dx v · w, (1.4)

where “·” denotes the Euclidean inner product. The corresponding norm of the
velocity field v reads

‖v‖Ω =
√
(v, v)Ω. (1.5)

The flow u is decomposed into a slowly varying base flow uD and an oscillatory
fluctuation u′,

u = uD + u′. (1.6)

The short-term averaged flow is approximated as the projection of the flow on the one-
dimensional affine space containing the steady solution us and the post-transient mean
flow u0. The superscript “D” comes from the term distorted mean flow of mean-field
theory (Stuart 1958). In other words,

uD(x, t) = us(x) + a∆(t) u∆(x), (1.7)

with the shift-mode u∆ = (u0 − us) /‖u0 − us ‖Ω and amplitude a∆ = (u − us, u∆)Ω.
This definition approximates a short-term averaged flow and generalizes the notion in
the stability literature where the steady solution is identified with the base flow.

The shift-mode amplitude a∆ characterizes the mean-flow distortion while the
fluctuation energy

K := ‖u′‖2Ω /2 (1.8)
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Figure 1.1 Evolution of the turbulent kinetic energy K with time t associated with an initial
condition for φ = 22.5◦. The values are normalized with the maximum value Kmax. Red points
indicate normalized fluctuation levels of 0%, 10%, 50%, and 100%. For details, see Ehlert
et al. (2020).

parameterizes the fluctuation level. We also refer to K as turbulent kinetic energy
(TKE) following the mathematical definition of statistical fluid mechanics, realizing
that the flow is laminar, not turbulent.

Figure 1.1 displays the TKE evolution with time. The maximum TKE valueKmax is
used for normalization. Three dynamic phases can be distinguished. Within the first 30
convective time units D/U, the flow exhibits linear dynamics or exponential growth in
the neighborhood of the steady solution. This exponential growth can clearly be seen
in a logarithmic plot (Noack et al. 2003). In the second, nonlinear transient phase for
50 < t < 100 the flow transitions from the steady solution to the limit cycle with
decreasing growth rate. In the post-transient phase for t > 150, a periodic vortex
shedding or, equivalently, limit-cycle dynamics is observed. The figure marks four
times for TKE levels near 0%, 10% , 50%, and 100%, corresponding to the linear
dynamics phase, the beginning and middle of the nonlinear transient phase and the
limit cycle.

In Figure 1.2, the vorticity for the four selected time instants is shown. Positive
(negative) values of vorticity are shown in red (blue) bounded by solid (dashed) lines.
The three dynamic phases can be distinguished based on the closeness of vortex
shedding to the cylinder and on the formation of pronounced individual vortices.

This discussion provides a basis for the time interval [tmin, tmax] for snapshot
selection. A lower bound tmin = 40 is chosen. This bound guarantees a TKE below
0.01% or, equivalently 10−4 of the asymptotic maximum value. The upper bound
tmax = 110 includes few periods on the limit cycle.

1.2.3 Wake Dynamics

Figure 1.3 foreshadows a state-space picture of the transient dynamics. Near the steady
solution (bottom of the paraboloid), the flow spirals outward on a plane spanned
by the real and imaginary part of the unstable stability mode (bottom right). With
increasing fluctuation amplitude, the Reynolds stress deforms the short-term averaged
flow in the direction of the shift mode depicted middle left. This deformation leads
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Figure 1.2 Vorticity snapshots corresponding to 0%, 10%, 50%, and 100% fluctuation level
for the simulation displayed in Figure 1.1. The flow is visualized by iso-contours of vorticity
with positive (negative) values marked by solid (dashed) lines and red (blue) background. The
iso-contour levels and color scales are the same for all snapshots. For details, see Ehlert et al.
(2020).

to a shorting of the vortex bubble and an upward motion of the fluctuation energy.
The state moves outward and upward on a paraboloid until it converges against a
limit cycle. The center of this limit cycle is characterized by the mean flow while the
fluctuations are well approximated by the first two POD modes. In Chapters 14 and
17, this dynamics will be distilled from the data, dynamically modeled, and reversed
by stabilizing control.

1.3 Cartographing the Data with Features

In this section, feature extraction is discussed. For the sake of concreteness, fea-
tures are considered for an ensemble of M velocity snapshots um(x) = u(x, tm),
m = 1, . . . ,M . For an oscillatory flow, amplitude and frequencies are important
features that can completely or, in case of slow drifts, partially characterize the state.
For a turbulent flow, features are far more challenging to design. In case of skin
friction reduction of a turbulent boundary layer, features might be the position and
amplitude of sweeps and ejections. In the following, two feature extraction methods
are presented. First (Section 1.3.1), proximity maps via classical multidimensional
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Figure 1.3 Principal sketch of the wake dynamics. The left side displays the mean flow (top),
shift-mode (middle) and steady solution (bottom). The right side illustrates interpolated vortex
streets on the mean-field paraboloid (middle column). The short-term averaged flows are
depicted also as the streamline plots. Adapted from Morzyński et al. (2007).

scaling (CMDS) can be employed for any data. Second (Section 1.3.2), manifold
extraction with local linear embedding (LLE) is particularly powerful for low-
dimensional dynamics.

1.3.1 Proximity Maps with Multidimensional Scaling

The goal of a proximity map is to cartograph high-dimensional snapshots in a visually
accessible, often two-dimensional, feature space such that neighborhood relations are
preserved as much as possible. Let γm =

[
γm1 , γ

m
2

]T
∈ R2 (the superscript “T” denotes

the transpose) with m = 1, . . . ,M the two-dimensional feature vectors corresponding
to the snapshots um,m = 1, . . . ,M . In CMDS (Cox & Cox 2000), these features
minimize the accumulative error of the distances between the snapshots

E =
M∑
m=1

M∑
n=1

[‖um − un‖ − ‖γm − γn‖]
2 . (1.9)

The translational degree of freedom is removed by requesting centered features,∑M
m=1 γ

m = 0. The rotational degree of freedom is fixed by requiring the first feature
coordinate to have maximum variation. In general, for an N-dimensional feature
space, the sum of first I variances is maximized for all I ∈ {1, . . . ,N}. For the
invariance of the error under mirroring, however, there is no cure, as with the sign
indeterminacy of POD modes and amplitudes. In fact, the resulting proximity map
yields the first two POD amplitudes a1, a2. The resulting metric may be tailored
to specific applications, for example, identifying regions with similar cost functions
(Kaiser et al. 2017b). Since proximity maps are based on preserving neighborhood
information, it is strongly related to LLE.

In this formulation, the features γ1 and γ2 coincide exactly with the POD mode
amplitudes a1 and a2 discussed in Section 1.4.1. Hence, the proximity map is identical
with the phase portrait of these POD mode coefficients. Numerous generalizations of
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Figure 1.4 LLE of 16 cylinder wake transients. The figures displays the first two embedding
coordinates γ = [γ1, γ2]

T resulting from K = 15 nearest neighbors. For details, see Ehlert et al.
(2020).

proximity maps have been proposed. In case of control, the error may include also the
cost function to bring similarly performing states closer together (Kaiser et al. 2017).

1.3.2 Identifying the Manifold with Local Linear Embedding

LLE (Roweis & Lawrence 2000) targets to approximate M data points of a typically
high-dimensional space by a low-dimensional manifold. In particular, neighboring
points in the original data space remain neighbors in the low-dimensional embedding
space.

The result is an optimal mapping from the snapshots um to N-dimensional features
γm ∈ RN . The neighborhood relation is preserved as follows. Let im1 , . . . , i

m
K be the

indices of the K closest snapshots to the mth one. Let

um ≈

K∑
k=1

wmku
im
k

be the best approximation of the mth snapshot by its neighbors with optimized
nonnegative weights wmk adding up to unity. These constraints on the weights enforce
a local interpolation. Then, also the feature vector can be approximated by the same
expansion, γm ≈

∑K
k=1 wmkγ

im
k . Here, K is a design parameter. It must be larger than

the dimension of the manifold yet sufficiently small for the assumed locally linear
behavior of the manifold. N is increased until convergence of the error is reached.
Then, N denotes the dimension of the manifold. For the details, we refer to the original
literature (Roweis & Lawrence 2000).

Figure 1.4 displays the LLE feature coordinates of the wake snapshot data.
The origin corresponds to the steady solution us , while the outer circle represents
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post-transient vortex shedding states. An analysis of the polar representation γ1+jγ2 =

r exp(jθ) reveals that the distance r correlates well with the fluctuation energy, while
θ can be considered the vortex shedding phase (Ehlert et al. 2020).

1.3.3 Other Features

Evidently, many other features can be constructed. An obvious design parameter of
CMDS and LLE is the chosen distance between two snapshots, for example, the
domain and the considered state variables.

Here, we mention one feature vector which is of large relevance to experiments:
time-delay coordinates from sensor signals (Takens 1981). While reduced-order
representations of fluid flows reduce the dimension of the state, time-delay coordinates
increase the dimension of the measured signal to a level where the trajectories do
not cross each other (no false neighbors) and a dynamical system can be identified.
Loiseau et al. (2018) discuss the construction of velocity field manifold for the
transient cylinder wake from the lift coefficient.

1.4 Low-Dimensional Representations

Low-dimensional state representations are key enablers for understanding, state
estimation, dynamic modeling, and control. The starting point of this section is the
ensemble of M flow snapshots um(x), m = 1, . . . ,M (Section 1.2). A low-dimensional
data-driven representation is synonymous with an autoencoder in machine learning.
An autoencoder targets a low-dimensional parameterization of the snapshot data, say
in RN . More precisely, an autoencoder comprises an encoder G from the high- or
infinite-dimensional state-space to a low-dimensional feature space, for example,

um 7→ am := G (um) ∈ RN , m = 1, . . . ,M (1.10)

and a decoder or state estimator H , for example,

am 7→ ûm := H (am) , m = 1, . . . ,M (1.11)

for the reconstruction of the state. Ideally, the autoencoder identifies the best possible
pair of encoder G and decoder H that minimizes the in-sample error of the estima-
tor/decoder

Ein :=
1
M

M∑
m=1

‖ ûm − um‖
2
Ω . (1.12)

1.4.1 Optimal Subspaces with Proper Orthogonal Decomposition

POD can be considered as an optimal linear autoencoder onto an N-dimensional affine
subspace. Let u0 be the average of the snapshot ensemble, ui , i = 1, . . . ,N be the N
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POD modes, and ai be the corresponding mode coefficients. Then the encoder G of a
velocity field u to the mode amplitudes a = [a1, . . . ,aN ]

T is defined by

ai := (u − u0, ui)Ω , i = 1, . . . ,N, (1.13)

while the decoder H reads

û(x) = u0(x) +
M∑
i=1

aiui(x). (1.14)

POD modes are an orthonormal set and sorted by energy content. The optimality
condition (e.g., Holmes et al. 2012) implies a minimal in-sample representation error
from (1.12). We cannot find another Nth order Galerkin expansion (more precisely, a
different N-dimensional subspace) yielding a smaller error.

For the transient wake data, the most energetic POD modes ui and the amplitude
evolution ai are displayed in Fig. 3 and 4 of Noack et al. (2016). The first two modes
correspond to von Kármán vortex shedding. The third mode resolves the change of
the mean field. The following modes mix different frequencies and wavelengths.

1.4.2 Coarse-Graining the Data into Bins with Clustering

The key idea of clustering is representing the snapshots by a small number, say K , of
centroids ck with k = 1, . . . ,K . Every snapshot um can be associated with its closest
centroid ck . Thus, the encoder G maps the velocity field u to k ∈ {1, . . . ,K}, the index
of the closest centroid. In other words, the encoder creates “bins” of similar snapshots.
The decoder H approximates the velocity field by the closest centroid û = ck . The
k-means algorithm aims to minimize the in-sample representation error (Arthur &
Vassilvitskii 2007). For generic data, the centroids can be expected to be unique
modulo the index numbering. Clustering with K bins cannot yield a lower in-sample
error than a POD representation with K modes ui , i = 0, . . . ,K − 1. Both clustering
and POD span a K − 1-dimensional subspace, but a POD expansion can interpolate
states while the centroids are fixed representations of the corresponding snapshot bin.

Figure 1.5 displays the results for 10 centroids visualized with LLE features. The
centroids attempt to fill the circular region. One centroid is the steady solution; seven
centroids resolve the limit cycle; and a phase opposite pair of centroids represent low-
amplitude oscillations.

1.4.3 Comparison and Discussion

POD and clustering are quite different autoencoders. While POD is based on a super-
position of modes, centroids are representative states that cannot be superimposed.
LLE can be generalized to an autoencoder. The feature vector γ is obtained in
the encoder step. A decoder can easily be constructed, for instance, with K-nearest
neighbor interpolation (Ehlert et al. 2020).

Figure 1.6 displays the reconstruction error of the three methods for the simulation
data. All three methods have the largest reconstructing error in the transient phase
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Figure 1.5 Cluster centroids localized in the LLE-based feature space. One centroid represents
the steady-state solution; two resolve the opposite transient phases; and the remaining eight
centroids are close to the limit cycle. For details, see Ehlert et al. (2020).
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Figure 1.6 Out-of-sample error Eout for a new simulation trajectory at Re = 100. The solid
line corresponds to LLE representations. The red dash-dotted curve and blue dashed curve
refer to approximations with 10 centroids and 10 POD modes, respectively. For details, see
Ehlert et al. (2020).

between t = 60 and t = 80. LLE significantly outperforms both POD and clustering
by up to three orders of magnitudes, highlighting the two-dimensional manifold of
the Navier–Stokes dynamics and a niche application of LLE. As expected, clustering
performs worst lacking any intrinsic interpolation. The low error of the LLE-based
autoencoder demonstrates that the dynamics is effectively two-dimensional. Yet, about
50 POD modes are necessary for a similar resolution as corroborated by Loiseau et al.
(2018) for a similar manifold approximation. Evidently, POD-based representations
are not efficient for slowly changing oscillatory coherent structures.

Data-driven Galerkin expansions have been optimized for a myriad of purposes.
Dynamic mode decomposition (DMD) (Rowley et al. 2009, Schmid 2010) can extract
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stability modes from initial transients and Fourier modes from converged post-
transient data. However, the performance for transient wakes is disappointing while
a recursive DMD can keep some advantages of POD and DMD (Noack et al. 2016).
Flexible state-dependent modes may significantly improve the accuracy of a low-order
representation (Siegel et al. 2008, Tadmor et al. 2011, Babaee & Sapsis 2016).

1.5 Dynamic Models: From Proper Orthogonal
Decomposition to Manifolds

In this section, a path to a least-order model for the transient cylinder wake is pursued.
The starting point is the POD Galerkin method (Section 1.5.1). Then (Section
1.5.2), mean-field theory is employed to significantly simplify the dynamics. The
simplification culminates in a manifold model with the Landau equation as dynamics
(Section 1.5.3).

1.5.1 Proper Orthogonal Decomposition Galerkin Method

The traditional Galerkin method (Fletcher 1984) derives the dynamics of the Galerkin
approximation (1.14) with orthonormal modes from the Navier–Stokes equations
(1.1). Under weak conditions, a constant-linear-quadratic system of ordinary differ-
ential equations is obtained

dai
dt
= ci +

∑
j=1,...,N

li jaj +
∑

j ,k=1,...,N

qi jkajak . (1.15)

These conditions may include the incompressibility of the flow, a stationary domain,
stationary Dirichlet, periodic, or von Neumann boundary conditions, and smoothness
of the flow. The coefficients ci , li j , and qi jk are functions of the modes and of the
Reynolds number. The coefficients may also be identified from numerical solutions or
experimental data (Galletti et al. 2004, Cordier et al. 2013), for instance, if the flow
domain is too small or if the turbulent fluctuations are not resolved in (1.14). We refer
to exquisite textbooks (Fletcher 1984, Holmes et al. 2012) for details. Schlegel and
Noack (2015) have derived necessary and sufficient conditions for bounded solutions,
which can be considered a requirement for a physical sound model.

1.5.2 Mean-Field Model

The Galerkin system (1.15) can be significantly simplified exploiting the manifold
dynamics depicted in Figure 1.3 and derived in Section 1.5.1. The flow is dominated
by a zeroth and first harmonics component (see (1.6)).

The zeroth component is on the line from the steady solution us to the mean flow u.
This line approximates the one-period averaged flow uD and is parameterized by the
shift mode u3 and its amplitude a3 (see (1.7)). The shift mode is effectively a backflow
in the wake. The streamlines look like a fly and are depicted in Figure 1.3 (left middle
subfigure).
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The first harmonics represents von Kármán vortex shedding, which may be resolved
by a cosine u1 and sine u2 mode, ignoring the shape deformation for a moment:

u′(x, t) = a1(t) u1(x) + a2(t) u2(x). (1.16)

The modes may be inferred from Figure 1.3 in the rightmost column. In the following,
u1, u2, and u3 are assumed to be orthonormalized. The first three POD modes of the
transient yield are already a good approximation of these modes.

Following mean-field arguments (Noack et al. 2003), the Galerkin system (1.15)
simplifies to a self-amplified, amplitude limited oscillator,

da1/dt = σa1 − ωa2, σ = σ1 − βa3, (1.17a)

da2/dt = σa2 + ωa1, ω = ω1 + γa3, (1.17b)

da3/dt = σ3a3 + α
(
a2

1 + a2
2

)
. (1.17c)

The oscillator has three parameters σ1, ω1, σ3 for linear dynamics and three
parameters for α, β, γ for the weakly nonlinear effects of Reynolds stress. Intriguingly,
sparse identification of nonlinear dynamics (SINDy) extracts precisely this sparse
dynamical system from transient simulation data (Brunton, Proctor & Kutz 2016a).

a

a
a

Figure 1.7 Transient dynamics of the cylinder wake from the DNS (solid line) and the
mean-field Galerkin system (1.17) (dashed line). Here, a∆ = a3. Phase portrait from Tadmor
and Noack (2004).

Figure 1.7 shows that the mean-field Galerkin system (1.17) and the direct numeri-
cal simulation agree well. A detailed analysis (Tadmor & Noack 2004) quantitatively
corroborates this agreement for the manifold and the temporal evolution.

1.5.3 Manifold Model

The mean-field Galerkin system can be further simplified exploiting the slaving of the
shift mode to the fluctuation level. In fact, the calibrated σ3 ≈ −6σ1 shows a much
quicker convergence to manifold than the growth of the fluctuation. Hence, (1.17c) is
well approximated by the algebraic equation

a3 =
α3

|σ3 |

(
a2

1 + a2
2

)
, (1.18)
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explaining the mean-field parabola shape in the figure. Equation (1.18) in (1.17a),
(1.17b) and the introduction to polar coordinates a1 = r cos θ, a2 = r sin θ lead to the
famous Landau equation (Landau & Lifshitz 1987) for a supercritical instability,

dr/dt = σ1r − β′r3, dθ/dt = ω1 + γ
′r2. (1.19)

These equations show an exponential growth by linear instability and a cubic damping
by Reynolds stress and mean-field deformation. The frequency changes as well. The
nonlinearity parameters β′ and γ′ can easily be derived from (1.17). Intriguingly, this
equation is found to remain accurate even far from the onset of vortex shedding.

The resulting Landau model does not include higher harmonics. Even worse, we
have assumed fixed modes u1, u2. Yet, the prominent stability mode near the steady
solution is distinctly different from the POD modes characterizing the limit cycle. a3-
dependent modes can cure this shortcoming (Morzyński et al. 2006), but the model is
still blind to higher harmonics. A more accurate model is based on the LLE feature
coordinates γ1 = r cos θ and γ2 = r sin θ and an identified Landau equation for the
dynamics of r and θ. The LLE autoencoder incorporates the mode deformation and
higher harmonics (Ehlert et al. 2020). Loiseau et al. (2018) has derived such a model
based on similar premises. The mean-field Galerkin model can be generalized for two
(and more) frequencies (Luchtenburg et al. 2009).

1.6 Control: Model-Based and Model-Free Approaches

This section previews two flow control approaches. Section 1.6.1 follows the classical
paradigm of model-based control design, while Section 1.6.2 outlines a model-free
machine-learned control optimization.

1.6.1 Model-Based Control

As a control benchmark (Hinze & Kunisch 2000), we aim to stabilize the cylinder
wake with a transversal volume force in the near wake (see Figure 1.8). This
admittedly academic volume force actuator is surprisingly often used in the compu-
tational flow control literature and significantly simplifies the discussion. As added
complexity, experimental conditions are emulated by the hot-wire measurement of the
streamwise velocity component s. The goal is stabilizing sensor-based control law
(see, again, Figure 1.8).

The volume force can be shown to lead to an extra term gb in the mean-field system
(Gerhard et al. 2003),

da1/dt = σa1 − ωa2 + gb, σ = σ1 − βa3, (1.20a)

da2/dt = σa2 + ωa1, ω = ω1 + γa3, (1.20b)

a3 = α
′
(
a2

1 + a2
2

)
, α′ = α/|σ3 |. (1.20c)
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Figure 1.8 Cylinder wake configuration with volume force actuation and hot-wire sensor.

In this differential algebraic system, a3 is slaved to the fluctuation energy (1.18). Here,
b is the actuation command, for example, the induced acceleration in the circular
region, while the positive gain g quantifies the effect on the dynamics and depends,
for instance, on the size and location of the volume force support. Without loss of
generality, the actuation term only effects a1 by suitable rotation of the modes u1, u2.

The forced growth rate of the fluctuation energy K = r2/2 = (a2
1 + a2

2)/2 reads

dK
dt
= a1

da1

dt
+ a2

da2

dt
= σr2 + g b a1. (1.21)

The fluctuation energy can be mitigated with negative actuation power g b a1, that is,
b has to have the opposite sign of a1. For simplicity, a linear control law is assumed,

b = −ka1, k > 0. (1.22)

The control gain k shall ensure a forced exponential decay rate σc < 0 of the
amplitude r . This implies with (1.22) and (1.21),

dK
dt
= σcr2 = σr2 + g k a2

1 . (1.23)

Averaging over one period and exploiting a2
1 = r2/2 yields the control gain k and thus

the control law

b = 2
σc − σ

g
a1. (1.24)

The implications of this law are plausible: the higher the unforced growth rate and
the higher the desired damping, the larger the volume force amplitude must become.
Contrary, the larger the gain g of actuation on the dynamics, the smaller the volume
force needs to be. It should be born in mind that σ is r dependent.

For the sensor-based control, the state a = [a1,a2]
T is estimated from the sensor

signal with a dynamic observer. The resulting stabilization effect is shown in Figure
1.9. While the model allows complete stabilization, the fluctuation energy of the
DNS has been reduced by 30% in the observation region x < 6. The model is only
partially accurate as it ignores shedding mode changes due to actuation and convection
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(a) (b)

Figure 1.9 Model-based cylinder wake stabilization. (a) unforced and (b) controlled flow.
Here, the vorticity field is shown: red and blue mark negative and positive vorticity, while
green corresponds to potential flow.

effects. The maximum reduction of the fluctuation level is 60%, leading to a complete
stabilization of the near wake and a residual fluctuation in the far wake.

1.6.2 Model-Free Machine Learning Control

In Section 1.6.1, the inaccuracy of the model has led to a reduced control performance.
In model-free control, such model-based errors are avoided. Instead, a regression
problem is solved: find a control law b = K(s) that minimizes the cost function
J, for example, the fluctuation energy. Any regression solver requires repeated tests
of control laws in the full plant for the optimization problem. A linear ansatz for
the control law allows for a gradient-based approach, for example, the downhill
simplex method, for parameter optimization. If no structure of the control law shall
be assumed, for example, in case of strongly nonlinear dynamics, MLC has proven
to be very powerful. MLC is based on genetic programming as regression solver and
has optimized the nonlinear control law in dozens of experiments and simulations
(Noack 2019). The observed testing requires hundreds to one thousand control laws
from simple single-input single-output (SISO) to complex nonlinear multiple-input
multiple-output (MIMO) control.

(a) (b)

Figure 1.10 Machine learning control of the fluidic pinball with 3 cylinder rotations
responding to 15 undisplayed downstream sensors. Contour levels of vorticity for the unforced
flow (a) and controlled flow (b) by the control law. Solid lines and dashed lines represent
respectively positive and negative vorticity. For details, see Cornejo Maceda et al. (2019).

Figure 1.10 provides a synopsis for MLC applied to the fluidic pinball configuration
(Cornejo Maceda et al., (2019), (2021)). Forty-two percent reduction of the effective
drag power is achieved accounting for actuation energy. The enabling MIMO feedback
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control has 15 downstream sensors (not displayed) and commands the rotation of the
three cylinders. The mechanism is a combination of open-loop Coanda forcing and
closed-loop phasor control (as in the cylinder wake example).

1.7 Conclusions

This chapter provides examples of machine learning applications in fluid mechanics.
The examples are from analysis, modeling, and control of the oscillatory cylinder
wake. All applications are based on regression problems, that is, finding a function
that minimizes a cost. Feature extraction leads to a mapping from the flow to
few coordinates optimizing some neighborhood/distance criteria. An autoencoder
comprises an encoder and decoder for a low-dimensional flow representation that
minimizes the representation error for the snapshot data. Dynamic modeling relies
on a mapping from the state to the change of state. State estimation is a function from
the measured sensor signals to the flow field. Control design leads to a function from
the state or sensor signals to the actuation command minimizing a given cost. Closures
can be seen as control terms that minimize the tracking error between computed and
observed states. More examples can be added (Brunton & Noack 2015).

Machine learning provides powerful tools for regression solvers based on existing
data (“curve fitting”) or based on in situ optimization (“variational problems”). The
discussed data-based regressions – classical multidimensional scaling, local linear
embedding, proper orthogonal decomposition, clustering – can be used for a wide
range of problems. Genetic programming is a powerful tool for solving variational
problem, control design or closures, without required data but with in situ testing.

The oscillatory cylinder wake and its stabilization looks like an innocently simple
benchmark. Yet, it shows already that machine learning methods need to be carefully
chosen. For instance, local linear embedding does a remarkable job of compressing
the data to a two-dimensional manifold. In contrast, 50 POD modes are required
for a similar representation error making understanding, state estimation, dynamic
modeling, and model-based control next to impossible. We will elaborate on machine
learning methods and more advanced applications for reduced-order modeling (Chap-
ter 14) and for control (Chapter 17). We highly recommend three introductory books
for machine learning: Abu-Mostafa et al. (2012) as a deep introduction to how one
can learn from data, Wahde (2008) for optimization solvers, and Burkov (2019) for an
inspiring overview of machine learning methods.
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