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1. Introduction. In an earlier paper [3] I studied the property C and re­
lated properties C and C"; but the principal problem, viz, to prove, with the 
axiom of choice only (without any other hypothesis), the existence of a non-
denumerable set of property C, remains open. 

In another paper [4] I studied HausdorfFs problem [1] of the existence of 
O-limits for (transfinite) sequences of dyadic sequences, and we have some 
conditional results; but again the main problem remains open, viz, the problem 
of proving (with the axiom of choice only) the existence of such 12-limits. 

In the present paper we are going to solve, in a certain sense, a compound of 
these two problems. We are going to show that: either there exist 12-limits, or 
non-denumerable C-sets, or both (Theorem I). We also prove two other 
theorems which are related. 

For the definitions and the general theory we refer the reader to the two 
papers mentioned above. We shall, however, repeat here those theorems which 
we are going to use explicitly, and those definitions where more than just the 
name occurs. 

We denote generically a finite set by A. Individual finite sets will be indicated 
with a superscript, such as A^A". If E C F + A, we shall write E < F (E is 
almost-contained in F). Whereas, in [4], these definitions were used for sets of 
natural numbers only, we shall use them here for other sets also, but only for 
subsets of a fixed denumerable set (e.g., the set of all rational numbers) and thus 
we shall still have the same theorems, mutatis mutandis. 

A set E is said to have the property C" if every double sequence of intervals 
Jmn satisfying the conditions 

E C E Jmn (for all m), 
n 

contains a diagonal sequence 

J lriii -J 2rii) • • • » J mnm) • • • 

such that 

v— s J Jrnnm' 
m 

It can easily be shown that every C'-set is a C-set [cf. 2]. 

THEOREM I. The non-existence of Çl-limits (for dyadic sequences) implies that 
every linear set of power Xi has property C {and also C"). 
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We shall actually prove it for C and we shall give two proofs. 

THEOREM II. The non-existence of Q-limits implies the following proposition: 
Given any family of Hi infinite sets of natural numbers Ea (a < 12), there exists a 
set D such that Ea D and Ea CD are infinite sets, for all a. (CD means: comple­
ment of D.) 

There is a stronger theorem, from which the above two follow, namely: 

THEOREM III. The non-existence of Sl-limits implies the following proposition: 
The sum of Hi (linear) sets of first category is again of first category. 

For the proofs of these theorems we need a few preliminaries. 
The abbreviation "of n.n." means "of natural numbers." The letters ju, v, 

m, n, r, s, t, (without or with subscripts) will always denote natural numbers; 
and the letters a, b, c, d, (without or with subscripts) will denote "segments," 
to be defined presently. Sets of segments, and also other sets, will be denoted 
by capitals, A, B, . . . . 

A finite sequence of n.n. (r\, r2, . . . , rn) wTill be called a segment. The first m 
terms (m < n) of a segment form a subsegment. Example: (1, 3, 5) is a sub-
segment of (1, 3, 5, 7, 9), but (1, 5, 9) is not a subsegment of it in our sense. 

The word "sequence" shall always mean "infinite sequence." 
Two sequences of n.n., {sn} and {tn\, will be said to intersect if we have sn = tn 

for some value of n. (In [3, p. 118, Lemme 5], two sequences were said to be 
"tout-à-fait différentes" if and only if, in this sense, they do not intersect.) 

A sequence sn and a segment (rh r2, . . . , rm) intersect, if sn = rn for some n < m. 
For a given set £f of sequences of n.n., a diagonal sequence is a sequence (not 

necessarily in ^) which intersects each element of ^ . If such a sequence exists, 
we shall say that ^ admits a diagonal. 

We quote five theorems from the other papers, for later use: 

(1) [3, p. 119, Lemme 6]. The proposition 'Every linear set of power \&\ has 
property C" is equivalent to the following: 'Every set of sequences (of n.n.) of power 
Hi admits a diagonal.1 

(2) [3, p. 120, Lemme 8]. The existence of a non-C" set of power Hi implies 
that the interval (0, 1) is the sum of Hi sets of first category. 

(3) [4, p. 34, Theorem 3a]. The non-existence of ^-limits implies the proposition 
B(fc$i), i.e., the non-existence of (Q, oo*)-gaps. 

(4) [4, p. 37, Lemma 5]. B(fc$i) is equivalent to the following proposition: 'If 
Yn < Xa for all n < o), a < Ù (X's and Y's are sets of n.n.), then there exists a 
set D such that Yn < D < Xafor all n and a.' 

(5) [4, p. 38, Lemma 7]. The non-existence of Q-limits (for dyadic sequences) 
implies the following proposition: 'Given t<i sets (of n.n.) Xa, if every finite product 
of X}s is an infinite set, then there exists an infinite set D, such that D < Xa (for 
all a).' ("Finite product" means a product of a finite number of sets.) 
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The last two theorems, i.e., (4) and (5), are the clue to the proofs of this 
paper; they also contain, in a sense, the clue to [4, Chapter III]. We shall, 
however, have to replace, in (4) and (5), the words "of n.n." by "of segments'* 
and later on by "of rational numbers." This is permissible, since, in theorems 
of this type, the set of all natural numbers may be replaced by any other de-
numerable set, e.g., the set of all segments. 

(4'), (5') • Same as (4), (5), with "segments" or "rational numbers" in place 
of "n.n." 

2. Proof of Theorem I. We need the following two new lemmas, which are 
obvious : 

LEMMA (i). Given a finite set of sequences {of n.n.), there exist infinitely many 
diagonal segments, a diagonal segment being a segment intersecting each of the given 
sequences. 

LEMMA (ii). Given a segment b = (ri, r2, • . « , rm) and a finite set of sequences, 
there exist infinitely many diagonal segments starting with (ri, r2, . . . , rm), i.e., 
having b as a subsegment. 

Proof of Theorem I. Let 

Ul}> {^}, • • • , {sn}t • • • , {si}, . . . (a < 0) 

be a fixed, but arbitrary, set of fti sequences of n.n. 
Assuming that no 12-limits exist, it is sufficient to show that the above set 

admits a diagonal sequence, cf. (1). 
Let Aa be the set of all segments intersecting {si}. It follows from Lemma (i) 

that every finite product 

rua-
is an infinite set, hence, by (5'), there exists an infinite set (of segments) DQ such 
that A) < Aa (all a < ft). 

More generally, let Al be the set of all those segments which have b as a 
(proper) subsegment and intersect {s^}. Just as before, but using Lemma (ii), 
we see that every finite product is an infinite set, hence there exists an infinite 
set Db, such that Db < Al (all a). 

Since obviously AI < Aa, we have Db < Aa, for all a and all segments b. Now, 
the b's form a denumerable set, and the a's a set of power ^ i , hence, by (3) and 
(4'), there exists a set D such that 

(6) Db<D<Aa, for all a and all b. 

We shall use this set D to construct the required diagonal sequence. 
Let &i G D. Next, let 

b2 £ Dbl-D. 
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(Such a segment exists, because Db -D is an infinite set for any b.) Note that bx 

is a subsegment of b2. Next, let 

bz e Db3-D, 
and, generally, let 

bn+1 e Dbn-D,.... 

We see that bn is always a (proper) subsegment of bn+i, hence all bn
ys are sub-

segments of one common sequence. More explicitly, we can write: 

bi = (ri, r2l . . . , r,,), 

b2 = (ri, r2, . . . , rVl, . . . , r„t), 

6n = (n, r2, . . . , rFl, . . . , r„2, . . . , r„B). 

In order to show that {rn\ is the required diagonal sequence, it is sufficient to 
notice that, by definition, bn^D for all n, and that, by (6), D <Aa for all a. Thus 
bn(zAa for any given a and almost all n. Therefore, for any given a, almost all bn 

intersect {$„}, and hence {rn\ intersects {s*} for all a. 
Theorem II can be proved in a similar way, but we shall rather deduce it from 

Theorem III. 

3. Proof of Theorem III. We need the following result: 

(7) [3, p. 112, Théorème 1 ,B3]. B (fc$ i) is equivalent to the following proposition: 
'The sum ofi$iFa's disjoint from di is contained in an Fa disjoint from 9x, where 9î 
is the set of all rational numbers.' 

Now, the set 9î may be replaced by any other dense denumerable set £>; 
also, the sum of fc^iTVs is equal to the sum of Ni closed sets (because ^ i • fc<o 
= b$i). From this, together with (3) and (7), we have the following: 

LEMMA (iii). The non-existence of ^-limits implies the proposition: 'The sum of 
^ i closed sets disjoint from 35, is contained in an Fa disjoint from 3); where 3) is 
any everywhere-dense denumerable set.' 

Taking complements, we get the following: 

LEMMA (iv). The non-existence of Q-limits implies that the product of Hi open 
sets or GB'S containing 3), contains a G s containing 3D {where 3) is everywhere 
dense and denumerable). 

Proof of Theorem III. Without loss of generality, the sets of first category in 
the proposition in the theorem may be replaced by TVs of first category, i.e., by 
non-dense TVs. Then, by the same argument as above, the proposition may be 
changed to the following one: 

The product of R\ everywhere-dense open sets contains an everywhere-dense G a. 
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Let G1, G2, . . . , Gw, . . . , Ga, . . . (a < £2) be fc$i everywhere-dense open sets. 
It is sufficient to prove that they contain an everywhere-dense G5, assuming the 
non-existence of 12-limits. 

Let Aa be the set of all rational numbers contained in Ga. Since every finite 
product of Ga's is again an open set, every finite product oîAa's is an infinite set. 
Hence, by (5'), there exists an infinite set Do with DQ < Aa (for all a). • 

Now let J be any interval with rational endpoints. Then J -Aa is the set of 
rational points in J Ga. Again, any finite product of these sets J -Aa is an infinite 
set. Hence there is an infinite set Dj with Dj < J -Aa < Aa, for all a. Thus 
we have: 

(8) Dj C / , for all J% 

(9) Dj < Aa, for any J and any a. (There are fc$0 J1 s and fc$i a's.) 

Therefore, by (3), (4'), and (9), there is a set D with Dj < D < Aa, for all 
/ and a. 

Now, since Dj is an infinite set, it has, by (8), at least one accumulation point 
in the closure of / , and this accumulation point is necessarily an accumulation 
point of D, because almost all1 elements of Dj are elements of D. Thus we see 
that D has accumulation points in every interval / , therefore D is everywhere-
dense (and denumerable). 

Also, since D < Aa, we have D d Aa + Aa, where the Aa's are certain sub­
sets of 9î; and since Aa C Ga, we finally have 

(10) DCGa+ A\ for all a. 

We may now apply Lemma (iv), for the left hand side of (10) is everywhere-
dense and denumerable, whereas the right hand side is a Gg (because the sum of 
an open set and a finite set is always a GO). 

It follows, from Lemma (iv), that there exists a Ga, say E, such that 

(11) DCECU(Ga+ A a ) C r i G a + $R. 
a a 

From D C E it follows that E is everywhere-dense, therefore it is everywhere of 
second category (because it is a G$). Therefore, E — 9? is still everywhere-
dense and is obviously still a G§. Finally, we see from (11), that E — 3t is 
contained in all Ga. Thus E — 9î is the G$ which we set out to find. 

4. Proof of Theorem II. To every set of n.n. there corresponds a dyadic 
"decimal" representation of a real number belonging to the interval [0,1]. A set 
of sets of n.n. is said to be non-dense, or of first category, if the corresponding 
set of real numbers is non-dense, or of first category. Let E be an infinite 
set of n.n. Then the linear set corresponding to the set of X's such that E C X 
is a Cantor discontinuum, and thus non-dense, and the set of X's such that 
E < X is of first category, being the sum of £<o non-dense sets. 

^'almost all" means "all but a finite number of." 
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Similarly, the set of all X's such that E < CX is also of first category. Hence, 
the set of all X's such that 

(12) either E-X = A or E-CX = A, 

is of first category. Therefore, given a set of &i infinite sets Ea (a < 12), and 
assuming that there are no O-limits, it follows from Theorem III that the set 
of all X's such that 

(13) for some a, either Ea-X = A or Ea- CX = A, 

is likewise of first category. Hence the complement of this set of X's is not 
empty (because of second category), so that there exists an infinite set D (be­
longing to the said complement and thus satisfying the negation of (13) ), such 
that 

(14) for all a, both Ea-D and Ea- CD are infinite sets, 

which proves the theorem. 

5. Alternative proof of Theorem I. It follows from (2) (reversing the 
implication) that, if the sum of fc$i sets of first category is always also of first 
category, then every set of power fti has property C". Combining this with 
Theorem III, Ave have our theorem. 

REFERENCES 

1. F. Hausdorff, Summen von fc$i Mengen, Fund. Math., vol. 26 (1936), 247. 
2. F. Rothberger, Eine Verscharfung der Eigenschaft C, Fund. Math., vol. 30 (1938), 54. 
3. F. Rothberger, Sur les familles indénombrables de suites de nombres naturels et les problèmes 

concernant la propriété G, Proc. Cambridge Philos. Soc, vol. 37 (1941), 109-126. 
4. F . Rothberger, On some problems of Hausdorff and of Sierpinski, Fund. Math., vol. 35 

(1948), 29-46. 

University of New Brunswick 

https://doi.org/10.4153/CJM-1952-010-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1952-010-8

