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Abstract

We classify the horizontal SL(2)s and R-split polarized mixed Hodge structures on a

Mumford–Tate domain.

1. Introduction

A variation of (pure, polarized) Hodge structure gives rise to a horizontal holomorphic

mapping into a flag domain D; here horizontal indicates that the image of the map satisfies

a system of partial differential equations known as the infinitesimal period relation (or Griffiths’

transversality condition). Such maps arise as (lifts of) period mappings associated with families

of polarized algebraic manifolds. The celebrated nilpotent orbit and SL(2)-orbit theorems of

Schmid [Sch73] and Cattani et al. [CKS86], describe the asymptotic behavior of a horizontal

mapping, and play a fundamental role in the analysis of singularities of the period mapping

(equivalently, degenerations of Hodge structure); cf. the work of Kato and Usui [KU09]. Two of

the more striking applications of the nilpotent and SL(2)-orbit theorems are: (i) Cattani et al.’s

[CDK95] proof of the algebraicity of Hodge loci, which provides some of the strongest evidence

for the Hodge conjecture; and (ii) the proof of Deligne’s conjectured isomorphism between the L2

and intersection cohomologies of a polarized variation of Hodge structure with normal crossing

singularities over a compact Kähler manifold (first proved by Zucker [Zuc79] in the case of a

one-dimensional base, followed by Cattani and Kaplan’s [CK85] proof in the case of dimension

two and weight one, with the general case established independently by Cattani et al. [CK87]

and Kashiwara and Kawai [KK85]), and the resulting corollary that the intersection cohomology

carries a pure Hodge structure.

As a consequence it became an important problem to describe the SL(2)s appearing in

Schmid’s theorem, and to that end partial results were obtained by Cattani and Kaplan [CK77,

CK78] and Usui [Usu93]. The main result (Theorem 5.9) of this paper is a classification of those

objects. It is a corollary of Theorem 5.5, which classifies the R-split polarized mixed Hodge

structures (PMHSs), and the familiar equivalence

{R-split PMHS on D}←→ {horizontal SL(2)s on D}, (1.1)

which follows from the work of Cattani et al. [CK82a, CK82b, CKS86, Del82]. These results are

established for Mumford–Tate domains [GGK12]; the latter generalize period domains to include
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Classification of horizontal SL(2)s

classifying spaces for Hodge structures with nongeneric Hodge tensors, that is, the Mumford–Tate
group of a generic Hodge structure in the domain need not be the full automorphism group

GR = Aut(VR, Q).

A Mumford–Tate domain D is homogeneous with respect to a real, reductive Lie group

GR⊂Aut(VR, Q).

In particular, the classification describes (as R-split PMHSs) the degenerations that may
arise in a variation of Hodge structure subject to the constraint that (the connected identity
component of) the Mumford–Tate group of the generic fiber lies in GR. There is a natural
action of GR on both the horizontal SL(2)s and the R-split PMHSs; the classification theorems
enumerate these objects up to the action of GR, which we assume to be connected.

Cattani has pointed out that the problem of classifying horizontal SL(2)-orbits in period
domains is essentially solved by the possible Hodge diamonds. This is a consequence of: (i) the
equivalence (1.1); (ii) the classification of subalgebras sl2R⊂ gR by signed Young diagrams when
gR is classical [CM93, ch. 9]; and (iii) the fact that the signed Young diagram is determined
by the Hodge diamond (cf. [BPR15]). One subtlety to keep in mind here is that the Hodge
diamonds suffice to classify the SL(2)-orbits up to the action of the full automorphism group GR.
However, in the case of even weight, the Hodge diamonds do not suffice to classify the orbits
up to the action of the connected identity component G◦R. This is essentially due to the fact
that the signed Young diagrams classify the sl2R⊂End(VR, Q) up to the adjoint action of GR;
and some of these GR-conjugacy classes decompose into distinct G◦R-conjugacy classes which the
signed Young diagram/Hodge diamond fails to distinguish. (See § 5.5 for further discussion and
examples.) I assume throughout that GR is connected. A second point to keep in mind is that
the classification of subalgebras sl2R⊂ gR by signed Young diagrams requires that gR not only
be classical, but also act by the ‘standard representation’. However, even when gR is classical,
it may not be possible to realize D as the Mumford–Tate domain for a Hodge representation1

(GR, VR, ϕ,Q) with VR the standard representation. This means that in general we will not be
able to classify the horizontal SL(2)-orbits on D by Hodge diamonds when D cannot be realized
as a period domain.

A second motivation behind Theorem 5.5 is the problem of identifying polarizable orbits.
Recall that the flag domain D is an open GR-orbit in the compact dual Ď = GC/P . In particular,
the boundary bd(D)⊂ Ď is a union of GR-orbits. We say that one of these boundary orbits
is polarizable if it contains the limit of a nilpotent orbit; cf. [GGK13, KP14] and § 3.3.2 We
think of these as the ‘Hodge-theoretically accessible’ orbits. Then the natural partial order
on the GR-orbits in bd(D) allows one to address, from a Hodge-theoretic perspective, the
question ‘what is the most/least singular variety to which a smooth projective variety can
degenerate?’ [GGR14]. Theorem 5.5(c) parameterizes the polarizable orbits (§ 5.4), and from
that point of view generalizes [KR14, Theorem 6.38]. The parameterization is surjective by
definition, and is shown to be injective in a forthcoming paper by Kerr and Robles. As a corollary
to Theorem 5.5, and the fact that all codimension-one orbits O⊂ bd(D) are polarized [KP14],
we obtain a precise count of the number of codimension-one orbits in bd(D) (Proposition 5.23);
in the case that P is a maximal parabolic, this recovers [KR14, Proposition 6.56].

1 Defined in § 3.1.
2 This notion of a ‘polarized’ orbit is distinct from Wolf’s [Wol69, Definition 9.1]. In Wolf’s sense, the polarized
orbitsO =GR · o in Ď are those that realize the minimal CR-structure on the homogeneous manifoldGR/StabGR(o);
cf. [AMN10, Remark 5.5].
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The key observation in the proof of Theorem 5.5 is that underlying every R-split PMHS is a

Hodge–Tate degeneration (Theorem 4.3), and from the latter we may recover the original R-split

PMHSs. Consequently, the sine qua non of the paper is the classification of the Hodge–Tate

degenerations (Theorem 4.11). Theorem 4.3 may be viewed as describing the branching of a

gR-Hodge representation under a Levi algebra lR⊂ gR; cf. Remark 4.6. Let LR⊂GR be the

connected Lie subgroup with Lie algebra lR. As a corollary to Theorem 4.3, Mal’cev’s theorem

and a result of Cattani, Kaplan and Schmid we find that the (open) nilpotent cone C ⊂ gR
underlying a nilpotent orbit is contained in an Ad(LYR )-orbit, where LYR ⊂LR is a connected,

reductive Lie group (Corollary 4.9).

Both the statements of the classification theorems and their proofs are couched in

representation theory; the necessary background material is reviewed in § 2. Both Levi

subalgebras, and their ‘distinguished’ parabolic subalgebras, play a key role in the classification

theorems. This is not surprising as Bala and Carter’s classification [BC76a, BC76b] of the sl2Cs

in a complex semisimple gC is in terms of these pairs. Indeed, Theorem 5.9 could be viewed as the

analog the Bala–Carter classification for horizontal sl2Rs, and from this perspective is related

to both Vinberg’s classification [Vin75] of nilpotent elements of graded Lie algebras, and Noël’s

classification [Noë98] of (not necessarily horizontal) sl2R⊂ gR. The pertinent Hodge-theoretic

material is reviewed in § 3.

As I hope the examples presented here (most are concentrated in §§ 4.5 and 5.5) demonstrate,

the classifications are computationally accessible: it is straightforward to describe the horizontal

SL(2)s and the Deligne splittings of the associated R-split PMHSs. Here is one illustrative

example.

Example 1.2. The exceptional simple Lie group F4 of rank four admits a real form GR with

maximal compact subalgebra sp(2)⊕ su(2).3 This real form admits a real Hodge representation

VR with Hodge numbers (6, 14, 6);4 in particular, GR⊂SO(14, 12). The horizontal distribution

is a holomorphic contact distribution5 on the associated domain D. Theorem 5.9 identifies four

horizontal SL(2)s. The Hodge diamonds of the corresponding R-split PMHSs are depicted below;

see § 5.5 for further explanation of these diagrams and the notations lssR , S′, Z and O below.

Finally, I wish to mention that an inductive argument based on Theorem 5.9 yields a

classification of the commuting SL(2)s in Cattani, Kaplan and Schmid’s several-variables SL(2)-

orbit theorem, as will be demonstrated in a forthcoming paper with Matt Kerr in which we will

also establish the injectivity of the parameterization of the polarized orbits by Theorem 5.5.

3 This real form is commonly denoted by F I or F4(4).
4 The highest weight of VC the fourth fundamental weight.
5 See [KR14] for further discussion of the case that the horizontal distribution is contact.
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Einstein summation convention. When an index appears as both a subscript and a superscript
in a formula, it is meant to be summed over. For example, ziNi denotes

∑
i z
iNi.

2. Representation theory background

2.1 Parabolic subgroups and subalgebras
Let GC be a connected, complex semisimple Lie group, and let P ⊂GC be a parabolic subgroup.
Fix Cartan and Borel subgroups H ⊂B⊂P . Let h⊂ b⊂ p⊂ g be the associated Lie algebras.
The choice of Cartan determines a set of roots ∆ = ∆(g, h)⊂ h∗. Given a root α ∈ ∆, let gα⊂ g
denote the root space. Given a subspace s⊂ g, let

∆(s) := {α ∈ ∆ | gα⊂ s}.

The choice of Borel determines positive roots ∆+ = ∆(b) = {α ∈∆ | gα⊂ b}. Let S = {σ1, . . . , σr}
denote the simple roots, and set

I = I(p) := {i | g−σi 6⊂ p}. (2.1)

Note that the parabolic p is maximal if and only if I = {i}; in this case we say that σi is the
simple root associated with the maximal parabolic p. Likewise, p = b if and only if I = {1, . . . , r}.

Every parabolic P ⊂GC is GC-conjugate to one containing B. Thus, the conjugacy classes
PI of parabolic subgroups are indexed by the subsets I ⊂{1, . . . , r}. Let B = P{1,...,r} denote the
conjugacy class of the Borel subgroups.

2.2 Grading elements and Levi subalgebras
Given a choice of Cartan subalgebra h⊂ gC, let Λrt⊂ h∗ denote the root lattice. The set of
grading elements is the lattice Hom(Λrt,Z)⊂ h taking integral values on roots. As an element of
the Cartan subalgebra, a grading element E is necessarily semisimple. Therefore, any gC module
VC decomposes into a direct sum of E-eigenspaces

VC =
⊕
`∈Q

V ` where V ` = {v ∈ VC | E(v) = `v}.6 (2.2)

When specialized to VC = gC, (2.2) yields

g =
⊕
`∈Z

g` (2.3a)

where

g` := {ξ ∈ g | [E, ξ] = `ξ}. (2.3b)

In terms of root spaces, we have

g` =
⊕
α(E)=`

gα, ` 6= 0,

g0 = h⊕
⊕
α(E)=0

gα. (2.3c)

6 To see that the eigenvalues are necessarily rational, it suffices to observe that the eigenvalues are λ(E), where
λ ∈ Λwt⊂ h∗ is a weight of VC, and to recall that the weights of gC are rational linear combinations of the roots.
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The E-eigenspace decomposition (2.3) is a graded Lie algebra decomposition in the sense that

[g`, gm]⊂ g`+m, (2.4)

a straightforward consequence of the Jacobi identity. It follows that

pE = g0 ⊕ g+ (2.5)

is a Lie subalgebra of gC; we call this the parabolic subalgebra determined by the grading element E.
From (2.4) we also see that g0 is a Lie subalgebra of g (in fact, reductive), and each g` is

a g0-module. In general, by Levi subalgebra we will mean any subalgebra lC⊂ gC that can be
realized as the 0-eigenspace g0 of a grading element.

Remark 2.6. By the second equation of (2.3c) every Levi subalgebra contains a Cartan
subalgebra of gC. Fix a Cartan subalgebra h⊂ gC and recall that the Weyl group W⊂Aut(h∗)
is generated by the reflections in the hyperplanes orthogonal to the roots α ∈ ∆. Fix a choice
of simple roots S⊂∆⊂ h∗. The Levi subalgebras containing h are in bijective correspondence
with the subsets {wS′⊂∆ | w ∈W, S′⊂ S}: wS′ is a set of simple roots for the semisimple factor
lssC = [lC, lC] of the Levi subalgebra lC ⊃ h. In particular, there exist only finitely many Levi
subalgebras containing h.

Remark 2.7. Recall that the simple reflections (i) ∈ W in the hyperplanes orthogonal to the
simple roots σi ∈ S form a minimal set of generators for the Weyl group. Given a Levi subalgebra
lC ⊃ h, by replacing S with wS (the latter is also a set of simple roots for h), we may assume
that the simple roots of lssC are a subset S′ of the simple roots S of gC. Then the Weyl group W′

of lC is generated by the simple reflections (i) ∈W with σi ∈ S′.

Given a real form gR of gC, we will say that lR⊂ gR is a Levi subalgebra if the complexification
lC = lR⊗R C is a Levi subalgebra of gC; equivalently, a Levi subalgebra of the real form gR is the
real form lR of a conjugation-stable Levi subalgebra lC⊂ gC.

Let {S1, . . . , Sr} be the basis of h dual to the simple roots {σ1, . . . , σr}. Then any grading
element E = niS

i is an integral linear combination of the {Si}; if pE contains the Borel b ⊃ h
determining the simple roots, then ni > 0 for all i. In this case, the index set (2.1) is

I(pE) = {i | ni > 0},

and the reductive Levi subalgebra g0 = g0
ss⊕ z has center z = spanC{Si | i ∈ I(pE)} and semisimple

subalgebra g0
ss = [g0, g0]. A set of simple roots for g0

ss is given by S(g0) = {σj | j 6∈ I(pE)}.
I emphasize that the sets S(g0) and I(pE) encode the same information which describes the
GC-conjugacy class PE of the parabolic subgroup PE.

Two distinct grading elements may determine the same parabolic p. For example, any positive
multiple nSi will determine the same (maximal) parabolic as Si. However given a parabolic p,
and a choice of Cartan and Borel subalgebras h⊂ b⊂ p, there is a canonical choice of grading
element E = Ep with pE = p such that g±1 generates the nilpotent g± as a subalgebra. The grading
element associated to p ⊃ b ⊃ h is

Ep :=
∑
i∈I(p)

Si. (2.8)

For more detail on grading elements and parabolic subalgebras, see [Rob14, § 2.2] and the
references therein.
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2.3 Standard triples and three-dimensional semisimple subalgebras
Let g be a Lie algebra defined over a field k = R,C. A standard triple in g is a set of three
elements {N+, Y,N}⊂ g such that

[Y,N+] = 2N+, [N+, N ] = Y, and [Y,N ] = −2N.

Note that {N+, Y,N} span a three-dimensional semisimple subalgebra (TDS) of g isomorphic to
sl2k. We call Y the neutral element, N the nilnegative element and N+ the nilpositive element,
respectively, of the standard triple. The Jacobson–Morosov theorem asserts that every nilpotent
N ∈ g can be realized as the nilnegative of a standard triple.

Example 2.9. The matrices

n+ =

(
0 1
0 0

)
, y =

(
1 0
0 −1

)
, and n =

(
0 0
1 0

)
(2.10)

form a standard triple in sl2R; while the matrices

e =
1

2

(
−i 1
1 i

)
, z =

(
0 −i
i 0

)
, and e =

1

2

(
i 1
1 −i

)
(2.11)

form a standard triple in su(1, 1).

2.4 Jacobson–Morosov filtrations
Given a standard triple {N+, Y,N}⊂ g and a representation g ↪→ End(V ) of g, the theory of
sl2k-representations implies that the eigenvalues ` of Y are integers. In the case that V = g, this
implies that

the neutral element Y is a grading element . (2.12)

The Jacobson–Morosov filtration (or weight filtration) of N is the unique filtration W•(N,V )
of V with the following properties:

(i) the filtration is increasing, W`(N,V )⊂W`+1(N,V );

(ii) the nilpotent N maps W`(N,V ) into W`−2(N,V );

(iii) the induced map N ` : Gr`W (N,V )→ Gr−`W (N,V ) is an isomorphism for all ` > 0, where

GrkW (N,V ) := Wk(N,V )/Wk−1(N,V ).

If V =
⊕
V` is the Y -eigenspace decomposition, V` = {v ∈ V | Y (v) = `v}, then

W`(N,V ) =
⊕
m6`

Vm. (2.13)

Note that
W0(N+, g) = pY .

Parabolic subalgebras of the form W0(N+, g) are Jacobson–Morosov parabolics.

Remark 2.14. (a) Some parabolic subalgebras cannot be realized as Jacobson–Morosov
parabolics; cf. Example 2.17. Similarly, not every grading element can be realized as the neutral
element of a standard triple.

(b) The neutral element Y may not be a grading element Ep canonically associated with
p = W0(N+, g) ⊃ b ⊃ h by (2.8). Moreover, it is possible that there exist nilpotents N1 and
N2 that are not congruent under the action of Ad(G) on g (equivalently, Y1 and Y2 are not
congruent), but with W0(N1, g) = W0(N2, g). For an illustration of this, consider Example 2.16
where we have W0(N[3,1], gC) = W0(N[2,12]), but Y[3,1] = 2Y[2,12] = 2(S1 + S3).
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2.5 Ad(GC)-orbits in Nilp(gC)
Given any Lie algebra g, let Nilp(g) denote the set of nilpotent elements. A nilpotent orbit is
an Ad(G)-orbit in Nilp(g).7 In this section we will review some properties of nilpotent orbits
in a complex semisimple Lie algebra gC, including their classification by ‘characteristic vectors’
(a.k.a. ‘weighted Dynkin diagrams’);8 an excellent reference for the discussion that follows is
[CM93].

Given a nilpotent N ∈ gC, fix a standard triple {N+, Y,N}. We may choose a Cartan
subalgebra h⊂ gC and a set of simple roots S = {σ1, . . . , σr}⊂ h∗ such that Y ∈ h and σi(Y ) > 0
for all i. The (complex) characteristic vector

σ(Y ) := (σ1(Y ), . . . , σr(Y ))

is independent of our choices, and is an invariant of the nilpotent orbit N = Ad(GC) ·N ⊂ gC
through N , so that

σ(N ) := σ(Y )

is well defined. For the trivial orbit Ntriv = {0}⊂Nilp(gC) we have σ(Ntriv) = (0, . . . , 0). The
nilpotent orbits are characterized by their characteristic vectors (the following result is [Dyn57,
Theorem 8.3]; see also [Kos59, Lemma 5.1]).

Theorem 2.15 (Dynkin). The characteristic vector σ(N ) is a complete invariant of a nilpotent
orbit; that is, σ(N ) = σ(N ′) if and only if N = N ′. Moreover, 0 6 σi(N ) 6 2.

Example 2.16 (Nilpotent orbits in gC = slnC). The Ad(GC)-orbits in Nilp(gC) are indexed by
partitions d = [di] of n [CM93, ch. 3]. Given a partition, the corresponding characteristic vector
is obtained as follows. From a part di, we construct a set (di) = {di−1, di−3, . . . , 3−di, 1−di}.
Take the union of these sets, reordering into a nonincreasing sequence

⋃
i(di) = {h1 > · · · > hn}.

Then the characteristic vector of the orbit Nd indexed by d is

σ(Nd) = (h1 − h2, h2 − h3, . . . , hn−1 − hn).

For example, in the case that n = 4 there are five nilpotent orbits, indexed by

σ(N[4]) = (2, 2, 2), σ(N[3,1]) = (2, 0, 2),

σ(N[22]) = (0, 2, 0), σ(N[2,12]) = (1, 0, 1),

σ(N[14]) = (0, 0, 0).

The index set I (§ 2.1) corresponding to the conjugacy class of the Jacobson–Morosov
parabolic W0(N, g) is

I = {i | σi(N ) 6= 0}.
Equivalently, the simple roots of the reductive Levi factor are

S(g0) = {σj | σj(N ) = 0}.
7 Here we have a conflict in the nomenclature: the term ‘nilpotent orbit’ is used in both representation theory and
Hodge theory to refer to two distinct, but related objects (see § 3.2 for the second). Which of the two meanings is
intended should be clear from the context.
8 In the case that gC is a classical Lie algebra, the nilpotent orbits may be classified by partitions (or Young
diagrams); see Example 2.16 and [BPR15].
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Example 2.17 (Jacobson–Morosov parabolics in gC = sl4C). The group GC contains 23 − 1 = 7
conjugacy classes PI of parabolic subgroups, indexed by nonempty I ⊂{1, 2, 3}. From
Example 2.16 we see that only three of the conjugacy classes are Jacobson–Morosov: the
corresponding index sets are I = {2}, {1, 3}, {1, 2, 3}.

The neutral element Y is even if the Y -eigenvalues are all even. From Theorem 2.15 we see
that the neutral element Y is even if and only if σi(N ) ∈ {0, 2} for all i. Equivalently,

the neutral element Y is even if and only if it is twice the grading element (2.8)

canonically associated with a choice of Cartan and Borel h⊂ b⊂W0(N+, gC).
(2.18)

When Y is even we say that W0(N+, gC) is an even Jacobson–Morosov parabolic.
There is a unique Zariski open orbit Nprin⊂Nilp(gC) of dimension dim gC − rank gC; this is

the principal (or regular) nilpotent orbit. The orbit is represented by N = ξ1 + · · ·+ ξr with each
simple root vector ξi ∈ gσi nonzero. In this case the characteristic vector is

σ(Nprin) = (2, 2, . . . , 2).

In particular,

the Borel B⊂GC is an even Jacobson–Morosov parabolic. (2.19)

2.6 Compact roots
Let GR be a real semisimple Lie algebra. Fix a Cartan decomposition gR = kR ⊕ k⊥R . There
is a classification of nilpotent orbits in gR that is analogous to that of Theorem 2.15 in the
sense that the orbits are enumerated by characteristic vectors that are given by the roots of
kC. This classification is reviewed in § 2.7; in anticipation of that discussion we briefly recall the
relationship between the roots of gC and the roots of kC.

Fix a Cartan subalgebra t⊂ kR. Let h be a Cartan subalgebra of gC containing t⊗RC. Given
a choice of simple roots S = {σ1, . . . , σr}⊂ h∗ of gC, let α̃ denote the highest root, and set

Sext := {S} ∪ {−α̃}.

For a suitable choice9 of S there exists a subset Sk⊂ Sext such that Sk|t⊗RC is a set of simple
roots of kC. We will assume throughout that rank kC = rank gC,10 so that h = t⊗R C is a Cartan
subalgebra of both kC and gC. There are two cases to consider.

(a) If gR is of Hermitian symmetric type, then kR is reductive with a one-dimensional center
and we may take Sk⊂ S. In this case, the center of kC is spanned by the grading element dual to
the simple noncompact root {α′} = S\Sk.

(b) If gR is not of Hermitian symmetric type, then kR is semisimple and −α̃ ∈ Sk.

In both cases S\Sk consists of a single simple root α′, which we will refer to as the noncompact
simple root.11

Example 2.20. The algebra gR = su(p, q) is of Hermitian symmetric type. In this case we have
α′ = σp and Sk = S\{σp}⊂ S.

9 This means we may need to replace S with its image wS under an element w ∈W of the Weyl group.
10 This is the case when GR may be realized as a Mumford–Tate group [GGK12].
11 The root α′ corresponds to the painted node in the Vogan diagram of gR; cf. [Kna02, §VI.8].
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Example 2.21. For the algebra gR = so(2p, 2q+1), we have α′ = σp. This real form is of Hermitian
symmetric type if and only if p = 1.

Example 2.22. The algebra gR = sp(r,R) is of Hermitian symmetric type; in this case α′ = σr.
The real forms sp(p, r−p), with p > 1, are not of Hermitian symmetric type; in this case α′ = σp.

2.7 Ad(GR)-orbits in Nilp(gR)
This section is a terse review of the classification of the nilpotent orbits in a real semisimple Lie
algebra gR by the Djoković–Kostant–Sekiguchi correspondence12

{nilpotent Ad(GR)-orbits in gR}
bij
←→ {nilpotent Ad(KC)-orbits in k⊥C}. (2.23)

For details, consult [CM93, § 9] and the references therein.
The correspondence is realized through refinements of the standard triples of § 2.3. Let GR

be a real semisimple Lie algebra. Fix a Cartan decomposition gR = kR ⊕ k⊥R , and let θ be the
associated Cartan involution. A Cayley triple is a standard triple {N+, Y,N} of gR with the
property that

θ(N) = −N+, θ(N+) = −N, and θ(Y ) = −Y. (2.24)

Remark 2.25. Every standard triple in gR is GR-conjugate to a Cayley triple [CM93, Theorem
9.4.1].

Example 2.26. Let {N+, Y,N} be a standard triple. Then spanR{N+, Y,N} is isomorphic to
sl2R. The standard triple is a Cayley triple with respect to the Cartan decomposition sl2R =
kR ⊕ k⊥R given by kR = spanR{N+ −N} and k⊥R = spanR{Y,N+ +N}.

A Djoković–Kostant–Sekiguchi triple (DKS triple) is any standard triple in gC of the form
{E,Z,E} with the property that Z ∈ kC and E,E ∈ k⊥C . The Cayley transform of a Cayley triple
{N+, Y,N} is the DKS triple

E = 1
2(N+ +N − iY ),

Z = i(N −N+),

E = 1
2(N+ +N + iY ).

(2.27)

Note that
{E,Z,E} = Ad%{N+, Y,N}, (2.28)

where the element % ∈ GC is defined by

% = exp i
π

4
(N+ +N)

(
= exp i

π

4
(E + E)

)
. (2.29)

The Djoković–Kostant–Sekiguchi correspondence (2.23) identifies the Ad(GR)-orbit of N with
the Ad(KC)-orbit of E = Ad%(N).

Example 2.30. Identify (2.10) as a Cayley triple with respect to the Cartan decomposition of
Example 2.26. Then (2.11) is the Cayley transform of (2.10).

In summary, to distinguish the Ad(GR)-orbits in gR it suffices to distinguish the Ad(KC)-
orbits in k⊥C . Let Sk = {γ1, . . . , γs}⊂ h∗ denote the simple roots of kC (§ 2.6). We may conjugate
Z by Ad(KC) so that Z⊂ h and γi(Z) > 0. The vector

γ(Z) := (γ1(Z), . . . , γs(Z))

12 The correspondence was conjectured by Kostant, and proved independently by Djoković [Djo87] and Sekiguchi
[Sek87].
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is an invariant of the nilpotent orbit, so that

γ(N ) := γ(Z)

is well defined. However, in the case that gR is of Hermitian symmetric type, it is not a complete
invariant (two distinct orbits N ′ 6= N may have γ(N ) = γ(N ′)); we have lost information on the
component of Z lying in the center. Recall the noncompact simple root α′ ∈ S\Sk (§ 2.6). The
integer α′(Z) is also an invariant of the of nilpotent orbit, so that

α′(N ) := α′(Z)

is also well defined. The pair (γ(Z);α′(Z)) is a complete invariant of the orbit, which we shall refer
to as the (compact) characteristic vector of the orbit N = Ad(GR) ·N (or the orbit Ad(KC) ·E).
(In the case that gR is not Hermitian symmetric, the simple roots Sk span h∗ so that α′(Z) is
determined by γ(N ).) The following theorem may be found in [CM93, § 9.5].

Theorem 2.31. The compact characteristic vector (γ(Z);α′(Z)) is a complete invariant of the
orbit Ad(GR) ·N ⊂Nilp(gR).

3. Hodge theory background

3.1 Hodge representations and Mumford–Tate domains
Let GR be a noncompact, reductive, real algebraic group with maximal compact subgroup KR
of equal rank

rank gC = rank kC.

A (real) Hodge representation (of weight n) of GR is defined in [GGK12] and consists of:

(i) a finite-dimensional vector space VR defined over R, a nondegenerate (−1)n-symmetric
bilinear form Q : VR × VR→ R, and a homomorphism of real algebraic groups

ρ : GR→ Aut(VR, Q);

(ii) a nonconstant homomorphism of real algebraic groups

ϕ : S1
→ GR

such that ρ ◦ ϕ defines a Q-polarized (pure, real) Hodge structure of weight n on VR.

The latter condition means that

V p,q = {v ∈ VC | ρ ◦ ϕ(z)v = zp−qv ∀z ∈ S1} (3.1)

defines a Hodge decomposition VC =
⊕

p+q=n V
p,q and Q(ϕ(i)v, v̄) > 0 for all 0 6= v ∈ VC.

We always assume that the induced representation dρ : gR → End(VR, Q) is faithful, and
will often refer to ϕ as a ‘circle’. The Hodge representation is properly denoted (VR, Q, ρ, ϕ), but
will sometimes be indicated by VR alone. Additionally, we will often suppress ρ, and view the
circle ϕ as acting directly on VC; it is from this perspective that we will refer to ϕ as the Hodge
structure on VR, and generally write N ∈ End(VR) in place of dρ(N) ∈ End(VR).

Associated to the Hodge representation is the Hodge flag

F p =
⊕
r>p

V r,•. (3.2)
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The Hodge numbers are the dimensions f = (fp = dimCF
p). The Hodge flag is a point in the

Q-isotropic flag variety FlagQf (VC). The GR-orbit D = GR ·F • is the Mumford–Tate domain
of the Hodge representation; it is an open subset of the compact dual Ď = GC ·F •. When
GR = Aut(VR, Q), D is a period domain.

As homogeneous manifolds,

Ď = GC/P and D = GR/K
0
R,

where P = StabGCF
• is a parabolic subgroup of GC and K0

R =GR ∩P is compact. We say that the
Hodge representation (VR, Q, ρ, ϕ) realizes the homogeneous manifold GR/K

0
R as a Mumford–Tate

domain. Such a realization is not unique. For example, given (VR, Q, ρ, ϕ), there is an induced
bilinear form Qg on gR⊂End(VR, Q) that is nondegenerate and symmetric, and (gR, Qg,Ad, ϕ)
is a weight zero Hodge representation that also realizes GR/K

0
R as a Mumford–Tate domain.

(See § 3.1.1 for further discussion of this induced representation.) These two realizations are
isomorphic as Mumford–Tate domains. A key consequence of this is that

for the purposes of studying GR/K
0
R as a Mumford–Tate domain D,

we may work with either the Hodge representation (VR, Q, ρ, ϕ) or

the induced Hodge representation (gR, Qg,Ad, ϕ).

(3.3)

What we have in mind is the case that VR carries an effective Hodge structure of weight n > 0;
for example, VR = Hn(X,R), where X is a smooth projective variety. It is helpful to work with
the induced, weight zero, Hodge representation on gR because the latter is closely related to the
geometry and representation theory associated with the flag domain D⊂ Ď.

Remark 3.4 (A notational liberty). The Hodge flag F • and the circle ϕ are equivalent: given one,
the second is determined; cf. [GGK12]. So we may identify ϕ with the point F • ∈ D. This will
be especially convenient when we wish to downplay our choice of Hodge representation (VR, ρ)
that gives D ' GR/K

0
R the structure of a Mumford–Tate domain.

3.1.1 Hodge structures and Cartan decompositions. Given a Hodge representation (VR, Q,
ρ, ϕ), the induced Hodge structure on gC is

gC =
⊕

gp,−p, (3.5a)

where

gp,−p = {ξ ∈ gC | ξ(V r,s)⊂V r+p,s−p ∀r, s}
= {ξ ∈ gC | Adϕ(z)ξ = z2pξ ∀z ∈ S1}. (3.5b)

The decomposition is a grading of the Lie algebra in the sense that

[gp,−p, gq,−q]⊂ [gp+q,−p−q].

This implies that

kC :=
⊕
p even

gp,−p (3.6a)

is a subalgebra of gC, and

k⊥C :=
⊕
p odd

gp,−p (3.6b)
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is a kC-submodule. Moreover, gp,−p = g−p,p implies that both kC and k⊥C are defined over R, so
that

gR = kR ⊕ k⊥R (3.7)

where kR = gR ∩ kC and k⊥R = gR ∩ k⊥C . The following lemma is well known; see, for example,
[CK77, GGK12].

Lemma 3.8. The Weyl operator ϕ(i) is a Cartan involution with Cartan decomposition (3.7).

Remark 3.9. The projection D = GR/K
0
R → GR/KR may be viewed as the map taking the

Hodge decomposition (3.5) to the Cartan decomposition (3.7).

Proof. In the case that gC is simple, Qg is necessarily a negative multiple of the Killing form. This
is because a simple complex Lie algebra admits a unique Ad(GC)-invariant symmetric bilinear
form, the Killing form, up to scale. So the induced polarization is necessarily a constant multiple
of the Killing form. The facts that Qg is positive definite on the subalgebra kR and negative
definite k⊥R imply that (3.7) is a Cartan decomposition of gR and Qg is a negative multiple of the
Killing form.

More generally, as a reductive algebra gC decomposes as the direct sum z⊕ gss
C of its center

and the semisimple factor gss
C = [gC, gC]. Note that z⊂ g0,0, so that the polarization Qg is positive

definite on the real form z ∩ gR⊂ kR. As above, the restriction of Qg to any simple factor of gss
C

will be a negative multiple of the Killing form (the multiple may vary from one simple factor to
the next) and (3.7) is a Cartan decomposition. 2

Remark 3.10 (A reasonable assumption on Qg). From the argument establishing Lemma 3.8 we
see that there is no essential loss of generality in assuming that the induced polarization Qg on
gR is minus the Killing form.

Given a maximal compact Lie subgroup KR⊂GR, let θ : gR → gR be the corresponding
Cartan involution. A point ϕ ∈ Ď is a K-Matsuki point if the Lie algebra p of the stabilizer
StabGC(ϕ) contains a conjugation and θ-stable Cartan subalgebra h of gC. As discussed in
[FHW06, § 4.3],

any two K-Matsuki points in D are KR-conjugate. (3.11)

From Lemma 3.8 we obtain the following corollary.

Corollary 3.12. The circle ϕ ∈ D is a Matsuki point with respect to the maximal compact
subgroup KR determined by (3.7).

3.1.2 Hodge structures and grading elements. As illustrated in [Rob14, § 2.3], grading
elements (§ 2.2) are essentially infinitesimal Hodge structures. Briefly, given a circle ϕ : S1

→ GR,
we may assume that the image imϕ is contained in a compact maximal torus T ⊂GR and that
the complexification h = t⊗R C of the Lie algebra t of T is a Cartan subalgebra of gC. Then the
(rescaled) derivative

Eϕ :=
1

4πi
ϕ′(1) (3.13)

is a grading element. The relationship between the Eϕ-eigenspace decomposition (2.2) and the
Hodge decomposition (3.1) is

V (p−q)/2 = V p,q.
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In the case that VC = gC, we have

gp = gp,−p. (3.14)

As a consequence, the Lie algebra pϕ of the stabilizer Pϕ = StabGC(ϕ) is the parabolic (2.5)
associated with the grading element Eϕ.

Observe that the holomorphic tangent space TϕD = gC/pϕ is naturally identified with⊕
p>0 g

−p,p. The horizontal subbundle T hD⊂TD is the GR-homogeneous subbundle with fiber

T hϕD ' g−1,1. A holomorphic map f : M → D is horizontal if f∗TM ⊂T hD.
The horizontal subbundle is bracket-generating if and only if Eϕ is the grading element Epϕ

associated with pϕ by (2.8). One may always reduce to the case that the infinitesimal period
relation is bracket-generating (cf. [Rob14, § 3.3]), and so we will

assume that the horizontal subbundle is

bracket-generating; equivalently , Eϕ = Epϕ .
(3.15)

This assumption has the very significant consequence that

the compact dual Ď = GC/P determines the real form GR. (3.16)

This may be seen as follows. The choice of compact dual is equivalent to a choice of conjugacy
class P of parabolic subgroups P ⊂GC. Modulo the action of GC, the conjugacy class determines
the grading element E by (2.8). It then follows from (3.6) and (3.14) that the E-eigenspace
decomposition (2.3) of gC determines the complexified Cartan decomposition gC = kC⊕ k⊥C . If gC
is simple, then kC uniquely determines gR; cf. Appendix A. More generally, if gC is semisimple
then each simple ideal g′C⊂ gC is a sub-Hodge structure; again the grading element/infinitesimal
Hodge structure determines a complexified Cartan decomposition, and the corresponding k′C
determines g′R. Finally, in the general case that gC = zC ⊕ gss

C is reductive, the fact that the
center zC is contained in g0,0⊂ kC forces ZR to be a compact torus S1 × · · · × S1.

3.1.3 Levi subalgebras and sub-Hodge structures. A (real) sub-Hodge structure of a Hodge
representation (VR, Q, ρ, ϕ) is given by a real subspace UR⊂VR that is preserved under the action
of ϕ(z) for all z ∈ S1. In this case, we will say that the subspace UR is ϕ-stable. The following
lemma formalizes an observation made in the proof of [GGR14, Lemma V.23].

Lemma 3.17. Consider a Hodge representation (gR, Qg,Ad, ϕ) of GR on the Lie algebra. A Levi
subalgebra lR⊂ gR carries a sub-Hodge structure if and only if the image ϕ(S1) lies in the
(connected) Lie subgroup LR⊂GR with Lie algebra lR; equivalently, Eϕ ∈ lC.

Remark 3.18. A priori the condition that ϕ(S1)⊂LR is stronger than the condition that lR
carries a sub-Hodge structure: the former implies that (gR, Qg, ρ|LR , ϕ) is a Hodge representation
of LR.

Proof. (⇐=) If the image of ϕ lies in LR, then it is clear that ϕ(z) preserves lR for all z ∈ S1.
(=⇒) Recall the (rescaled) derivative Eϕ = ϕ′(1)/4πi of (3.13). To show that the image of ϕ

lies in LR, it suffices to show that Eϕ ∈ lC. Let gC =
⊕

gp,q be the Hodge decomposition. Then
lC =

⊕
lp,q, where lp,q = lC ∩ gp,q. As discussed in § 3.1.2, these Hodge decompositions may be

viewed as Eϕ-eigenspace decompositions for the grading element Eϕ ∈ gC. In particular,

lC =
⊕

la (3.19)
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where la = lC ∩ ga, and gC =
⊕

ga is given by (2.3). Moreover, (2.4) implies that (3.19) is a
graded decomposition; that is, [la, lb]⊂ la+b.

As a reductive Lie algebra lC = zC ⊕ lssC , where lssC = [lC, lC] is the semisimple factor, and
zC⊂ l0 is the center of lC. The graded decomposition of lC induces a graded decomposition

lssC =
⊕

lssa (3.20)

by lssa = lssC ∩ la. There exists a grading element F ∈ lssC with the property that (3.20) is the
F-eigenspace decomposition of lssC [ČS09, Proposition 3.1.2]. Observe that Eϕ − F ∈ CgC(lC) lies
in the centralizer of lC. Because lC is a Levi subalgebra, this centralizer is equal to the center zC.
Therefore, Eϕ − F ∈ lC. Since F ∈ lC, this implies Eϕ ∈ lC. 2

3.2 Polarized mixed Hodge structures
Let (VR, Q) be a Hodge representation of GR and let D⊂ Ď be the corresponding Mumford–Tate
domain. An (m-variable) nilpotent orbit on D consists of a pair (F •;N1, . . . , Nm) such that
F • ∈ Ď, the Ni ∈ gR commute and NiF

p⊂F p−1, and the holomorphic map ψ : Cm→ Ď defined
by

ψ(z1, . . . , zm) = exp(ziNi)F
• (3.21)

has the property that ψ(z) ∈ D for Im(zi)� 0. The associated (open) nilpotent cone is

C = {tiNi | ti > 0}. (3.22)

A polarized mixed Hodge structure on D is given by a pair (F •, N) such that F • ∈ Ď, N ∈ gR
and N(F p)⊂F p−1, (F •,W•(N,VR)) is a mixed Hodge structure, and the Hodge structure on

Grk(W•(N,VR))prim := ker{Nk : Grk(W•(N,VR))→ Gr−k−2(W•(N,VR))}

is polarized by Q(·, Nk·), for all k > 0. The notions of nilpotent orbit and PMHS are closely
related. The following well-known results are due to Cattani, Kaplan, and Schmid [CK82a, CK89,
CKS86, CK87, Sch73].

Theorem 3.23 (Cattani, Kaplan, and Schmid). Let D⊂ Ď be a Mumford–Tate domain (and
compact dual) for a Hodge representation VR of GR.

(a) A pair (F •;N) forms a one-variable nilpotent orbit if and only if it forms a polarized
mixed Hodge structure.

(b) The weight filtration W•(N,VR) does not depend on the choice of N ∈ C. Let W•(C, VR)
denote this common weight filtration.

(c) Fix F • ∈ Ď and commuting nilpotent elements {N1, . . . , Nm}⊂ gR with the properties
that: (i) NiF

p⊂F p−1 for every i; and (ii) the filtration W•(N,VR) does not depend on the choice
of N ∈ C, where the latter is given by (3.22). Then (F •;N) is a polarized mixed Hodge structure
for some N ∈ C, if and only if (F •;N1, . . . , Nm) is an m-variable nilpotent orbit.

In a mild abuse of nomenclature, given a nilpotent orbit (F •;N1, . . . , Nm), we will sometimes
refer to (F •,W•(C, VR)) as a PMHS (especially when we wish to emphasize the weight filtration
W•(C, VR) over the nilpotents N ∈ C).

The Deligne splitting [CKS86, Del71]

VC =
⊕

Ip,q (3.24a)
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of a mixed Hodge structure (F •,W•) on VR is given by

Ip,q := F p ∩Wp+q ∩
(
F q ∩Wp+q +

∑
j>1

F q−j ∩Wp+q−j−1

)
. (3.24b)

It is the unique bigrading of VC with the properties that

F p =
⊕
r>p

Ir,• and W` =
⊕
p+q6`

Ip,q, (3.25)

and
Ip,q = Iq,p mod

⊕
r<q,s<p

Ir,s.

Any mixed Hodge structure (F •,W•) on V induces a mixed Hodge structure (F •g ,W
g
• ) on g

by

F pg = {ξ ∈ gC | ξ(F r)⊂F p+r ∀r},
W g
` = {ξ ∈ gR | ξ(Wm)⊂Wm+` ∀m}.

The elements of F rg ∩W g
2r ∩ gR are the (r, r)-morphisms of the mixed Hodge structure (F •,W•).

Alternatively, if gC =
⊕
Ip,qg denotes the corresponding Deligne splitting

Ip,qg = {ξ ∈ gC | ξ(Ir,s)⊂ Ip+r,q+s ∀r, s},
then the elements of Ir,rg ∩ gR are the (r, r)-morphisms.

When Ip,q = Iq,p we say that the mixed Hodge structure is R-split. When an R-split mixed
Hodge structure (F •,W•(C, VR)) arises from a nilpotent orbit (F •;N1, . . . , Nm), we will say that
the nilpotent orbit is R-split.

Remark 3.26. If (F •, N) is R-split, then so is the induced (F •g , N).

Observe that
L−1,−1
g :=

⊕
p,q>0

I−p,−qg

is a subalgebra of gC and is defined over R. The following well-known results are due to Cattani,
Deligne, Kaplan, and Schmid [CK82a, CKS86, Del71].

Theorem 3.27 (Deligne, Cattani, Kaplan, and Schmid). Let D⊂ Ď be a Mumford–Tate
domain (and compact dual) for a weight n Hodge representation of GR on VR.

(a) If (F •;N) is an R-split polarized mixed Hodge structure, then ψ(z) = ezNF • ∈ D for all
Im(z) > 0 and ψ is a horizontal, SL2R-equivariant embedding of the upper-half plane.

(b) Given a mixed Hodge structure (F •,W•) on VR, there exists a unique δ ∈ L−1,−1
g,R such

that
e−2iδ · F p =

⊕
s>p

I•,s.

The element δ is real, commutes with all morphisms of (F •,W•) and, given

F̃ • := e−iδ · F •, (3.28)

(F̃ •,W•) is an R-split mixed Hodge structure. (From L−1,−1
g ⊂W g

−2 we see that δ preserves the

filtration W• and acts trivially on Gr`(W•). It follows that both F • and F̃ • determine the same
filtrations on Gr`(W•).) Moreover, every morphism of (F •,W•) commutes with δ, so that the
morphisms of (F •,W•) are precisely those of (F̃ •,W•) that commute with δ.
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(c) In the case that W• = W•(N,VR)[−n], the two nilpotent orbits ψ(z) = ezNF • and ψ̃(z) =

ezN F̃ • agree to first order at z =∞, and that limit flag is

F p∞ := lim
Im(z)→∞

ezNF p =
⊕
s6n−p

I•,s. (3.29)

3.3 Reduced limit period mapping

Given commuting N1, . . . , Nm ∈ Nilp(gR) defining a cone (3.22), the boundary component B(C)
is the set of nilpotent orbits (F •;N1, . . . , Nm) modulo reparametrization. That is, we say that

two elements F •1 and F •2 of

B̃(C) := {F • ∈ Ď | (F •;N1, . . . , Nm) is a nilpotent orbit}

are equivalent if F •1 = exp(ziNi)F
•
2 for some z = (zi) ∈ Cm; then

B(C) := B̃(C)/ ∼ .

In the case that m = 1, we write B(C) = B(N) and B̃(C) = B̃(N).

The reduced limit period mapping Φ∞ : B̃(N)→ cl(D) defined by

Φ∞(F •, N) := lim
Im(z)→∞

ezN · F • (3.30)

descends to a well-defined map on B(N); see [GGK13, Appendix to Lecture 10] and [KP14,

§ 5] for details.13 More generally, as observed in [KP14, Remark 5.6], the reduced limit period

mapping is well defined on B(C); that is, (3.30) does not depend on our choice of N ∈ C. This

may be seen as follows. First, by Theorem 3.23(b), the weight filtration W•(C, VR) does not

depend on our choice of N ∈ C. Let (F̃ •,W•(C, VR)) be the R-split mixed Hodge structure given

by Theorem 3.27(b), and let VC =
⊕
Ĩp,q be the corresponding Deligne splitting (3.24). Then

Theorem 3.27(c) and (3.30) assert that

Φ∞(F •, N) = Φ∞(F̃ •, N) = F̃ •∞ and F̃ p∞ =
⊕
s6n−p

Ĩ•,s

is independent of N ∈ C.14

4. Hodge–Tate degenerations

The main results of this section are that: (i) underlying every R-split PMHS (F •, N) is a Hodge–

Tate PMHS (F•l , N) on a Levi subalgebra lR⊂ gR (Theorem 4.3); and (ii) the classification of the

Hodge–Tate degenerations (Theorem 4.11). As corollaries to these results we will: (a) see that

the nilpotent cone C ⊂ gR underlying a nilpotent orbit is contained in an Ad(LYR )-orbit, where

LYR is a connected Lie subgroup of GR with reductive Lie algebra lYR ⊂ lR (Corollary 4.9); and (b)

obtain the classification theorems of § 5.

13 In [KP14], Φ∞ is called the naïve limit map.
14 See [BP13, HP15] for more general convergence results.
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4.1 Definition
Let (VR, Q, ρ, ϕ) be a Hodge representation of GR, and let D⊂ Ď = GC/P be the associated
Mumford–Tate domain and compact dual. We say that D admits a Hodge–Tate degeneration
if there exists a nilpotent orbit (F •;N1, . . . , Nm) with nilpotent cone C such that the Deligne
splitting (3.24) of (F •,W•(C, VR)) satisfies

Ip,q = 0 for all p 6= q.

In this case we say that the nilpotent orbit (F •;N1, . . . , Nm) is a Hodge–Tate degeneration.
We recall some properties of Hodge–Tate degenerations in the following proposition.

Proposition 4.1. Let VR admit the structure of a Hodge representation of GR, and let (F •;N1,
. . . , Nm) be a nilpotent orbit on the associated Mumford–Tate domain D⊂ Ď.

(a) If (F •;N1, . . . , Nm) is Hodge–Tate, then so is the induced nilpotent orbit (F •g ;N1, . . . ,
Nm) on gR.

(b) Suppose that GR is semisimple. Then (F •;N1, . . . , Nm) is Hodge–Tate if and only if
(F •g ;N1, . . . , Nm) is Hodge–Tate.

(c) If (F •g ;N1, . . . , Nm) is Hodge–Tate, then the nilpotent orbit (F ;N1, . . . , Nm) is a
‘maximal’ degeneration of Hodge structure in the sense that Φ∞(F •, N) lies in the unique closed
GR-orbit Ocl⊂ Ď, for any N ∈ C.

Proof. Part (b) is [GGR14, Proposition I.9], and (c) is [KP14, Corollary 4.3] or [GGR14,
Proposition I.15]. In general, GR is reductive and (a) follows from the arguments establishing
(b). 2

Remark 4.2. If GR is not semisimple, then the converse to Proposition 4.1(a) need not hold:
it is possible for a non-Hodge–Tate (F •, N) to induce a Hodge–Tate (F •g , N). Indeed, this is
precisely the case in Theorem 4.3, where the nilpotent orbit (F •;N1, . . . , Nm) on the Hodge
representation (VR, Q, ρ, ϕ) of the reductive LR will in general fail to be Hodge–Tate, while the
induced (F•l ;N1, . . . , Nm) is always Hodge–Tate; cf. Remark 4.6.

While the Hodge–Tate degenerations are ‘maximal’ in the sense of Proposition 4.1(b), the
associated representation theory is relatively simple, as we will see in the classification of
Theorem 4.11.

4.2 The underlying Hodge–Tate degeneration
In a suitably interpreted sense all degenerations are induced from a degeneration of Hodge–Tate
type.15 The results of this section for dimRC = 1 first appeared in [GGR14]. Let

Hm := {z = (zi) ∈ Cm | Im(zi) > 0}.

Theorem 4.3. Let (VR, Q, ρ, ϕ) be a Hodge representation of a semisimple Lie group GR, and let
D be the associated Mumford–Tate domain. Suppose that (F •;N1, . . . , Nm) is a R-split nilpotent
orbit.

15 Some care must be taken with this statement, as it is not necessarily the case that the underlying degeneration
arises algebro-geometrically: this is a statement about the orbit structure and representation theory associated
with the SL(2)-orbit approximating an arbitrary degeneration, which may or may not arise algebro-geometrically.
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(a) Let gC =
⊕
Ip,qg be the associated Deligne splitting (cf. (3.3) and (3.24)), and set

lC :=
⊕
p

Ip,pg . (4.4)

Then lC is a Levi subalgebra of gC defined over R with real form lR = lC ∩ gR and Ni ∈ lR. Let
LR⊂GR be the connected Lie subgroup with Levi algebra lR.

(b) Given z ∈ Hm, let ϕz : S1
→ GR denote the Hodge structure on VR parameterized by

exp(ziNi) ·F • ∈ D. Then the circle ϕz is contained in LR for all z ∈ Hm; that is, imϕz ⊂LR.
Equivalently, (VR, Q, ρ|LR , ϕz) is a Hodge representation of LR; let D denote the associated
Mumford–Tate domain.

(c) The induced nilpotent orbit (F•l ;N1, . . . , Nm) on D is a Hodge–Tate degeneration.

Remark 4.5. An immediate and important consequence of Theorem 4.3(b) is that any nilpotent
orbit on D induces a nilpotent orbit on D; so we may think of the nilpotent orbit (F•l ;N1, . . . ,
Nm) as ‘the Hodge–Tate degeneration underlying the nilpotent orbit (F •;N1, . . . , Nm)’. From
this perspective, Theorem 4.3 asserts that the essential structure/relationship is between the
{N1, . . . , Nm} and the Levi subalgebra l; the remaining structure on g = l ⊕ l⊥,16 that is, the
Hodge structure on l⊥, is induced from the l-module structure on l⊥.17

Remark 4.6. Each
V` =

⊕
p−q=`

Ip,qg

is an lC-module, and V` + V−` naturally has the structure of a Hodge representation of LR. In
particular, V =

⊕
`>0 V` is a coarse branching of V as an LR-Hodge representation. (‘Coarse’

because the V` need not be irreducible.)

Proof. The fact that the nilpotent orbit is R-split implies lC is a conjugation-stable subalgebra
of gC and

Ni ∈ I−1,−1
g,R ⊂ lR.

As the zero eigenspace for the grading element E − E, the subalgebra lC is necessarily a Levi
subalgebra. This establishes Theorem 4.3(a).

Let C be the nilpotent cone (3.22) underlying the nilpotent orbit. Observe that the PMHS
(F •g ,W•(C, gR)) on gR induces a polarized mixed Hodge substructure (F•l ,W•(C, lR)) on lR by

F
p
l := F p ∩ lC =

⊕
q>p

Iq,qg and W`(C, lR) := W`(C, gR) ∩ lR =
⊕
2q6`

Iq,qg,R. (4.7)

Theorem 3.23(c) implies that the Hodge flag exp(ziNi) ·F•l defines a Hodge structure on
lR; equivalently, lR is a sub-Hodge structure of (gR, ϕz). Theorem 4.3(b) now follows from
Lemma 3.17.

Finally, (4.4) and (4.7) yield Theorem 4.3(c). 2

16 This l-module decomposition of g exists because l is reductive.
17 This sort of idea goes back to Bala and Carter’s classification [BC76a, BC76b] of nilpotent orbits N ⊂ gC, where
the idea is to look at minimal Levi subalgebras l containing a fixed N ∈ N , and to classify the pairs (N, l). (In
fact, the idea goes back farther to Dynkin [Dyn57], who looked at minimal reductive subalgebras containing N ,
but this approach does not seem to work as well.)
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Remark 4.8 (Mumford–Tate domain for the Hodge structures ϕz|lR). The Mumford–Tate dom-
ain D for the Hodge structures ϕz on lR may be viewed as a subset of D, the Mumford–Tate
domain for the Hodge structure ϕ on gR (or VR). Let LC⊂GC be the connected Lie subgroup
with Lie algebra lC, and set Ď = LC ·F •. Then D ' Ď ∩ D.

Corollary 4.9. Given an R-split nilpotent orbit (3.21) on a Mumford–Tate domain D =
GR/K

0
R with nilpotent cone C as in (3.22), let lR be the Levi subalgebra (4.4). Let Y ∈ lR

be the grading element defined by
Y |Ip,pg

= 2p,

and let LYR denote the connected subgroup of LR stabilizing Y under the adjoint action. Then the
Lie algebra lYR = {ξ ∈ lR | [ξ, Y ] = 0} is Levi and C ⊂Nilp(lR) is contained in an Ad(LYR )-orbit.

Proof. Recall that Y is a grading element, cf. (2.12); it then follows from the definition (§ 2.2)
that

lYR = I0,0
g,R

is Levi.
Cattani and Kaplan [CK82a, (3.3)] proved that the Jacobson–Morosov filtration W•(N

′) is
independent of our choice of N ′ ∈ C; we denote this weight filtration by W•(C). Let

WC = {N ′ ∈ I−1,−1
g,R |W (N ′) = W (C)}.

Of course, C ⊂WC . It suffices to show that WC is a disjoint union of open LYR -orbits in I−1,−1
g,R ;

for it then follows from the connectedness of C that the cone is contained in an Ad(LYR )-orbit.
First observe that property (iii) in § 2.4 implies that, for each N ′ ∈ WC , there exists a unique

N ′ +∈ I
1,1
g,R such that {N ′+, Y,N ′} is a standard triple. Define

P `N ′ := {ξ ∈ lR | [Y, ξ] = `ξ, [N ′+, ξ] = 0} for all ` > 0.

This is the vector space of ‘highest weight vectors’ in the ‘isotypic component of weight `’ for
the action of slR2 = spanR{N ′+, Y,N ′} on lR. It is a basic result of sl(2)-representation theory
that

lR =
⊕
`>0

06a6`

(N ′)aP `N ′ .

From this, and (N ′)`+1(P `N ′) = 0, we may deduce that the Ad(LYR )-orbit of N ′ is open in I−1,−1
g,R .

2

4.3 Classification of Hodge–Tate degenerations
In [GGR14, Lemma V.7, Theorem V.15] it is shown that a period domain parameterizing weight
n polarized Hodge structures admits a Hodge–Tate degeneration if and only if the Hodge numbers
satisfy

hn,0 6 hn−1,1 6 · · · 6 hn−m,m, (4.10)

with m defined by n ∈ {2m, 2m + 1}. In the more general setting of Mumford–Tate domains,
(4.10) is a necessary, but not sufficient, condition for the existence of a Hodge–Tate degeneration
[GGR14, Lemma V.7 and Remark V.16]. Here we extend the classification to arbitrary Mumford–
Tate domains D with the property that the infinitesimal period relation is bracket-generating
(we can always reduce to this case [Rob14, § 3.3]).
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Theorem 4.11. Suppose that VR is a Hodge representation of a real semisimple algebraic group

GR. Let D⊂GC/P be the associated Mumford–Tate domain and compact dual, and assume that

the infinitesimal period relation is bracket-generating. ThenD admits a Hodge–Tate degeneration

(F •, N) if and only if there exists a standard triple {N+, Y,N}⊂ gR such that the following two

conditions hold:

(a) The neutral element Y is even, and p = W0(N+, gC). In this case, 1
2Y is the grading

element (2.8) associated with p and F pg = W−2p(N
+, gC).

(b) The compact characteristic vector (§ 2.7) of the nilpotent orbit N = Ad(GR) ·N satisfies

the following conditions: γi(N ) ≡ 0 mod 4, for all i; and for the noncompact simple root, α′(N )

is even and α′(N )/2 is odd.

If it exists, then the orbit N is unique. That is, given a second Hodge–Tate nilpotent orbit

(F̃ •, Ñ), it is the case that Ñ ∈ N .

The necessity of Theorem 4.11(a) was observed in [GGR14]. It implies that the Lie algebra

p = F 0
g of the stabilizer P = StabGC(F •) is an even Jacobson–Morosov parabolic. As illustrated

by the examples at the end of this section, this constrains the (conjugacy classes of the) parabolics

P , and therefore the compact duals, that may arise.

Proof. (=⇒) Suppose that there exists a Hodge–Tate nilpotent orbit (F •, N). Then the induced

nilpotent orbit (F •g , N) is also Hodge–Tate (Proposition 4.1). Thus the Lie algebra of the

parabolic subgroup P ⊂GC stabilizing the Hodge flag F • is

p = F 0
g =

⊕
p>0

Ip,•g =
⊕
p>0

Ip,pg =
⊕
p+q>0

Ip,qg ; (4.12)

here, the second equality is due to (3.25), and the last two follow from the hypothesis that

(F •g , N) is Hodge–Tate. Without loss of generality, the PMHS (F •,W•(N,VR)) is R-split; then

the induced PMHS (F •g ,W•(N, gR)) is also R-split. Therefore, we may complete N to a standard

triple (§ 2.3) with

N ∈ I−1,−1
g , Y ∈ I0,0

g , and N+ ∈ I1,1
g . (4.13)

It follows that

p = W0(N+, gC)

is a Jacobson–Morosov parabolic subalgebra. Moreover, the neutral element

Y acts on Ip,pg by the scalar 2p, (4.14)

establishing the necessity of (a).

Since the infinitesimal period relation is bracket-generating, the grading element (2.8)

associated with p necessarily acts on Ip,qg by the eigenvalue p. Given this, from (4.12) and (4.14)

we see that
1
2Y is the grading element equation (2.8) associated with p. (4.15)

Let sl2R⊂ gR be the TDS spanned by the standard triple (4.13), and let SL2R⊂GR be the

corresponding subgroup. By Theorem 3.27(a), the map z 7→ exp(zN) ·F • is a holomorphic, SL2R-

equivariant, horizontal embedding of the upper-half plane into D. Let H⊂D denote the image.
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Recall the element % of (2.29) and the triple {E,Z,E} of (2.28). Note that % lies in the image of
SL2C and

ϕ := %(F •) ∈ H⊂D. (4.16)

Taken with (4.15), this implies that

the grading element equation (2.8) associated with the

stabilizer Ad%(p) of ϕ is 1
2Ad%(Y ) = 1

2Z.
(4.17)

Then the hypothesis that the infinitesimal period relation is bracket-generating implies that

1
2Z = Eϕ, (4.18)

where the latter is the grading element (3.13) associated with ϕ; cf. § 3.1.2. Therefore, by (3.6),
Lemma 3.8, and (3.14), the 1

2Z-graded decomposition (2.3) of gC must satisfy

geven = kC and godd = k⊥C (4.19)

where gR = kR ⊕ k⊥R is the Cartan decomposition given by the Cartan involution ϕ(i). Observe
that

E ∈ g1⊂ k⊥C , Z ∈ g0⊂ kC, and E ∈ g−1⊂ k⊥C .

Since the Cartan involution acts on g1⊕g−1 = g1,−1⊕g−1,1 by the scalar −1, and on g0 = g0,0 by
the scalar 1, we see that {N+, Y,N} is a Cayley triple (with respect to k); equivalently, {E,Z,E}
is a DKS triple. Equation (4.19) implies that the compact characteristic vector (γ(Z);α′(Z)) of
the orbit N satisfies (b), establishing necessity.

(Uniqueness) At this point we may observe that if the Ad(GR)-orbit N exists, then it is
unique: the compact characteristic vector (γ(N );α′(N )) is uniquely determined by (4.18) and
(4.19). Uniqueness of the orbit N then follows from Theorem 2.31.

(⇐=) Assume that conditions (a) and (b) hold. Fix a Cartan decomposition gR = kR ⊕ k⊥R
and a Cayley triple {N+, Y,N} (§ 2.7). Set F pg = W−2p(N

+, gC). Expression (2.13) implies that
Y,N+ ∈W0(N+, gR). Therefore, Y and N+ stabilize F •g . Given hypothesis (a), this implies that
the SL2C-orbit of F •g is a holomorphic, equivariant, horizontal embedding P1 ↪→ GC/P . Arguing
as above, the conditions of (b) imply (4.19); equivalently, ϕ = %(F •g ) ∈ D ∩ P1. This implies
that D ∩ P1 = H and z 7→ exp(zN)F • is a nilpotent orbit. Then Theorem 3.23(a) ensures that
(F •, N) is a PMHS. Finally, from F pg = W−2p(N

+, gC), and the fact that Y is even, we see that
E = 1

2Y splits F •g , while Y splits W•(N, g); it follows that (F •, N) is Hodge–Tate. 2

It will be helpful later for us to observe that

Φ∞(F •g , N) = %(ϕ) = %2(F •g ). (4.20)

The second equality is (4.16). To see why the first equality holds, set F •g,∞ = Φ∞(F •g , N) and
observe that (3.29) implies

F pg,∞ =
⊕
s>p

I•,−s =
⊕
s>p

I−s,−s.

At the same time
F pg =

⊕
s>p

Is,s.

The assertion now follows from (4.15) and the easily verified

Ad2
%Y = −Y.
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Remark 4.21 (Cayley triples and Matsuki points). As we observed in the proof of (=⇒) above,

the standard triple {N+, Y,N} of Theorem 4.11 is a Cayley triple with respect to the Cartan

involution ϕ(i) defined by (4.16); cf. Lemma 3.8. This implies that (4.16) is a Matsuki point

(with respect to the Cartan involution ϕ(i)).

4.4 Distinguished grading elements

It may be the case that a Hodge–Tate degeneration (F •g , N) on D is itself induced from a

Hodge–Tate degeneration (F•l , N) on a Mumford–Tate subdomain D⊂D. More precisely, let ϕ

be the circle (4.16) and suppose that lR⊂ gR is a ϕ-stable Levi subalgebra containing N . Then

ϕ(S1)⊂LR by Lemma 3.17. In this case, setting F•l = F •g ∩ lC defines a Hodge–Tate degeneration

(F•l , N) on D = LR ·ϕ. (Here D⊂D is the Mumford–Tate domain for the Hodge representation

(lR, Ql,Ad, ϕ) of LR; cf. Remark 4.8.) A simple test of the neutral element Y will determine

whether or not gR is the minimal such Levi subalgebra (i.e., whether or not there exists lR( gR);

cf. Lemma 4.23.

A grading element Y ∈ gC is distinguished if 1
2Y is the grading element (2.8) associated with

the parabolic pY and the Y -eigenspace decomposition gC =
⊕

g` satisfies dim g0 = dim g2.

Theorem 4.22 (Bala and Carter [BC76a]). A grading element Y ∈ gC is distinguished if and

only if it can be realized as the neutral element of a standard triple {N+, Y,N} with the property

that no proper Levi subalgebra lC( gC contains the standard triple. (Equivalently, no proper Levi

subalgebra contains N .)

Lemma 4.23. Given a Hodge–Tate degeneration (F •g , N) on D, let {N+, Y,N} be the standard

triple of Theorem 4.11, and let ϕ be given by (4.16). The neutral element Y is distinguished if

and only if gR is the only ϕ-stable Levi subalgebra of gR containing N+ (equivalently, N).

Remark 4.24. The hypothesis that (F •, N) is a Hodge–Tate degeneration on a Mumford–Tate

domain is essential: there exist nilpotentN ∈ gR with the property that gR is the minimal ϕ-stable

Levi subalgebra of gR containing N , but for which Y is not even, let alone distinguished. Such

nilpotents are noticed [Noë98].

Remark 4.25. Let {E,Z,E} = Ad%{N+, Y,N} be the DKS triple in the proof of Theorem 4.11.

Note that Y is distinguished if and only if Z is. Moreover, gR is the minimal ϕ-stable Levi

subalgebra of gR containing N+ if and only if gC is the minimal conjugation and ϕ-stable Levi

subalgebra containing E.

Proof. (=⇒) If Y is distinguished, then gC is the smallest Levi subalgebra containing N+ by

Theorem 4.22.

(⇐=) By Lemma 3.17 and (4.18) a Levi subalgebra of gC is ϕ-stable if and only if it contains

Z. Suppose that gC is the only Levi subalgebra of g that: (i) contains the DKS triple {E,Z,E};
and (ii) can be expressed as the centralizer of an element in ikR. Any such Levi subalgebra of gC
is both conjugation-stable and ϕ(i)-stable. Then E is a noticed nilpotent, in the terminology of

[Noë98]. Whence [Noë98, Lemma 2.1.1] yields dim g0 ∩ kC = dim g2 ∩ k⊥C , where gC =
⊕

g` is

the Z-eigenspace decomposition. From (4.18) and (4.19), we see that dim g0 = dim g2, and Z is

distinguished by definition. The lemma now follows from Remark 4.25. 2
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4.5 Examples
In the following examples, given GC, we apply Theorem 4.11 to identify the compact duals
Ď = GC/P with an open GR-orbit admitting the structure of a Mumford–Tate domain with
a Hodge–Tate degeneration. Keep in mind that, since we are assuming that the infinitesimal
period relation is bracket-generating, the compact dual determines the real form; cf. (3.16).

Example 4.26 (The symplectic group Sp8C). Of the 24 − 1 = 15 conjugacy classes of parabolic
subgroups in GC, only six are even Jacobson–Morosov; the indexing sets (§ 2.1) are I = {1, 2,
3, 4}, {1, 2, 4}, {2, 4}, {1, 4}, {2}, {4} (cf. [CM93] or [BPR15]). Therefore, the pairs of compact
duals Ď with an open GR-orbit D admitting the structure of a Mumford–Tate domain with a
Hodge–Tate degeneration are as listed in the table below.

Ď FlagQ
1,2,3,4(C8) FlagQ

1,2,4(C8) FlagQ
2,4(C8) FlagQ

1,4(C8) GrQ(2,C8) GrQ(4,C8)

gR sp(4,R) sp(4,R) sp(4,R) sp(4,R) sp(2, 2) sp(4,R)

VR R8 R8 R8 R8
∧2R8 R8

h (1, . . . , 1) (1, 1, 2, 2, 1, 1) (2, 2, 2, 2) (1, 3, 3, 1) (1, 8, 9, 8, 1) (4, 4)

The table also lists a Hodge representation VR realizing D as a Mumford–Tate domain, and the
corresponding Hodge numbers. In all but one of these cases we have gR = sp(4,C) and VR = R8;
this realizes the Mumford–Tate domain as a period domain. In the case that Ď = GrQ(2,C8), the
standard representation R8 does not admit the structure of a Hodge representation (because C8

is quaternionic, rather than real, with respect to the real form gR). However, the second exterior
power

∧2R8 does admit the structure of Hodge representation that realizes GrQ(2,C8) as the
compact dual of a Mumford–Tate domain.

Example 4.27 (The orthogonal group SO9C). Of the 24 − 1 = 15 conjugacy classes of parabolic
subgroups in GC, only five are even Jacobson–Morosov; the indexing sets (§ 2.1) are I = {1, 2,
3, 4}, {1, 2, 3}, {1, 3}, {3}, {1}. It follows that the pairs of compact duals Ď with an open GR-orbit
D admitting the structure of a Mumford–Tate domain with a Hodge–Tate degeneration are

Ď FlagQ
1,2,3,4(C8) FlagQ

1,2,3(C8) FlagQ
1,3(C8) GrQ(3,C8) GrQ(1,C8) = Q6

gR so(4, 5) so(4, 5) so(4, 5) so(6, 3) so(2, 7)

Here we may take VR = R9 in each case, and the Mumford–Tate domains are all period domains.

Example 4.28 (The exceptional Lie group G2(C)). The complex Lie group GC = G2(C) contains
three conjugacy classes PI of parabolic subgroups; as discussed in § 2.1, they are indexed
by the nonempty subsets I ⊂{1, 2}. Parabolics in two of the three may be realized as even
Jacobson–Morosov parabolics: the Borel subgroups B = P{1,2} and the maximal parabolics P2

(cf. [CM93, § 8.4]). (The parabolics in the third class P1 may also be realized as Jacobson–
Morosov parabolics, but not as even Jacobson–Morosov parabolics.) The complex Lie algebra gC
admits a single noncompact real form gR. The maximal compact subalgebra is kR = su(2)⊕su(2).
In both cases we may take VR to be the standard representation R7.

(a) In the case of the Borel conjugacy class B, as discussed in § 2.5, we have σ(N ) = (2, 2).
From the tables of [CM93, § 9.6] we see that N ∩ gR consists of a single Ad(GR)-orbit N and
γ(N ) = (4, 8) and α′(N ) = σ2(N ) = −10. It follows from Theorem 4.11 that D⊂GC/B admits
a Hodge–Tate degeneration. The Hodge numbers are h = (1, 1, 1, 1, 1, 1, 1).
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(b) For P ∈ P2 we have σ(N ) = (0, 2). From the tables of [CM93, § 9.6] we see that N ∩ gR
consists of two Ad(GR)-orbits. One of these has characteristic vector γ(N ) = (0, 4) and α′(N ) =
σ2(N ) = −2. Theorem 4.11 implies that D⊂GC/P has a Hodge–Tate degeneration. The Hodge
numbers are h = (2, 3, 2).

More generally, the polarized GR-orbits in a G2(C)-homogeneous compact dual have been
determined by Kerr and Pearlstein in [KP14, § 6.1.3].

4.6 Constraints on the existence of Hodge–Tate degenerations
In the case that the compact dual is the full flag variety Ď = GC/B, that is, P = B is a Borel
subgroup, we may be explicit about the real forms GR that yield a GR-orbit D⊂ Ď admitting
the structure of a Mumford–Tate domain with a Hodge–Tate degeneration.

Proposition 4.29. Let GC be a simple complex Lie group and consider the full flag variety
Ď = GC/B. Given a real form GR of GC there exists a GR-flag domain D⊂ Ď admitting the
structure of a Mumford–Tate domain (with bracket-generating infinitesimal period relation) with
a Hodge–Tate degeneration if and only if gR is one of the following:

su(p, p), su(p, p± 1), sp(n,R),

so(2p± 1, 2p), so(2p, 2p), so(2p+ 2, 2p),

E II, E V, E VIII, F I, G.

Proof. Hodge–Tate degenerations in full flag varieties are discussed in [GGR14, Remark V.12].
There it was observed that, if GC is classical (special linear, symplectic or orthogonal), then
gR is necessarily one of the algebras listed above. Additionally, for each of the symplectic and
orthogonal algebras, a Mumford–Tate domain and Hodge–Tate degeneration are exhibited.

Now consider the special linear algebra gC = slnC. If the Mumford–Tate domain admits
a Hodge–Tate degeneration, then the complex characteristic vector σ(N ) is necessarily of the
form (2, . . . , 2). Moreover, (4.15) implies (1, . . . , 1) = (σ1(E), . . . , σr(E)), where r = n − 1 and
E = Eϕ is the grading element (2.8) associated with the Borel. Therefore the simple roots σi are
all noncompact. Whence the collection S′ = {σ1 + σ2, σ2 + σ3, σ3 + σ4, . . . , σr−1 + σr} forms a
set of simple roots for kC. Attaching the noncompact −σ1 completes S′ to a set of simple roots
for gC. From this choice of simple roots we see that Theorem 4.11(b) holds; whence D admits
a Hodge–Tate degeneration. To see that the real form is either su(p, p) or su(p ± 1, p), observe
that −σ1 is the unique noncompact simple root in the system S′ ∪{−σ1}. In the Vogan diagram
classification of real forms [Kna02, §VI.10], this corresponds to painting either the (p± 1)th or
pth node in the Dynkin diagram.

In the case that GC is exceptional, the proposition follows from Theorem 4.11 and the tables
in [CM93, § 9.6]. 2

5. Classification theorems

In this section we prove the two main results of the paper: the classifications of the R-split
PMHSs (Theorem 5.5), and of the horizontal SL(2)s (Theorem 5.9).

5.1 R-split polarized mixed Hodge structures
Let (F •, N) be an R-split PMHS on a Mumford–Tate domain D. Given any g ∈ GR,

g · (F •, N) := (g · F •,AdgN)

941

https://doi.org/10.1112/S0010437X15007691 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007691


C. Robles

is also an R-split PMHS on D; let

[F •, N ] := {g · (F •, N) | g ∈ GR}

denote the corresponding GR-conjugacy class, and let

ΨD := {[F •, N ] | (F •, N) is an R-split PMHS on D} (5.1)

denote the set of all such conjugacy classes.
Fix a point ϕ ∈ D. Recall the grading element Eϕ of (3.13) and let t 3 iEϕ be a compact

Cartan subalgebra of gR. Given a Levi subalgebra lC ⊃ h, recall from § 2.2 that lC = lssC ⊕z, where
z is the center of lC and lssC = [lC, lC] is semisimple; let πss

l : lC→ lssC denote the projection. Set

Lϕ,t :=

{
ϕ-stable Levi subalgebras lR⊂ gR such that t⊂ lR and

2πss
l (Eϕ) is a distinguished semisimple element of lssC

}
.

(The condition, in the definition of Lϕ,t, that lR be ϕ-stable is added for emphasis/clarity; it
follows from iEϕ ∈ t⊂ lR, which implies that the image of the circle is contained in LR.) In
computations it is helpful to note that 2πss

l (Eϕ) is a distinguished semisimple element of lC if
and only if

rank lssC + #{α ∈ ∆(l) | α(Eϕ) = 0} = #{α ∈ ∆(l) | α(Eϕ) = 1}. (5.2)

Lemma 5.3. Given lR ∈ Lϕ,t, there exists a DKS triple {E,Z,E}⊂ lssC with neutral element Z =
2πss

l (Eϕ).

The lemma is proved in § 5.3.
Let gC =

⊕
gp be the Eϕ-eigenspace decomposition (2.3). Recall from (3.14) that the Hodge

filtration F •ϕ,g of gC induced by ϕ is given by F pϕ,g =
⊕

q>p g
q. The parabolic pϕ = g0⊕g+ is the Lie

algebra of the stabilizer Pϕ⊂GC of ϕ, and the 0-eigenspace g0 is a Levi subalgebra of gC (§ 2.1)
containing the Cartan subalgebra h = t⊗RC. Let W0⊂W⊂Aut(h) denote the Weyl group of
g0 (Remark 2.7). Then W0 acts on Lϕ,t. Given lR ∈ Lϕ,t, let [lR] denote the W0-conjugacy class,
and let

Λϕ,t := {[lR] | lR ∈ Lϕ,t}
be the corresponding set of W0-conjugacy classes.18

Finally, we note that (3.6) and (3.14) imply g0 has compact real form

k0R := g0 ∩ gR = pϕ ∩ kR;

let K0
R = Pϕ ∩ KR denote the corresponding Lie subgroup. (Note that K0

R is the stabilizer of
ϕ ∈ D in GR.) Then

elements of W0 admit representatives in K0
R. (5.4)

Theorem 5.5. Let VR be a Hodge representation of GR, and assume that the infinitesimal period
relation on the associated Mumford–Tate domain D = GR/K

0
R is bracket-generating. With the

notation above, we have:

18 The role of W0 here is anticipated by Cattani and Kaplan’s [CK78, Proposition 3.29].
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(a) There is a bijection ΨD ↔ Λϕ,t. That is, up to the action of GR, the R-split polarized
mixed Hodge structures on D are indexed by the W0-conjugacy classes of Lϕ,t.

(b) Given lR ∈ Lϕ,t, let {E,Z,E}⊂ lssC be a DKS triple with neutral element Z = 2πss
l (Eϕ);

cf. Lemma 5.3. The element [F •, N ] ∈ ΨD corresponding to [lR] ∈ Λϕ,t is represented by (F •, N)
= %−1 · (ϕ,E), where

% := exp i
π

4
(E + E) ∈ LC.

(c) The image of the reduced limit period mapping is Φ∞(F •, N) = %(ϕ) = %2(F •).

(d) If VC =
⊕
V µ is the weight space decomposition (with respect to h), then the Deligne

splitting VC =
⊕
Ip,q induced by (F •, N) is given by

%(Ip,q) =
⊕

µ(Eϕ)=p
µ(Z)=p+q

V µ. (5.6)

(e) With respect to the Deligne splitting gC =
⊕
Ip,qg we have lC⊂

⊕
Ip,pg .

Theorem 5.5 is proved in § 5.3, and a number of examples are worked out in § 5.5. As will be
discussed in § 5.4, Theorem 5.5(c) yields a parameterization of the polarized orbits in bd(D)⊂ Ď.

5.2 Horizontal SL(2)s
In this section we will show that Theorem 5.5 yields a classification of the horizontal SL(2)s on
D, up to the action of GR.

Let

sl2R = spanR{n+,y,n},
sl2C = spanC{n+,y,n} = spanC{e, z, e}

be the algebras defined by (2.10) and (2.11). Given ϕ ∈ D, recall the grading element Eϕ given
by (3.13), and let gC = ⊕gp be the corresponding eigenspace decomposition given by (2.3).
The latter is also the Hodge decomposition by (3.14). A horizontal SL(2) at ϕ is given by a
representation υ : SL(2,C)→ GC such that

υ(SL(2,R))⊂GR (5.7a)

and
υ∗e ∈ g1, υ∗z ∈ g0, υ∗e ∈ g−1. (5.7b)

We will say that υ is a horizontal SL(2) if it is horizontal at some ϕ ∈ D.

Remark 5.8. Observe that (5.7) implies that υ∗{e, z, e} is a DKS triple with respect to the
maximal compact subgroup KR⊂GR determined by the Cartan involution ϕ(i); likewise υ∗{n+,
y,n} is a Cayley triple.

Note that g ∈ GR acts on the set of horizontal SL(2)s by υ 7→ g · υ. Let

ΥD := {[υ] | υ is a horizontal SL(2)}
be the set of GR-equivalence classes.

Theorem 5.9. With the notation and assumptions of Theorem 5.5, we have:

(i) There is a bijection ΥD ↔ Λϕ,t. That is, up to the action of GR, the horizontal SL(2)s
on D are parameterized by the W0-conjugacy classes of Lϕ,t.
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(ii) Given lR ∈ Lϕ,t, let {E,Z,E}⊂ lssC be a DKS triple with neutral element Z = 2πss
l (Eϕ);

cf. Lemma 5.3. The equivalence class [υ] ∈ ΥD corresponding to [lR] ∈ Λϕ,t is represented by the
υ : SL2C→ Lss

C given by
υ∗e = E, υ∗z = Z, υ∗e = E. (5.10)

Proof. The result will follow from Theorem 5.5 and the GR-equivariant bijection (1.1). This
bijection is well known (cf. [CK82a, CKS86, CK77, Sch73, Usu93]); the following proof is given
for the sake of completeness.

Given (F •, N), the Deligne splitting gC =
⊕
Ip,qg defines a semisimple Y ∈ gR by Y |Ip,qg

=

(p+q)1. There exists a unique N+ ∈ gR completing the pair {Y,N} to a standard triple [CKS86,
pp. 477]. As discussed in Remark 4.21, this standard triple is a Cayley triple with respect to
the Cartan involution ϕ(i) defined by (4.16). The corresponding Cayley transform (2.27) defines
a horizontal SL(2) υ at ϕ = %(F •) by (5.10). This defines the map from R-split PMHSs to
horizontal SL(2)s.

Conversely, suppose that υ is a horizontal SL(2) at ϕ ∈ D. By Remark 5.8, (5.10) defines a
DKS triple {E,Z,E}. Let {N+, Y,N} = υ∗{n+,y,n} be the corresponding Cayley triple, which
is defined by (2.28) and (2.29). Recalling that % is given by (2.29), define F • = %−1(ϕ). Then
(F •, N) is a nilpotent orbit. Moreover, the Deligne splitting VC =

⊕
Ip,q of the corresponding

PMHS is as given by (5.16) in Remark 5.15, and is manifestly R-split. This defines the map from
horizontal TDS to R-split PMHSs. Moreover, this map is easily seen to be the inverse of the map
defined in the previous paragraph. 2

5.3 Proof of Theorem 5.5
We begin with the promised proof of Lemma 5.3.

Proof of Lemma 5.3. As a distinguished semisimple element, Z is the neutral element of a
standard triple {E+,Z,E}.

Let lC =
⊕

lp be the Eϕ-eigenspace decomposition. We have lp = lC ∩ gp, lC ∩ kC = leven,
and lC ∩ k⊥C = lodd. Since Z differs from 2Eϕ by an element of the center of lC, we see that Z acts
on lp by the eigenvalue 2p. From [Z,E+] = 2E+ and [Z,E] = −2E, we see that E+ ∈ l1⊂ k⊥C and
E ∈ l−1⊂ k⊥C . It remains to show that E+ and E may be chosen so that E+ = E.

Let K ′ = L ∩ K and k′ = l ∩ k. It is a consequence of the Djoković–Kostant–Sekiguchi
correspondence and Remark 2.25 that {E+,Z,E} is K ′C-conjugate to a DKS triple {E′,Z′,E′} in
lssC ; cf. [Sek87]. By construction Z ∈ it, and t is a Cartan subalgebra of k′R. Therefore Z′ ∈ ik′R is
K ′R-conjugate to an element of it. So, without loss of generality, Z′ ∈ it.

The claim will follow once we show that Z and Z′ are conjugate under the Weyl group
WK′ ⊂Aut(t) of k′R. First, observe that Z and Z′ (i) lie in the same Cartan h, and (ii) are (twice)
the grading elements associated with parabolic subalgebras pZ and pZ′ that are K ′C-conjugate; it
follows that Z and Z′ are conjugate under an element w of the Weyl group of lC. Because pZ and
pZ′ are conjugate under K ′C, the element w must preserve the set of compact roots ∆(kC)⊂∆,
and is therefore an element of WK′ . 2

We now turn to the proof of Theorem 5.5. To establish the bijection Λϕ,t↔ ΨD, first suppose
that we are given a Levi subalgebra lC ∈ Lϕ,t; the corresponding [F •, N ] ∈ ΨD is obtained
as follows. Given the DKS triple of Lemma 5.3, let {N+, Y,N} = Ad−1

% {E,Z,E}⊂ lssR be the
corresponding Cayley triple.

From Lemma 3.17 we see that ϕ induces a sub-Hodge structure on the real form lR. Let
D = LR ·ϕ⊂D denote the corresponding Mumford–Tate domain.
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Claim 5.11. Define F•l ∈ Ď by F
−p
l = W2p(N

+, lC). Then the pair (F•l , N) defines a Hodge–Tate
degeneration on D.

Proof. The fact that lC is ϕ(i)-stable implies that

lC = (lC ∩ kC)⊕ (lC ∩ k⊥C ) and lssC = (lssC ∩ kC)⊕ (lssC ∩ k⊥C )

are both Cartan decompositions. Since lC ⊃ h, we may identify the roots of lC with a subset
of the roots of gC, and under this identification the (non)compact roots of lC are (non)compact
roots of gC. It follows from (3.6) and (3.14) that: (i) α(Z) ≡ 0 mod 4 for all compact roots of
lssC ; (ii) β(Z) is even and 1

2β(Z) is odd for all noncompact roots. The claim now follows from
Theorem 4.11. 2

Remark 4.5 and Claim 5.11 imply that (F•l , N) induces a nilpotent orbit (F •g , N) on D. At
this point Theorem 5.5(b,c) follows from (2.28), (2.29), (4.16) and (4.20).

The nilpotent orbit (F •, N) depends on both the Levi subalgebra lR and our choice of DKS
triple {E,Z,E}. Suppose that {E′,Z,E′} is a second DKS triple, also containing Z as the neutral
element. Then a theorem due to Rao [CM93, Theorem 9.4.6] implies that the triples are conjugate
under G0 ∩ Lss

R . It is then straightforward to confirm that the nilpotent orbit (′F •, N ′) associated
with the second DKS triple is G0 ∩ Lss

R -congruent to (F •, N). Whence the two nilpotent orbits
determine the same conjugacy class [F •, N ] ∈ ΨD, and we have a well-defined map Lϕ,t→ ΨD.
Finally, (5.4) and Theorem 5.5(b) imply that the map descends to Λϕ,t→ ΨD.

To address the second half of the correspondence asserted in Theorem 5.5(a), suppose that
[F •, N ] ∈ ΨD. We normalize our choice of representative (F •, N) as follows. Let gC =

⊕
Ip,qg be

the associated Deligne splitting, and let l̃C =
⊕
Ip,pg be the Levi subalgebra of Theorem 4.3. Since

(F •, N) is R-split, l̃C is necessarily stable under conjugation. Moreover, we may complete N to
the standard triple {N+, Y,N}⊂ l̃ssR so that (4.13) holds. Conjugating (F •, N) by an element
g ∈ GR if necessary, we may assume that this is a Cayley triple. Then l̃C is ϕ(i)-stable. Let
{E,Z,E}⊂ l̃ssC be the Cayley transform (2.27) of the Cayley triple, and let ϕ̃ be as given by
(4.16). Then ϕ̃ is a K-Matsuki point of D (Remark 4.21), and therefore KR-conjugate to ϕ by
(3.11). So, conjugating (F •, N) by an element g ∈ KR, if necessary, we may assume that ϕ̃ = ϕ.

Let lC⊂ l̃C be a minimal conjugation and ϕ-stable Levi subalgebra containing the DKS triple.
(Such a Levi is not unique. However, any two such are conjugate under the reductive centralizer
Z(E,E) of E and E in K0

R ∩ LR; see the proof of [Noë98, Proposition 1.1.3].) Then Z is a
distinguished semisimple element of the semisimple factor lssC by Lemma 4.23 and Remark 4.25.
By construction, LR admits the Hodge representation (lR, Ql,Ad, ϕ). Therefore, lR has a compact
Cartan subalgebra t̃ 3 iEϕ. Since both Cartans t and t̃ contain iEϕ, they are necessarily Cartan
subalgebras of the compact k0R. Therefore, up to conjugation by g ∈K0

R, we may assume that t = t̃.
Thus lR ∈ Lϕ,t. At this point, the ambiguity in our choice of minimal lC (see the parenthetical
remark above) is up to the action of the Weyl group of Z(E,E). Since the latter is a subgroup of
W0, we have a well-defined map ΨD → Λϕ,t. This completes the proof of Theorem 5.5(a).

It remains to establish Theorem 5.5(d). The induced Deligne splitting VC =
⊕
Ip,q may be

obtained as follows. Let VC =
⊕
V λ be the weight space decomposition of VC. That is, λ ∈ h∗

and v ∈ V λ if and only if ξ(v) = λ(ξ)v for all ξ ∈ h. It is immediate from (4.20) that Ip,• is the

E′ := Ad−1
% (Eϕ)

eigenspace for the eigenvalue p. That is,

Ip,• =
⊕

µ(E′)=p

′V µ;
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here VC =
⊕′ V µ is the weight space decomposition with respect to the Cartan subalgebra

h′ = Ad−1
% (h). On the other hand, by (3.25),⊕

p+q=`

Ip,q =
⊕

µ(Y )=`

′V µ

is the `-eigenspace for Y = %−1(Z). Thus

Ip,q =
⊕

µ(E′)=p
µ(Y )=p+q

′V µ. (5.12)

Applying Ad% to (5.12) yields (5.6), and completes the proof of Theorem 5.5. 2

Remark 5.13 (Computing Z). If we wish to compute the Deligne splitting (5.6) it is necessary
to determine Z. As a reductive algebra, lC decomposes into a direct sum of its center and a
semisimple factor

lC = zC ⊕ lssC ;

the key is to recall (Theorem 5.5(b)) that

Z is the image of 2Eϕ under the projection lC→ lssC . (5.14)

Let S′⊂ S⊂ h∗ be a choice of simple roots for lssC ⊂ gC. We have

zC = spanC{Sj | σj 6∈ S′}.

Likewise, the Cartan subalgebra of the semisimple factor is

h ∩ lssC = spanC{Hi | σi ∈ S′},

where Hi⊂ [gσi , g−σi ]⊂ h is defined by σi(H
i) = 2 (there is no sum over i). The sets {Si}ri=1

and {Hi}ri=1 are the bases h dual to the simple roots and fundamental weights, respectively. In

particular, if C = (Cij) is the Cartan matrix, so that σi = Cji ωj , then Hj = Cji S
i. Moreover,

{Sj | σj 6∈ S′} ∪ {Hi | σi ∈ S′} is a basis of h. Therefore, we may write

Eϕ =
∑
σj 6∈S′

njS
j +

∑
σi∈S′

miH
i,

and (5.14) yields

Z = 2
∑
σi∈S′

miH
i ∈ h ∩ lssC .

Remark 5.15 (The Deligne splitting). By (5.14) we have Eϕ = 1
2Z + ζ with ζ ∈ zC. Indeed, the

discussion of Remark 5.13 yields

ζ =
∑
σj 6∈S′

njS
j ∈ h ∩ zC.

Since both Eϕ and Z are imaginary (i.e., they lie in igR), ζ is as well. Observe that

E′ = 1
2Y + ζ,
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and from this we may conclude that

E′ = 1
2Y − ζ.

Since Z, ζ ∈ h, we have Y, ζ ∈ h′ so that E′ ∈ h′. It follows that the Deligne splitting (5.12) is
alternatively given by

Ip,q =
⊕

µ(E′)=p

µ(E′)=q

′V µ (5.16)

where VC =
⊕ ′V µ is the weight space decomposition with respect to h′ = Ad−1

% (h).

5.4 Polarized orbits
Let D⊂ Ď be a Mumford–Tate domain. We say that a GR-orbit O⊂ cl(D) is polarized (relative
to D) if it contains the image Φ∞(F •, N) of a point F • ∈ B̃(N) under the reduced limit period
mapping (3.30). We think of the polarized orbits as the ‘Hodge-theoretically accessible’ orbits.

Let (F̃ •, N) be the R-split PMHS (3.28) associated with (F •, N). From Theorem 3.27(c) and
(3.30), we see that Φ∞(F •, N) = Φ∞(F̃ •, N). So, for the purpose of studying polarized orbits, it
suffices to consider R-split PMHSs. From Theorem 3.27(a, c) one may also deduce that F̃ • and
F̃ •∞ lie in the same GR-orbit in Ď. (See the proof of [CKS86, Lemma 3.12].)

Since Φ∞(g ·F •,AdgN) = g ·Φ∞(F •, N), we see that any two GR-congruent R-split PMHSs
parameterize the same GR-orbit O⊂ bd(D). We say that O is the orbit polarized by [F •, N ] ∈ΨD.
Theorem 5.5(c) describes the image of the surjection

ΨD � {polarized O⊂ cl(D)}. (5.17)

Remark 5.18. The parameterization (5.17) of the polarized orbits generalizes a construction
of [KR14] which obtains polarized GR-orbits O⊂ bd(D) from sets of strongly orthogonal
noncompact roots. In the case that D is Hermitian symmetric, all the boundary orbits O⊂ bd(D)
are polarizable; they are all parameterized by the [KR14] construction [FHW06, Theorem 3.2.1];
and the parameterization is essentially that given by the Harish-Chandra compactification of D.

Polarized orbits have received much attention recently; cf. [GGK13, GGR14, KP14, KR14].
One basic result is the following.

Theorem 5.19 [KP14]. The complexified normal space toO⊂ Ď at the point %(ϕ) = Φ∞(F •, N)
is

N%(ϕ)O⊗C =
⊕
p,q>0

I−p,−qg . (5.20)

In particular, the (real) codimension of the (polarized) GR-orbit O is

codimĎO = dimC
⊕
p,q>0

Ip,qg . (5.21)

Moreover, the boundary bd(D)⊂ Ď contains codimension-one GR-orbits and they are all
polarized. In this case the normal space

N%(ϕ)O = g−αR (5.22)

is naturally identified with a real root space.
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Recall the set I(p) = {i | g−σi 6⊂ p} = {i | σi(E) = 1} of (2.1). We will see that Theorems 5.5
and 5.19 yield the following proposition.

Proposition 5.23. The boundary bd(D)⊂ Ď contains exactly |I(p)| codimension-one GR-
orbits.

Remark 5.24. In the case that P is maximal (equivalently, |I(p)| = 1), Proposition 5.23 was
proven in [KR14].

Proof. From (4.13), (5.20), and (5.22) we see that N spans I−1,−1
g = g−α when %(ϕ) lies in a

codimension-one GR-orbit. It follows that the Levi subalgebra lC of Theorem 5.5 has rank one,
and the semisimple factor is the sl2C⊂ gC with simple root {α}. In particular, α = σi for some
i ∈ I(p). Whence bd(D) contains at most |I(p)| codimension-one orbits.

Since no two σi, with i ∈ I(p), are congruent under the Weyl group W0 of g0, in order to see
that equality holds we must show that every i ∈ I(p) yields a codimension-one orbit. Let lC be
the rank-one Levi subalgebra with simple root σi. Then lR = lC ∩ gR ∈ Lϕ,t. Moreover, in this
case Z = Hi, where {Hj}rj=1 is the basis of h dual to the fundamental weights. The fact that the
GR-orbit through %(ϕ) has codimension one is [KR14, Lemma 6.52]. 2

5.5 Examples
Suppose that D is a Mumford–Tate domain for a Hodge representation (VR, Q, ϕ) of GR. In the
examples that follow we use Theorem 5.9 to enumerate the set ΥD of horizontal SL(2)s on D
(modulo the action of GR). More precisely, given [υ] ∈ ΥD, let [lR] ∈ Λt,ϕ be the corresponding
conjugacy class under Theorem 5.9, and let [F •, N ] ∈ ΨD be the corresponding (conjugacy
class of) nilpotent orbit under Theorem 5.5. We will do the following.

(1) Identify a representative of [lR] by describing the simple roots S′ of lC as a subset of the
roots ∆ of gC. The Levis lR of Lϕ,t are identified as follows. As discussed in Remark 2.6, the Levi
subalgebras lC of gC that contain h = t⊗C are in bijection with the subsets {wS0 | w ∈W, S0⊂ S}.
This is a finite collection of subsets. For each subset we consider the corresponding Levi l and
compute Z = πss

l (Eϕ); cf. Remark 5.13. We then compute the Z-eigenspace decomposition of lssC
to determine whether or not Z is a distinguished element of lssC , cf. (5.2).

(2) Compute the codimension (5.21) of the GR-orbit O polarized by [F •, N ].

(3) Determine the Deligne splitting (5.6) of the R-split PMHS (F •, N). The splittings will
be depicted by pictures in the pq-plane that place a • at the point (p, q) if Ip,q 6= 0. When
considering those pictures, keep in mind that N ∈ I−1,−1

g , so that N : Ip,q → Ip−1,q−1.

The Hodge diamond may fail to distinguish two distinct conjugacy classes in ΥD; see
Remarks 5.37 and 5.29(a).

Throughout (i) ∈W will denote the simple reflection in the hyperplane σ⊥i ⊂ h∗.

Example 5.25 (Period domain for h = (1, 3, 1)). We have GR = SO(3, 2)◦ and Eϕ = S1 so that
W0 = {1, (2)}. In this case D is Hermitian symmetric and all the GR-orbits of bd(D) are
polarized. Applying Theorem 5.9, we find that ΥD consists of two elements:

In both cases lssR = su(1, 1).
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Example 5.26 (Period domain for h = (2, 1, 2)). We have GR = SO(1, 4)◦ and Eϕ = S2, so that
W0 = {1, (1)}. Applying Theorem 5.9, we find that ΥD consists of a single element:

Moreover, from [GGR14, Lemma III.20] we may deduce that the codimension-one polarized
orbit O is closed, giving an example of a closed orbit that is polarized, but not by a Hodge–Tate
degeneration.

Example 5.27 (Period domain for h = (1, 1, 1, 1, 1)). We have GR = SO(3, 2) and Eϕ = S1 + S2,
so that W0 = {1}. Applying Theorem 5.9, we find that ΥD consists of three elements:

Example 5.28 (GR = SU(2, 1) and Ď = Flag1,2C3). We have Eϕ = S1 + S2, and consider the

Mumford–Tate domain D⊂ Ď for the Hodge representation (gR, Qg,Ad, ϕ). This domain is well
studied; indeed, it is known that bd(D) contains three GR-orbits, all of which are polarized;
cf. [GGK13, KP14]. We have W0 = {1}. Applying Theorem 5.5, we find that ΥD consists of
three elements; the corresponding data are:

Remark 5.29. (a) Observe that the first two Hodge diamonds in Example 5.28 are identical; in
particular, they fail to distinguish the two distinct GR-conjugacy classes of horizontal SL(2)s.

(b) Moreover, while the two nilpotent elements N ∈ Nilp(gR) of these examples lie in the
same Ad(GC)-orbit (the minimal orbit Nmin), they lie in distinct Ad(GR)-orbits. This may be
seen by computing the invariants (γ(Z);α′(Z)) of § 2.7, and observing that they differ. For this,
we work with the simple roots S̃ = (1)S = {−σ1, σ1 + σ2}. Then S̃k = {σ1 + σ2} is a set of
simple roots for kC = gl2C, and the noncompact root is α′ = −σ1. In both cases the compact
characteristic vector satisfies

γ(Z) = ((σ1 + σ2)(Z)) = (1);

however, in the first example we have α′(Z) = −2, while in the second we have α′(Z) = 1.

Example 5.30 (GR = G2⊂SO(3, 4) and h = (1, 2, 1, 2, 1)). We have Eϕ = S1 and GR⊂SO(3, 4),
and consider the Mumford–Tate domain D⊂ Ď for the Hodge representation on VR = R7 with
Hodge numbers h = (1, 2, 1, 2, 1). Kerr and Pearlstein have shown that bd(D) contains three
GR-orbits, only one of which is polarized [KP14, § 6.1.3].

Here W0 = {1, (2)}. Applying Theorem 5.9, we find that ΥD consists of a single element:
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Example 5.31 (GR = G2⊂SO(3, 4) and h = (2, 3, 2)). We have Eϕ = S2 and GR⊂SO(3, 4), and
consider the Mumford–Tate domain D⊂ Ď for the Hodge representation on VR = R7 with Hodge
numbers h = (2, 3, 2). Kerr and Pearlstein have shown that bd(D) contains three GR-orbits, all
of which are polarized [KP14, § 6.1.3].

Here W0 = {1, (1)}. Applying Theorem 5.9, we find that ΥD consists of three elements:

Example 5.32 (GR = G2⊂SO(3, 4) and h = (1, 1, 1, 1, 1, 1, 1)). We have Eϕ = S1 + S2 and
GR⊂SO(3, 4), and consider the Mumford–Tate domain D⊂ Ď for the Hodge representation
on VR = R7 with Hodge numbers h = (1, 1, 1, 1, 1, 1, 1). Kerr and Pearlstein have shown that
bd(D) contains seven GR-orbits, three of which are polarizable [KP14, § 6.1.3].

Here W0 = {1}. Applying Theorem 5.9, we find that ΥD consists of three elements; they are
given by:

Example 5.33 (Period domain for h = (1, 2, 2, 1)). We have GR = Sp(3,R) and Eϕ = S1 + S3. In
this case W0 = {1, (2)}. Applying Theorem 5.9, we find that ΥD contains seven elements. The
corresponding data are:

Example 5.34 (Period domain for h = (2, 1, 1, 2)). We have GR = Sp(3,R) and Eϕ = S2 + S3. In
this case W0 = {1, (1)}. Applying Theorem 5.5, we find that there are three (conjugacy classes of)
horizontal SL(2)s on the period domain D. The corresponding data are:
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Example 5.35 (Period domain for h = (1, 1, 1, 1, 1, 1)). We have GR = Sp(3,R) and Eϕ = S1 +

S2 + S3. In this case W0 = {1}. Applying Theorem 5.5, we find that there are seven (conjugacy

classes of) horizontal SL(2)s on the period domain D. The corresponding data are:

Example 5.36 (Period domain for h = (2, 4, 2)). We have GR = SO(4, 4)◦, Eϕ = S2, and W0 =

{(1), (3), (4)}. There are six (GR-conjugacy classes of) horizontal SL(2)s:

Remark 5.37. Note that the second and third (GR-conjugacy classes of) horizontal SL(2)s in

(the first row of) Example 5.36 are not distinguished by their Hodge diamonds.

Example 5.38 (Cattani–Kaplan). In [CK78, § 4] Cattani and Kaplan consider the case that D

is the period domain for Hodge numbers h = (3, 3, 3), and find that there are five conjugacy

classes of horizontal SL(2)s. In the notation of Theorems 5.5 and 5.9 (and the introduction to

§ 5.5), those conjugacy classes are enumerated as follows. We have GR = SO(3, 6). The grading

element is Eϕ = S3, and W0 is generated by the simple reflections {(1), (2), (4)}.
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Appendix. Noncompact real forms

The classical noncompact simple real forms gR that contain a compact Cartan subalgebra are
listed in Table A.1 along with their maximal compact subalgebras; there a, b > 0. Recall that

so(2) ' R, sp(1) ' su(2), sp(2) ' so(5), su(4) ' so(6).

Table A.2 lists those noncompact real forms gR of the exceptional simple complex Lie algebras
g that contain a compact Cartan subalgebra. The table also lists the maximal compact Lie
subalgebra kR⊂ gR, and the real rank rankRgR of gR. In the first column we give the two common
notations for the real forms; in the case of the second, the notation Xn(s) indicates the complex
form Xn of the algebra, and s = dim k⊥R − dim kR.

Table A.1. The classical real forms.

gR su(a, b) sp(a, b) sp(n,R) so(2a, b) so∗(2n)

kR s(u(a)⊕ u(b)) sp(a)⊕ sp(b) u(n) so(2a)⊕ so(b) u(n)

Table A.2. The exceptional real forms.

g gR kR rankRgR

e6
E II = E6(2) su(6)⊕ su(2) 4

E III = E6(−14) so(10)⊕ R 2

E V = E7(7) su(8) 7

e7 E VI = E7(−5) so(12)⊕ su(2) 4

E VII = E7(−25) e6 ⊕ R 3

e8
E VIII = E8(8) so(16) 8

E IX = E8(−24) e7 ⊕ su(2) 4

f4
F I = F4(4) sp(3)⊕ su(2) 4

F II = F4(−20) so(9) 1

g2 G = G2(2) su(2)⊕ su(2) 2
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