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A UNIFIED APPROACH TO HINDMAN, RAMSEY, AND VAN DER
WAERDEN SPACES

RAFAŁ FILIPÓW , KRZYSZTOF KOWITZ , AND ADAM KWELA

Abstract. For many years, there have been conducting research (e.g., by Bergelson, Furstenberg,
Kojman, Kubiś, Shelah, Szeptycki, Weiss) into sequentially compact spaces that are, in a sense, topological
counterparts of some combinatorial theorems, for instance, Ramsey’s theorem for coloring graphs,
Hindman’s finite sums theorem, and van der Waerden’s arithmetical progressions theorem. These spaces
are defined with the aid of different kinds of convergences: IP-convergence, R-convergence, and ordinary
convergence.

The first aim of this paper is to present a unified approach to these various types of convergences and
spaces. Then, using this unified approach, we prove some general theorems about existence of the considered
spaces and show that all results obtained so far in this subject can be derived from our theorems.

The second aim of this paper is to obtain new results about the specific types of these spaces. For
instance, we construct a Hausdorff Hindman space that is not an I1/n -space and a Hausdorff differentially
compact space that is not Hindman. Moreover, we compare Ramsey spaces with other types of spaces. For
instance, we construct a Ramsey space that is not Hindman and a Hindman space that is not Ramsey.

The last aim of this paper is to provide a characterization that shows when there exists a space of one
considered type that is not of the other kind. This characterization is expressed in purely combinatorial
manner with the aid of the so-called Katětov order that has been extensively examined for many years
so far.

This paper may interest the general audience of mathematicians as the results we obtain are on the
intersection of topology, combinatorics, set theory, and number theory.

§1. Introduction. For more than 20 years, many mathematicians have been
examining sequentially compact spaces that are, in a sense, topological counterparts
of some combinatorial theorems, for instance, Ramsey’s theorem for coloring
graphs, Hindman’s finite sums theorem, and van der Waerden’s arithmetical
progressions theorem [5, 6, 20–22, 24, 26–28, 30, 35, 36, 52, 57–63, 73]. These
spaces are defined with the aid of different kinds of convergences: IP-convergence,
R-convergence, and ordinary convergence.

We start our brief overview of these spaces with the ones defined using ordinary
convergence. A topological space X is called:

• van der Waerden [58] if for every sequence 〈xn〉n∈N in X there exists a convergent
subsequence 〈xn〉n∈A with A being an AP-set (i.e., A contains arithmetic
progressions of arbitrary finite length);
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2 RAFAŁ FILIPÓW ET AL.

• an I1/n-space [30] if for every sequence 〈xn〉n∈N in X there exists a convergent
subsequence 〈xn〉n∈A with A having the property that the series of reciprocals
of elements of A diverges.

In fact both mentioned classes of spaces are special cases of a more general notion.
A nonempty family I ⊆ P(N) of subsets of N is an ideal on N if it is closed under
taking subsets and finite unions of its elements, N /∈ I and I contains all finite
subsets of N (it is easy to see that the family I1/n = {A ⊆ N :

∑
n∈A 1/n <∞} is

an ideal on N, and it follows from van der Waerden’s theorem [75] that the family
W = {A ⊆ N : A is not an AP-set} is an ideal on N). If I is an ideal on N then a
topological space X is called an I-space [30] if for every sequence 〈xn〉n∈N in X there
exists a converging subsequence 〈xn〉n∈A withA /∈ I. In particular, van der Waerden
spaces coincide with W-spaces.

Now we want to turn our attention to spaces defined with the aid of different kinds
of convergences. We start with Hindman spaces. A setA ⊆ N is an IP-set [36] if there
exists an infinite setD ⊆ N such that FS(D) ⊆ Awhere FS(D) denotes the set of all
finite sums of distinct elements of D. The family H = {A ⊆ N : A is not an IP-set}
is an ideal on N (it follows from Hindman’s theorem [44]).

An IP-sequence in X is a sequence indexed by FS(D) for some infinite D ⊆ N.
An IP-sequence 〈xn〉n∈FS(D) in a topological space X is IP-convergent [36] to a point
x ∈ X if for every neighborhood U of x there existsm ∈ N so that xn ∈ U for every
n ∈ FS(D \ {0, 1, ... , m}) (then x is called the IP-limit of the sequence).

Since only finite spaces are H-spaces [57], Kojman replaced the ordinary
convergence with IP-convergence (introduced by Furstenberg and Weiss [36]) to
define a meaningful topological counterpart of Hindman’s finite sums theorem.
Namely, a topological space X is called Hindman [57] if for every sequence 〈xn〉n∈N

in X there exists an infinite set D ⊆ N such that the subsequence 〈xn〉n∈FS(D) IP-
converges to some x ∈ X .

We finish our brief overview of classes of sequentially compact spaces with Ramsey
spaces. Let [A]2 denote the set of all pairs of elements of A. A sequence 〈xn〉n∈[D]2 in
X (indexed by pairs of natural numbers from some infinite set D ⊆ N) R-converges
[5, 6] to a point x ∈ X if for every neighborhood U of x there is a finite set F such
that x{a,b} ∈ U for all distinct a, b ∈ D \ F . A topological space X is called Ramsey
[61] if for every sequence 〈xn〉n∈[N]2 in X there exists an infinite set D ⊆ N such that
the subsequence 〈xn〉n∈[D]2 R-converges to some x ∈ X .

We say that an ideal I (on N) is below an ideal J in the Katětov order [55] if there
is a function f : N → N such that f–1[A] ∈ J for every A ∈ I. Note that Katětov
order has been extensively examined (even in its own right) for many years so far [2,
3, 8, 10, 12, 41, 42, 45, 47–50, 67, 68, 70, 72, 76].

There are three objectives of this paper. The first aim is to present a unified
approach to these various types of convergences and spaces. This is achieved in
sections in Part 1 with the aid of partition regular functions (Definition 3.1),
a convergence with respect to partition regular functions (Definition 9.1), and a
subclass of sequentially compact spaces defined using this new kind of convergence
(see Definition 10.1). Then using this approach, we prove some general theorems
about those classes of spaces (Theorem 10.5) and show that all results obtained so
far in this subject can be derived from our theorems (see sections in Parts 2 and 3).
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A UNIFIED APPROACH TO HINDMAN, RAMSEY, AND VAN DER WAERDEN SPACES 3

The second aim of this paper is to obtain new results concerning specific types
of these spaces: Ramsey spaces, Hindman spaces, van der Waerden spaces, and
I1/n-spaces. For instance, we construct a Hausdorff Hindman space that is not an
I1/n-space (Corollary 14.10(2))—this gives a positive answer to a question posed
by Flašková [29] (so far only non-Hausdorff answer to this question was known
[24, Theorem 2.5]). We also construct a Hausdorff so-called differentially compact
space that is not Hindman (Corollary 14.9(3)) which yields the negative answer to
a question posed by Shi [73, Question 4.2.2] and other authors [22, Problem 1], [60,
Question 3]. Moreover, we compare Ramsey spaces with other types of spaces (so
far Ramsey spaces were only examined in their own right without comparing them
with other kinds of spaces [6, 11, 61]). For instance, we construct a Ramsey space
that is not Hindman and a Hindman space that is not Ramsey (Corollary 14.9).

The final aim of this paper is to provide a characterization that shows when there
exists a space of one considered type that is not of the other type (Theorem 16.1 and
other results in Part 4). This characterization is expressed in purely combinatorial
manner with the aid of the Katětov order or its counterpart in the realm of partition
regular functions (Definition 7.3).

§2. Preliminaries. In the paper we are exclusively interested in Hausdorff
topological spaces with one exception (Sections 17 and 18) where we were unable
to obtain results for Hausdorff spaces but succeeded in constructing a topological
space with unique limits of sequences.

Following von Neumann, we identify an ordinal number α with the set of all
ordinal numbers less than α. In particular, the smallest infinite ordinal number
� = {0, 1, ... } is equal to the set N of all natural numbers, and each natural number
n = {0, ... , n – 1} is equal to the set of all natural numbers less than n. Using this
identification, we can, for instance, write n ∈ k instead of n < k and n < � instead
of n ∈ � or A ∩ n instead of A ∩ {0, 1, ... , n – 1}.

IfA ⊆ � and n ∈ �, we writeA+ n = {a + n : a ∈ A} andA – n = {a – n : a ∈
A, a > n}.

We write [A]2 to denote the set of all unordered pairs of elements of A, [A]<� to
denote the family of all finite subsets of A, [A]� to denote the family of all infinite
countable subsets of A, and P(A) to denote the family of all subsets of A.

We say that a family A of subsets of a set Λ is an almost disjoint family on Λ if

(1) |A| = |Λ| for every A ∈ A and
(2) |A ∩ B | < |Λ| for all distinct elements A,B ∈ A.

By A 	 B we denote the disjoint union of sets A and B:

A 	 B = (A× {0}) ∪ (B × {1}) = {(x, 0) : x ∈ A} ∪ {(y, 1) : y ∈ B}.

For families of sets A ⊆ P(Λ) and B ⊆ P(Σ), we write A⊕ B = {A 	 B : A ∈
A, B ∈ B}.

A nonempty family I ⊆ P(Λ) of subsets of Λ is an ideal on Λ if it is closed under
taking subsets and finite unions of its elements, Λ /∈ I andI contains all finite subsets
of Λ. By Fin(Λ) we denote the family of all finite subsets of Λ. For Λ = �, we write
Fin instead of Fin(�). For an ideal I on Λ, we write I+ = {A ⊆ Λ : A /∈ I} and
call it the coideal of I, and we write I∗ = {Λ \ A : A ∈ I} and call it the filter dual
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4 RAFAŁ FILIPÓW ET AL.

to I. For an ideal I on Λ andA ∈ I+, it is easy to see that I � A = {A ∩ B : B ∈ I}
is an ideal on A.

In our research the following ideal on �2 plays an important role:

Fin2 =
{
C ⊆ �2 : {n ∈ � : {k ∈ � : (n, k) ∈ C} /∈ Fin} ∈ Fin

}
.

We say that a function f : Λ → Σ is I-to-one if f–1(�) ∈ I for every � ∈ Σ.
A set A ⊆ X is F� (G� , F�� , etc., resp.) in a topological space X if A is a union of

a countable family of closed sets (A is an intersection of a countable family of open
sets, A is an intersection of a countable family of F� sets, etc., resp.).

For a function f : X → Y and a set A ⊆ X , we write f � A to denote the
restriction of f to the set A.

Part 1. Partition regular operations

§3. Partition regular operations and ideals associated with them. Below we
introduce a notion that proved to be a convenient tool allowing to grasp the common
feature of different kinds of convergences related to Hindman, Ramsey, and van der
Waerden spaces.

Definition 3.1. Let Λ and Ω be countable infinite sets. Let F be a nonempty
family of infinite subsets of Ω such that F \K ∈ F for every F ∈ F and a finite set
K ⊆ Ω. We say that a function � : F → [Λ]� is partition regular if:

(M): ∀E,F ∈ F
(
E ⊆ F =⇒ �(E) ⊆ �(F )),

(R): ∀F ∈ F ∀A,B ⊆ Λ
(
�(F ) = A ∪ B =⇒ ∃E ∈ F (�(E) ⊆ A∨ �(E) ⊆ B)) ,

(S): ∀F ∈ F ∃E ∈ F (E ⊆ F ∧ ∀a ∈ �(E)∃K ∈ [Ω]<�(a /∈ �(E \K))).

In our considerations, we use the following easy observation concerning condition
(S) of Definition 3.1.

Proposition 3.2. Let � : F → [Λ]�(with F ⊆ [Ω]�) be a partition regular
function. Then for every F ∈ F there is E ∈ F such that E ⊆ F and for every finite
set L ⊆ Λ there exists a finite set K ⊆ Ω such that �(E \K) ⊆ �(E) \ L.

Proof. For F ∈ F , letE ∈ F be as in condition (S) of Definition 3.1. LetL ⊆ Λ
be a finite set. For every a ∈ �(E), we take a finite set Ka such that a /∈ �(E \Ka).
Then K =

⋃
{Ka : a ∈ �(E) ∩ L} is finite and �(E \K) ⊆ �(E) \ L. �

The following easy proposition reveals basic relationships between partition
regular functions and ideals.

Proposition 3.3.

(1) If � : F → [Λ]� is partition regular, then

I� = {A ⊆ Λ : ∀F ∈ F (�(F ) �⊆ A)}.

is an ideal on Λ.
(2) If I is an ideal on Λ, then the function

�I : I+ → [Λ]� given by �I(A) = A

is partition regular and I = I�I .
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A UNIFIED APPROACH TO HINDMAN, RAMSEY, AND VAN DER WAERDEN SPACES 5

Remark. If � is partition regular and � = �I� , then I� = I�, but, as we will see,
in general, � �= �. More important, � may miss some crucial properties which �
possesses (e.g., P-like properties—see Proposition 6.5(3) and (4)).

Below we present the most important examples of partition regular functions
that were our prototypes while we were thinking on a unified approach to Hindman,
Ramsey, and van der Waerden spaces.

3.1. Hindman’s finite sums theorem. Let the function FS : [�]� → [�]� be given
by

FS(D) =

{∑
n∈α
n : α ∈ [D]<� \ {∅}

}
,

i.e., FS(D) is the set of all finite non-empty sums of distinct elements of D.
A set D ⊆ � is sparse [57, p. 1598] if for each n ∈ FS(D) there exists the unique

set α ⊆ D such that n =
∑
i∈α i . This unique set will be denoted by αD(n). For

instance, the set E = {2i : i ∈ �} is sparse, and in the sequel, we write α(n) instead
of αE(n).

A sparse set D ⊆ � is very sparse [24, p. 894] if αD(x) ∩ αD(y) �= ∅ implies
x + y /∈ FS(D) for every x, y ∈ FS(D).

Theorem 3.4 (Hindman). The function FS is partition regular and the family

H = IFS = {A ⊆ � : ∀D ∈ [�]� (FS(D) �⊆ A)}
is an ideal on �. The ideal H is called the Hindman ideal [30, p. 109].

Proof. It is easy to see that condition (M) of Definition 3.1 is satisfied for
FS. Condition (R) of Definition 3.1 holds for FS as in this case it is the well-
known Hindman’s finite sums theorem [44, Theorem 3.1], [4, Theorem 3.5]. To
see that condition (S) of Definition 3.1 holds for FS, it is enough to notice [57,
p. 1598] that every infinite set F ⊆ � has an infinite sparse subset G ⊆ F which
obviously satisfies condition (S). Finally, Proposition 3.3(1) shows that H is an
ideal on �. �

Remark. It is known that sets from H+ (that are called IP-sets) are examples of
so-called Poincaré sequences1 that play an important role in the study of recurrences
in topological dynamics [35, p. 74].

The following lemma will be used in some proofs regarding properties of the
function FS.

Lemma 3.5 [57, Lemma 7]. If D is an infinite sparse set, then there exists a set
S = {si : i ∈ �} ⊆ FS(D) such that for every i ∈ � we have si < si+1 and

maxαD(si) < minαD(si+1) and maxα(si) < minα(si+1).

1A setW ⊆ Z is called a Poincaré sequence [35, Definition 3.6 at p. 72] if for any measure preserving
system (X,B, �, T ) and A ∈ B with �(A) > 0 we have �(T –n [A] ∩ A) > 0 for some n ∈W , n �= 0.
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6 RAFAŁ FILIPÓW ET AL.

3.2. Ramsey’s theorem for coloring graphs.

Theorem 3.6 (Ramsey). Let r : [�]� →
[
[�]2

]�
be given by

r(H ) = [H ]2 = {{x, y} ⊆ [�]2 : x, y ∈ H,x �= y},

i.e., r(H ) is the set of all unordered pairs of elements of H. Then r is partition regular
and the family

R = Ir = {A ⊆ [�]2 : ∀H ∈ [�]� ([H ]2 �⊆ A)}

is an ideal on [�]2. The ideal R is called the Ramsey ideal [49, 67]. (If we identify a
set A ⊆ [�]2 with a graph GA = (�,A), the ideal R can be seen as an ideal consisting
of graphs without infinite complete subgraphs.)

Proof. It is easy to see that condition (M) of Definition 3.1 is satisfied for r.
Condition (R) of Definition 3.1 holds for r as in this case it is the well-known
Ramsey’s theorem for coloring graphs [71, Theorem A], [40, Theorem 1.5]. To see
that condition (S) of Definition 3.1 holds for r, it is enough to notice that for every
{a, b} ∈ [F ]2 we have {a, b} /∈ [F \ {a, b}]2. Finally, Proposition 3.3(1) shows that
R is an ideal on [�]2. �

3.3. The positive differences and the associated ideal. Let the function Δ : [�]� →
[�]� be given by

Δ(E) = {a – b : a, b ∈ E, a > b} ,

i.e., Δ(E) is the set of all positive differences of distinct elements of E.
We say that a set E ⊆ � is D-sparse [22, p. 2009] if for every a ∈ Δ(E) there are

unique elements b, c ∈ E such that a = b – c.

Proposition 3.7. The function Δ is partition regular and the family

D = IΔ = {A ⊆ � : ∀E ∈ [�]� (Δ(E) �⊆ A)}

is an ideal on � such that D � H. It is known that sets from D+ are examples of
so-called Poincaré sequences [35, p. 74].

Proof. It is easy to see that condition (M) of Definition 3.1 is satisfied for Δ.
It is known [22, Proposition 4.1] that condition (R) of Definition 3.1 holds for Δ.
To see that condition (S) of Definition 3.1 holds for Δ, it is enough to notice [22,
Proposition 4.3(2)] that every infinite set F ⊆ � has an infinite D-sparse subset
G ⊆ F which obviously satisfies condition (S). Finally, Proposition 3.3(1) shows
that D is an ideal on � and it is known [73, Proposition 4.2.1], [22, Proposition 4.1]
that D � H. �

3.4. The summable ideal.

Proposition 3.8. The family

I1/n =

{
A ⊆ � :

∑
n∈A

1
n + 1

<∞
}
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A UNIFIED APPROACH TO HINDMAN, RAMSEY, AND VAN DER WAERDEN SPACES 7

is an ideal on �. The ideal I1/n is called the summable ideal [66, Definition 1.6],
[64, Example 3], [15, p. 238], [53, p. 411]. The function �I1/n

: I+
1/n → [�]� given by

�I1/n
(A) = A is partition regular and I1/n = I�I1/n

.

Proof. It is easy to show that I1/n is an ideal on �, whereas Proposition 3.3(2)
gives the required properties of �I1/n

. �

3.5. van der Waerden’s arithmetical progressions theorem.

Theorem 3.9 (van der Waerden). A set A ⊆ � is called an AP-set if it contains
an arithmetic progressions of arbitrary finite length. The family

W = {A ⊆ � : A is not an AP-set}

is an ideal on �. The ideal W is called the van der Waerden ideal [30, p. 107]. The
function �W : W+ → [�]� given by �W(A) = A is partition regular and W = I�W .

Proof. It is easy to see that all conditions from the definition of an ideal but
additivity are satisfied, whereas additivity is the well-known van der Waerden’s
arithmetical progressions theorem [75], [40, Theorem 2.1]. Finally, Proposition
3.3(2) gives the required properties of �W . �

3.6. Ideals on directed sets. Finally, we introduce a class of partition regular
functions which are connected with ideals on directed sets [19, 20]. Recall that (Λ, <)
is a directed set if the relation < is an upward directed strict partial order on Λ.

Let (Λ, <) be a directed set such that Λ is infinite countable. A setB ⊆ Λ is cofinal
in (Λ, <) if for every 	 ∈ Λ there is b ∈ B with 	 < b. A family I of subsets of Λ
is an ideal on (Λ, <) [20, Definition 2.2] if I is an ideal on Λ and I contains all
sets which are not cofinal. A family B of subsets of Λ is a coideal basis on (Λ, <)
[20, Definition 2.4] if B �= ∅, all sets in B are cofinal and if C ∪D ∈ B, then there
exists B ∈ B such that B ⊆ C or B ⊆ D. In particular, for every ideal I on (Λ, <)
the family I+ is a coideal basis on (Λ, <). It is known [19, Proposition 2.7] that I
is an ideal on (Λ, <) if and only if there exists a coideal basis B on (Λ, <) such that
I = {A ⊆ Λ : ∀B ∈ B (B �⊆ A)}.

The following easy proposition reveals basic relationships between partition
regular functions and ideals on directed sets.

Proposition 3.10. Let (Λ, <) be a directed set.

(1) If � : F → [Λ]� is a partition regular function such that �(F ) is cofinal for
every F ∈ F , then

I� = {A ⊆ Λ : ∀F ∈ F (�(F ) �⊆ A)}

is an ideal on (Λ, <).
(2) For a coideal basis B on (Λ, <) (inparticularfor B = I+, where I is an ideal

on (Λ, <)), we define

B̂ = {B \K : B ∈ B, K ∈ [Λ]<�}.
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Then the function �B : B̂ ⊕ Fin(Λ)∗ → [Λ]� given by

�B((B \K) 	 C ) = (B \K) ∩ {	 ∈ Λ : ∀	′ ∈ (Λ \ C ) (	′ < 	)}
is a partition regular function such that �B((B \K) 	 C ) is cofinal for every
(B \K) 	 C ∈ B̂ ⊕ Fin(Λ)∗ and I�B = {A ⊆ Λ : ∀B ∈ B (B �⊆ A)}.

§4. Restrictions and small accretions.

4.1. Restrictions of partition regular operations. For B /∈ I�, we define a fam-
ily F � B = {E ∈ F : �(E) ⊆ B} and a function � � B : F � B → [B]� by (� �
B)(E) = �(E) (i.e., � � B = � � (F � B)). The following easy proposition reveals
relationships between restriction of a function � and restriction of an ideal I�.

Proposition 4.1. If � : F → [Λ]� is partition regular and B /∈ I�, then � � B is
partition regular and I��B = I� � B .

4.2. Small accretions of partition regular operations. We will need the following
notion in the last part of the paper for characterization that shows when there exists
a space of one considered type that is not of the other type (Theorem 16.1).

Definition 4.2. Let � : F → [Λ]� (with F ⊆ [Ω]�) be a partition regular
function.

(1) A set F ∈ F has small accretions if �(F ) \ �(F \K) ∈ I� for every finite
set K.

(2) � has small accretions if for every E ∈ F there is F ∈ F such that F ⊆ E and
F has small accretions.

Proposition 4.3. If � ∈ {FS, r,Δ} ∪ {�I : I is an ideal}, then � has small accre-
tions.

Proof for � = �I where I is an ideal. The function � has small accretions,
since for every A ∈ I+ and finite K ⊆ Λ we have �I(A) \ �I(A \K) = A \ (A \
K) ⊆ K ∈ I. �

Proof for � = FS. It is known [24, Lemma 2.2] that every infinite set E ⊆ �
has an infinite very sparse subset F ⊆ E, so if we show that every very sparse set
has small accretions, the proof will be finished.

LetF ⊆ � be an infinite very sparse set andK ⊆ � be a finite set. Assume towards
contradiction that FS(D) ⊆ FS(F ) \ FS(F \K) = {x ∈ FS(F ) : αF (x) ∩K �= ∅}
for someD ∈ [�]� . Since K is finite, we can find x, y ∈ D, x �= y, such that αF (x) ∩
αF (y) �= ∅. But then x + y ∈ FS(D) \ FS(F ), a contradiction. �

Proof for � = r. The function r has small accretions, since for every A ∈ [�]�

and finite K ⊆ � we have r(A) \ r(A \K) = [A]2 \ [A \K ]2 = {{i, j} : i ∈ A ∩
K, j ∈ A} ∈ R. �

Proof for � = Δ. It is known [22, Proposition 4.3(2)] that every infinite set
E ⊆ � has an infinite D-sparse subset F ⊆ E, so if we show that every D-sparse set
has small accretions, the proof will be finished.

Let F ⊆ � be an infinite D-sparse set and K ⊆ � be a finite set. It is known [22,
Proposition 4.3(1)] that then F – n ∈ D for every n < minF , and consequently,
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{a – b : a ∈ F \K, b ∈ F ∩K} ∩ � ∈ D. Thus, Δ(F ) \ Δ(F \K) = {a – b : a ∈
F ∩K, b ∈ F, a > b} ∪ ({a – b : a ∈ F \K, b ∈ F ∩K} ∩ �) ∈ D as a finite union
of sets from D. �

§5. Topological complexity of partition regular operations. If Λ is a countable
infinite set, then we consider 2Λ = {0, 1}Λ as a product (with the product topology)
of countably many copies of a discrete topological space {0, 1}. Since 2Λ is a Polish
space [56, p. 13] and [Λ]� is a G� subset of 2Λ, we obtain that [Λ]� is a Polish
space as well [56, Theorem 3.11]. In particular, if Λ and Ω are countable infinite
and F ⊆ [Ω]� , we say that a partition regular function � : F → [Λ]� is continuous
if � is a continuous function from a topological subspace F into a topological space
[Λ]� .

By identifying subsets of Λ with their characteristic functions, we equip P(Λ)
with the topology of the space 2Λ and therefore we can assign topological notions
to ideals on Λ. In particular, an ideal I is Borel (analytic, coanalytic, resp.) if I is
a Borel (analytic, coanalytic, resp.) subset of 2Λ. Recall, a set A ⊆ X is analytic if
there is a Polish space Y and a Borel set B ⊆ X × Y such that A is a projection of B
onto the first coordinate [56, Exercise 14.3], and a set C ⊆ X is coanalytic if X \ C
is an analytic set.

Proposition 5.1. If a partition regular function � : F → [Λ]�(with F ⊆ [Ω]�) is
continuous and F is a closed subset of [Ω]� , then the ideal I� is coanalytic.

Proof. We will show that I+
� = P(Λ) \ I� is an analytic set. Let B = {(A,F ) ∈

P(Λ) ×F : �(F ) ⊆ A}. Since B ⊆ P(Λ) × [Ω]� and I+
� is a projection of B onto

the first coordinate, we only need to show that B is a Borel set. It suffices to show
that C = (P(Λ) × [Ω]�) \ B is an open set, since

B = ((P(Λ) × [Ω]�) \ C ) ∩ (P(Λ) ×F).

Let (A,F ) ∈ C . We have two cases: (1) F /∈ F or (2) F ∈ F .
Case (1). Since F is closed, there is an open set U ⊆ [Ω]� with F ∈ U and

U ∩ F = ∅. ThenW = P(Λ) ×U is open and (A,F ) ∈W ⊆ C .
Case (2). Since �(F ) �⊆ A, there is a ∈ �(F ) \ A. Let V = {D ∈ P(Λ) : a ∈ D}.

Then V is an open and closed set, A /∈ V , and �(F ) ∈ V . Since � is continuous at
the point F, there is an open set U ⊆ [Ω]� such that F ∈ U and �[U ] ⊆ V . Then
W = (P(Λ) \ V ) ×U is open and (A,F ) ∈W ⊆ C . �

Proposition 5.2.

(1) The ideals I1/n and W are F� .
(2) The functions FS and r are continuous.
(3) The function Δ is not continuous. In fact, the function Δ is discontinuous at

every point A such that Δ(A) �= �.
(4) If L = {A ∈ [�]� : ∀n ∈ � (eA(n + 1) – eA(n) > eA(n))} where eA : � → A

is the increasing enumeration of a set A ⊆ �, then IΔ = IΔ�L, L is closed and
Δ � L is continuous.

(5) The ideals H, R, and D are coanalytic.
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Proof. (1) It is known that I1/n and W are F� [66, Example 1.5], [25, Example
4.12].

(2) Case of FS. Let D ∈ [�]� and let U be an open basic neighborhood
of FS(D). Then there exists a finite set G ⊆ � such that U = {B ∈ [�]� : B ∩
{0, 1, ... ,maxG} = G}. Let F = D ∩ {0, 1, ... ,maxG}. Then V = {A ∈ [�]� :
A ∩ {0, 1, ... ,maxG} = F } is an open neighborhood of D and FS[V ] ⊆ U .

Case of r. Let D ∈ [�]� and let U be an open basic neighborhood of [D]2.
There exists a finite set G ⊆ [�]2 such that U = {B ∈

[
[�]2

]�
: B ∩ [N ]2 = G},

where N = max{max{p, q} : {p, q} ∈ G}. Then V = {A ∈ [�]� : A ∩N = D} is
an open neighborhood of D and r[V ] ⊆ U .

(3) LetA ⊆ � be such that b /∈ Δ(A) for some b ∈ �. ThenU = {B ⊆ � : b /∈ B}
is an open neighborhood of Δ(A). Let V be an open basic neighborhood of A.
There is N ∈ � such that V = {C ⊆ � : C ∩N = A ∩N}. Then C = (A ∩N ) ∪
(� \N ) ∈ V and Δ(C ) = � /∈ U . Hence the function Δ is discontinuous at the
point A.

(4) It is obvious that IΔ = IΔ�L. To show that L is closed, notice that
[�]� \ L is open as for each A ∈ [�]� \ L there is n ∈ � such that eA(n + 1) –
eA(n) ≤ eA(n) and U = {C ∈ [�]� : C ∩ (eA(n + 1) + 1) = A ∩ (eA(n + 1) + 1)}
is an open neighborhood of A disjoint with L.

Below we show that Δ � L is continuous. Let A ∈ L. We are going to show that
the function Δ � L is continuous at the point A. Let U be a neighborhood of
Δ(A). Without loss of generality, we can assume that there is N ∈ � such that U =
{B ∈ [�]� : B ∩N = Δ(A) ∩N}. There existsM ∈ � such that eA(M ) > N . Then
V = {C ∈ [�]� : C ∩ (eA(M ) + 1) = A ∩ (eA(M ) + 1)} is an open neighborhood
of A. Once we show that Δ[V ∩ L] ⊆ U , the proof will be finished. Let C ∈ V ∩ L.
Since A,C ∈ L, we obtain Δ(C ) ∩ (eA(M ) + 1) = Δ(C ∩ (eA(M ) + 1)) = Δ(A ∩
(eA(M ) + 1)) = Δ(A) ∩ (eA(M ) + 1). ButN < eA(M ), hence Δ(C ) ∩N = Δ(A) ∩
N and consequently Δ(C ) ∈ U .

(5) It is known that H and R are coanalytic [25, Example 4.11], [67, Lemma
1.6.24] (but it also follows from item (2) and Proposition 5.1). It follows from item
(4) and Proposition 5.1 that D is coanalytic. �

§6. P-like properties.

6.1. P-like properties of ideals. For A,B ⊆ Λ, we write A ⊆∗ B if there is a finite
set K ⊆ Λ with A \K ⊆ B .

Let us recall definitions of P-like properties of ideals that are considered in the
literature [50, p. 2030]. An ideal I on Λ is:

• P–(Λ) if for every ⊆-decreasing sequence An ∈ I+ with A0 = Λ and An \
An+1 ∈ I for each n ∈ � there exists B ∈ I+ such that B ⊆∗ An for each
n ∈ �;

• P– if for every ⊆-decreasing sequence An ∈ I+ with An \ An+1 ∈ I for each
n ∈ � there exists B ∈ I+ such that B ⊆∗ An for each n ∈ �;

• P+ if for every ⊆-decreasing sequence An ∈ I+ there exists B ∈ I+ such that
B ⊆∗ An for each n ∈ �.
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The following proposition reveals some implications between P-like properties
and provides equivalent forms of the properties P–(Λ) and P– that were considered
in the literature [62] under the names weak P-ideals and hereditary weak P-ideals,
where the author used them for in-depth research on I-spaces.

Proposition 6.1. Let I be an ideal on an infinite countable set Λ.

(1) I is P+ =⇒ I is P– =⇒ I is P–(Λ).
(2) The implications from item (1) cannot be reversed.
(3) The following conditions are equivalent.

(a) I is P–(Λ)(I is P–, resp.).
(b) For every partition A of Λ (of any set C ∈ I+, resp.) into sets from I there

exists B ∈ I+ such that B ⊆ Λ(B ⊆ C, resp.) and B ∩ A is finite for each
A ∈ A.

(c) I is a weak P-ideal (hereditary weak P-ideal, resp.) i.e., for every
countable family A ⊆ I of subsets of Λ (subsets ofany C ∈ I+, resp.)
there exists B ∈ I+ such that B ⊆ Λ(B ⊆ C, resp.) and B ∩ A is finite for
each A ∈ A.

Proof. (1) Straightforward.
(2) The ideal Fin ⊕ Fin2 is P–(� 	 �2) (the set B = � 	 ∅ works for every

sequence) but not P– (as witnessed by the sets An = ∅ 	 ((� \ n) × �)).
Below we show an example of a P– ideal that is not P+. For a set A ⊆ �, we

define the asymptotic density of A by d (A) = lim supn→∞ |A ∩ n|/n. Then the ideal
Id = {A ⊆ � : d (A) = 0} is P– (see, e.g., [9, Corollary 1.1]). Now we show that Id
is not P+. Take a decreasing sequence Bn ⊆ � such that 0 < d (Bn) < 1/n for each
n ∈ �. If C ⊆ � is such that C ⊆∗ Bn for all n ∈ �, then d (C ) ≤ d (Bn) → 0 as
n → ∞. Hence C ∈ Id . This shows that Id is not P+.

(3) Straightforward. �

There are known relationships between topological complexity and P-like
properties.

Theorem 6.2 [62, Proposition 4.9], [53, Lemma 1.2], [50, Theorem 3.7].

(1) Each G��� (inparticular, F��) ideal is P–(hence P–(Λ)).
(2) Each F� ideal is P+(hence P– and P–(Λ)).
(3) If I is an analytic ideal, then the following conditions are equivalent.

(a) There exists a P+ ideal J with I ⊆ J .
(b) There exists an F� ideal K with I ⊆ K.

6.2. P-like properties of partition regular operations.

Definition 6.3. Let � : F → [Λ]� be partition regular. For sets F ∈ F and B ⊆
Λ, we write �(F ) ⊆� B if there is a finite set K ⊆ Ω with �(F \K) ⊆ B .

Remark. We want to stress here that the relation “�(F ) ⊆� B” is in fact a
relation between F and B and not between �(F ) and B because it can happen that
�(F ) = �(G) and �(F ) ⊆� B but �(G) �⊆� B . We decided that we write �(F ) ⊆� B
instead of F ⊆� B as the former seems more natural for us. The same remark
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applies to other notions involving “�(F )” we defined earlier or we define later (e.g.,
Definitions 6.4 and 9.1).

The following properties will prove useful in the studies of classes of sequentially
compact spaces defined with the aid of partition regular functions.

Definition 6.4. Let � : F → [Λ]� be partition regular. We say that � is:
(1) P–(Λ) if for every ⊆-decreasing sequence An ∈ I+

� with A0 = Λ and An \
An+1 ∈ I� for each n ∈ � there exists F ∈ F such that �(F ) ⊆� An for each
n ∈ �;

(2) P– if for every ⊆-decreasing sequence An ∈ I+
� with An \ An+1 ∈ I� for each

n ∈ � there exists F ∈ F such that �(F ) ⊆� An for each n ∈ �;
(3) P+ if for every ⊆-decreasing sequence An ∈ I+

� there exists F ∈ F such that
�(F ) ⊆� An for each n ∈ �;

(4) weak P+ if for every E ∈ F there exists F ∈ F such that �(F ) ⊆ �(E) and
for every sequence {Fn : n ∈ �} ⊆ F such that �(F ) ⊇ �(Fn) ⊇ �(Fn+1) for
each n ∈ � there exists G ∈ F such that �(G) ⊆� �(Fn) for each n ∈ �.

The following result reveals basic properties of the above defined notions and
their connections with P-like properties of ideals.

Proposition 6.5. Let � : F → [Λ]� be partition regular with F ⊆ [Ω]� . Let I be
an ideal on Λ.

(1) � is P+ =⇒ � is weak P+ =⇒ � is P– =⇒ � is P–(Λ).
(2) I is P+ ⇐⇒ �I is P+, for every ideal I. Similar equivalences hold for P– and
P–(Λ), resp.

(3) The implications from item (1) cannot be reversed.
(4) If I� is P–(Λ)(P–, P+, resp.), then � is P–(Λ)(P–, P+, resp.).
(5) The implications from item (4) cannot be reversed in case of P–(Λ) and P–

properties.

Proof. (1) Below we only show that if � is weak P+ then it is P– since other
implications are straightforward.

Let An ∈ I+
� be a ⊆-decreasing sequence with An \ An+1 ∈ I� for each n ∈ �.

Since A0 ∈ I+
� , there is E ∈ F such that �(E) ⊆ A0. Using the fact that � is weak

P+ we can find F ∈ F with �(F ) ⊆ �(E) and such as in the definition of weak P+

property.
We will show that there is a sequence {Fn : n ∈ �} ⊆ F such that �(F0) ⊆ �(F )

and �(Fn+1) ⊆ �(Fn) ∩ An+1 for each n ∈ �. Indeed, since �(F ) ⊆ A0, it suffices to
put F0 = F . Suppose now that Fi have been constructed for i ≤ n. Since �(Fn) ∩
An+1 = �(Fn) \ (An \ An+1) ∈ I+

� , there is Fn+1 ∈ F with �(Fn+1) ⊆ �(Fn) ∩ An+1.
Since F is as in the definition of weak P+ property, there exists G ∈ F such that

�(G) ⊆� �(Fn) for each n ∈ �. Thus, �(G) ⊆� An for each n ∈ �.
(2) Straightforward.
(3) The cases of the second and third implications follow from Proposition 6.1(2)

and item (2), where the proof of the fact that �Id is not weak P+ is just a slight
modification of the proof that Id is not P+.

Now we show that the first implication cannot be reversed. Consider the ideal
I = {A ⊆ � × �: A ∩ ({n} × �) is finite for every n ∈ �}. Then I is not P+ as
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witnessed byAn = (� \ n) × �, so �I is notP+ (by item (2)). However, we will show
that �I is weakP+. LetE ∈ I+. Then there is n ∈ � such thatF = E ∩ ({n} × �) is
infinite. ThenF ∈ I+ and it is easy to see that ifFn ∈ I+ are such thatF ⊇ Fn ⊇ Fn+1

then one can pick xn ∈ Fn for each n ∈ � and G = {xn : n ∈ �} ∈ I+ is such that
G \ {xi : i < n} ⊆ Fn for all n ∈ �.

(4) Proofs in all cases are very similar, so we only present a proof for the property
P–(Λ). LetAn ∈ I+

� be a⊆-decreasing sequence withA0 = Λ andAn \ An+1 ∈ I� for
each n ∈ �. Since I� isP–(Λ), there isB �∈ I� such that for every n ∈ � one can find
a finite setKn ⊆ Ω such thatB \Kn ⊆ An. From the fact thatB �∈ I�, there isF ∈ F
such that �(F ) ⊆ B . Using Proposition 3.2, we can find E ∈ F such that E ⊆ F
and for every Kn there exists a finite set Ln ⊆ Ω such that �(E \ Ln) ⊆ �(E) \Kn.
Then �(E \ Ln) ⊆ �(E) \Kn ⊆ B \Kn ⊆ An, so � is P–(Λ).

(5) In Proposition 6.7(3) and (4) we will show that � = FS is weakP+, but I� = H
is not P–(�). �

We will need the following lemma to show that FS, r, and Δ are not P+.

Lemma 6.6. Let � : F → [Λ]� (with F ⊆ [Ω]�) be a partition regular function
such that there exists a function � : [Ω]<� → Λ such that:

(1) ∀F ∈ F ∀{a, b} ∈ [F ]2 (� ({a, b}) ∈ �(F )),
(2) ∀F ∈ F ∀c ∈ �(F )∃S ∈ [F ]<� (�(S) = c),
(3) there exists a pairwise disjoint family {Pn : n ∈ �} ⊆ F such that the

family {�(Pn) : n ∈ �} is also pairwise disjoint and the restriction � �
[
⋃
{Pn : n ∈ �}]<� is one-to-one.

Then � is not P+.

Proof. Let {Pn : n ∈ �} be as in item (3) of the lemma. For each n ∈ �, we
define Bn =

⋃
{�(Pi) : i ≥ n}. Then Bn ∈ I+

� and B ⊇ Bn ⊇ Bn+1 for each n ∈ �.
If we show that there is no G ∈ F such that �(G) ⊆� Bn for every n ∈ �, the proof
will be finished. Suppose for the sake of contradiction that there exists G ∈ F such
that for every n ∈ � there exists a finite set Kn ⊆ Ω with �(G \Kn) ⊆ Bn. We have
two cases:

(1) |G ∩ Pn0 | = � for some n0 ∈ �,
(2) |G ∩ Pn| < � for all n ∈ �.

Case (1). We take distinct a, b ∈ (G ∩ Pn0) \Kn0+1. Since a, b ∈ Pn0 ∈ F , we
have � ({a, b}) ∈ �(Pn0). On the other hand, a, b ∈ G \Kn0+1 ∈ F , so � ({a, b}) ∈
�(G \Kn0+1) ⊆ Bn0+1. Hence, there exists i ≥ n0 + 1 such that � ({a, b}) ∈ �(Pi).
A contradiction with �(Pi) ∩ �(Pn0) = ∅.

Case (2). In this case, there exists a strictly increasing sequence {kn : n ∈ �} such
that we can choose an element xkn ∈ G ∩ Pkn for each n ∈ �. Since xkn are pairwise
distinct, there is N ∈ � such that xkn ∈ G \K0 for every n ≥ N . In particular,
�
(
{xkN , xkN+1}

)
∈ �(G \K0) ⊆ B0, and consequently there exists i ∈ � such that

�
(
{xkN , xkN+1}

)
∈ �(Pi). Therefore there is a finite set S ⊆ Pi such that �(S) =

�
(
{xkN , xkN+1}

)
. Since Pn are pairwise disjoint and xkn ∈ Pn, we obtain that xkN /∈

Pi or xkN+1 /∈ Pi . Consequently, {xkN , xkN+1} �= S, so � � [
⋃
{Pn : n ∈ �}]<� is not

one-to-one, a contradiction. �
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Proposition 6.7.

(1) The ideals W and I1/n are P+(hence, P–and P–(�)) while �W and �I1/n
are

P+, weak P+, P– and P–(�).
(2) If � ∈ {FS, r,Δ}, then � is not P+,
(3) If � ∈ {FS, r,Δ}, then � is weak P+(hence P– and P–(Λ)).
(4) If I ∈ {H,R,D}, then I is not P–(Λ)(hence not P+ and not P–).

Proof. (1) It follows from Theorem 6.2(2) and the fact that W and I1/n are F�
ideals (see Proposition 5.2(1)). The “hence” part follows from Proposition 6.5.

(2) Below we show that � is not P+ separately for each �.
Case of � = FS. We define a function � : [�]<� → � by �(S) =

∑
i∈S i . Then

we take an infinite sparse set P and a partition {Pn : n ∈ �} of P into infinite sets.
Lemma 6.6 shows that FS is not P+.

Case of � = r. Let A ⊆ � be such that both A and � \ A are infinite. Let
f : [�]<� → [� \ A]2 be any bijection. We define a function � : [�]<� → [�]2 by
�({a, b}) = {a, b} for distinct a, b ∈ � and �(S) = f(S) forS ∈ [�]<� \ [�]2. Then
we take a partition {Pn : n ∈ �} of A into infinite sets. Lemma 6.6 shows that r is
not P+.

Case of � = Δ. We define a function � : [�]<� → � by �({a, b}) = a – b for
distinct a > b and �(S) = 0 otherwise. Then we take an infinite D-sparse set P
and a partition {Pn : n ∈ �} of P into infinite sets. Lemma 6.6 shows that Δ is
not P+.

(3) The “hence” part follows from Proposition 6.5(1). Below we show that � is
weak P+ separately for each �.

Case of � = FS. It is proved in [24, Lemma 2.3] (see also [20, Example 2.9(2)]).
Case of � = r. For any E ∈ [�]� we take F = E. Let Fn ∈ [�]� be such that

[F ]2 ⊇ [Fn]2 ⊇ [Fn+1]2 for each n ∈ �. We pick xn ∈ Fn \ {xi : i < n} for each n ∈
�. Then G = {xn : n ∈ �} ∈ [�]� and [G ]2 ⊆r [Fn]2 for each n ∈ �.

Case of � = Δ. Fix any F ∈ [�]� . Inductively pick a sequence (xi)i∈� ⊆ � such
that xi ∈ F , xi < xi+1, and xi+1 – xi > xi – x0 for all i ∈ �. Let E = {xi : i ∈
�} ∈ [F ]� .

Define ai = xi+1 – xi for all i ∈ � and observe that ai = xi+1 – xi > xi – x0 =∑
j<i aj . Put A = {ai : i ∈ �}. By [24, proof of Lemma 2.2] the set A is very

sparse, i.e., A is sparse and if αA(x) ∩ αA(y) �= ∅ then x + y /∈ FS(A). Note that
Δ(E) = {

∑
i∈I ai : I is a finite interval in �} ⊆ FS(A).

Observe that if Δ({yn : n ∈ �}) ⊆ Δ(E), where yn < yn+1 for all n ∈ �, then
there is a partition of� into finite intervals (In)n∈� such that max In < min In+1 and
yn+1 – yn =

∑
i∈In ai . Indeed, as yn+1 – yn ∈ Δ({yn : n ∈ �}) ⊆ Δ(E) ⊆ FS(A),

for eachn ∈ � there is a finite interval In such thatyn+1 – yn =
∑
i∈In ai (because A is

sparse, we get In = αA(yn+1 – yn)). We need to show that the intervals In are pairwise
disjoint and cover �. Suppose first that sup In + 1 < inf In+1 for some n ∈ �. Then
yn+2 – yn = (yn+2 – yn+1) + (yn+1 – yn) =

∑
i∈In∪In+1

ai . On the other hand, yn+2 –
yn ∈ Δ({yn : n ∈ �}) ⊆ Δ(E), so yn+2 – yn =

∑
i∈I ai for some interval I. This

contradicts uniqueness of αA(yn+2 – yn) (because A is sparse). Suppose now that
In ∩ In+1 �= ∅. Then yn+2 – yn = (yn+2 – yn+1) + (yn+1 – yn) /∈ FS(A) (because A is
very sparse), which contradicts Δ({yn : n ∈ �}) ⊆ Δ(E) ⊆ FS(A).
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Fix any sequence (Fk)k∈� ⊆ [�]� such that Δ(Fk+1) ⊆ Δ(Fk) ⊆ Δ(E) for all
k ∈ �. By the previous paragraph, with each k ∈ � we can associate a partition of
� into finite intervals I kn , i.e., Δ(Fk) = {

∑
i∈I ai : I = I kj ∪ I kj+1 ∪ ... ∪ I kj′ for some

j <j′}.
Observe that actually for each n, k ∈ � we have that I k+1

n =
⋃
i∈I I

k
i for some

interval I. Indeed, otherwise for some n, k ∈ � we would have x =
∑
i∈I k+1
n
ai ∈

Δ(Fk+1) ⊆ Δ(Fk), so x =
∑
i∈I ai for some I = I kj ∪ I kj+1 ∪ ··· ∪ I k

j′ , which contra-
dicts that A is sparse.

Inductively pick a sequence (nk)k∈� ⊆ � such that for each k ∈ � we have
nk+1 > nk (so also ank+1 > ank ) and nk = min I kj for some j ∈ �. Define E ′ =
{xnk : k ∈ �}. Notice that xnk+1 – xnk =

∑
i∈[nk ,nk+1) ai . Then for each k ∈ �

we have Δ(E ′ \ [0, xnk )) = Δ({xni : i ≥ k}) ⊆ {
∑
i∈I ai : I = I kj ∪ I kj+1 ∪ ··· ∪

I k
j′ for some j < j′} = Δ(Fk).

(4) The “hence” part follows from Proposition 6.1. Below we show that I is not
P–(Λ) separately for each I.

Case of I = H. Let Ak = {2k(2n + 1) : n ∈ �} for each k ∈ �. In [24, item (2)
in the proof of Proposition 1.1], the authors showed that Ak ∈ H for every k ∈ �,
whereas in [24, item (1) in the proof of Proposition 1.1] it is shown that for every
B /∈ H there is k ∈ � such that B ∩ Ak is infinite. Thus, the family {Ak : k ∈ �}
witnesses the fact that H is not P–(�).

Case of I = R. Let An = {{k, i} : i > k ≥ n} for every n ∈ �. Then An /∈
R, A0 = [�]2, and An \ An+1 = {{n, i} : i > n} ∈ R. Suppose, for the sake of
contradiction, that there isB /∈ R such thatB ⊆∗ An for every n ∈ �. LetH = {hn :
n ∈ �} be an infinite set such that [H ]2 ⊆ B and hn < hn+1 for every n ∈ �. Since
[H ]2 ⊆∗ Ah1 , there is a finite set F such that [H ]2 \ F ⊆ Ah1 . Since F is finite, there
is k > 0 such that {h0, hn} /∈ F for every n ≥ k. Then {{h0, hn} : n ≥ k} ⊆ [H ]2 \ F
and {{h0, hn} : n ≥ k} ∩ Ah1 = ∅, a contradiction.

Case of I = D. LetAk = {2k(2n + 1) : n ∈ �} for each k ∈ �. In [60, item (2) in
the proof of Theorem 2.1], the author showed thatAk ∈ D for every k ∈ �, whereas
in [60, item (1) in the proof of Theorem 2.1] it is shown that for every B /∈ D there is
k ∈ � such that B ∩ Ak is infinite. Thus, the family {Ak : k ∈ �} witnesses the fact
that D is not P–(�). �

The following easy observation will be useful in our considerations.

Proposition 6.8. If � : F → [Λ]� is partition regular with F ⊆ [Ω]� , then the
following conditions are equivalent.

(1) � is P–(P–(Λ), resp.).
(2) For every countable familyB ⊆ I� with

⋃
B /∈ I� (

⋃
B = Λ, resp.) there exists

F ∈ F such that �(F ) ⊆
⋃

B and for every finite subfamily C ⊆ B there is a
finite K ⊆ Ω such that �(F \K) ∩

⋃
C = ∅.

Proof. We will assume that � is P–, as the proof in the case of P–(Λ) is similar.
(1) =⇒ (2). Let B = {Bn : n ∈ �}, where

⋃
B /∈ I� and Bn ∈ I� for every n ∈

�. For each n ∈ �, we define An =
⋃

B \
⋃
{Bi : i < n}. Since � is P–, there exists

F ∈ F such that �(F ) ⊆� An for each n ∈ �. Let C ⊆ B be a finite subfamily.
Let n ∈ � be such that C ⊆ {Bi : i < n}. Then

⋃
C ⊆

⋃
{Bi : i < n}. Let K ⊆ Ω
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be a finite set such that �(F \K) ⊆ An. Then �(F \K) ∩
⋃
{Bi : i < n} = ∅, so

�(F \K) ∩
⋃

C = ∅.
(2) =⇒ (1). Let An ∈ I+

� be such that An ⊇ An+1 and An \ An+1 ∈ I� for each
n ∈ �. For each n ∈ � we defineBn = An \ An+1. LetB = {Bn : n ∈ �}. Then there
exists F ∈ F such that �(F ) ⊆

⋃
B and for every finite subfamily C ⊆ B there is a

finite K ⊆ Ω such that �(F \K) ∩
⋃

C = ∅. Thus for any n ∈ �, we find a finite
setK ⊆ Ω such that �(F \K) ∩

⋃
{Bi : i < n} = ∅. Hence �(F \K) ⊆

⋃
{Bi : i ≥

n} = An, so �(F ) ⊆� An. �

§7. Katětov order.

7.1. Katětov order between ideals. We say that an ideal I1 on Λ1 is above an ideal
I2 on Λ2 in the Katětov order (in short: I2 ≤K I1) [55] if there exists a function
φ : Λ1 → Λ2 such that φ[A] /∈ I2 for each A /∈ I1. If Λ1 = Λ2 and I2 ⊆ I1, then
obviously the identity function on Λ1 witnesses that I2 ≤K I1.

There are known relationships between Katětov order, P-like properties, and
topological complexity.

Proposition 7.1 [50, Theorem 3.8]. Let I be an ideal on Λ.

(1) I is P– (Λ) ⇐⇒ Fin2 �≤K I.
(2) I is P– ⇐⇒ Fin2 �≤K I � A for every A ∈ I+.

Proposition 7.2.

(1) Fin2 ≤K I for I ∈ {D,H,R}.
(2) If I is aG��� ideal, then Fin2 �≤K I � A for everyA ∈ I+ In particular, Fin2 �≤K

W and Fin2 �≤K I1/n.

Proof. (1) Using Proposition 7.1(1), we need to show that D, H, and R are not
P–(Λ) ideals, but this follows from Proposition 6.7(4). (For I = R, this item was
earlier proved by Meza-Alcántara [67, Lemma 1.6.25].)

(2) It follows from Theorem 6.2(1) and Propositions 7.1(2) and 6.7(1). �

7.2. Katětov order between partition regular operations. The following notion will
be crucial for showing when a class of sequentially compact spaces defined by �1 is
contained in a class of sequentially compact spaces defined by �2.

Definition 7.3. Let �i : Fi → [Λi ]� be partition regular (with Fi ⊆ [Ωi ]�) for
each i = 1, 2. We say that �1 is above �2 in the Katětov order (in short: �2 ≤K �1) if
there is a function φ : Λ1 → Λ2 such that

∀F1 ∈ F1 ∃F2 ∈ F2 ∀K1 ∈ [Ω1]<� ∃K2 ∈ [Ω2]<� (�2(F2 \K2) ⊆ φ[�1(F1 \K1)])

or equivalently:

∀F1 ∈ F1 ∃F2 ∈ F2 ∀K1 ∈ [Ω1]<� (�2(F2) ⊆�2 φ[�1(F1 \K1)]).

The following proposition reveals some basic properties of this new order on
partition regular functions.
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Proposition 7.4.

(1) The relation ≤K is a preorder (a.k.a. quasi order), i.e., it is reflexive and
transitive.

(2) The preorder ≤K is upward and downward directed.
(3) Let � : F → [Λ]�(with F ⊆ [Ω]�) be partition regular.

(a) � ≤K � � �(F ) for every F ∈ F .
(b) �Fin(Λ) ≤K �.

Proof. (1) Reflexivity of ≤K is obvious. To show transitivity, fix Fi ⊆ [Ωi ]� and
�i : Fi → [Λi ]� , i = 1, 2, 3, and suppose that �1 ≤K �2 is witnessed by f and �2 ≤K
�3 is witnessed by g. We claim that �1 ≤K �3 is witnessed by h : Λ3 → Λ1 given by
h(x) = f(g(x)) for all x ∈ Λ3. Let F3 ∈ F3. Then we can find F2 ∈ F2 such that for
everyK ∈ [Ω3]<� there existsLK ∈ [Ω2]<� such that �2(F2 \ LK ) ⊆ g

[
�3(F3 \K)

]
.

Then for F2 we can find F1 ∈ F1 such that for every L ∈ [Ω2]<� there exists
ML ∈ [Ω1]<� such that �1(F1 \ML) ⊆ f

[
�2(F2 \ L)

]
.Now for a givenK ∈ [Ω3]<�

we have �1(F1 \MLK ) ⊆ f
[
�2(F2 \ LK )

]
⊆ f

[
g
[
�3(F3 \K)

]]
= h

[
�3(F3 \K)

]
,

so the proof is finished.
(2) Let �i : Fi → [Λi ]� withFi ⊆ [Ωi ]� be partition regular for i = 0, 1. We define

the following partition regular functions � : {F0 × F1 : F0 ∈ F0, F1 ∈ F1} → [Λ0 ×
Λ1]� by �(F0 × F1) = �0(F0) × �1(F1) and � : F0 ⊕F1 → [Λ0 ⊕ Λ1]� by �((F0 ×
{0}) ∪ (F1 × {1})) = (�0(F0) × {0}) ∪ (�1(F1) × {1}).

Then � ≤K �i (i = 0, 1) is witnessed by a function φi : Λi → Λ0 ⊕ Λ1 given by
φi(x) = (x, i), whereas �i ≤K � (i = 0, 1) is witness by a function �i : Λ0 × Λ1 →
Λi given by �i(x0, x1) = xi .

(3a) Let F ∈ F . We claim that φ : �(F ) → Λ given by φ(	) = 	 is a witness for
� ≤K � � �(F ). Let F1 ∈ F � �(F ). Then F2 = F1 is such that for every finite set
K1 ⊆ Ω we take K2 = K1 and see that �(F2 \K2) ⊆ φ(�(F1 \K1)).

(3b) We claim that φ : Λ → Λ given by φ(	) = 	 is a witness for �Fin(Λ) ≤K �. Let
F ∈ F . Let Ω = {on : n ∈ �}. Since �(F \ {oi : i < n}) is infinite for every n ∈ �,
we can pick a one-to-one sequence (an : n ∈ �) such that an ∈ �(F \ {oi : i < n})
for every n ∈ �. Then A = {an : n ∈ �} ∈ Fin(Λ)+ is an infinite set. For a finite
setK ⊆ Ω there is n ∈ � such thatK ⊆ {oi : i < n}. Then L = {ai : i < n} is finite
subset of Λ and A \ L ⊆ �(F \ {oi : i < n}) ⊆ �(F \K). �

Now we compare the relation ≤K between partition regular operations with the
relation ≤K between ideals.

Proposition 7.5. Let �i : Fi → [Λi ]� for each i = 1, 2 and � : F → [Λ]� be
partition regular. Let I be ideal.

(1) �2 ≤K �1 =⇒ I�2 ≤K I�1 with the same witnessing function.
(2) (a) If �2 is P+(inparticular, if �2 = �I and I is P+), then �2 ≤K �1 ⇐⇒

I�2 ≤K I�1 .
(b) � ≤K �I ⇐⇒ I� ≤K I.

Proof. (1) Let Fi ⊆ [Ωi ]� for i = 1, 2. Let φ be a witness for �2 ≤K �1. We
claim that φ is also a witness for I�2 ≤K I�1 . Let A /∈ I�1 . Then there is F1 ∈
F1 with �1(F1) ⊆ A. Since �2 ≤K �1, there is F2 ∈ F2 and a finite set K2 ⊆ Ω2

such that �2(F2 \K2) ⊆ φ[�1(F1 \ ∅)] = φ[�1(F1)]. Since F2 \K2 ∈ F2 and �2(F2 \
K2) ⊆ φ[A], we obtain that φ[A] /∈ I�2 . Thus the proof of this item is finished.
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(2a) The “in particular” part follows from Propositions 3.3(2) and 6.5(2).
We only have to show the implication “ ⇐= ,” because the reversed implication

is true by item (1). Let φ : Λ1 → Λ2 be a witness for I�2 ≤K I�1 . We claim that φ
is also a witness for �2 ≤K �1. Let F1 ∈ F1, Ω1 = {on : n ∈ �} and Bn = φ[�1(F1 \
{oi : i < n})] for each n ∈ �. Then Bn /∈ I�2 , Bn ⊇ Bn+1 for each n ∈ �, and since
I�2 is P+, there is F2 ∈ F2 such that for each n ∈ � there is a finite set Ln ⊆ Ω2

with �2(F2 \ Ln) ⊆ Bn. Now, for any finite set K1 ⊆ Ω1 there is n ∈ � such that
K1 ⊆ {oi : i < n}. LetK2 = Ln. Then �2(F2 \K2) ⊆ Bn ⊆ φ[�1(F1 \K1)]. Thus the
proof of this item is finished.

(2b) The implication “ =⇒ ” follows from item (1) and Proposition 3.3(2), so
below we show the reverse implication.

Suppose that I is an ideal on Λ and F ⊆ [Ω]� . Let φ : Λ → Λ be a witness of
I� ≤K I. We claim that the same φ is also a witness for � ≤K �I . Indeed, for A /∈ I
we find E ∈ F such that �(E) ⊆ φ[A]. Using Proposition 3.2, we can find a set F ∈
F such that F ⊆ E and for any finite setK ⊆ Λ1 there exists a finite set L ⊆ Ω with
�(F \ L) ⊆ �(F ) \ φ[K ]. Consequently, �(F \ L) ⊆ φ[A] \ φ[K ] ⊆ φ[A \K ]. �

The following example shows that in general �2 ≤K �1 and I�2 ≤K I�1 are not
equivalent.

Example 7.6. Fin2 ≤K H, but �Fin2 �≤K FS.

Proof. By Proposition 7.2(1) we know that I�Fin2 = Fin2 ≤K H = IFS. Thus,
we only need to show that �Fin2 �≤K FS.

Suppose that �Fin2 ≤K FS and let φ : � → �2 be a witness for this. For each n ∈
�, we define An = φ–1[(� \ n) × �]. Then A0 = �, An ⊇ An+1, and An \ An+1 ⊆
φ–1[{n} × �] ∈ H for each n ∈ � by Proposition 7.5(1). Since FS is P–(�) by
Proposition 6.7(3), there is F ∈ [�]� such that for every n ∈ � there is a finite
set Kn ⊆ � with FS(F \Kn) ⊆ An. Now, using the fact that �Fin2 ≤K FS, we find
B /∈ Fin2 such that for every n ∈ � there is a finite set Ln ⊆ �2 with B \ Ln ⊆
φ[FS(F \Kn)] ⊆ φ[An] ⊆ (� \ n) × �. In particular, sets B ∩ ({n} × �) are finite
for every n, so B ∈ Fin2, a contradiction. �

Remark. The partition regular function �Fin2 from Example 7.6 is not P–. In
Example 15.5 we will show that there are partition regular functions �1 and �2 which
are P– and have small accretions such that I�2 ⊆ I�1 (in particular, I�2 ≤K I�1), but
�2 �≤K �1.

7.3. Katětov order between FS, r,Δ,W , and I1/n.

Theorem 7.7.

(1) H �≤K R. In particular, FS �≤K r.
(2) R �≤K H. In particular, r �≤K FS.
(3) Δ ≤K FS and D ⊆ H. In particular, D ≤K H.
(4) Δ ≤K r. In particular, D ≤K R.
(5) R �≤K D. In particular, r �≤K Δ.
(6) H �≤K D. In particular, FS �≤K Δ.
(7) I1/n �≤K R. In particular, �I1/n

�≤K r.
(8) I1/n �≤K H. In particular, �I1/n

�≤K FS.
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(9) I1/n �≤K D. In particular, �I1/n
�≤K Δ.

(10) I1/n �≤K W . In particular, �I1/n
�≤K �W .

(11) D �≤K I1/n. In particular, Δ �≤K �I1/n
.

(12) H �≤K I1/n. In particular, FS �≤K �I1/n
.

(13) R �≤K I1/n. In particular, r �≤K �I1/n
.

(14) D �≤K W . In particular, Δ �≤K �W .
(15) H �≤K W . In particular, FS �≤K �W .
(16) R �≤K W . In particular, r �≤K �W .

Proof. The “in particular” parts follow from Proposition 7.5(1).
The proofs of items (1), (2), (7), and (8) can be found in [23] (item (8) is also

proved in [24, Theorem 3.2(1)]). Item (10) can be found in [30, Lemma 3.1].
(3) The inclusion is proved in [73, Proposition 4.2.1] (see also [22, Propositions

4.2]). Below, we show that Δ ≤K FS.
We claim that the identity function φ : � → �, φ(n) = n for every n ∈ � is a

witness for Δ ≤K FS.
For any infinite setA ⊆ �, we define an infinite setB = {

∑
i≤n ai : n ∈ �}, where

{an : n ∈ �} is the increasing enumeration of A. Next, for any finite set K, we define
a finite set L = {0, 1, ... ,

∑
i≤k ai}, where k = max{i ∈ � : ai ∈ K} (for K = ∅ we

take k = 0). Finally, we observe that Δ(B \ L) ⊆ FS(A \K) = φ[FS(A \K)], so
the proof is finished.

(4) We claim that φ : [�]2 → � given by the formula φ({n, k}) = n – k, where
n > k, is a witness for Δ ≤K r. For any infinite set A ⊆ �, we take B = A. Then for
any finite set K ⊆ �, we take L = K . Next, we notice that Δ(B \ L) = Δ(A \K) =
φ[[A \K ]2] = φ[r(A \K)], so the proof is finished.

(5) It follows from items (3) and (2).
(6) It follows from items (4) and (1).
(9) It follows from items (8) and (3).
(11) Suppose otherwise: D ≤K I1/n. By Proposition 7.2(1) Fin2 ≤K D, so

Fin2 ≤K I1/n. By Proposition 7.1(1), we obtain that I1/n is not a P–(�) ideal, a
contradiction with Proposition 6.7(1).

(12) It follows from items (3) and (11).
(13) It follows from items (4) and (11).
(14) Suppose otherwise: D ≤K W . Using Proposition 7.2(1) we get that Fin2 ≤K

D, so Fin2 ≤K W . However, since W is F� (see [25, Example 4.12]), Fin2 �≤K W by
[13, Theorems 7.5 and 9.1]. A contradiction.

(15) The proof can be found in [59, Lemma 1], but it also follows from items (3)
and (14).

(16) It follows from items (3) and (14). �

Question 7.8. Is W ≤K I for I ∈ {I1/n,H,R,D}?

Remark. The positive answer to Question 7.8 for I = I1/n is implied by the
inclusionW ⊆ I1/n that is known as the Erdős conjecture on arithmetic progressions
(a.k.a. the Erdős–Turán conjecture) which can be rephrased in the following manner:
if the sum of the reciprocals of the elements of a setA ⊆ � diverges, then A contains
arbitrarily long finite arithmetic progressions.
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§8. Tallness and homogeneity.

8.1. Tallness of partition regular functions. An ideal I on Λ is tall if for every
infinite set A ⊆ Λ there exists an infinite set B ⊆ A such that B ∈ I [64, p. 210] (see
also [65, Definition 0.6]). It is not difficult to see that I is not tall ⇐⇒ I ≤K J for
every ideal J ⇐⇒ I ≤K Fin ⇐⇒ I � A = Fin(A) for some A ∈ I+.

The following proposition characterizes tallness of the ideal I� in terms of � and
serves as a definition of tallness of partition regular functions.

Proposition 8.1. Let � : F → [Λ]� be partition regular (with F ⊆ [Ω]�). The
following conditions are equivalent.

(1) I� is tall.
(2) There exists a partition regular function � such that � �≤K �.
(3) I� � �(F ) �= Fin(�(F )) for every F ∈ F .
(4) � �≤K �Fin(Λ).

Proof. (1) =⇒ (2) If I� is tall, there is an ideal J such that I� �≤K J . Then
� �≤K �J by Proposition 7.5(1).

(2) =⇒ (3) Suppose that there is F ∈ F such that I� � �(F ) = Fin(�(F )). We
will show that � ≤K � for every partition regular function � .

Take any partition regular function � : G → [Σ]� with G ⊆ [Γ]� .
Let φ : Σ → Λ be a one-to-one function such that φ[Σ] = �(F ). We claim that φ

is a witness for � ≤K �.
Let G ∈ G and Γ = {
n : n ∈ �}. Since φ[�(G \ {
i : i < n})] is infinite for

every n ∈ �, we can pick a one-to-one sequence (bn : n ∈ �) such that bn ∈
φ[�(G \ {
i : i < n})] for each n ∈ �. Define B = {bn : n ∈ �}. Since B is infinite,
B ⊆ �(F ), and I� � �(F ) = Fin(�(F )), there isH ∈ F such that �(H ) ⊆ B . Using
Proposition 3.2, there is E ∈ F with E ⊆ H such that for any n ∈ � there is a
finite set L ⊆ Ω such that �(E \ L) ⊆ �(E) \ {bi : i < n}. Consequently, for any
finite set K ⊆ Γ there is n ∈ � such that K ⊆ {
i : i < n}, so we can find a finite
set L ⊆ Ω such that �(E \ L) ⊆ �(E) \ {bi : i < n} ⊆ B \ {bi : i < n} ⊆ φ[�(G \
{
i : i < n})] ⊆ φ[�(G \K)].

(3) =⇒ (4) Let φ : Λ → Λ be a witness for � ≤K �Fin(Λ). Since φ–1[{	}] ∈ Fin(Λ)
for every 	 ∈ Λ and φ[Λ] is infinite, there is an infinite set A ⊆ Λ, such that φ � A
is one-to-one. Then we can find F ∈ F such that �(F ) ⊆ φ[A]. We claim that
I� � �(F ) = Fin(�(F )). Indeed, let B ⊆ �(F ) be infinite and observe that φ–1[B] is
infinite, so B = φ[φ–1[B]] /∈ I�.

(4) =⇒ (1) If � �≤K �Fin(Λ) then by Proposition 7.5(2b), I� �≤K Fin(Λ), and
consequently I� is tall. �

Definition 8.2. We say that a partition regular function � is tall if any item of
Proposition 8.1 holds.

Proposition 8.3. The ideals H, R, D, W , and I1/n are tall (hence, FS, r, Δ, �W ,
and �I1/n

are tall).

Proof. For the case of W and I1/n, see [7, p. 3–4]. For other cases, see [67, under
Lemma 1.6.24] and [22, Proposition 4.3 and text above Lemma 3.2]. Tallness of the
listed partition regular functions follows then from Proposition 8.1. �
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8.2. Homogeneity of partition regular functions. Let Ii be an ideal on Λi for
each i = 1, 2. Ideals I1 and I2 are isomorphic (in short: I1 ≈ I2) if there exists a
bijection φ : Λ1 → Λ2 such that A ∈ I1 ⇐⇒ φ[A] ∈ I2 for each A ⊆ Λ1. An ideal
I on Λ is homogeneous if the ideals I and I � A are isomorphic for every A ∈ I+

[63, Definition 1.3] (see also [34]). We say that I is K-homogeneous if I � A ≤K I
for every A ∈ I+ (in [45, p. 37], the author uses the name K-uniform in this case).
Note that we always have I ≤K I � A for every A ∈ I+ (see, e.g., [45, p. 46]).

Definition 8.4. Let � : F → [Λ]� be partition regular. We say that � is K-
homogeneous if � � A ≤K � for every A ∈ I+

� (note that we always have � ≤K � � A
for every A ∈ I+

� by Proposition 7.4(3a)).

Proposition 8.5.

(1) If a partition regular function � is K-homogeneous then I� is K-homogeneous.
(2) An ideal I is K-homogeneous ⇐⇒ �I is K-homogeneous.

Proof. (1) It follows from Propositions 7.5(1) and 4.1.
(2) Observe that ifA ∈ I+ then �I�A = �I � A. Thus, it follows from Propositions

7.5(2b) and 4.1. �
We need the following lemma to show that FS and r are K-homogeneous.

Lemma 8.6. Let � : F → [Λ]� be partition regular (with F ⊆ [Ω]�). If I� is
homogeneous and � is P– and has small accretions then � is K-homogeneous.

Proof. LetA ∈ I+
� . Since I� is homogeneous, I� � A and I� are isomorphic. Let

f : Λ → A be a bijection witnessing it. We claim that f witnesses � � A ≤K �.
Let F ∈ F . Since � has small accretions, there is G ∈ F such that G ⊆ F and

G has small accretions. Enumerate Ω = {on : n ∈ �} and define Kn = {oi : i ≤ n}
andAn = f[�(G \Kn)] for all n ∈ �. ThenAn ⊇ An+1. Since G has small accretions
and f is a bijection and witnesses that I� � A and I� are isomorphic,An ∈ (I� � A)+

and An \ An+1 ⊆ f[�(G \Kn) \ �(G \Kn+1)] ⊆ f[�(G) \ �(G \Kn+1)] ∈ I� � A.
Using the fact that � isP–, we can findH ∈ F � A such that �(H ) ⊆� An = f[�(G \
Kn)] for alln ∈ �. Hence, given any finite setK ⊆ Ω there aren ∈ � and finiteL ⊆ Ω
such that K ⊆ Kn and �(H \ L) ⊆ An = f[�(G \Kn)] ⊆ f[�(G \K)]. �

Proposition 8.7.

(1) The ideals H, R, and W are homogeneous (hence, K-homogeneous).
(2) The functions FS and r are K-homogeneous.

Proof. (1) See [63, Examples 2.5 and 2.6].
(2) It follows from item (1), Lemma 8.6, and Propositions 6.7(3) and 4.3. �
Question 8.8.

(1) Is the function Δ K-homogeneous?
(2) Is the ideal I1/n K-homogeneous?

Part 2. FinBW spaces

In this part we define the main object of our studies—classes of sequentially
compact spaces defined with the aid of partition regular functions (Definition 10.1).
Next, we prove some general results about those classes of spaces (Theorem 10.5).

https://doi.org/10.1017/jsl.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.8


22 RAFAŁ FILIPÓW ET AL.

§9. A convergence with respect to partition regular functions.

Definition 9.1. Let X be a topological space. Let � : F → [Λ]� be partition
regular with F ⊆ [Ω]� .

(1) For F ∈ F , a function f : �(F ) → X is called a �-sequence in X.
(2) A �-sequence f : �(F ) → X is �-convergent to a point x ∈ X if for every

neighbourhood U of x there is a finite set K ⊆ Ω such that

f[�(F \K)] ⊆ U.

Remark. Various kinds of convergences considered in the literature can be
described in terms of �-convergence.

(1) If � = FS, then �-convergence coincides with IP-convergence (see [35], [36],
or [57]).

(2) If � = r, then �-convergence coincides with the R-convergence (see [5], [6], or
[61, Definition 2.1]).

(3) If � = Δ, then �-convergence coincides with the differential convergence (see
[73, Definition 4.2.4] or [22, p. 2010]).

(4) If I is an ideal on Λ and �I is defined as in Proposition 3.3(2), then �I-
convergence coincides with the ordinary convergence.

The following proposition reveals relationships between �-convergence and
convergence.

Proposition 9.2.

(1) Let � : F → [Λ]� be partition regular with F ⊆ [Ω]� . Let F ∈ F and f :
�(F ) → X .
(a) If f is convergent to L, then f � �(E) is �-convergent to L for some E ∈

F � �(F ).
(b) If f is �-convergent to L, then f � A is convergent to L for some infinite set
A ⊆ �(F ).

(2) Let I be an ideal on Λ and f : A→ X for some A ∈ I+. Then f is convergent
to L ⇐⇒ f is �I-convergent to L.

Proof. (1a) Let E ∈ F with E ⊆ F be as in Proposition 3.2 and let U be a
neighborhood of L. Then there exists a finite set K such that f(n) ∈ U for every
n ∈ �(F ) \K . There is a finite set L such that �(E \ L) ⊆ �(E) \K ⊆ �(F ) \K .
Consequently, f(n) ∈ U for every n ∈ �(E \ L).

(1b) Let Ω = {on : n ∈ �}. For each n ∈ �, we pick 	n ∈ �(F \ {oi : i < n}) \
{	i : i < n}. Let A = {	n : n ∈ �}. We claim that f � A is convergent to L. Indeed,
if U is a neighborhood of L, then there is a finite setK ⊆ Ω such thatf[�(F \K)] ⊆
U . Let n ∈ � be such that K ⊆ {oi : i < n}. Then f[A \ {	i : i < n}] ⊆ f[�(F \
{oi : i < n})] ⊆ f[�(F \K)] ⊆ U .

(2) It is straightforward. �

§10. FinBW spaces. Let I be an ideal on a countable infinite set Λ. The following
classes of topological spaces were extensively examined in the literature (see, e.g.,
[26, 30, 62]):
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(1) FinBW(I) is the class of all topological spaces X such that for every sequence
f : Λ → X there exists A ∈ I+ such that f � A converges (in [30], spaces
from FinBW(I) are called I-spaces).

(2) hFinBW(I) is the class of all topological spaces X such that for everyB ∈ I+

and every sequence f : B → X there exists A ∈ I+ such that A ⊆ B and
f � A converges.

Remark. The classes FinBW(I�) for � ∈ {W , I1/n} were examined in the
literature under other names:

(1) In [58, Definition 3], spaces from FinBW(W) are called van der Waerden
spaces.

(2) In [30, Definition 2.1], spaces from FinBW(I1/n) are called I1/n-spaces.

Definition 10.1. Let � : F → [Λ]� be a partition regular function.

(1) FinBW(�) is the class of all topological spaces X such that for every sequence
f : Λ → X there exists F ∈ F such that f � � (F ) �-converges.

(2) hFinBW(�) is the class of all topological spaces X such that for every
�-sequence f : �(E) → X there exists F ∈ F such that �(F ) ⊆ �(E) and
f � �(F ) �-converges.

Remark. The classes FinBW(�) for � ∈ {FS, r,Δ} were examined in the
literature under other names:

(1) In [57, Definition 4], spaces from FinBW(FS) are called Hindman spaces.
(2) In [6] (see also [61, Definition 2.1]), spaces from FinBW(r) are called spaces

with the Ramsey property, and we will call them Ramsey spaces in short.
(3) In [73, Definition 4.2.4] (see also [22, p. 2010]), spaces in FinBW(Δ) are called

differentially compact spaces.

Remark. Recall that if (Λ, <) is a directed set, then any function f : Λ → X is
called a net in X. A net f : Λ → X in a topological space X converges to x ∈ X if
for every neighborhood U of x there is 	0 ∈ Λ such that f(	) ∈ U for every 	 > 	0

(see, e.g., [17, p. 49]). In [20, Remark 2.6], the authors notice that if B is a coideal
basis on (Λ, <), then (B,< ∩(B × B)) is a directed set andf � B is a subnet of f for
every B ∈ B. Furthermore, they examine topological spaces X having the property
that every net f : Λ → X has a convergent subnet f � B with some B ∈ B [20, p.
418]. It is not difficult to see that the class of spaces they examine coincides with the
class FinBW(�B) with �B defined as in Proposition 3.10(2).

The following proposition reveals relationships between FinBW-like spaces
defined with the aid of partition regular functions and ideals.

Proposition 10.2. Let � : F → [Λ]� be partition regular with F ⊆ [Ω]� . Let I
be an ideal on Λ.

(1) (a) hFinBW(�) =
⋂
{FinBW(� � �(F )) : F ∈ F}.

(b) hFinBW(I) =
⋂
{FinBW(I � A) : A ∈ I+}.

(2) (a) hFinBW(�) ⊆ FinBW(�).
(b) hFinBW(I) ⊆ FinBW(I).

(3) FinBW(I�) ⊆ FinBW(�) and hFinBW(I�) ⊆ hFinBW(�).
(4) FinBW(I) = FinBW(�I) and hFinBW(I) = hFinBW(�I).
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(5) (a) If � is K-homogeneous, then hFinBW(�) = FinBW(�).
(b) If I is K-homogeneous, then hFinBW(I) = FinBW(I).

Proof. (1) and (2) Straightforward.
(3) It follows from Proposition 9.2(1a) (the other inclusion does not follow from

Proposition 9.2(1b) as it gives us only an infinite set A, not necessarily A ∈ I+
� ).

(4) It follows from Proposition 9.2(2).
(5a) We only need to show FinBW(�) ⊆ hFinBW(�). LetX ∈ FinBW(�) andf :

�(E) → X be a �-sequence in X for someE ∈ F . Let φ : Λ → �(E) be a witness for
� � (F � �(E)) ≤K �. Since f ◦ φ : Λ → X , there is F ∈ F such that f ◦ φ � �(F )
is �-convergent to some x ∈ X . Since � � (F � �(E)) ≤K �, there is G ∈ F � �(E)
such that for every finite set K ⊆ Ω there is a finite set L ⊆ Ω with �(G \ L) ⊆
φ[�(F \K)]. We claim thatf � �(G) is �-convergent to x. Let U be a neighborhood
of x. Then there is a finite set K ⊆ Ω such that (f ◦ φ)[�(F \K)] ⊆ U . We pick a
finite setL ⊆ Ω such that �(G \ L) ⊆ φ[�(F \K)]. Thenf[�(G \ L)] ⊆ f[φ[�(F \
K)]] ⊆ U , so the proof is finished.

(5b) It follows from items (5a) and (4) and Proposition 8.5(2). �
Remark. In Theorem 10.2(3), we cannot replace inclusion with equality in

general because in [57, Theorems 3 and 10] the author proved that FinBW(H)
contains only finite Hausdorff spaces, whereas FinBW(FS) contains infinite (even
uncountable) ones.

Corollary 10.3.

(1) [58, Proposition 4] hFinBW(W) = FinBW(W), and consequently the product
of two van der Waerden spaces is van der Waerden.

(2) [57, Lemma 8] hFinBW(FS) = FinBW(FS), and consequently the product of
two Hindman spaces is Hindman.

(3) [61, Theorem 3.4] hFinBW(r) = FinBW(r), and consequently the product of
two Ramsey spaces is Ramsey.

Proof. It follows from Theorem 10.2(5) and Proposition 8.7. �
Question 10.4 [31, 32] and [73, Question 4.2.3].

(1) (a) Does FinBW(I1/n) = hFinBW(I1/n)?
(b) Is the product of two I1/n-spaces an I1/n-space?

(2) (a) Does FinBW(Δ) = hFinBW(Δ)?
(b) Is the product of two differentially compact spaces a differentially compact

space?

Note that the positive answer to the question in item (1a) gives the positive
answer to the question in item (1b), and similarly for the questions in the second
item. Moreover, the positive answer to the Question 8.8(1) (Question 8.8(2), resp.)
gives the positive answer to Question 10.4(2a) (Question 10.4(1a), resp.).

Let us now turn to one of the main results of this paper.

Theorem 10.5. Let � : F → [Λ]� be partition regular with F ⊆ [Ω]� .
(1) FinBW(�) contains all finite spaces and is a subclass of the class of all

sequentially compact spaces.
(2) � is not tall ⇐⇒ FinBW(�) coincides with the class of all sequentially compact

spaces.
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(3) The following conditions are equivalent.
(a) � is P–(Λ).
(b) There are Hausdorff compact spaces of arbitrary cardinality that belong to

FinBW(�).
(c) There exists an infinite Hausdorff topological space X ∈ FinBW(�).

(4) The following conditions are equivalent.
(a) � is P–.
(b) There are Hausdorff compact spaces of arbitrary cardinality that belong to

hFinBW(�).
(c) There exists an infinite Hausdorff topological space X ∈ hFinBW(�).

(5) If � is P–, then
(a) the uncountable non-compact Hausdorff space X = �1 with the order

topology belongs to FinBW(�),
(b) assuming Continuum Hypothesis (CH ) there are Hausdorff compact and

separable spaces of cardinality c that belong to FinBW(�).
(6) If � is weak P+, then every compact metric space is in hFinBW(�).
(7) If � is P+, then every Hausdorff topological space with the property (∗) belongs

to hFinBW(�).
(A topological space X has the property (*) if for every countable setD ⊆ X

the closure clX (D) is compact and first-countable—see [58].)

Proof. (1) It follows from Proposition 9.2(1b).
(2) The implication “ ⇐= ” will follow from Theorem 13.2(1). To prove the

implication “ =⇒ ” we only need to show that every sequentially compact space
belongs to FinBW(�). Fix a sequentially compact space X and f : Λ → X . Let
φ : Λ → Λ be a witness for � ≤K �Fin(Λ). Since f ◦ φ : Λ → X , there is an infinite
set A ⊆ Λ such that (f ◦ φ) � A is convergent to some x ∈ X . Then there is F ∈ F
with �(F ) ⊆ φ[A]. We claim that f � �(F ) is �-convergent to x. Let U be any
neighbourhood of x. Then there is a finite set L ⊆ Λ such that f[φ[A \ L]] ⊆
U . Now, we can find a finite set K ⊆ Ω such that �(F \K) ⊆ φ[A \ L]. Thus,
f[�(F \K)] ⊆ U .

(3) (a) =⇒ (b) Let κ be an infinite cardinal number. Let X = κ ∪ {∞} be the
Alexandroff one-point compactification of the discrete spaceκ. Then X is Hausdorff,
compact, and has cardinality κ. Moreover, open neighborhoods of ∞ are of the
form X \ S where S is a compact (hence finite) subset of κ. We show that X
is in FinBW(�). Let f : Λ → X . If there is x ∈ X with f–1[{x}] /∈ I�, then we
take F ∈ F such that �(F ) ⊆ f–1[{x}] and see that f � �(F ) is �-convergent to
x. Now, we assume that f–1[{x}] ∈ I� for every x ∈ X . By Proposition 6.8, there
is F ∈ F such that for every finite set S ⊆ X there is a finite set KS such that
�(F \KS) ∩ f–1[S] = ∅. We claim that f � �(F ) is �-convergent to ∞. Let U be
an open neighborhood of ∞. Let S ⊆ κ be a finite set with U = X \ S. Then
f[�(F \KS)] ⊆ X \ S = U .

(b) =⇒ (c) Obvious.
(c) =⇒ (a) Suppose that � is not P–(Λ) and let An ∈ I+

� be the witnessing
sequence, i.e., A0 = Λ, An+1 ⊆ An, An \ An+1 ∈ I� and for each F ∈ F there is
n ∈ � such that �(F ) �⊆� An. Note that

⋂
n∈� An ∈ I�.
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Let X be an infinite Hausdorff topological space. We will show that X /∈
FinBW(�). If X is not sequentially compact, then X /∈ FinBW(�) by item (1).
If X is sequentially compact, then find any one-to-one sequence {xn : n ∈ �} in X
converging to some x ∈ X . Without loss of generality we may assume that x �= xn
for all n ∈ �. Define f : Λ → X by f �

⋂
n∈� An = x0 and f(	) = xn+1, where n is

such that 	 ∈ An \ An+1. Suppose for the sake of contradiction that there are L ∈ X
and F ∈ F such that f � �(F ) �-converges to L. By Proposition 9.2(1b) we get that
either L = xn for some n ∈ � or L = x.

If L = xn for some n ∈ �, find open U and V such that xn ∈ U , x ∈ V , and
U ∩ V = ∅. Since xm ∈ V (so xm /∈ U ) for almost all m ∈ � and f–1[{xm}] ∈ I�
for all m ∈ �, f–1[U ] ∈ I�. Hence, f � �(F ) cannot �-converge to xn.

If L = x, we can find n ∈ � such that �(F ) �⊆� An. Since X is Hausdorff, there is
an open neighbourhood U of L such that xi+1 /∈ U for all i < n. Since f � �(F ) �-
converges to L, there should be a finiteK ⊆ Ω such thatf[�(F \K)] ⊆ U ; however,
�(F \K) \ An �= ∅ (by �(F ) �⊆� An), so f[�(F \K)] ∩ {xi+1 : i < n} �= ∅, which
contradicts xi+1 /∈ U for all i < n.

(4) (a) =⇒ (b) Notice that if X is the space defined in the proof of the implication
(3a) =⇒ (3b) then X ∈ FinBW(�) for every � that is P–(Λ) (the definition of X
did not depend on �). Thus, if � is P– then � � �(F ) is P–(�(F )) for every F ∈
F and consequently X ∈

⋂
F∈F FinBW(� � �(F )) = hFinBW(�) (by Proposition

10.2(1a)).
(b) =⇒ (c) Obvious.
(c) =⇒ (a) If � is not P– then � � �(F ) is not P–(�(F )) for some F ∈ F .

Hence, by item (3), FinBW(� � �(F )) contains only finite Hausdorff spaces.
Since hFinBW(�) ⊆ FinBW(� � �(F )) by Proposition 10.2(1a), hFinBW(�) also
contains only finite Hausdorff spaces.

(5a) Let f : Λ → �1. If there is α < �1 with f–1[{α}] /∈ I�, then we take F ∈ F
such that �(F ) ⊆ f–1[{α}] and see that f � �(F ) is �-convergent to α. Now, we
assume that f–1[{α}] ∈ I� for every α < �1. Since Λ is countable and the cofinality
of �1 is uncountable, there is α < �1 with f–1[α] /∈ I�. Let α0 be the smallest
α such that f–1[α] /∈ I�. Note that α0 is a limit ordinal. Indeed, if α0 = α + 1,
then α < α0 and f–1[α] = f–1[α0] \ f–1[{α}] /∈ I�, a contradiction. Since α0 is
a countable limit ordinal, there is an increasing sequence {�n : n ∈ �} such that
sup{�n : n ∈ �} = α0. By Proposition 6.8, there is F ∈ F such that �(F ) ⊆ f–1[α0]
and for each n ∈ � there is a finite set Kn such that �(F \Kn) ∩ f–1[�n] = ∅. We
claim that f � �(F ) is �-convergent to α0. Indeed, let U be a neighborhood of α0.
Without loss of generality, we can assume that U = (α0 + 1) \ �n for some n ∈ �.
Then f[�(F \Kn)] ⊆ α0 \ �n ⊆ U .

(5b) Spaces with these properties are constructed in Theorem 14.5.
(6) Let f : �(E) → X be a �-sequence in a metric compact space X.
Since � is weak P+, there exists F ∈ F such that �(F ) ⊆ �(E) and for every

sequence {Fn : n ∈ �} ⊆ F such that �(F ) ⊇ �(Fn) ⊇ �(Fn+1) for each n ∈ � there
exists G ∈ F such that �(G) ⊆ �(F ) and �(G) ⊆� �(Fn) for each n ∈ �.

For x ∈ X and r > 0 we write B(x, r) and B(x, r) to denote an open and closed
ball of radius r centered at a point x, respectively.
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Since X is compact metric, there are finitely many x0
i ∈ X , i < n0 such that X =⋃

{B(x0
i , 1) : i < n0}. Then there exists i0 < n0 such that �(F ) ∩ f–1[B(x0

i0
, 1)] /∈

I�, and consequently there is F0 ∈ F such that �(F0) ⊆ �(F ) ∩ f–1[B(x0
i0
, 1)].

Since B(x0
i0
, 1) is compact metric, there are finitely many x1

i ∈ X , i < n1 such

that B(x0
i0
, 1) ⊆

⋃
{B(x1

i ,
1
2 ) : i < n1}. Then there exists i1 < n1 such that �(F0) ∩

f–1[B(x1
i1
, 1

2 )] /∈ I�, and consequently there is F1 ∈ F such that �(F1) ⊆ �(F0) ∩
f–1[B(x1

i1
, 1

2 )].
If we continue the above procedure, we obtain Fn ∈ F and xnin ∈ X such that

�(Fn) ⊆ �(Fn–1) ∩ f–1[B(xnin ,
1
n+1 )] for each n ∈ � (assuming that F–1 = F ).

Let x ∈
⋂
{B(xnin ,

1
n+1 ) : n ∈ �}.

Since � is weak P+, we have G ∈ F such that �(G) ⊆ �(F ) and �(G) ⊆� �(Fn)
for each n ∈ �.

We claim thatf � �(G) is �-convergent to x. Let U be a neighborhood of x. Since
the sequence (xnin )n∈� is convergent to x, there is n0 ∈ � such that B(xnin ,

1
n+1 ) ⊆ U

for every n ≥ n0. Consequently, there is n ∈ � with B(xnin ,
1
n+1 ) ⊆ U . Let K ⊆

Ω be a finite set such that �(G \K) ⊆ �(Fn). Then f[�(G \K)] ⊆ f[�(Fn)] ⊆
B(xnin ,

1
n+1 ) ⊆ U, so the proof is finished.

(7) LetE ∈ F and f : �(E) → X be a sequence in a Hausdorff topological space
X having the property (∗). Since the set D = {f(	) : 	 ∈ �(E)} is countable, the
closure clX (D) is compact and first-countable. We claim that there existsL ∈ clX (D)
such that f–1[U ] ∈ I+

� for every neighborhood U of L.
Suppose, for the sake of contradiction, that for every x ∈ clX (D) there is a

neighborhood Ux of x such that f–1[Ux ] ∈ I�. Since clX (D) is compact, there
are finitely many xi ∈ clX (D) for i < n with clX (D) ⊆

⋃
{Uxi : i < n}. Then

�(E) =
⋃
{f–1[Uxi ] : i < n} ∈ I�, a contradiction, so the claim is proved.

Let {Un : n ∈ �} be a base at L. Without loss of generality, we can assume that
Un ⊇ Un+1 for each n ∈ �. For each n ∈ �, we define An = {	 ∈ �(E) : f(	) ∈
Un}. SinceAn ∈ I+

� andAn ⊇ An+1 for each n ∈ �, using the fact that � isP+, there
exists F ∈ F such that �(F ) ⊆ �(E) and �(F ) ⊆� An for each n ∈ �. We claim that
f � �(F ) is �-convergent to L.

Take any neighborhood U of L. Then there exists n0 ∈ � with Un0 ⊆ U . Since
�(F ) ⊆� An0 , there exists a finite set K ⊆ Ω such that �(F \K) ⊆ An0 . Thus
f[�(F \K)] ⊆ Un0 ⊆ U , so the proof is finished. �

The following series of corollaries shows that many known earlier results can be
easily derived from Theorem 10.5.

Corollary 10.6 [28, Proposition 2.4]. If an ideal I is not tall, then FinBW(I)
coincides with the class of all sequentially compact spaces.

Proof. It follows from Theorem 10.5(2) and Propositions 10.2(4) and 8.1. �

Corollary 10.7 [62, Theorem 6.5]. Fin2 ≤K I ⇐⇒ FinBW(I) coincides with
the class of all finite spaces in the realm of Hausdorff spaces.

Proof. It follows from Theorem 10.5(3) and Propositions 7.1(1), 6.5(2), and
10.2(4). �
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Corollary 10.8. Every metric compact space belongs to hFinBW(�) in case when:
(1) � = �I and I is P+ ideal,
(2) [30, Theorem 2.3] � = �I and I is an F� ideal,
(3) [58, Theorem 10] � = �I and I = W ,
(4) [30, Theorem 2.3] � = �I and I = I1/n,
(5) [36, Theorem 2.5] � = FS,
(6) [6, Theorem 1] (see also [5, Theorem 1.16]) � = r,
(7) [22, Corollary 4.8] � = Δ.

Proof. It follows from Theorem 10.5(6) and Propositions 6.7 and 6.5. �
Corollary 10.9. Every Hausdorff space with the property (∗) belongs to

hFinBW(�) in case when:
(1) � = �I and I is P+ ideal,
(2) [30, Theorem 2.3] � = �I and I is an F� ideal,
(3) [58, Theorem 10] � = �I and I = W ,
(4) [30, Theorem 2.3] � = �I and I = I1/n.

Proof. It follows from Theorem 10.5(7) and Propositions 6.7 and 6.5. �
In [57, Theorem 11] ([61, Corollary 3.2], resp.), the authors proved that every

Hausdorff space with the property (∗) belongs to hFinBW(FS) (hFinBW(r), resp.).
However, their proofs use properties very specific to FS and r. For instance, the
proof for FS uses idempotent ultrafilters, whereas the proof for r uses the bounding
number b.

Problem 10.10. Find a property W of partition regular functions such that both
FS and r have the property W and if � has the property W then every Hausdorff space
with the property (∗) belongs to hFinBW(�).

In [22, Corollary 4.8], the author proved that every Hausdorff space with the
property (∗) belongs to FinBW(Δ).

Question 10.11. Does every Hausdorff space with the property (∗) belong to
hFinBW(Δ)?

Note that the positive answer to Question 10.4(2a) gives the positive answer to
Question 10.11.

§11. Inclusions between FinBW classes.

Theorem 11.1. Let �i : Fi → [Λi ]� be partition regular with Fi ⊆ [Ωi ]� for each
i = 1, 2. Let I be an ideal on Λ.

(1) �2 ≤K �1 =⇒ FinBW(�1) ⊆ FinBW(�2).
(2) (a) If �2 is P+, then

I�2 ≤K I�1 =⇒ FinBW(�1) ⊆ FinBW(�2).

(b) I�2 ≤K I =⇒ FinBW(I) ⊆ FinBW(�2).

Proof. (1) Let φ : Λ1 → Λ2 be a witness for �2 ≤K �1. Let X ∈ FinBW(�1). If
f : Λ2 → X , then f ◦ φ : Λ1 → X , so there is F1 ∈ F1 such that �1(F1) ⊆ Λ1 and
(f ◦ φ) � �1(F1) is �1-convergent to some x ∈ X .
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Let F2 ∈ F2 be such that for every finite K1 ⊆ Ω1 there is a finite K2 ⊆ Ω2 with
�2(F2 \K2) ⊆ φ[�1(F1 \K1)].

We claim that f � �2(F2) is �2-convergent to x. Let U be a neighborhood of x.
Since (f ◦ φ) � �1(F1) is �1-convergent to x, then there is a finite set K1 ⊆ Ω1 such
that (f ◦ φ)[�1(F1 \K1)] ⊆ U . Hence, we can find a finite K2 ⊆ Ω2 with �2(F2 \
K2) ⊆ φ[�1(F1 \K1)]. Thenf[�2(F2 \K2)] ⊆ f[φ[�1(F1 \K1)]] ⊆ U . That finishes
the proof.

(2a) It follows from Proposition 7.5(2a) and item (1).
(2b) It follows from item (1) and Propositions 7.5(2b) and 10.2(4). �
The following series of corollaries shows that many known earlier results as well

as some new one can be easily derived from Theorem 11.1.

Corollary 11.2.

(1) [73, p. 39] Every Hindman space is differentially compact.
(2) Every Ramsey space is differentially compact.
(3) Let I be a P+ ideal.

(a) [24, Proposition 2.6] If I ≤K H then every Hindman space is in FinBW(I).
(b) If I ≤K R then every Ramsey space is in FinBW(I).
(c) If I ≤K D then every differentially compact space is in FinBW(I).

(4) [62, Corollary 10.2(a)] If Ii are ideals for i = 1, 2 and I2 ≤K I1, then
FinBW(I1) ⊆ FinBW(I2).

Proof. (1) It follows from Theorems 11.1(1) and 7.7(3).
(2) It follows from Theorems 11.1(1) and 7.7(4).
(3) It follows from Theorem 11.1(2a) and Propositions 6.5(2) and 10.2(4).
(4) It follows from Theorem 11.1(2b) and Proposition 10.2(4). �
Corollary 11.3.

(1) Let � : Fi → [Λ]� be a partition regular function.
(a) If � ≤K �′ for some weak P+ partition regular function �′, then every

compact metric space belongs to FinBW(�).
(b) If � ≤K �′ for some P+ partition regular function �′, then every Hausdorff

topological space with the property (∗) belongs to FinBW(�).
(2) Let I be an ideal. If an ideal I can be extended to a P+ ideal, then:

(a) every compact metric space belongs to FinBW(I);
(b) [27, Corollary 5.6] every Hausdorff topological space with the property (∗)

belongs to FinBW(I).

Proof. (1) It follows from Theorems 11.1(1) and 10.5(6) and (7) and Proposition
10.2(2).

(2) It follows from item (1) and Propositions 6.5(2), 7.5(2b), and 10.2(4). �
The following proposition shows that when comparing classes FinBW(�1) and

FinBW(�2) for distinct functions �1 and �2 we can in fact assume that both �1 and
�2 “live” on the same sets Ω and Λ.

Proposition 11.4. Let � : F → [Λ]� be partition regular with F ⊆ [Ω]� . Suppose
that Γ and Σ are countable infinite sets and φ : Ω → Γ and � : Λ → Σ are bijections.
Let G = {φ[F ] : F ∈ F} and � : G → [Σ]� be given by �(G) = �[�(φ–1[G ])]. Then:
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(1) � is partition regular,
(2) � and � are Katětov equivalent: � ≤K � and � ≤K �,
(3) � and � are hereditary Katětov equivalent:

(a) ∀F ∈ F ∃G ∈ G (� � �(F ) ≤K � � �(G)),
(b) ∀G ∈ G ∃F ∈ F (� � �(G) ≤K � � �(F )),

(4) FinBW(�) = FinBW(�) and hFinBW(�) = hFinBW(�).

Proof. Items (1)–(3) are straightforward, whereas item (4) follows from previous
items and Proposition 11.1. �

Part 3. Distinguishing between FinBW classes

In this part we are interested in finding spaces that are in FinBW(�1), but are
not in FinBW(�2). Similar investigations concerning the classes FinBW(I) were
conducted in [62]. In that paper all the examples (showing that under some set-
theoretic assumption FinBW(I) \ FinBW(J ) �= ∅ for some ideals I and J ) were
inspired by [59] and are of one specific type—they are defined using maximal almost
disjoint families. It turns out (see Theorem 13.2) that, in general, we cannot use
maximal almost disjoint families to distinguish between FinBW(�) classes with
the aid of spaces defined as in [62]. Fortunately, we managed to use not necessary
maximal almost disjoint families to prove two main results of this part (Theorems
14.3 and 15.2), which give us FinBW(�1) \ FinBW(�2) �= ∅ for certain �1 and �2.
Our methods were inspired by [61].

§12. Mrówka spaces and their compactifications. For an infinite almost disjoint
family A on a countable set Λ, we define a set

Ψ(A) = Λ ∪ A

and introduce a topology on Ψ(A) as follows: the points of Λ are isolated and a
basic neighborhood of A ∈ A has the form {A} ∪ (A \ F ) with F finite.

Topological spaces of the form Ψ(A) were introduced by Alexandroff and
Urysohn in [1, Chapter V, paragraph 1.3] (as noted in [17, p. 182], [16, p. 1380],
and [46, p. 605]) and its topology is known as the rational sequence topology (see
[74, Example 65]; the same topology was later described by Katětov in [54, p. 74]).
Spaces Ψ(A) with maximal (with respect to the inclusion) almost disjoint families
A were first examined by Mrówka (see [69]) and Isbell (as noted in [39, p. 269]). It
seems that the notation Ψ for these kinds of spaces was used for the first time in [39,
Problem 5I, p. 79].

Spaces of the form Ψ(A) are known under many names, including Ψ-spaces,
Isbell–Mrówka spaces, and Mrówka spaces. Recent surveys on these spaces and
their numerous applications can be found in [43, 46].

It is known that Ψ(A) is Hausdorff, regular, locally compact, first countable, and
separable, but it is not compact nor sequentially compact (see [69] or [14, Section
11]). It is not difficult to see thatA ∪ {A} is compact in Ψ(A) for everyA ∈ A and for
every compact set K ⊆ Ψ(A) both sets K ∩ A and (K ∩ Λ) \

⋃
{A : A ∈ K ∩ A}

are finite. In particular, for every compact setK ⊆ Ψ(A) there are finitely many sets
Ai ∈ A and a finite set F such that K ⊆ {Ai : i < n} ∪

⋃
{Ai ∪ F : i < n}.
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Let

Φ(A) = Ψ(A) ∪ {∞} = Λ ∪ A ∪ {∞}
be the Alexandroff one-point compactification of Ψ(A) (recall that open neighbor-
hoods of ∞ are of the form Φ(A) \K for compact setsK ⊆ Ψ(A)). It is not difficult
to see that Φ(A) is Hausdorff, compact, sequentially compact, separable, and first
countable at every point of Φ(A) \ {∞}.

Topological spaces of the form Φ(A) with maximal almost disjoint families A
were first used by Franklin [33, Example 7.1] where the author used the notation
Ψ∗ instead of Φ. Later, these spaces were considered in [38] where the authors use
the notation F(A) and call them the Franklin compact spaces associated with A,
whereas in [37] the authors use the notation Fr(A) and call them the Franklin spaces
of A. The notation Φ(A) for these spaces is used in the following papers [22, 24,
60, 62]. Recently, spaces of the form Φ(A) were also considered for non-maximal
almost disjoint families [11, 61].

It also makes sense to define Φ(A) for infinite families A that are not almost
disjoint, but then Φ(A) is no longer Hausdorff (almost disjointness of A is a
necessary and sufficient condition for a space Φ(A) to be Hausdorff).

The following lemma (which will be used repeatedly in the sequel) shows that a
sequence in a space Φ(A) may fail to have a �-convergent �-subsequence only in
one specific case. Hence, checking whether Φ(A) ∈ FinBW(�) will be reduced to
considering only sequences of this one specific kind.

Lemma 12.1. Let � : F → [Λ]� be partition regular with F ⊆ [Ω]� . Let A be an
infinite almost disjoint family on Λ. For every sequence f : Λ → Φ(A), the following
five cases can only occur:

(1) f–1(∞) /∈ I�,
(2) f–1[A] /∈ I�,
(3) f–1(∞) ∈ I�, f–1[A] ∈ I�, f–1[Λ] ∈ I∗

� and
(a) f–1(	) /∈ I� for some 	 ∈ Λ,
(b) f–1(	) ∈ I� for every 	 ∈ Λ and f–1[A] /∈ I� for some A ∈ A,
(c) f–1(	) ∈ I� for every 	 ∈ Λ and f–1[A] ∈ I� for every A ∈ A.

If � is P–, then in cases (1), (2), (3a), and (3b) there is F ∈ F such that f � �(F )
is �-convergent.

Proof. Case (1). There is F ∈ F such that f � �(F ) is constant (with the value
∞); hence, it is �-convergent.

Case (2). We find F ∈ F with �(F ) ⊆ f–1[A]. Then we enumerate f[�(F )] =
{An : n ∈ �} and define En = f–1[{An}] for each n ∈ �.

If there is n0 ∈ � such that En0 /∈ I�, then we find F ′ ∈ F with �(F ′) ⊆ En0 , and
we see that f � �(F ′) is constant, so it is �-convergent.

Now assume that En ∈ I� for each n ∈ �. Since �(F ) ⊆
⋃
{En : n ∈ �}, we can

use Proposition 6.8 to findE ∈ F such that for each n ∈ � there is a finite setK ⊆ Ω
with �(E \K) ⊆ �(F ) ∩

⋃
{Ei : i ≥ n}. We claim that f � �(E) is �-convergent to

∞. Let U be a neighborhood of ∞. Without loss of generality, we can assume that
U = Φ(A) \ ({Ai : i < n} ∪

⋃
i<n Ai) for some n ∈ �. LetK ⊆ Ω be a finite set such

that �(E \K) ⊆ �(F ) ∩
⋃
{Ei : i ≥ n}. Thenf[�(E \K)] ∩ {Ai : i < n} = ∅, and

consequently f[�(E \K)] ⊆ U .
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Case (3a). There is F ∈ F such that f � �1(F ) is constant; hence, it is
�-convergent.

Case (3b). Let A ∈ A be such that f–1[A] /∈ I�. Using Proposition 6.8, we find
F ∈ F such that �(F ) ⊆ f–1[A] and for every finite S ⊆ A there is a finite set
K ⊆ Ω with �(F \K) ⊆ f–1[A] \ f–1[S] = f–1[A \ S]. We claim that f � �(F ) is
�-convergent to A. Indeed, let U be a neighborhood of A. Without loss of generality,
we can assume thatU = {A} ∪ (A \ S) where S is a finite subset of A. Then we take
a finiteK ⊆ Ω such that �(F \K) ⊆ f–1[A \ S], sof[�(F \K)] ⊆ A \ S ⊆ U . �

Proposition 12.2. Let � : F → [Λ]� be partition regular with F ⊆ [Ω]� . Let A be
an infinite almost disjoint family of infinite subsets of Λ. If � is P– and A is countable,
then Φ(A) ∈ FinBW(�).

Proof. Let f : Λ → Φ(A). By Lemma 12.1, we can assume that f–1(∞) ∈ I�,
f–1[A] ∈ I�, f–1[Λ] ∈ I∗

� , f–1(	) ∈ I� for every 	 ∈ Λ and f–1[A] ∈ I� for every
A ∈ A.

Sincef–1[A] ∈ I� for everyA ∈ A, we can use Proposition 6.8 to find F ∈ F such
that �(F ) ⊆ f–1[Λ] and for any finite set A′ ⊆ A there is a finite set K ⊆ Ω with

�(F \K) ∩ f–1
[⋃

A′
]

= �(F \K) ∩

⎛⎝ ⋃
A∈A′

f–1[A]

⎞⎠ = ∅.

We claim that f � �(F ) is �-convergent to ∞. Indeed, let U be a neighborhood
of ∞. Without loss of generality, we can assume that there is a finite set A′ ⊆ A
such that U = Φ(A) \ (A′ ∪

⋃
A′) . Then we have a finite set K ⊆ Ω such that

�(F \K) ∩ f–1 [
⋃

A′] = ∅, and consequently f[�(F \K)] ⊆ U , so the proof is
finished. �

§13. Mrówka spaces for maximal almost disjoint families. In [62] the author
extensively studied FinBW(I) spaces. In particular, for a large class of ideals,
assuming the continuum hypothesis, he characterized in terms of Katětov order
when there is a space in FinBW(I) that is not in FinBW(J ). In his proofs the
right space is always of the form Φ(A) for some maximal almost disjoint family.
In our paper we want to generalize results of [62] so that they will apply also for
Hindman spaces, Ramsey spaces, and differentially compact spaces. As we will see
at the end of this section, our generalization requires going beyond maximal almost
disjoint families (as always Φ(A) /∈ FinBW(�) for maximal A and � ∈ {FS, r,Δ}—
see Corollary 13.3) and working with almost disjoint families that are not necessarily
maximal.

Lemma 13.1. Let � : F → [Λ]� be partition regular with F ⊆ [Ω]� . Let A be an
almost disjoint family on Λ.

(1) If A ⊆ I� and

∀F ∈ F ∃A ∈ A∀K ∈ [Ω]<� (A ∩ �(F \K) �= ∅),

then Φ(A) /∈ FinBW(�).
(2) If A ⊆ I� and A is a maximal almost disjoint family, then Φ(A) /∈ FinBW(�).
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Proof. (1) Let f : Λ → Φ(A) be given by f(	) = 	. We claim that there is no
F ∈ F such that f � �(F ) is �-convergent. Assume, for the sake of contradiction,
that there is F ∈ F such that f � �(F ) is �-convergent to some L ∈ Φ(A). We have
three cases: (1) L ∈ Λ, (2) L ∈ A, and (3) L = ∞.

Case (1). The set U = {L} is a neighborhood of L. But for any finite set K ⊆ Ω
we have f[�(F \K)] = �(F \K) �⊆ {L} = U. Thus, f � �(F ) is not �-convergent
to L, a contradiction.

Case (2). The set U = L ∪ {L} is a neighborhood of L. Since f � �(F ) is
�-convergent to L, there is a finite set K ⊆ Ω such that �(F \K) = f[�(F \K)] ⊆
U . Thus, �(F \K) ⊆ L, so L /∈ I�, but A ⊆ I�, a contradiction.

Case (3). LetA ∈ A be such thatA ∩ �(F \K) �= ∅ for every finite setK ⊆ Ω. The
setU = Φ(A) \ (A ∪ {A}) is a neighborhood of ∞. Since f � �(F ) is �-convergent
to L, there is a finite set K ⊆ Ω such that �(F \K) = f[�(F \K)] ⊆ U . Hence,
A ∩ �(F \K) = ∅, a contradiction.

(2) Let F ∈ F and enumerate Ω = {on : n ∈ �}. We pick inductively a point
bn ∈ �(F \ {oj : j < n}) \ {bj : j < n} for each n ∈ �. Then using maximality of
A we can find A ∈ A such that A ∩ {bn : n ∈ �} is infinite. Thus, the condition for
item (1) is satisfied, so the proof is finished. �

Theorem 13.2. Let � : F → [Λ]� be partition regular with F ⊆ [Ω]� .
(1) If � is tall (equivalently, I� is a tall ideal), then there exists an infinite

(even of cardinality c) maximal almost disjoint family A on Λ such that
Φ(A) /∈ FinBW(�).

(2) If I� is not P–(Λ) (equivalently,Fin2 ≤K I�), then Φ(A) /∈ FinBW(�) for
every infinite maximal almost disjoint family A on Λ.

Proof. (1) It follows from Lemma 13.1(2), because in [28, Proposition 2.2], the
authors proved that if an ideal I is tall, then there exists an infinite maximal almost
disjoint family A of infinite subsets of Λ such that A ⊆ I. If necessary, we can make
A to be of cardinality c (just take one set A ∈ A, construct your favourite almost
disjoint family B of cardinality c on A, then any maximal almost disjoint family
extending A ∪ B is the required family). The equivalence of � being tall and I�
being a tall ideal follows from Proposition 8.1.

(2) The equivalence of I� not being P–(Λ) and Fin2 ≤K I� follows from
Proposition 7.1(1).

Let φ : Λ → �2 be a witness for Fin2 ≤K I�. In [2], the authors proved that we
can assume that φ is a bijection. For each n ∈ �, we define Pn = φ–1[{n} × �].
Then {Pn : n ∈ �} is a partition of Λ and Pn ∈ I� ∩ [Λ]� for each n ∈ �. Let
A = {Aα : α < |A|}. Since A is infinite, |A| ≥ �. Let f : Λ → Φ(A) be a bijection
such thatf[Pn] = An \

⋃
{Ai : i < n} for each n ∈ �.We claim that f does not have

a �-convergent subsequence. Assume, for the sake of contradiction, that f � �(F )
is �-convergent to some L ∈ Φ(A) for some F ∈ F . We have three cases: (1) L ∈ Λ,
(2) L ∈ A, and (3) L = ∞.

Case (1). The set U = {L} is a neighborhood of L. But for any finite set K ⊆
Ω we have f[�(F \K)] �⊆ {L} = U. Thus, f � �(F ) is not �-convergent to L, a
contradiction.

Case (2). We have two subcases: (2a) ∃n ∈ � (L = An) and (2b) ∃α ∈ |A| \
� (L = Aα).
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Case (2a). The set U = {An} ∪ An is a neighborhood of L, so there is a finite
set K ⊆ Ω such that f[�(F \K)] ⊆ U . Then f[�(F \K)] ⊆ An, so �(F \K) ⊆
f–1[An] ⊆

⋃
i≤n Pi ∈ I�, a contradiction.

Case (2b). The set U = Aα ∪ {Aα} is a neighborhood of L, so there is a finite
set K ⊆ Ω such that f[�(F \K)] ⊆ U . Then f[�(F \K)] ⊆ Aα , so �(F \K) ⊆
f–1[Aα]. Thus f–1[Aα] /∈ I�, and consequently φ[f–1[Aα]] /∈ Fin2. On the other
hand, Aα ∩ An is finite for each n ∈ �, so f–1[Aα ∩ An] is finite, and consequently
f–1[Aα] ∩ Pn is finite for every n ∈ �. Thus, φ[f–1[Aα]] ∈ Fin2, a contradiction.

Case (3). Using Proposition 9.2(1b) we find an infinite set B ⊆ Λ such thatf � B
is convergent to ∞. Since f is a bijection, f[B] is infinite. Thus, using maximality
of A, we find α such that Aα ∩ f[B] is infinite. Since U = Φ(A) \ ({Aα} ∪ Aα) is
a neighborhood of ∞, there is a finite set K ⊆ Λ such that f[B \K ] ⊆ U . Then
Aα ∩ f[B \K ] = ∅, a contradiction. �

Corollary 13.3. Let A be an infinite maximal almost disjoint family.
(1) Hindman spaces.

(a) [57, Theorem 10] If A ⊆ H, then Φ(A) is not a Hindman space.
(b) [24, Proposition 1.1] Φ(A) is not a Hindman space.

(1) Ramsey spaces.
(a) [61, Example 4.1] If {{n, k} : k ∈ � \ {n}} ∈ A for every n ∈ �, then

Φ(A) is not a Ramsey space.
(b) Φ(A) is not a Ramsey space.

(3) Differentially compact spaces.
(a) [73, Theorem 4.2.2] or [22, Theorem 4.9] If A ⊆ D, then Φ(A) is not a

differentially compact space.
(b) [60, Theorem 2.1] Φ(A) is not a differentially compact space.

(4) van der Waerden spaces.
(a) [58, Theorem 6] If A ⊆ W , then Φ(A) is not a van der Waerden space.

(5) I1/n-spaces.
(a) [30, Proposition 2.2] If A ⊆ I1/n, then Φ(A) is not a I1/n-space.

(6) FinBW(I).
(a) [30, Proposition 2.2] If I is a tall F�-ideal on Λ and A ⊆ I, then Φ(A) /∈

FinBW(I).
(b) [28, Proposition 2.3] IfI is a tall ideal andA ⊆ I, then Φ(A) /∈ FinBW(I).

Proof. (1)–(6) In cases when we assume that A ⊆ I, it follows from Lemma
13.1(2) along with Proposition 10.2(4) in some cases. In other cases, it follows from
Theorem 13.2(2) and Proposition 7.2. �

§14. Distinguishing between FinBW classes via Katětov order on ideals. In this
section we prove first of the two main results of this part and show its various
particular cases and consequences. We will need the following two lemmas.

Lemma 14.1. Let � : F → [Λ]� be partition regular with F ⊆ [Ω]� . Let A be an
infinite almost disjoint family on Λ such that for every I�-to-one function f : Λ → Λ
there is E ∈ F such that the family

{A ∈ A : ∀K ∈ [Ω]<� (|A ∩ f[�(E \K)]| = �)}
is at most countable. If � is P–, then Φ(A) ∈ FinBW(�).
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Proof. Let f : Λ → Φ(A). By Lemma 12.1, we can assume that f–1(∞) ∈ I�,
f–1[A] ∈ I�, f–1[Λ] ∈ I∗

� , f–1(	) ∈ I� for every 	 ∈ Λ, and f–1[A] ∈ I� for every
A ∈ A. Then B = f–1[Λ] ∈ I∗

� and f � B : B → Λ is I�-to-one.
We fix an element 	0 ∈ Λ and define g : Λ → Λ by g(	) = f(	) for 	 ∈ B and

g(	) = 	0 otherwise. Then g is I�-to-one, so there is E ∈ F such that the family

C = {A ∈ A : ∀K ∈ [Ω]<� (|A ∩ g[�(E \K)]| = �)}
is at most countable.

Since �(E) ∩ B /∈ I� and � is P–, we can use Proposition 6.8 to find F ∈ F such
that �(F ) ⊆ �(E) ∩ B and for any finite sets S ⊆ Λ and T ⊆ C there is a finite set
L ⊆ Ω with

�(F \ L) ∩
(
f–1[S] ∪

⋃{
f–1 [A] : A ∈ T

})
= ∅.

We claim that f � �(F ) is �-convergent to ∞. Indeed, let U be a neighborhood of
∞. Without loss of generality, we can assume that there is a finite set Γ ⊆ A such
that U = Φ(A) \ ({A : A ∈ Γ} ∪

⋃
{A : A ∈ Γ}) .

For each A ∈ Γ \ C, there is a finite set KA ⊆ Ω such that A ∩ f[�(F \KA)] =
A ∩ g[�(F \KA)] is finite. Then K =

⋃
{KA : A ∈ Γ \ C} ⊆ Ω is a finite set such

that A ∩ f[�(F \K)] is finite for every A ∈ Γ \ C.
Then both S = f[�(F \K)] ∩

⋃
{A : A ∈ Γ \ C} and T = Γ ∩ C are finite, so we

can find a finite set L ⊆ Ω such that

�(F \ L) ∩
(
f–1[S] ∪

⋃{
f–1 [A] : A ∈ T

})
= ∅,

and consequently we obtain a finite set K ∪ L such that

f[�(F \ (K ∪ L))] ⊆ Λ \
⋃

{A : A ∈ Γ} ⊆ U.

That finishes the proof. �
Recall that p is the smallest cardinality of a family F of infinite subsets of � with

the strong finite intersection property (i.e., intersection of finitely many sets from F
is infinite) that does not have a pseudointersection (i.e., there is no infinite setA ⊆ �
such that A \ F is finite for each F ∈ F ; see, e.g., [14]).

Lemma 14.2 (Assume p = c). Let �i : Fi → [Λi ]� be partition regular with Fi ⊆
[Ωi ]� for each i = 1, 2. Let {fα : α < c} be an enumeration of all functions f : Λ1 →
Λ2 and F2 = {Fα : α < c}.

If I�2 �≤K I�1 , then there exist families A = {Aα : α < c} and C = {Cα : α < c}
such that for every α < c :

(1) Cα ∈ F1,
(2) fα[�1(Cα)] ∈ I�2 ,
(3) Aα ∈ I�2 ∩ [Λ2]� ,
(4) ∀� < α (|Aα ∩ A� | < �),
(5) ∀
 > α (|A
 ∩ fα[�1(Cα)]| < �),
(6) ∀L ∈ [Ω2]<� (Aα ⊆∗ �2(Fα \ L)).

Proof. Suppose that A� and C� have been constructed for � < α and satisfy
items (1)-(6).
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First, we construct the set Cα . Since I�2 �≤K I�1 , there is a set Cα ∈ F1 such that
fα[�1(Cα)] ∈ I�2 .

Now, we turn to the construction of the set Aα . Let

D = {Λ2 \ f� [�1(C�)] : � < α} ∪ {Λ2 \ A� : � < α} ∪ {�2(Fα \ L) : L ∈ [Ω2]<�}.

Since
⋂
{�2(Fα \ Li) : i < n} ∈ I+

�2
for every n ∈ � and finite setsLi ⊆ Ω, and Λ2 \

f� [�1(C�)] ∈ I∗
�2

and Λ2 \ A� ∈ I∗
�2

for every � < α, we obtain that the intersection
of finitely many sets from D is in I+

�2
. In particular, this intersection is infinite, so D

has the strong finite intersection property. Since |D| < c = p, there exists an infinite
setA ⊆ Λ2 such thatA ⊆∗ D for everyD ∈ D. Since I�2 �≤K I�1 , we obtain that the
ideal I�2 is tall, and consequently there is an infinite set Aα ⊆ A such that Aα ∈ I�2 .

It is not difficult to see that the sets Aα and Cα satisfy all the required conditions,
so the proof of the lemma is finished. �

We are ready for the main result of this section.

Theorem 14.3 (Assume CH). Let �i : Fi → [Λi ]� be partition regular for each
i = 1, 2. If �1 is P– and I�2 �≤K I�1 , then there exists an almost disjoint family A such
that |A| = c and Φ(A) ∈ FinBW(�1) \ FinBW(�2). In particular, there is a Hausdorff
compact and separable space of cardinality c in FinBW(�1) \ FinBW(�2).

Proof. Using Proposition 11.4 we can assume that Λ1 = Λ2 = Λ.
Let {fα : α < c} be an enumeration of all functions f : Λ → Λ and F2 = {Fα :

α < c}. By Lemma 14.2, there exist familiesA = {Aα : α < c} and C = {Cα : α < c}
such that for every α < c all conditions of Lemma 14.2 are satisfied. We claim that
A is the required family.

First, we see that A is an almost disjoint family on Λ by item (4) of Lemma 14.2,
|A| = c and A ⊆ I�2 . Second, CH together with item (5) of Lemma 14.2 ensures
that

|{� < c : ∀K ∈ [Ω]<� (|A� ∩ fα[�1(Cα \K)]| = �)}| ≤ |α + 1| ≤ �

for each α < c, so knowing that �1 is P– we can use Lemma 14.1 to see that Φ(A) ∈
FinBW(�1). Third, we use item (6) of Lemma 14.2 and Lemma 13.1(1) to see that
Φ(A) /∈ FinBW(�2). �

Now we want to show various applications of Theorem 14.3. Those applications
can be divided into three parts. The first part concerns existence of a Hausdorff
compact and separable space in FinBW(�). Before applying Theorem 14.3, we need
to prove one more result.

Proposition 14.4. For every ideal I there is an ideal J such that J �≤K I.

Proof. Suppose for the sake of contradiction that there is an ideal I on Λ
such that J ≤K I for every ideal J . Then for every maximal (with respect to
inclusion) ideal J on � there exists a function fJ : Λ → � such that f–1

J [A] ∈ I
for every A ∈ J . Let K(fJ ) = {A ⊆ � : f–1

J [A] ∈ I}. Then K(fJ ) is an ideal
and J ⊆ K(fJ ). Since J is maximal, K(fJ ) = J . There are 2c pairwise distinct
ultrafilters on � (see, e.g., [51, Theorem 7.6]), so there are 2c pairwise distinct
maximal ideals on � (given an ultrafilter U on �, the family {A ⊆ � : A /∈ U}
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is a maximal ideal). However, there are only c many functions from � into �, a
contradiction. �

Theorem 14.5 (Assume CH). Let � : F → [Λ]� be partition regular with F ⊆
[Ω]� . If � is P–, then there exists an almost disjoint family A such that |A| = c and
Φ(A) ∈ FinBW(�). In particular, there is a Hausdorff compact and separable space
of cardinality c in FinBW(�).

Proof. By Proposition 14.4 there is an ideal J such that J �≤K I�, so Theorem
14.3 gives us an almost disjoint family A such that |A| = c and Φ(A) ∈ FinBW(�) \
FinBW(�J ). �

Corollary 14.6 (Assume CH). There exists (for each item distinct) an almost
disjoint family A for which Φ(A) is a Hausdorff compact and separable space of
cardinality c such that:

(1) Φ(A) is a Hindman space,
(2) [61, Theorem 4.7] Φ(A) is a Ramsey space,
(3) Φ(A) is a differentially compact space,
(4) [62, Theorem 5.3] Φ(A) ∈ FinBW(I), where I is a P– ideal (in particular, if I

is a G��� ideal).

Proof. Items (1), (2), and (3) follow from Theorem 14.5 and Proposition 6.7(3).
Item (4) follows from Theorem 14.5 and Propositions 6.5(2) and 10.2(4), and the
“in particular” part follows from Proposition 6.2(1). �

The second part of applications of Theorem 14.3 concerns a special case when
I�1 is P–(Λ1) while I�2 is not P–(Λ2).

Theorem 14.7 (Assume CH). Let �i : Fi → [Λi ]� be partition regular functions
for each i = 1, 2. If �1 is P–, I�1 is P–(Λ1) (equivalently,Fin2 �≤K I�1) and I�2 is not
P–(Λ2) (equivalently,Fin2 ≤K I�2), then there exists an infinite almost disjoint family
A of cardinality c such that Φ(A) ∈ FinBW(�1) \ FinBW(�2). In particular, there is a
Hausdorff compact and separable space of cardinality c in FinBW(�1) \ FinBW(�2).

Proof. The equivalence of I�1 being P–(Λ1) and Fin2 �≤K I�1 follows from
Proposition 7.1(1).

Since Fin2 ≤K I�2 and Fin2 �≤K I�1 , we know that I�2 �≤K I�1 , so Theorem 14.3
finishes the proof. �

Corollary 14.8 (Assume CH). There exists (for each item distinct) an almost
disjoint family A for which Φ(A) is a Hausdorff compact and separable space of
cardinality c and the following holds.

(1) Φ(A) is in FinBW(I), where I is a P– ideal (in particular, if I is a G��� ideal),
but Φ(A) is not a:
(a) [62, Corollary 11.5] Hindman space,
(b) Ramsey space,
(c) differentially compact space.

(2) (a) [59, Theorem 3] Φ(A) is a van der Waerden space that is not a Hindman
space.

(b) [30, Theorem 4.4] Φ(A) is an I1/n-space that is not a Hindman space.
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(3) (a) [73, Theorem 4.2.2] Φ(A) is a van der Waerden space that is not a
differentially compact space.

(b) [60, Theorem 3.5] Φ(A) is in FinBW(I) but it is not a differentially compact
space for any P+ ideal I (in particular, for any F� ideal). For instance,
Φ(A) is an I1/n-space that is not a differentially compact space.

Proof. Item (1) follows from Theorem 14.7 and Propositions 7.2(2), 10.2(4),
6.5(2), and 6.1(1). Other items follow from item (1), Theorem 6.2(2), and
Propositions 6.7(1) and 6.1(1). �

Now we deal with the third part of applications of Theorems 14.3, in which we
need to use its full strength.

Corollary 14.9 (Assume CH). There exists (for each item distinct) an almost
disjoint family A for which Φ(A) is a Hausdorff compact and separable space of
cardinality c such that:

(1) Φ(A) is a Ramsey space that is not a Hindman space;
(2) Φ(A) is a Hindman space that is not a Ramsey space;
(3) Φ(A) is a differentially compact space that is not a Hindman space;
(4) Φ(A) is a differentially compact space that is not a Ramsey space.

Proof. It follows from Theorems 14.3 and 7.7 and Proposition 6.7(3). �
Remark. The space from Corollary 14.9(3) yields the negative answer to [73,

Question 4.2.2] (see also [22, Problem 1] and [60, Question 3]).

Corollary 14.10 (Assume CH).

(1) If I is an ideal such that I �≤K H (I �≤K R, I �≤K D, resp.), then there exists
an almost disjoint family A such that the Hausdorff compact and separable
space Φ(A) of cardinality c is a Hindman (Ramsey, differentially compact,
resp.) space that is not in FinBW(I).

(2) There exists an almost disjoint family A such that the Hausdorff compact and
separable space Φ(A) of cardinality c is a Hindman (Ramsey, differentially
compact, resp.) space that is not an I1/n-space.

Proof. (1) It follows from Theorem 14.3 and Propositions 6.7(3) and 10.2(4).
(2) It follows from item (1) and Theorem 7.7. �
Remark. In [24, Theorem 2.5], the authors constructed, assuming CH and

I �≤K H, a non-Hausdorff Hindman space that is not in FinBW(I). Corollary
14.10(1) strengthens this result to the case of Hausdorff spaces. Taking I = I1/n,
they obtained a positive answer to the question posed in [29], namely they
constructed a (non-Hausdorff) Hindman space which is not I1/n-space. In Corollary
14.10(2), we obtained a Hausdorff answer to the above mentioned question.

Corollary 14.11 (Assume CH). (1) [62, Theorem 9.3] If I1 and I2 are ideals
such that I1 is P– (inparticular, if I1 is a G��� ideal) and I2 �≤K I1, then
there exists an almost disjoint family A such that the Hausdorff compact and
separable space Φ(A) of cardinality c belongs to FinBW(I1) \ FinBW(I2).

(2) [30, Theorem 3.3] There exists an almost disjoint family A such that the
Hausdorff compact and separable space Φ(A) of cardinality c is a van der
Waerden space that is not an I1/n-space.
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Proof. (1) It follows from Theorem 14.3 and Propositions 6.5(2) and 10.2(4).
(2) It follows from item (1), Theorem 7.7(10), and Proposition 6.7(1). �

§15. Distinguishing between FinBW classes via Katětov order on partition regular
functions. In this section we prove the second of the main results of Part 3. Then we
compare it with Theorem 14.3 and show that none of them can be derived from the
other one. We start with a technical lemma.

Lemma 15.1 (Assume CH). Let �i : Fi → [Λi ]� be partition regular with Fi ⊆
[Ωi ]� for each i = 1, 2. Let {fα : α < c} be an enumeration of all functions f : Λ1 →
Λ2 and {Fα : α < c} be an enumeration of all sets F ∈ F2 having small accretions.

If �2 is P– and �2 �≤K �1, then there exist families A = {Aα : α < c} and C = {Cα :
α < c} such that for every α < c :

(1) Aα = ∅ ∨ Aα ∈ I�2 ∩ [Λ2]� ,
(2) ∀� < α (|Aα ∩ A� | < �),
(3) Cα ∈ F1,
(4) ∀F ∈ F2 ∃K ∈ [Ω1]<� ∀L ∈ [Ω2]<� (�2(F \ L) �⊆ fα[�1(Cα \K)]),
(5) ∀
 > α ∃K ∈ [Ω1]<� (|A
 ∩ fα[�1(Cα \K)]| < �),
(6) ∃� ≤ α ∀L ∈ [Ω2]<� (A� ∩ �2(Fα \ L) �= ∅).

Proof. Suppose that A� and C� have been constructed for � < α and satisfy all
the required conditions.

First, we construct a set Cα . Since �2 �≤K �1, there is a set Cα ∈ F1 such that

∀F ∈ F2 ∃K ∈ [Ω1]<� ∀L ∈ [Ω2]<� (�2(F \ L) �⊆ fα[�1(Cα \K)]).

Now, we turn to the construction of a set Aα . We have two cases:

(1) ∃� < α ∀L ∈ [Ω2]<� (A� ∩ �2(Fα \ L) �= ∅).
(2) ∀� < α ∃L� ∈ [Ω2]<� (A� ∩ �2(Fα \ L�) = ∅).

Case (1). We put Aα = ∅. Then the sets Aα and Cα satisfy all the required
conditions, so the proof of the lemma is finished in this case.

Case (2). Let α = {�n : n ∈ �}. Let {Ln : n ∈ �} be an increasing sequence of
finite subsets of Ω2 such that

⋃
{L�i : i < n} ⊆ Ln and

⋃
{Ln : n ∈ �} = Ω2. Notice

that �2(Fα \ Ln) ∩
⋃
{A�i : i < n} = ∅ for every n ∈ �.

We define inductively sequences {En : n ∈ �} ⊆ F2, {Kn : n ∈ �} ⊆ [Ω1]<� and
{an : n ∈ �} ⊆ Λ2 such that for every n ∈ � the following conditions hold:

(i) �2(En+1) ⊆ �2(En) ⊆ �2(Fα),
(ii) �2(En) ⊆ �2(Fα \ Ln) \ f�n [�1(C�n \Kn)],

(iii) an ∈ �2(En) \ {ai : i < n}.

Suppose that Ei , Ki , and ai have been constructed for i < n and satisfy all the
required conditions.

Since Fα has small accretions, we obtain �2(Fα \ Ln–1) \ �2(Fα \ Ln) ∈ I�2 , and
consequently �2(En–1) ∩ �2(Fα \ Ln) /∈ I�2 (in the case of n = 0 we putL–1 = ∅ and
E–1 = Fα). Let E ∈ F2 be such that �2(E) ⊆ �2(En–1) ∩ �2(Fα \ Ln). We have 2
subcases:

(2a) ∃Kn ∈ [Ω1]<� (�2(E) \ f�n [�1(C�n \Kn)] /∈ I�2),
(2b) ∀K ∈ [Ω1]<� (�2(E) \ f�n [�1(C�n \K)] ∈ I�2).
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Case (2a). We take En ∈ F2 such that �2(En) ⊆ �2(E) \ f�n [�1(C�n \Kn)] and
pick any an ∈ �2(En) \ {ai : i < n}. Then En, Kn, and an satisfy all the required
conditions.

Case (2b). It will turn out that this subcase is impossible. Let {Mi : i ∈ �} be an
increasing sequence of finite subsets of Ω1 such that

⋃
{Mi : i ∈ �} = Ω1.

We have two further subcases:

(2b-1)
⋃
{�2(E) \ f�n [�1(C�n \Mi)] : i ∈ �} /∈ I�2 ,

(2b-2)
⋃
{�2(E) \ f�n [�1(C�n \Mi)] : i ∈ �} ∈ I�2 .

Case (2b-1). Since �2 is P–, there is G ∈ F2 such that �2(G) ⊆
⋃
{�2(E) \

f�n [�1(C�n \Mi)] : i ∈ �} and for every i ∈ � there is a finite set L ⊆ Ω2 such that
�2(G \ L) ⊆ f�n [�1(C�n \Mi)]. On the other hand, from the inductive assumptions
(more precisely: since C�n satisfies item 4), we know that there is a finite set K such
that �2(G \ L) �⊆ f�n [�1(C�n \K)] for any finite set L. Let i ∈ � be such that K ⊆
Mi . Then there is a finite set L ⊆ Ω2 such that �2(G \ L) ⊆ f�n [�1(C�n \Mi)] ⊆
f�n [�1(C�n \K)], a contradiction.

Case (2b-2). In this case, there is G ∈ F2 such that �2(G) ⊆ �2(E) \
⋃
{�2(E) \

f�n [�1(C�n \Mi)] : i ∈ �} = �2(E) ∩
⋂
{f�n [�1(C�n \Mi)] : i ∈ �}. From the

inductive assumptions, we know that there is a finite set K such that �2(G \ L) �⊆
f�n [�1(C�n \K)] for any finite set L. Let i ∈ � be such that K ⊆Mi . Then
�2(G) ⊆ f�n [�1(C�n \Mi)] ⊆ f�n [�1(C�n \K)], a contradiction.

The construction of En, Kn and an is finished.
We define A = {an : n ∈ �}. Since �2 �≤K �1, we obtain that �2 is tall. Thus I�2

is a tall ideal (by Proposition 8.1). Since A is infinite, there is an infinite set Aα ⊆ A
such that Aα ∈ I�2 .

It is not difficult to see that the sets Aα and Cα satisfy all the required conditions,
so the proof of the lemma is finished. �

The main result of this section is as follows.

Theorem 15.2 (Assume CH). Let �i : Fi → [Λi ]� be partition regular for each
i = 1, 2. If �1 and �2 are P–, �2 has small accretions, and �2 �≤K �1, then there exists
an almost disjoint family A such that |A| = c, A ⊆ I�2 , and Φ(A) ∈ FinBW(�1) \
FinBW(�2). In particular, there is a Hausdorff compact and separable space of
cardinality c in FinBW(�1) \ FinBW(�2).

Proof. Using Proposition 11.4 we can assume that Λ1 = Λ2 = Λ. Let {fα :
α < c} be an enumeration of all functions f : Λ1 → Λ2 and {Fα : α < c} be an
enumeration of all sets F ∈ F2 having small accretions. By Lemma 15.1, there
exist families A = {Aα : α < c} and C = {Cα : α < c} such that for every α < c all
the required conditions of Lemma 15.1 are satisfied. We claim that A \ {∅} is the
required family.

First, we see thatA \ {∅} is an almost disjoint family on Λ2 (by item (2) of Lemma
15.1) and A \ {∅} ⊆ I�2 .

Second, let CH together with item (5) of Lemma 15.1 ensures that

|{� < c : ∀K ∈ [Ω]<� (|A� ∩ fα[�1(Cα \K)]| = �)}| ≤ |α + 1| ≤ �
for each α < c, so knowing that �1 is P– we can use Lemma 14.1 to see that Φ(A) ∈
FinBW(�1).
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Third, we use Lemma 13.1(1) along with item (6) of Lemma 15.1 and the fact
that �2 has small accretions to see that Φ(A) /∈ FinBW(�2).

Finally, using Proposition 12.2 we know that A cannot be countable, so |A \
{∅}| = c. �

Now we want to compare Theorem 15.2 with Theorem 14.3. Next two examples
show that there are partition regular functions �1 and �2 satisfying the assumptions
of Theorem 14.3 (so it gives us, under CH, a space in FinBW(�1) \ FinBW(�2)),
but not satisfying assumptions of Theorem 15.2 (i.e., we cannot apply it).

Example 15.3. There exist partition regular functions �1 and �2 such that �1 is
P–, �2 is not P– (so we cannot apply Theorem 15.2) and I�2 �≤K I�1 .

Proof. Let �1 = �I1/n
and �2 = �H. By Theorem 6.7, I1/n is P+ (hence, P–) and

H is not P–(�) (hence, not P–). Applying Proposition 6.5(2), we see that �1 is P–

and �2 is not P–. By Theorem 7.7(12), H �≤K I1/n. �
The above example may not be satisfactory as all Hausdorff spaces from the

class FinBW(�2) are finite (by Theorem 10.5(3) and Proposition 10.2(4)), so one
could just use Theorem 10.5(3) instead of Theorem 14.3. The next example is more
sophisticated.

Example 15.4. There exist partition regular functions �1 and �2 such that �1 is
P–, �2 is not P– (so we cannot apply Theorem 15.2), I�2 �≤K I�1 , and under CH
there is a Hausdorff compact separable space of cardinality c in FinBW(�2).

Proof. Let �1 = �I1/n
and �2 = �conv, where conv is an ideal on Q ∩ [0, 1]

consisting of those subsets of Q ∩ [0, 1] that have only finitely many cluster points
in [0, 1]. Then, FinBW(�2) = FinBW(conv) (Proposition 10.2(4)). Applying [62,
Definition 4.3, Proposition 4.6, and Theorem 6.6], assuming CH, there is a Hausdorff
compact separable space of cardinality c in FinBW(�2). Moreover, �1 is P– and �2 is
notP– (by Proposition 6.5(2), Theorem 6.7, and [62, proof of Proposition 4.10(b)]).
Finally, I�2 �≤K I�1 [47, Section 2]. �

Next example shows that there are partition regular functions �1 and �2 satisfying
the assumptions of Theorem 15.2 (so it gives us, under CH, a space in FinBW(�1) \
FinBW(�2)), but not satisfying assumptions of Theorem 14.3 (i.e., we cannot
apply it).

Example 15.5. There exist partition regular functions �1 and �2 with small
accretions which are P– and such that I�2 ⊆ I�1 (in particular, I�2 ≤K I�1 , so we
cannot apply Theorem 14.3), but �2 �≤K �1.

Proof. Consider the ideal nwd = {A ⊆ Q ∩ [0, 1] : A is meager}. Let
�2 = �nwd.

Fix an almost disjoint familyA of cardinality c, enumerate it asA = {Aα : α < c}
and denote A′ = {A \K : A ∈ A, K ∈ [�]<�}. Let In = [ 1

n+2 ,
1
n+1 ) for all n ∈ �.

Enumerate also the set B = {B ⊆ Q ∩ [0, 1] : B ∩ In /∈ nwd for infinitely many n ∈
�} as {Bα : α < c}. Let �1 : A′ → [Q ∩ [0, 1]]� be given by �1(Aα \K) = Bα \⋃
n∈K In.
Observe that I�1 = {A ⊆ Q ∩ [0, 1] : ∃K∈Fin A \

⋃
n∈K In is meager}. Thus,

nwd ⊆ I�1 and I�2 ≤K I�1 . Moreover, it is easy to see that �1 and �2 both have
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small accretions (in the case of �2 just apply Proposition 4.3). Since nwd is F�� (see
[18, Theorem 3]), it is P– (by Proposition 6.2(1)) and consequently �2 is P– (by
Proposition 6.5(2)).

Now we show that �1 is P–. Suppose that {Cn : n ∈ �} ⊆ I+
�1

is decreasing and
such thatCn \ Cn+1 ∈ I�1 for all n ∈ �. For each n ∈ � let Tn = {i ∈ � : Cn ∩ Ii /∈
nwd}.

Assume first that T =
⋂
n∈� Tn is infinite. Since nwd is P–, for each i ∈ T we can

find Di /∈ nwd, Di ⊆ Ii with Di ⊆∗ Cn for all n ∈ �. Then for E =
⋃
i∈T Di ∩ Ci

we have E ∈ B (as Di /∈ nwd and Di \ Ci is finite for all i ∈ T ). Hence, E = Bα
for some α < c. Moreover, for each n ∈ � we have �1(Aα \ n) = E \

⋃
i<n Ii =⋃

i∈T,i≥n Di ∩ Ci ⊆ Cn.
Assume now that T is finite. Inductively pick in ∈ � and Dn /∈ nwd such that

in+1 > in and Dn ⊆ Iin ∩ Cn for all n ∈ �. Define E =
⋃
n∈� Dn and note that E ∈

B. Hence, E = Bα for some α < c. Moreover, for each n ∈ � we have �1(Aα \ in) =
E \

⋃
i<in
Ii =

⋃
i≥n Di ⊆ Cn.

Finally, we will show that �2 �≤K �1. Fix any f : Q ∩ [0, 1] → Q ∩ [0, 1]. For
each n ∈ � find rn ∈ Q ∩ [0, 1] such that f–1[(rn – 1

2n , rn + 1
2n )] ∩ In /∈ nwd. This is

possible as [0, 1] can be covered by finitely many intervals of the form (r – 1
2n , r + 1

2n )
and In ∩ (Q ∩ [0, 1]) /∈ nwd. Since [0, 1] is sequentially compact, there is an infinite
S ⊆ � such that (rn)n∈S converges to some x ∈ [0, 1]. Put F =

⋃
n∈S f

–1[(rn –
1

2n , rn + 1
2n )] ∩ In. Then F ∈ B (in particular, F ∈ I+

�1
), so F = Bα for some α < c.

Fix any E ∈ nwd+ and enumerate S = {si : i ∈ �} in such a way that si < sj
whenever i < j. Observe that E ∩ ((rsi – 1

2si , rsi + 1
2si ) \

⋃
j>i(rsj – 1

2sj
, rsj + 1

2sj
))

is infinite for some i ∈ � as otherwise E would converge to x, so E ∈ nwd.
We claim that for every finite set L ⊆ Q ∩ [0, 1] we have

E \ L = �1(E \ L) �⊆ f[�2(Aα \ (si + 1))]

= f

⎡⎣F \
⋃
j≤i

(f–1[(rsj –
1

2sj
, rsj +

1
2sj

)] ∩ Isj )

⎤⎦ .
Let L ⊆ Q ∩ [0, 1] be a finite set. We will show that E \ L �⊆ f[F \⋃
j≤i(f

–1[(rsj – 1
2sj
, rsj + 1

2sj
)]. Suppose that E \ L ⊆ f[F \

⋃
j≤i(f

–1[(rsj –
1

2sj
, rsj + 1

2sj
)]. Let

x ∈ E ∩

⎛⎝(rsi –
1

2si
, rsi +

1
2si

)
\
⋃
j>i

(
rsj –

1
2sj
, rsj +

1
2sj

)⎞⎠ \ L ⊆ E \ L.

Then

x ∈ f

⎡⎣F \
⋃
j≤i

(
f–1

[(
rsj –

1
2sj
, rsj +

1
2sj

)]
∩ Isj

)⎤⎦
= f

⎡⎣⋃
j>i

(
f–1

[(
rsj –

1
2sj
, rsj +

1
2sj

)]
∩ Isj

)⎤⎦

https://doi.org/10.1017/jsl.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.8


A UNIFIED APPROACH TO HINDMAN, RAMSEY, AND VAN DER WAERDEN SPACES 43

⊆ f

⎡⎣⋃
j>i

(
f–1

[(
rsj –

1
2sj
, rsj +

1
2sj

)])⎤⎦
= f

⎡⎣f–1

⎡⎣⋃
j>i

(
rsj –

1
2sj
, rsj +

1
2sj

)⎤⎦⎤⎦
⊆
⋃
j>i

(
rsj –

1
2sj
, rsj +

1
2sj

)
.

A contradiction. �
Part 4. Characterizations

In the final part we want to characterize when FinBW(�1) \ FinBW(�2) �= ∅ in
the cases of �1 ∈ {FS, r,Δ} ∪ {�I : I is an ideal}. In the realm of partition regular
functions that are P– and have small accretions we were able to obtain a full
characterization (Theorem 16.1(1)) using Theorem 15.2. If �1 = �I for some P–

ideal I, then Theorem 14.3 gives us a complete characterization (Theorem 16.1(2b))
and this problem for �1 = �I in the case of non-P– ideals I is rather complicated
(see [62] and Example 16.3). However, for instance, in the case of �1 = FS and
�2 not being P–, we needed another construction—we were able to obtain a
characterization (Theorem 17.2), but only in the realm of spaces with unique limits
of sequences (which are not necessarily Hausdorff).

§16. Characterizations of distinguishness between FinBW classes via Katětov order.

Theorem 16.1 (Assume CH). Let �1 and �2 be partition regular functions. Let I1

be an ideal.
(1) If �1 is P– and �2 is P– with small accretions, then

�2 �≤K �1 ⇐⇒ FinBW(�1) \ FinBW(�2) �= ∅.
(2) (a) If �1 is P– and �2 is P+, then

I�2 �≤K I�1 ⇐⇒ FinBW(�1) \ FinBW(�2) �= ∅.
(b) If I1 is P–, then

I�2 �≤K I1 ⇐⇒ FinBW(I1) \ FinBW(�2) �= ∅.
Moreover, in every item an example showing that the above difference between

FinBW classes is nonempty is of the form Φ(A) with A being almost disjoint and of
cardinality c (in particular, these examples are Hausdorff, compact, separable, and of
cardinality c).

Proof. (1) The implication “ =⇒ ” follows from Theorem 15.2, whereas the
implication “ ⇐= ” follows from Theorem 11.1(1).

(2a) The implication “ =⇒ ” follows from Theorem 14.3, whereas the implication
“ ⇐= ” follows from Theorem 11.1(2a).

(2b) It follows from Theorems 14.3, 11.1(2b), and 10.2(4) and
Proposition 6.5(2). �
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Next two examples show that in Theorem 16.1 we cannot drop the assumption
that �1 is P– and obtain a characterization in the realm of Hausdorff spaces.

Example 16.2. There exist partition regular functions �1 and �2 with small
accretions such that:

(1) �1 is not P– and �2 is P+,
(2) �2 �≤K �1,
(3) there is no Hausdorff space in FinBW(�1) \ FinBW(�2).

Proof. Let �1 = �H and �2 = �I1/n
. Then �1 and �2 have small accretions (by

Proposition 4.3). By Theorem 6.7, I1/n is P+ and H is not P–(�) (hence, not P–).
Applying Proposition 6.5(2), we see that �1 is not P– and �2 is P+. By Theorem
7.7(8), I2 �≤K I1, so �2 �≤K �1 (by Proposition 7.5(2b)).

By Theorem 10.5(3), FinBW(H) contains only finite Hausdorff spaces. On the
other hand, FinBW(I2) contains all finite spaces (Theorem 10.5(1)), so there is
no Hausdorff space FinBW(H) \ FinBW(I1/n). Applying Proposition 10.2(4), we
obtain that there is no Hausdorff space in FinBW(�1) \ FinBW(�2). �

The above example may not be satisfactory as all Hausdorff spaces from
FinBW(�1) are finite. The next example is more sophisticated.

Example 16.3. There exist partition regular functions �1 and �2 with small
accretions such that:

(1) �1 is not P– and �2 is P–,
(2) assuming CH, there is a Hausdorff, compact, separable space of cardinality c

in FinBW(�1),
(3) �2 �≤K �1,
(4) there is no Hausdorff space in FinBW(�1) \ FinBW(�2).

Proof. Let I and J be the ideals from [62, Example 8.9] and define �1 = �I and
�2 = �J . Then �1 and �2 have small accretions (by Proposition 4.3) and J �≤K I, so
�2 �≤K �1 (by Proposition 7.5(2b)). By [62, Example 10.6] and Proposition 10.2(4),
there is no Hausdorff space in FinBW(�1) \ FinBW(�2). Applying [62, Theorem 6.6]
and Proposition 10.2(4) we see that, assuming CH, there is a Hausdorff, compact,
separable space of cardinality c in FinBW(�1). SinceJ isP–, �2 isP– (by Proposition
6.5(2)) and �1 cannot be P– as it would contradict Theorem 16.1(1). �

Question 16.4. Can we drop the assumption that �2 is P– in Theorem 16.1 and
obtain the characterization in the realm of Hausdorff spaces?

In Theorem 17.2, we show that we can drop the assumption that �2 is P– in
Theorem 16.1(1) and obtain a characterization in the realm of non-Hausdorff spaces
with unique limits of sequences, but at the cost of requiring that �1 is weakP+ instead
of P–.

Now we present some applications of Theorem 16.1.

Corollary 16.5 [62, Theorem 10.4]. Assume CH. Let I1 and I2 be ideals. If I1 is
P–, then the following are equivalent:

(1) I2 �≤K I1.
(2) FinBW(I1) \ FinBW(I2) �= ∅.
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Moreover, an example showing that the above difference between FinBW classes
is nonempty is of the form Φ(A) with A being almost disjoint and of cardi-
nality c (in particular, these examples are Hausdorff, compact, separable, and of
cardinality c).

Proof. It follows from Theorems 16.1(2b) and 10.2(4). �
Question 16.6. Is every I1/n-space (Hindman space, Ramsey space) a van der

Waerden space?

Note that under CH Theorem 16.1 reduces the above question to Question 7.8.

Corollary 16.7 (Assume CH). Let I be an ideal.
(1) If I is P–, then the following conditions are equivalent:

(a) �I �≤K FS (�I �≤K r, �I �≤K Δ, resp.).
(b) There exists a Hindman (Ramsey, differentially compact, resp.) space that

is not in FinBW(I).
Moreover, if I is P+ then the above are equivalent to I �≤K H.

(2) If I is P–, then the following conditions are equivalent:
(a) H �≤K I (R �≤K I,D �≤K I, resp.).
(b) FS �≤K �I (r �≤K �I ,Δ �≤K �I , resp.).
(c) There exists a space in FinBW(I) that is not a Hindman (Ramsey,

differentially compact, resp.) space.
Moreover, in every item an example showing that the above difference between
FinBW classes is nonempty is of the form Φ(A) withA being almost disjoint and
of cardinality c (in particular, these examples are Hausdorff, compact, separable
and of cardinality c).

Proof. It follows from Theorem 16.1(1) and Propositions 4.3, 6.5(2), 6.7(3),
7.5(2a) and (2b), and 10.2(4). �

Remark. In [24, Corollary 2.8], the authors obtained Corollary 16.7(1) in the
case of Hindman spaces and P+ ideals but in the realm of non-Hausdorff spaces.

Corollary 16.8 (Assume CH). Let I be an ideal.
(1) The following conditions are equivalent:

(a) I �≤K W (I �≤K I1/n, resp.).
(b) �I �≤K �W (�I �≤K �I1/n

, resp.).
(c) There exists a van der Waerden space (I1/n–space) that is not in FinBW(I).

(2) If I is a P– ideal, then the following conditions are equivalent:
(1) W �≤K I (I1/n �≤K I, resp.).
(2) �W �≤K �I (�I1/n

�≤K �I , resp.).
(3) There exists a space in FinBW(I) that is not a van der Waerden space

(I1/n–space).
Moreover, in every item an example showing that the above difference between
FinBW classes is nonempty is of the form Φ(A) with A being almost disjoint and of
cardinality c (in particular, these examples are Hausdorff, compact, separable, and of
cardinality c).

Proof. It follows from Theorem 16.1(1) and Propositions 4.3, 6.5(2), 6.7(1),
7.5(2b), and 10.2(4). �
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§17. Non-Hausdorff world.

Proposition 17.1. The following conditions are equivalent for every topological
space X.

(1) X has unique limits of sequences.
(2) �-limits of sequences in X are unique for every �.

Proof. Since �Fin-convergence is convergence, (2) =⇒ (1) is obvious.
(1) =⇒ (2): We will show that the negation of (2) implies the negation of (1).

Suppose that there are partition regular � : F → [Λ]� with F ⊆ [Ω]� , F ∈ F , and
{xn : n ∈ �(F )} ⊆ X which �-converges to x and to y, for some x, y ∈ X , x �=
y. Let {Kn : n ∈ �} ⊆ [Ω]<� be nondecreasing and such that

⋃
n∈� Kn = Ω. For

each n ∈ � inductively find any mn ∈ �(F \Kn) \ {mi : i < n} (this is possible
as �(F \Kn) is infinite). Observe that the sequence (xmn )n∈� is convergent to x
and to y. �

The main result of this section is as follows.

Theorem 17.2 (Assume CH). Let �i : Fi → [Λi ]� be partition regular for each
i = 1, 2. If �1 is weak P+ and has small accretions, then the following conditions are
equivalent.

(1) �2 �≤K �1.
(2) There exists a separable space X with unique limits of sequences such that
X ∈ FinBW(�1) \ FinBW(�2).

Proof. (2) =⇒ (1). It follows from Theorem 11.1(1).
(1) =⇒ (2). Fix a list {fα : α < c} of all I�1 -to-one functions f : Λ1 → Λ2.
We will construct a sequence {Dα : α < c} ⊆ F1 such that for every α < c we have

∀E ∈ F2 ∃K ∈ [Ω1]<� ∀L ∈ [Ω2]<�
(
�2(E \ L) �⊆ fα[�1(Dα \K)])

and one of the following conditions holds:

∀� < α ∀M ∈ [Λ2]<� ∃K ∈ [Ω1]<� (fα[�1(Dα \K)] ∩ (M ∪ f� [�1(D� \K)]) = ∅)
(W1)

or

∃� < α ∀K ∈ [Ω1]<� ∀M ∈ [Λ2]<� ∃L ∈ [Ω1]<� (W2)

(fα[�1(Dα \ L)] ⊆ f� [�1(D� \K)] \M ).

Suppose that α < c and that D� have been chosen for all � < α. Since �2 �≤K �1,
there is D0 ∈ F1 such that

∀E ∈ F2 ∃K ∈ [Ω1]<� ∀L ∈ [Ω2]<�
(
�2(E \ L) �⊆ fα[�1(D0 \K)]

)
. (A1)

Since �1 has small accretions, there is D1 ∈ F1, D1 ⊆ D0, such that for every K ∈
[Ω1]<� we have �1(D1) \ �1(D1 \K) ∈ I�1 . Observe that D1 also has the property
(A1) as fα[�1(D0 \K)] ⊇ fα[�1(D1 \K)] for every K ∈ [Ω1]<� .

Since �1 is weak P+, there is D ∈ F1 such that �1(D) ⊆ �1(D1) and satisfying
property:

∀{Fn : n ∈ �} ⊆ F1 (∀n ∈ � (�1(Fn+1) ⊆ �1(Fn) ⊆ �1(D)) (A2)
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=⇒ ∃E ′ ∈ F1 ∀n ∈ � ∃K ∈ [Ω1]<� (�1(E ′ \K) ⊆ �1(Fn)).

Now we have two cases:

∀D′ ∈ F1 ∀� < α (�1(D′) ⊆ �1(D) (P1)

=⇒ ∃K ∈ [Ω1]<� (�1(D′) \ f–1
α [f� [�1(D� \K)]] /∈ I�1)

or

∃D′ ∈ F1 ∃� < α (�1(D′) ⊆ �1(D) (P2)

∧ ∀K ∈ [Ω1]<� (�1(D′) \ f–1
α [f� [�1(D� \K)]] ∈ I�1).

In the first case, let {Kn : n ∈ �} ⊆ [Ω1]<� be such that
⋃
n∈� Kn = Ω1 and let

α × [Λ2]<� = {(�n,Mn) : n ∈ �}, taking into account that α is countable (as we
assumed CH). Using condition (P1) repeatedly and the facts that f–1

α [{	}] ∈ I�1 ,
for every 	 ∈ Λ2, and �1(D1) \ �1(D1 \K) ∈ I�1 , for allK ∈ [Ω1]<� , one can easily
construct a sequence {En : n ∈ �} ⊆ F1 such that

(1) �1(E0) ⊆ �1(D),
(2) ∀n ∈ � (�1(En+1) ⊆ �1(En)),
(3) ∀n ∈ � ∃K ∈ [Ω1]<�

(
�1(En) ∩ f–1

α [Mn ∪ f�n [�1(D�n \K)]] = ∅
)
,

(4) ∀n ∈ � �1(En) ∩ �1(D1) \ �1(D1 \Kn) = ∅.

Now using property (A2) we find E ′ ∈ F1 such that �1(E ′) ⊆ �1(D) ⊆ �1(D1) and
for every n ∈ � there is K ∈ [Ω1]<� with �1(E ′ \K) ⊆ �1(En).

It is not difficult to see that Dα = E ′ satisfies (A1) and (W1), i.e., it is as needed.
Consider the second case. Let D′ ∈ F1 and � < α be such that �1(D′) ⊆ �1(D)

and �1(D′) \ f–1
α [f� [�1(D� \K)]] ∈ I�1 for eachK ∈ [Ω1]<� . Since f–1

α [{	}] ∈ I�1

for every 	 ∈ Λ2, we also have �1(D′) \ f–1
α [f� [�1(D� \K)] \M ] ∈ I�1 for each

K ∈ [Ω1]<� and M ∈ [Λ2]<� . Recall also that �1(D1) \ �1(D1 \K) ∈ I�1 , for all
K ∈ [Ω1]<� . Since �1 is P– (by Proposition 6.5(1), as �1 is weak P+), we find an
infinite set D′′ ∈ F1 such that:

• �1(D′′) ⊆ �1(D′),
• for every K ∈ [Ω1]<� there is L ∈ [Ω1]<� with �1(D′′ \ L) ⊆ �1(D1 \K),
• for everyK ∈ [Ω1]<� andM ∈ [Λ2]<� there is L ∈ [Ω1]<� with �1(D′′ \ L) ∩

(�1(D′) \ f–1
α [f� [�1(D� \K)] \M ]) = ∅.

It is not difficult to see that Dα = D′′ satisfies (A1) and (W2).
The construction of sets Dα is finished.
We are ready to define the required space. Let T = {α < c : Dα satisfies (W 1)}

and

X = Λ2 ∪ {�1(Dα) : α ∈ T} ∪ {∞}.
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For every x ∈ X we define the family B(x) ⊆ P(X ) as follows:

• B(	) = {{	}} for 	 ∈ Λ2,
• B(�1(Dα)) = {{�1(Dα)} ∪ fα[�1(Dα \K)] \M : K ∈ [Ω1]<�,M ∈ [Λ2]<�}

for α ∈ T ,
• B(∞) ={{∞} ∪

⋃
α∈T\F Uα : F ∈ [T ]<� ∧Uα ∈B(�1(Dα)) for α∈T \ F }.

It is not difficult to check that the family N = {B(x) : x ∈ X} is a neighborhood
system (see, e.g., [17, Proposition 1.2.3]). We claim that X with the topology
generated by N is a topological space that we are looking for.

First we will show that X has unique limits of sequences. It is not difficult to see that
X \ {∞} is Hausdorff. Thus, it suffices to check that if {xn : n ∈ �} ⊆ X converges
to ∞ then it cannot converge to any other point in X. Indeed, if {xn : n ∈ �} would
converge to some 	 ∈ Λ2 then it would have to be constant from some point on,
so {∞} ∪

⋃
α∈T ({�1(Dα)} ∪ fα[�1(Dα)] \ {	}) would be an open neighborhood

of ∞ omitting almost all xn’s. On the other hand, if (xn)n∈� would converge to
some �1(Dα) for α ∈ T then using (W1) for each � ∈ T \ {α} we could find K� ∈
[Ω]<� with fα[�1(Dα \K�)] ∩ f� [�1(D� \K�)] = ∅. Then, denoting M� = {xn :
n ∈ �} \ fα[�1(Dα \K�)] (which is a finite set, as {�1(Dα)} ∪ fα[�1(Dα \K�)] is
an open neighborhood of �1(Dα) and (xn)n∈� converges to �1(Dα)), the set {∞} ∪⋃
�∈T\{α}({�1(D�)} ∪ f� [�1(D� \K�)] \M�) would be an open neighborhood of

∞ omitting all xn’s. Hence, X has unique limits of sequences.
Now we show that X ∈ FinBW(�1). Fix any f : Λ1 → X . If there is x ∈ X

with f–1[{x}] /∈ I�1 then find F ∈ F1 with �1(F ) ⊆ f–1[{x}] and observe that
(f(n))n∈�1(F ) is �1-convergent to x. Thus, we can assume that f–1[{x}] ∈ I�1 for all
x ∈ X . There are two possible cases: f–1[X \ Λ2] /∈ I�1 or f–1[X \ Λ2] ∈ I�1 .

If f–1[X \ Λ2] /∈ I�1 then we find F ∈ F1 with �1(F ) ⊆ f–1[X \ Λ2]. As
f–1[{x}] ∈ I�1 for all x ∈ X and f–1[{x}] �= ∅ only for countably many x ∈ X ,
using the fact that �1 is P– (by Proposition 6.5(1)) we can find E ∈ F1 with
�1(E) ⊆ �1(F ) and such that for each x ∈ X \ Λ2 there is K ∈ [Ω1]<� with
�1(E \K) ∩ f–1[{x}] = ∅. Since for each U ∈ B(∞) there are only finitely many
α ∈ T with �1(Dα) /∈ U , (f(n))n∈�1(E)�1-converges to ∞.

If f–1[X \ Λ2] ∈ I�1 then define g : Λ1 → Λ2 by g(	) = f(	) for all 	 ∈ Λ1 \
f–1[X \ Λ2] and g(	) = x for all 	 ∈ f–1[X \ Λ2], where x ∈ Λ2 is a fixed point.
Then there is α < c with fα = g. We have two subcases: α ∈ T and α /∈ T .

Assume α ∈ T . Since �1 has small accretions, there is E ⊆ Dα , E ∈ F1 such that
�1(E) \ �1(E \K) ∈ I�1 for all K ∈ [Ω1]<� . Using that �1 is P– (by Proposition
6.5(1)), we find D ∈ F1 such that:

• �1(D) ⊆ �1(E) \ f–1[X \ Λ2],
• for each K ∈ [Ω1]<� there is L ∈ [Ω1]<� with �1(D \ L) ⊆ �1(E \K) ⊆
�1(Dα \K),

• for eachM ∈ [Λ2]<� there is L ∈ [Ω1]<� with �1(D \ L) ∩ f–1[M ] = ∅.

Since each U ∈ B(�1(Dα)) is of the form {�1(Dα)} ∪ fα[�1(Dα \K)] \M for
some K ∈ [Ω1]<� and M ∈ [Λ2]<� , the subsequence (f(n))n∈�1(D) �1-converges
to �1(Dα).

Assume α /∈ T . Then there is � < α, � ∈ T such that

∀K ∈ [Ω1]<� ∀M ∈ [Λ2]<� ∃L ∈ [Ω1]<�
(
fα[�1(Dα \ L)] ⊆ f� [�1(D� \K)] \M

)
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(we take the minimal � < α satisfying property (W2)). Since each open neighbor-
hood of�1(D�) is of the form {�1(D�)} ∪ f� [�1(D� \K)] \M for someK ∈ [Ω1]<�

and M ∈ [Λ2]<� , (fα(n))n∈�1(Dα)�1-converges to �1(D�) ∈ X . Since �1 has small
accretions, there is E ⊆ Dα , E ∈ F1 such that �1(E) \ �1(E \K) ∈ I�1 for all
K ∈ [Ω1]<� . Then also (fα(n))n∈�1(E) �1-converges to �1(D�) ∈ X . Finally, since
f–1[X \ Λ2] ∈ I�1 , using that �1 is P– (by Proposition 6.5(1)), we get E ′ ∈ F1 such
that �1(E ′) ⊆ �1(E) \ f–1[X \ Λ2] and for each K ∈ [Ω1]<� there is L ∈ [Ω1]<�

with �1(E ′ \ L) ⊆ �1(E \K). It is easy to see that fα � �1(E ′) = f � �1(E ′) and
(fα(n))n∈�1(E′)�1-converges to �1(D�) ∈ X .

Finally, we check that X /∈ FinBW(�2). Define f : Λ2 → X by f(	) = 	 for all
	 ∈ Λ2 and fix any E ∈ F2. We claim that (f(n))n∈�2(E) does not �2-converge.
Clearly, it cannot converge to any x ∈ Λ2. Moreover, it cannot converge to any
�1(Dα) for α ∈ T as property (A1) guarantees that for some K ∈ [Ω1]<� we have
�2(E \ L) �⊆ fα[�1(Dα \K)] for all L ∈ [Ω2]<� , so U = {�1(Dα)} ∪ fα[�1(Dα \
K)] would be an open neighborhood of �1(Dα) such that �2(E \ L) ⊆ U for no
L ∈ [Ω2]<� .

We will show that (f(n))n∈�2(E) cannot �2-converge to ∞. Suppose otherwise,
let {Ln : n ∈ �} ⊆ [Ω2]<� be such that

⋃
n∈� Ln = Ω2 and inductively pick mn ∈

�2(E \ Ln) \ {mi : i < n}. Then (f(mn))n∈� is convergent to ∞. However, if g :
Λ1 → {f(mn) : n ∈ �} is any bijection (the set {f(mn) : n ∈ �} is infinite since f
is one-to-one) then g = fα for some α. If α ∈ T then in (f(mn))n∈� we could find
a subsequence converging to �1(Dα) (in the same way as above when showing that
X ∈ FinBW(�1) in the case of α ∈ T ) which contradicts that X has unique limits
of sequences. If α /∈ T then in (f(mn))n∈� we could find a subsequence converging
to �1(D�) for some � < α, � ∈ T (in the same way as above when showing that
X ∈ FinBW(�1) in the case of α /∈ T ) which also contradicts that X has unique
limits of sequences. �

§18. Hindman (Ramsey, differentially compact) spaces that are not in FinBW(I)
and vice versa. Now we turn our attention to the question when there is a space
in FinBW(I) that is not Hindman (Ramsey, differentially compact, resp.) and vice
versa in the case when I is an arbitrary ideal.

Corollary 18.1 (Assume CH). For each ideal I and � ∈ {FS, r,Δ} the following
conditions are equivalent.

(1) �I �≤K �.
(2) There exists a Hindman (Ramsey, differentially compact, resp.) space that is

not in FinBW(I).

Moreover, an example showing that the above difference between FinBW classes is
nonempty is separable and has unique limits of sequences. If I is P–, then this example
is of the form Φ(A) with A being almost disjoint of cardinality c (in particular, it is
Hausdorff, compact, separable, and of cardinality c).

Proof. It follows from Theorem 17.2 and Proposition 10.2(4) as each � ∈
{FS, r,Δ} is weak P+ (by Theorem 6.7(3)) and has small accretions (by Proposition
4.3). The case of P– ideals I follows from Corollary 16.7(1). �
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In [62, Definition 4.1], the author introduced the following ideal:

BI =
{
A ⊆ �3 : ∃k

[
∀i < k (A(i) ∈ Fin2) ∧ ∀i ≥ k (A(i) ∈ Fin(�2))

]}
,

where A(i) = {(x, y) ∈ �2 : (i, x, y) ∈ A}. The ideal BI proved to be useful in
research of FinBW(I) spaces (see [62] for more details).

Corollary 18.2 (Assume CH). For each ideal I, the following conditions are
equivalent.

(1) BI �≤K I.
(2) There exists a space in FinBW(I) that is not a Hindman (Ramsey, differentially

compact, resp.) space.

Moreover, an example showing that the above difference between FinBW classes is
nonempty is of the form Φ(A) with A being infinite maximal almost disjoint (in
particular, it is Hausdorff, compact, separable, and of cardinality c).

Proof. (1) =⇒ (2) In [62, Theorem 5.3], the author proved that if BI �≤K I
then there exists an infinite maximal almost disjoint family A such that Φ(A) ∈
FinBW(I). Then Corollary 13.3 shows that Φ(A) is not Hindman (Ramsey nor
differentially compact).

(2) =⇒ (1) Using [62, Proposition 6.3 and Lemma 3.2(ii)], it is not difficult to
see that if BI ≤K I then each space in FinBW(I) satisfies property (∗). On the
other hand, we know that spaces with (∗) property are Hindman, Ramsey, and
differentially compact (see [57, Theorem 11], [61, Corollary 3.2], and [22, Corollary
4.8], resp.). �

Corollary 18.3 (Assume CH). If � ∈ {FS, r,Δ} then FinBW(�) �= FinBW(I)
for every ideal I.

Proof. Let � ∈ {FS, r,Δ} and I be an ideal. If BI �≤K I then FinBW(I) \
FinBW(�) �= ∅ by Corollary 18.2. On the other hand, if BI ≤K I then the interval
[0, 1] is in FinBW(�) (by Theorem 10.5(6) and Propositions 10.2(2) and 6.7(3)) and
it is not in FinBW(I) (by [62, Proposition 4.6], [2, Example 4.1], and [67, Section
2.7]). �
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