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Abstract

Extending previous results of the first author, some new estimates are obtained for maximal operators of
Schrodinger type with a complex parameter.
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1. Introduction

For f belonging to the Schwartz class S(R), we set
Sif) = / el f(&)dE Vx €R.
R

Here ¢ is a complex number such that Im ¢ > 0, and fdenotes the Fourier transform
of the function f, defined by

7= fR e £ (x) d.

If we set U(x, t) = (27)~'S, f(x), where x € R and ¢ € R, then it follows that
U(x,0)= f(x) for all x and further that U satisfies the Schrddinger equation
idU /ot = 82U/8x2. On the other hand, if we take r = iu, where u > 0, then U is,
modulo a constant, the solution to the usual heat equation with initial value f with
respect to the ‘time variable’ u.

We define the maximal function S* f by

S f(x)= sup IS f(x)] VxeR,

O<t<l1
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and also define Sobolev spaces H; for all real s by setting
Hy ={f €S :|Iflln, <oo},
where
R 1/2
£, = (fR (1L +EP1F©F ds) :
It is well known that the estimate

IS* fll2 < Cll f Nl 1

holds if s > 1/2 and does not hold if s < 1/2 (see [1]). Here ||S$* f||2 denotes the norm
of §* f in the space L?(R), and C denotes a constant that varies from place to place.
When 0 < y < oo and u > 0, we set

Puf(x) = Susiur () = / e e E Fg) dE Wx e R,
R

and
P*f(x)= sup |P,f(x)] VxeR.
O<u<l1
In Sjolin [3] the inequality
IP*fll2 < Cll flln, (1.1)

was studied for various values of y and the following results were obtained.

THEOREM A.

i) When0 <y <1, (1.1) holds if and only if s > O.
(i1) When y =2, (1.1) holds if and only if s > 1/4.
(iii) Wheny =4, if(1.1) holds then's > 1/2 — 1/y.

When y > 0, we denote by E,, the set of all s such that (1.1) holds, and set
s(y)=inf E,.

It was proved in [3] that s is a nondecreasing function on the interval (0, co), and that
0<s(y)<1/2when0 < y < o0.
The results in Theorem A can be stated in the following way.

THEOREM B.

i) WhenO<y <1,s(y)=0.

i) s@)=1/4

(iii)) Wheny >4,1/2 —1/y <s(y) <1/2 and hence
lim s(y)=1/2.
y—00

We give here the following improvement of the above results.
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THEOREM 1.1. Ify > lands > 1/2 — 1/(2y), then (1.1) holds.

The result in Theorem 1.1 is new when 1 <y <2 and y > 2, and allows us to
extend Theorem B in the following way.

THEOREM 1.2.

i) WhenO<y <1,s(y)=0.

(i) Whenl <y <2,0<s(y)<1/2-1/Q2y).

(iii)) s(2)=1/4

(iv) When2 <y <4,1/4<s(y)<1/2—-1/Q2y).
(v) Wheny >41/2—-1/y <s(y)<1/2-1/Q2y).

2. Proof of the theorems
For the proof of the above results we shall use the following lemmas.

LEMMA 2.1. Assume thata > 1, 1/2 <s < 1 and p € C§°(R). Then

Vx € R\{0},

/[Reix§+it|€|“|§|su(§/N) dé| <C

|x|1—s

whent e Rand N =1, 2,3, .... Here the constant C may depend on s and a but not
onx,torN.

A proof of Lemma 2.1 can be found in [2].
LEMMA 2.2. Assume that 1/2 <o < 1and 0 < dy, dy < 1, and also that y € Cgo(]R)
is even and real-valued. Then
’ /R exp(i(di — d2)E* — ixE)(1 + E) %% exp(—(d} + d3)E*)u(E/N) dE
<K(kx) VxeR
when N =1,2,3,..., where K € LI(R). Here K is independent of d1, d» and N.

Lemma 2.2 is proved in [3].
We also need two new lemmas.

LEMMA 2.3. Assume that 1 <y <2, (y — 1)/y <a<1/2,0<d;,dy <1, and n
is as in Lemma 2.2. Then

' fR exp(i(di — d2)&* — ix&)(1 + &)™ 2 exp(—(d] + dY)EP)(E/N) dE
<K(x) VxeR

when N =1,2,3, ..., where K € L'(R). Here K is independent of dy, d» and N.
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LEMMA 2.4. Assume thaty >2,(y — 1)y <a <1,0<d|,dy <1, and p is as in
Lemma 2.2. Then

/ exp(i (di — d2)€> — ixE)(1 + &%)/ exp(—(d] + d})E*)u(€/N) dE
R
<Kx) VxeR
when N =1,2,3, ..., where K € L'(R). Here K is independent of dy, dy and N.

We now give the proofs of Lemmas 2.4 and 2.3.

PROOF OF LEMMA 2.4. Let Cp denote a large constant. Since 1/2 <« < 1, in the
case where |x| < Cp we can use the proof in [2] of Lemma 2.1 to conclude that the
estimate in Lemma 2.4 holds when K (x) = C|x|%~!. To obtain this, we have to use
the observation (see [3]) that if h(§) = h(§) = ¢~ where 0 < € < 2, then

1
'@l <C £ V& €[1/2, 00),

where C is independent of €.

We now consider the case where |x| > Co. To that end, we shall modify the proof
in [3] of our Lemma 2.2.

We may assume that d) <d; and set d =d; —dp and € = d]y +dY, so that
O<d<land0 < e < 2. Also set p = |x]/(2d) and

Y(E) = (142~ 1 (E/N) VEeR.

Choose an even function ¢y € C* such that ¢o(¢) =1 if |§] < 1/2 and ¢ (&) =0 if
|&] > 1. Set Yo = Y¥¢o, so that supp Yo C [—1, 1]. Then, for a large constant K7,
choose ¢, € Cgo so that supp ¢ C [p/4, 2K 1p] and ¢(§) =1 if p/2 <& < K|p.
We may also assume that |¢}(€)| < CE~! and ¢} (§)] < CE2 if & > 0. We also set
03 =1 — @) X[k, p.00) and @1 = (1 — @2 — @0) X[0,p/2]-

Having defined the cutoff functions ¢;, where j =0, 1, 2, 3, it is clear that it is
sufficient to estimate the integrals

jj=/eiijd$

where F(§) =dg* — x£& and Vi) =v(&)p;(E). (A similar argument works for
the functions ¥ (§)¢;(—£).) A double integration by parts easily shows the estimate
|70l < C/|x|? (see [3]). Now observe that when j = 1, 2, 3and £ > 1/2, the pointwise
estimates

[V;i6)] < CW,

V5 &) = CW,
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and

V= e

hold. Using the same arguments as in [3], we obtain the estimate O(|x|7?) for 7

and 73.
To estimate 7>, we use van der Corput’s lemma and deduce that

|l < Cd™ 12 p™ exp(—cep?)
—
X
- Cd_1/2(|d—|> exp(—c(d] +d))|x*/d?)

< Cd*™'21x|7% exp(—c(d + )Y |x[*/d?)
< Cd* x|~ exp(—cd” 2 |x ),
where we have used the fact that di + d» > d. Here ¢ denotes possibly different

positive constants.
We now invoke the inequality

e < Cpy P, @.1)
which holds whenever y > 0 and 8 > 0, to deduce that

1
dr=28|x|28
dot—l/Z 1
=C—5——=.
dBy=2) |x|a+28

|| < Cd*™1/2 x|

We now choose § so that B(y —2) =« — 1/2, that is,
a—1/2

p=" 5

Since y > 2 and 1/2 < @ < 1, it is clear that j is positive. We obtain the inequality

1
|| < C|x|a—+2,3'

Finally, using our assumption that @ > (y — 1)/y, we get

ay —1 y—-1-1
> =1.
y—2 y —2

O(+2,3=

Hence the function |x|~%~2# is integrable when |x| > Cy and the proof of Lemma 2.4
is complete. O

PROOF OF LEMMA 2.3. As before, we let Cp denote a large constant. We first study
the case where |x| > Co. With the same notation as in the previous proof and the
arguments in [3], the estimates for Jy, J; and J3 follow easily. (Observe that the
condition & > 1/2 was not used for these estimates.)
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To estimate /> we use van der Corput’s lemma again and deduce that

|| < Ca™' 2 pmoemecs”
< Cda—1/2|x|—ae—cd%2\x\2

Using inequality (2.1), we then obtain

a—1/2) |—«a
1l = Ca* ™ P
LA OIS |

dl/2—« |x|o¢+2;3'
Here 2 — y > 0 and, therefore, 1/2 — o > 0. Choosing g large, we conclude that

1

<C——— <C—.
|‘72|— |x|a+2/3— |x|2

This completes the proof in the case where |x| > Cp. It remains to study the case
where |x| < Cy. To do so, we modify the arguments given in the proof of Lemma 2.1
(see [2]). Since o < 1/2, we need a different argument to estimate

/ Iy de,
6]

where, for some constants c; small and Cy large, I denotes the interval

L= E>L161M<6§<C1m .
x| d =~ d

Also,
F(§) = —x& 4 dg>,
YE) =1+ )% € u(E/N) VE €R,

andd=d| —dp, e = d{/ + d%/. The rest of the proof is unchanged.
Set p = |x|/(2d) as before. Arguing as in the proof of Lemma 2.2, we deduce that

)
[yl < Cp~ e P

on I», and

W' dE < Cp~%e P,
163

An application of van der Corput’s lemma then yields

I

< Cd—l/Zp—ae—cepz.
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Arguing as in the previous case, we obtain the estimate

) 427 1
iF .-
/Ize wdé‘fcdlﬁ—a |x|et+28"

Choosing
1/2 -«
2—vy

9

B=

it follows that

e"ﬂ/, dg| < C;
b - |x|o‘+2ﬂ ,
and using our assumption that « > (y — 1)/y, we get

l—ay 1-(-1
< =
2—y 2—y

1.

Ol+2/3=

Hence, the function x — |x|~*~2F is integrable in the interval |x| < Cp and the proof
of Lemma 2.3 is complete. O

Finally, we give the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. Asin [3, Theorem 1], we only need to prove that
1Ty A2 < Clikl2, (2.2)
when N =1, 2, 3, ..., where the operators Tﬁ are defined by
Tyh(E) = px (&)1 +8H) 72 /R oA TIME = WCNTE (o) (x) dix.
Here xn(x) = x(x/N), pn(&) = p(§/N) and x, p € C°(R) are such that

1 when |x| <1,

0 when |x| > 2,

X@)=p&)={

and both x and p are even and real-valued. Further, u is a measurable function on R
such that 0 < u(x) < 1. Invoking Lemmas 2.3 or 2.4, we then have

ITHhI3 = / THh(E)TYh(E) dE
=/PN(§)2(1+§2)_S</ e—ixée—iLt(x)gze—(u(x))V$2XN(x)h(x) dx)
R

* (/R eSS Oy ()R () dY> ds.
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Here, when 1 < y < 2 we have assumed, as we may, that 1/2 — 1/Q2y) <s < 1/4. If
a=2sand 1 <y <2, then
1-1/y <a<1/2.

Also, if « =2s and y > 2, then we will assume that 1/2 — 1/(2y) <s < 1/2, so that
I1-1/y <a <.

Hence, setting ; = p> and applying Lemmas 2.3 and 2.4,
1Tkl = // (/(1 + )7 expli(y — x)&) exp(i(u(y) — u(x))&?)

x exp(— ()Y + @) )E>)uE/N) ds)

x N () XN A)R(y) dx dy
<c // K(x — wIheo| 1h()] dx dy < Cllh|12.

Hence (2.2) is proved, and the proof of Theorem 1.1 is complete. O

References

[1] P. Sjolin, ‘Global maximal estimates for solutions to the Schrodinger equation’, Studia Math.
110 (1994), 105-114.

[2] P. Sjolin, ‘Maximal estimates for solutions to the nonelliptic Schrodinger equation’, Bull. Lond.
Math. Soc. 39 (2007), 404-412.

[3] P.Sjolin, ‘Maximal operators of Schrodinger type with a complex parameter’, Math. Scand. 105
(2009), 121-133.

PER SJOLIN, Department of Mathematics, Royal Institute of Technology,
S-100 44 Stockholm, Sweden
e-mail: pers@math.kth.se

FERNANDO SORIA, Departamento de Matematicas,

Universidad Auténoma de Madrid and Instituto de Ciencias Matematicas, ICMAT,
E-28049 Madrid, Spain

e-mail: fernando.soria@uam.es

https://doi.org/10.1017/51446788710000170 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788710000170

