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ON THE DEDUCTION OF

THE CLASS FIELD THEORY FROM

THE GENERAL RECIPROCITY

OF POWER RESIDUES

TOMIO KUBOTA and SATOMI OKA

Abstract. We denote by (A) Artin’s reciprocity law for a general abelian ex-
tension of a finite degree over an algebraic number field of a finite degree, and
denote two special cases of (A) as follows: by (AC) the assertion (A) where K/F
is a cyclotomic extension; by (AK) the assertion (A) where K/F is a Kummer
extension. We will show that (A) is derived from (AC) and (AK) only by rou-
tine, elementarily algebraic arguments provided that n = (K : F ) is odd. If n
is even, then some more advanced tools like Proposition 2 are necessary. This
proposition is a consequence of Hasse’s norm theorem for a quadratic extension
of an algebraic number field, but weaker than the latter.

§0. Introduction

Let K/F be an abelian extension of a finite degree over an algebraic

number field F of a finite degree, and let (K/F
a

) be the Artin symbol of an

ideal a of F . Then, the essential part of Artin’s reciprocity law for K/F is

the following assertion:

(A) There exists an ideal m of F depending only on K/F such that

(K/F
a

) = 1 holds whenever a = (α) is a principal ideal generated by a

totally positive integer α of F satisfying the congruence α ≡ 1 (mod m).

We denote two special cases of (A) as follows:

(AC) The assertion (A) where K/F is a cyclotomic extension.

(AK) The assertion (A) where K/F is a Kummer extension.

Since every abelian extension is contained in a field which is obtained

by two successive extensions of the basic field, one cyclotomic and the other

Kummer, it may be asked whether or not the assertion (A) is an evident
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consequence of (AC) and (AK). The aim of the present paper is to give

an answer to the question. As is shown in Section 1, (A) is derived from

(AC) and (AK) only by routine, elementarily algebraic arguments provided

that n = (K : F ) is odd. If n is even, then some more advanced tools are

necessary. In Section 2, we shall derive (A) from (AC) and (AK) using ad-

ditionally the norm theorem for quadratic extensions obtained by adjoining

i =
√
−1.

The present work is motivated by [1]. Logically, however, both papers

are independent of each other.

§1. The odd case

In this section, we denote by F an algebraic number field of finite degree,

by K/F a cyclic extension of degree q = pg, p being an odd prime, and will

deduce (A), Artin’s reciprocity law, from (AC) and (AK).

The problem is first reduced to the case where F contains the p-th

roots of unity. In fact, if F1 and K1 are obtained by adjoining the p-th roots

of unity to F and K, respectively, then m = (F1 : F ) divides p − 1, and

(K1/F1

a
) = (K1/F

a
)m for an ideal a of F . Therefore, if (A) is true for K1/F1,

then(A) is true for K/F , as m is prime to p.

So, in the rest of this section, we assume that F contains the p-th roots

of unity, but does not contain all the q-th roots of unity. Denote by µ(n) the

group of the n-th roots of unity, and, for a general number field L containing

µ(n), define the symbol 〈α, σ|L〉n ∈ µ(n) by

(α1/n)σ = 〈α, σ|L〉n · α1/n,(1)

where α ∈ L, (α 6= 0), and σ ∈ Gal(L̄/L), L̄ being the algebraic closure of

L. This definition is independent of the choice of α1/n.

Coming back to our K/F , we take a generator ξ of µ(q), put F1 = F (ξ),

K1 = K(ξ), and, taking a generator τ of Gal(F1/F ), fix an r ∈ Z by the

following multiplicative relation: ζrτ = ζ, i.e., rr′ ≡ 1 (mod q), if ζτ ≡ ζr′ ,

(r′ ∈ Z). Furthermore, we determine an element τ̂ of the group ring over Z

of Gal(F1/F ) by

τ̂ = 1 + rτ + (rτ)2 + · · · + (rτ)m−1, (m = (F1 : F )).(2)

If α ∈ F1 is such that K1 = F1(α
1/q), and if τ denotes also a prolongation

of the original τ to Q̄, then the fact that K1/F is abelian entails

(α1/q)1−rτ = γ, (r ∈ F1),
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and

γ τ̂ = (α1/q)(1−rτ)τ̂ = (α1/q)1−rm
.

It follows from this and from

1 − rm = qc, ((c, q) = 1),

that

αc = γ τ̂ .(3)

On the other hand, since

(γ1/q)τ
jστ−j

= (〈γτ j
, σ|F1〉q(γ1/q)τ

j
)τ

−j

= 〈γrjτ j
, σ|F1〉q · γ1/q

holds for every power τ j of τ , we obtain

〈γ, τ jστ−j |F1〉q = 〈γrjτ j
, σ|F1〉q(4)

for any σ ∈ Gal(F̄1/F1). Regard σ to be an element of Gal(F̄ /F ), and let

tF→F1σ be the transfer of σ into Gal(F̄1/F1). Then,

tF→F1σ =

m−1∏

j=0

τ jστ−j

yields

〈γ τ̂ , σ|F1〉q = 〈γ, tF→F1σ|F1〉q.(5)

Therefore, (3) implies

〈αc, σ|F1〉q = 〈γ, tF→F1σ|F1〉q.(6)

Assume now a modulus m̃, including infinite primes, is sufficiently big so

that every ideal a of F with a ≡ 1 (mod m̃) satisfies (F1/F
a

) = 1, and

has no prime factor ramifying in the Galois closure of K1(γ
1/q)/F . Assume

moreover that, m̃ being viewed as a modulus of F1, every ideal a1 of F1 with

a1 ≡ 1 (mod m̃) satisfies (F1(γ1/q)/F1

a1
) = 1. Then, for the maximal abelian

subfield K∗ of K1(γ
1/q)/F , (K∗/F

a
) is induced by some σ ∈ Gal(F̄1/F1),

and it follows from the relationship between Frobenius automorphism and

the transfer that tF→F1σ indues (F1(γ1/q)/F1

a
)1). If a ≡ 1 (mod m̃), then the

1)Proved by Chevalley [1] for the first time.
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latter autmorphism is 1. So, the right hand side of (6) is 1, and the fact

that the left hand side of (6) is 1 means that the restriction of σ to K1 is

1. Hence, (K/F
a

) = 1. This proves Artin’s reciprocity law for the odd case.

In the above arguments, (AC) and (AK) are fully used.

§2. The even case

In this section, we put q0 = 2g0 , and denote by q0 a cyclic extension

of degree q0 over an algebraic number field F . Let ζ0 be a generator of

the group µ(q0) of the q0-th roots of unity, and assume that F (ζ0) = Fq0

is cyclic over F . Then, the assertion (A) for K/F can be proved exactly

as in the odd case. For, using ζ0 and Fq0 instead of ζ and F1 in Section 1,

respectively, we have as in Section 1 a multiplicative relation ζrω
0 = ζ0 with

a generator ω of Gal(Fq0/F ) and with r ∈ Z.

So, in the rest of this section, we treat the case where Fq0/F is not

cyclic. For this purpose, we need the following

Proposition 1. Let F be an algebraic number field, let q = 2g be a

power of 2, denote by ζ a generator of the group µ(q) of the q-th roots of

unity, put Fq = F (ζ), and put Fq,0 = F (ζ + ζ−1). Furthermore, denote by

τ a generator of Gal(∪Fq,0/F ), (q = 2g, g = 1, 2, . . .). Assume now, for

a power q0 = 2g0 of 2, β0 in Fq0,0 has the property that β1−τ
0 is a norm

from Fq = Fq0,0(i). Then, there exists δ ∈ F such that δβ0 is a norm from

Fq = Fq,0(i) to Fq,0 for a sufficiently large q = 2g.

This proposition follows immediately from Proposition 2, because there

exists by the assumption an element δ of F such that δβ0 is totally positive.

Proposition 2. Let F , Fq and Fq,0 be as in Proposition 1, then, a

totally positive element β of F is a norm from Fq to Fq,0 for a sufficiently

large q = 2g.

A proof of this proposition will be given in Section 3, where the norm

theorem for relatively quadratic extensions is applied.

Coming back to the proof of (A), let K/F be a cyclic extension of degree

q0 = 2g0 , let ζ be a generator of the group µ(q) of the q-th roots of unity

for a general large power q = 2g of 2, put Kq = K(ζ), and in particular

let ζ0 be a generator of µ(q0). Then, Kq0 = K(ζ0) is a Kummer extension

over Fq0 = F (ζ0), and there exists an α0 ∈ Fq0 such that Kq0 = Fq0(α
1/q0

0 ).
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Denote by τ also a prolongation to Q̄ of τ in Proposition 1, and on the other

hand, denote by ω a generator of Gal(F (i)/F ) as well as its prolongation

to Q̄. Then, iω = −i, and ω is independent of τ on Fq = F (ζ), as Fq0/F

is not cyclic by the assumption. Namely, Fq,0 being as in Proposition 1,

one may assume that τ and ω are trivial on F (i) and Fq,0, respectively,

and in addition that there exists an r ∈ Z independent of g satisfying the

multiplicative relation ζrτ = ζ in the same form as in Section 1.

Since Fq0/Fq0,0 is abelian,

(α
1/q0

0 )1+ω = β0, (β0 ∈ Fq0,0),(7)

holds. Since Kq0/F (i) is abelian,

(α
1/q0

0 )1−rτ = γ0, (γ0 ∈ Fq0),(8)

holds2). Moreover, since Kq0/F is abelian, it follows from (7) and (8) that

β1−rτ
0 = γ1+ω

0 ,(9)

and Proposition 1, applied to this β0, shows that there extists a δ ∈ F with

δβ0 = η1+ω, (η ∈ Fq),(10)

where q = 2g is a sufficiently high power of 2. Put here

α = α
q/q0

0 δq/2η−q ∈ Fq.(11)

Then, a computation using α1/q = α
1/q0

0 δ1/2η−1 shows

(α1/q)1−rτ = γ(12)

with

γ = ±γ0δ
(1−r)/2η−(1−rτ) ∈ Fq.

A further computation using (9) and (10) shows

γ1+ω = γ1+ω
0 δ1−r(δβ0)

−(1−rτ)

= β1−rτ
0 β−(1−rτ) = 1,

2)Standard Kummer theory.
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and consequently

γ = θ1−ω, (θ ∈ Fq)
3).(13)

Put next

τ̂ = 1 + rτ + (rτ)2 + · · · + (rτ)m−1, (m = (Fq : F (i))),

in analogy to (2). Then, similarly to (3), it follows from (12) that αc = γ τ̂ ,

((c, 2) = 1), and this, combined with (13), implies

αc = θτ̂(1−ω).(14)

If σ is an arbitrary element of Gal(Q̄/Fq), then the equality

(θ1/q)ωσω−1
= (〈θω, σ|Fq〉q · (θ1/q)ω)ω

−1

= 〈θ−ω, σ|Fq〉q · θ1/q

holds with the symbol in (1) so that

〈θ, ωσω−1|Fq〉 = 〈θ−ω, σ|Fq〉q,

while the equality

〈θ, τ jστ−j |Fq〉q = 〈θγjτ j
, σ|Fq〉q,

like (4), holds for every power τ j of τ . These two formulas imply the relation

〈θτ̂(1−ω), σ|Fq〉q = 〈θ, tF→Fqσ|Fq〉q

which is similar to (5), and from (14) follows

〈αc, σ|Fq〉q = 〈θ, tF→Fqσ|Fq〉q(15)

as (6).

Assume now a modulus m̃ of F to be big enough so that an ideal a

of F with a ≡ 1 (mod m̃) contains no ramifying prime factor in the Galois

closure of Kq(θ
1/q)/F , and satisfies (

Fq/F
a

) = 1 as well as (F (δ1/2)/F
a

) = 1;

this is certainly possible in our situation, because F (δ1/2)/F is a Kummer

extension. Furthermore, m̃ being viewed as a modulus of Fq, assume that

(
Fq(θ1/q)/Fq

a1
) = 1, for every ideal a1 of F1 with a1 ≡ 1 (mod m̃). Then, for

3)Hilbert’s theorem 90.
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the maximal abelian subfield K∗ of the Galois closure of K(θ1/q)/F , the

automorphism (K∗/F
a

) is induced by some σ ∈ Gal(Q̄/Fq), and tF→Fqσ in-

duces (
Fq(θ1/q)/Fq

a
) due to the relationship between Frobenius autmorphism

and the transfer (cf. §1). If (
Fq(θ1/q)/Fq

a
) then the latter symbol is 1, which

means the right hand side of (15) is 1. Hence, the left hand side of (15) is

1. Therefore, it follows from (11) and from the assumption that

1 = 〈αc, σ|Fq〉q = 〈αcq/q0

0 δq/2, σ|Fq〉q
= 〈αc

0, σ|Fq0〉q0〈δ, σ|F 〉2 = 〈αc
0, σ|Fq0〉q0 ;

namely, the restriction of σ to K is 1. Thus, (K/F
a

) = 1. This proves Artin’s

reciprocity law for the even case, where (AC) and (AK) are fully used as in

the odd case.

§3. A proof of Proposition 2 on the basis of a local-global

principal

In this section, we will show that Proposition 2 is easily derived from

the norm theorem for relatively quadratic extensions obtained by adjoining

i. With the same notation as in Proposition 2, we denote by (α, β|Fq,0)q

Hilbert-Hasse’s norm residue symbol of degree 2 over Fq,0 with respect to a

place q of Fq,0, suppose that q is over a place p of F , and denote temporarily

by L and L′ the completion by p of F and the completion by a of Fq,0,

respectively. Furthermore, we write (α, β|L′), etc., for the prolongations of

symbols (α, β|Fq,0)a, etc., to the completions. Then, a basic theorem of local

class field theory implies

(α, β|L′) = (α,NL′/Lβ|L).

Therefore, if α, β ∈ L and (L′ : L) = 2m, (m > 0), NL′/Lβ = β2m
is a

square in L so that (α,NL′/L′β|L) = 1 and (α, β|L) = 1. This means that

(α, β|Fq,0)q = 1 for every α, β ∈ F , whenever the q-complection of Fq,0 is

an actual extension of the p-completion of F . On the other hand, a prime

ideal p of F decomposes completely in Fq,0 if and only if Np ≡ ±1 (mod q).

If this is the case, Np±1 ≥ q. Accordingly, if q is bigger than Np+1, then p

does not decompose completely in Fq,0. In other words, it is impossible that

a prime ideal of F unlimitedly continues to split in the increasing chain

of Fq,0. Thus, there exists a power q of 2 such that (α, β|Fq,0)q = 1 for

every finite place q over a given p. In addition, (α, β|Fq,0)a = 1, whenever
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α, β and a are prime to 2, and (α, β|Fq,0)q = 1 holds for all infinite places,

provided that β is totally positive. Hence, putting in particular α = −1,

Proposition 2 follows from Hasse’s norm theorem for relatively quadratic

extensions.

Proposition 2, a considerably weaker assertion than the norm theorem,

may have a fairly simple or elementary proof. An easier proof of Proposi-

tion 2 gives rise to an easier construction of the class field theory.
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