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AN ESSENTIAL RING WHICH IS NOT
A »-MULTIPLICATION RING

WILLIAM HEINZER AND JACK OHM

An integral domain D is called an essential ring it D = (N,V, where the V,
are valuation rings which are quotient rings of D. D is called a v-multiplication
ring if the finite divisorial ideals of D form a group. Griffin [2, pp. 717-718] has
observed that every v-multiplication ring is essential and that an essential ring
having a defining family of valuation rings {V,} which is of finite character
(i.e. every nonzero element of D is a non-unit in at most finitely many V) is
necessarily a v-multiplication ring; but he conjectures that, in general, there
exists an essential ring which is not a v-multiplication ring. We give in §2
such an example. §1 is devoted to putting the definitions in a usable setting.

1. Preliminaries. Many of the definitions and results of this section can be
found in one form or another in Jaffard [5] (see also [6] and [2]). However, we
we shall work out the details and put together the pieces as needed in §2.

1.1 Ordered sets and maps. Let A denote a set with a (partial) ordering <.
We shall tacitly assume throughout this paper that all of our ordered sets are
filtered below, i.e. given ai, as € A, there exists ¢ € 4 such that ¢ < ¢; and
a < as. If ag, @y, . ..,a, € 4, we define the expression ao > infs{ay, ..., a,}
as follows:

ao > inffay, ..., a,} if and only if ap > aforalla € 4

such thata < ay, ..., a,.
If there exists ay € A such that a¢ > infs{as,...,a,} and ap < ay, ..., a,
then we call a¢ the infimum of a;,...,a, in 4 and we write ao =
inf {ay, ..., a,}. If every finite set of elements of 4 has an infimum in 4, we
say that A has infs. (4 is semi-réticulé inférieurement in Jaffard’s terminology
[5, p. 2].) The finite v-ideal in 4 generated by ay, . . ., a,, denoted (a4, . . . , @y),,
is defined as follows:

@, 80), = {a € Ala > infufay, ..., a,}}.

If B is another ordered set, a map ¢:4 — B will be called an order (respec-
tively, equi-order) map if for all a;, a2 € 4, ¢(a1) > ¢(az) if (respectively, if
and only if) a1 > a.. ¢ will be called a v-map if for all ay, a1,...,a, € 4,
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ao > infyf{ay, ..., a,} implies ¢(ao) > infp{é(a1), ..., ¢(a,)}. Note that a
v-map is an order map and that an equi-order map is injective. If B has infs,
we use (4, ¢, B)" to denote {b € B|b = infp{¢(ai), ..., ¢(a,)} for some
a, . ..,a, € A}; and we call this set the inf hull of ¢(4) in B, or merely the
inf hull of 4 in B when ¢ is equi-order. When the ¢ and B involved are clear,
we shall merely write A”. We shall always regard A" as an ordered set with
respect to the order conferred on it by the order of B. 4" is then an ordered set
with infs.

By an ordered semi-group we shall mean an ordered set together with a
commutative associative operation + which is compatible with the ordering
and for which there exists an identity element 0; ordered groups are defined
similarly. One now carries over the above concepts to define the corresponding
notions of v-homomorphism, order homomorphism, etc. Note that a group
with infs is a lattice group.

1.2 The sema-group of finite v-ideals. Let G denote an ordered (commutative)
group with operation 4. Then the set of all finite v-ideals of G can be given
the structure of an ordered semi-group by defining for any finite subsets X,
YVof G

X, +Y, = (X+ Y)v

and X, < Y, if and only if ¥, C X, [5, p. 20]. We shall denote this ordered
semi-group by S(G). For any two elements X,, ¥, € S(G), infs{X,, V,}
exists and is just (X U Y),. Thus S(G) is an ordered semi-group with infs. The
canonical map ¢¢:G — S(G) defined by ¢e(x) = (x), is an (injective) equi-
order v-homomorphism such that G* = S(G).

The semi-group S(G) has the following universal mapping property, which
characterizes S(G) up to a unique equi-order isomorphism.

1.3 PROPOSITION. Given an ordered semi-group S’ with infs and a v-homomor-
phism ¢':G — S, then there exists a unique v-homomorphism :S(G) — S’ such
that lp [©] ¢g = ¢,

¢ —2 S@G)
|
|
¥
¢’ |
2 4
Sl

Moreover, the tmage of S(G) under ¢ is (G, ¢', S')"; and if ¢’ is equi-order, then
¥ s equi-order (and a fortiori injective).

Proof. ¢ is (necessarily) defined by writing any s € S(G) in the form s =

infscoy{Pa(x1), . .., pa(x:)}, x; € G, and then defining ¢(s) to be
infg{¢' (x1),...,¢ (x,)}. Then ¢ is well-defined: for suppose
s = infya{de®1), ..., dal®)} = infsa{de1), ..., dayn)}.
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Then y; > infg{xy,...,%,}; and hence since ¢’ is a w-homomorphism,
¢’ (y;) > infgf{d’(x1), ..., ¢ (x,)}. Therefore

infS’{¢,(yl)) R ) ¢'(3’m)} Z. il’lfs/{d)l(xl), ) ¢,(xn)}y
and the reverse inequality follows by symmetry.

One checks easily, using inf{4 + B} = inf A + inf B and inf{inf 4, inf B} =
inf{4 U B}, that ¢ preserves sums and infs. It is clear from the definition of ¢
that the image of S(G) under y is (G, ¢’,.5")". Finally, suppose ¢’ is equi-order,
and Y((x1, ..., %2)0) = ¥((V1, . . ., Yu)»). By definition of ¢, then

infg{¢’'(x1), ..., ¢ (x,)} = infs{d' (1), ..., d" (¥n)};
and hence from the fact that ¢’ is equi-order, it follows that
x; 2 infelys, . .., Yul.
Thus
(xll LA yxn)v 2 (yl, o )ym)v~
A consequence of 1.3 is that S( ) is a functor from the category of ordered

groups and g-homomorphisms into the category of ordered semi-groups with
infs and v-homomorphisms.

1.4 LEMMA. Let G and G’ be ordered groups and let ¢:G — G’ be an equi-order
homomorphism. If G' = G", then ¢ is a v-homomorphism.

Proof. Let x, x1, ..., x, be elements of G such that x > infg{xy, ..., %},
and let ¥ be an element of G’ such thaty’ < ¢(x1), ..., ¢(x,). Since G’, G are
groups and G’ = G, every element of G’ is the supremum of finitely many
elements of ¢(G); so there exist yi, ..., ¥, € G such that

yl = Squ'{d’(yl)v ce ey ¢(3’m)}-
Then
dx1), .oy 9() 2 2 61), .-, (Vn)
DXL ey X Ve ey Vi DXV e e ey Y
=¢) 2 ¢, ..., 90n) = o) =y

1.5 PROPOSITION. Let G be an ordered group. The following are equivalent:
(1) S(G) is a group.

(ii) There exists a lattice group G' and an equi-order homomorphism
¢':G — G’ such that G* = G'.

(iil) There exists a lattice group G’ and an equi-order v-homomorphism
¢':G — G’ such that G" 1s a group.

Moreover, when these equivalent conditions hold, then for amy lattice group G’
and any equi-order v-homomorphism ¢':G — G', the semi-group G~ is actually
a group.

Proof. (1) = (ii): Since S(G) has infs, if it is a group, then it is a lattice
group. We have already observed that the canonical map ¢¢ has the properties
required in (ii).
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(ii) = (iii): ¢’ is a v-homomorphism by Lemma 1.4.
(iii) = (i): Let ¢:S(G) — G’ be the homomorphism given by 1.3. Then by
1.3, ¢ is injective and has image (G, ¢’, G’)" = G". Thus S(G) isagroupif G"is.
The last assertion follows similarly by 1.3.

1.6 Groups of divisibility. We shall now connect the above group theoretic
considerations with integral domains. We use ( )* to denote nonzero elements
and U( ) to denote units. Let K be a field. To any domain D with quotient
field K, we associate the group ¥ (D) = K*/U(D) with the order given by
taking D*/U (D) to be the positive elements. (Thus, & (D) is the multiplicative
group of nonzero principal fractional ideals of D with the integral ideals as
positive elements.) That K is the quotient field of D reflects in & (D) being
filtered. If D; C D, are two domains with quotient field K and ¢,: K* — ¥ (D,)
is the canonical map, then there exists a unique order homomorphism
¢:9 (D)) — G (D,) such that ¢-¢; = ¢o. ¥ may thus be thought of as a
functor from the category of domains with quotient field K and inclusion
homomorphisms to the category of ordered groups and order homomorphisms.
We want to observe next that if D’ is a quotient ring of D with respect to a
multiplicative system of D, then the homomorphism ¢:% (D) — % (D’) is a
v-homomorphism. This will follow from the next lemma and the observation
that for D’ a quotient ring of D if a1,...,a, € K and o/ € K are such that
a1, ...,0, € a’D', then there exists u € U(D’) such that ¢ = ua’ and
ai, ..., a, € aD.

1.7 LEMMA. Let A and A’ be ordered sets and ¢p: A — A’ an order map such that
forany as,...,a, € A and o’ € A’, ¢(a1), ..., ¢(a,) = o implies there exists
a € A suchthat p(a) = o’ and ay, . .., a, > a. Then ¢ is a v-map.

Proof. Let aq, a1, ..., a, € A be such that ao > infs{as, ..., a,} and sup-
pose a’ € A’ is such that ¢’ < ¢(a1), ..., ¢(a,). By hypothesis there exists
a € A such that ¢(e) = ¢ and a4,...,a, > a. Then ay > a, and hence
¢(a0) > ¢(a) = o’. Thus ¢(a0) > infy{¢(ar), ..., ¢(a)}.

If S(¥ (D)) is a group, the domain D is called a v-multiplication ring (or a
pseudo-Prufer domain by Bourbaki [1,(b), p. 96, Exercise 19]). Moreover,
if D = M.V, where the V, are valuation rings which are quotient rings of D,
then D is called an essential ring. Griffin has conjectured in [2, p. 717] that there
exists an essential ring D = M.V, which is not a v-multiplication ring (the
question also appears in Griffin’s paper [3, p. 25], where the answer is needed
to complete a diagram of domains). The v-homomorphisms % (D) — ¥ (V)
induce an equi-order v-homomorphism ¥4 (D) — II¥ (V,), when IIZ (V,) is
given the coordinatewise order. To show then that S(% (D)) is not a group,
it suffices by 1.5 to prove that the inf hull & (D)" of ¢ (D) in II1Z (V) is not
a group. This is the approach that will be used in §2.

The following application of the above is perhaps worth noting.
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1.8 PRrOPOSITION. Let D' be a quotient ring with respect to a multiplicative
system of the domain D. Then D is a v-multiplication ring implies D' is a v-
multiplication ring.

Proof. By 1.7, the homomorphism % (D) — % (D’) is a v-homomorphism,
and hence the composite homomorphism & (D) — % (D') — S(9 (D')) is also
a 9-homomorphism. Now apply 1.3 to conclude that S(¥ (D)) is a homomor-
phic image of the group S(¥ (D)) and hence is itself a group.

2. The example. Let % be a field, and let y, 2, x1, x, . . . be indeterminates.
Let R denote the 2-dimensional regular local ring & (x1, x2, . . . )[¥, 2]¢.», and
for each positive integer 7 let V; denote the valuation ring containing the field
k({x,} ;=:) obtained by giving x;, ¥, and z the value 1 and then taking infimums,
i.e. the value of any polynomial in k[x1, X2, ..., %, 2] is the infimum of the values
of the monomials occurring in that polynomial [1-(a), p. 160]. Let D =
RNAI{Vi=1,2,...}.

CLAIM. D 1s an essential ring which is not a v-multiplication ring.

Proof. Note that k[xy, %2, ...,%,2] C D, so D has quotient field % (x;
X2, ..., %, 2).Since R is a Krull domain, R is an essential ring. Thus, to show D
is an essential ring, it will suffice to show that R and each of the Vs are
quotient rings of D. Since k[x1, %2, ..., ¥, 2] C D and R is a quotient ring of
klx1, %2, . . ., ¥, 2], it is clear that R is a quotient ring of D. To see that V;is a
quotient ring of D, we observe that if R" = RN {V,|j 5 4}, then 1/x, € R’
but 1/x; ¢ V. Thus, D = R’ M V; with D < R’. Since V; is a discrete rank
one valuation ring, V; must be a quotient ring of D by [4, Lemma 1.3].

It remains to show that D is not a v-multiplication ring. Let G denote the
group of divisibility of D, H the group of divisibility of R, and Z; (= additive
group of integers) the group of divisibility of V;. Since R is a unique factoriza-
tion domain, H is a lattice group [1-(b), p. 32, Theorem 1]. The representation
D =RN{V,i =1,2,...} yields a canonical equi-order embedding of G in
the lattice group H @ (I1Z;), where H @ (I12,) is ordered coordinatewise.
Moreover, the fact that R and each of the V,’s are quotient rings of D implies
that this embedding ¢:G — H @ (IIZ,) is a v-embedding by 1.6. Let G”
denote the subsemi-group of H @ (IIZ,) consisting of all elements of
H @ (I1Z,) which are the infimums of a finite number of elements of ¢(G).
By 1.5, D is a v-multiplication ring if and only if G is a group.

If g is a positive element of G and ¢(g) = (k, 1, ts, ... ) with & > 0, then
we observe that there exists a positive integer # such that ¢, > 0 for 7 > n.
For if g is the image of d € D, then d € k(x1,..., %, ¥, 2) for some %. Since
h > 0, d is then in the maximal ideal of

RNE@y ..., %09 2) =k, ..., %)W 2.0

Thus, d has strictly positive value in each V; for ¢+ > n, which means that
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t; > 0 for i > n. It follows that the infimum in H @ (I1Z,) of finitely many
positive elements of ¢(G) of the form (h, £, £, ... ) with & > 0 also has the
property that its ¢th coordinate is > 0 for all 7 greater than some 7.

Let now ¥, z denote the images of y, z in G, and let ¢ = inf{¢(¥), ¢(2)} in
H ® (IIZ;). Thene = (0,1, 1,...). Consider ¢(¥) — ¢ in H ® (I1Z,), and
observe that ¢(3) —e = (%,0,0,...) with 2 > 0. The preceding paragraph
shows that ¢ () — ¢ ¢ G” even though ¢ () and e are in G". Thus, G" is not
a group.
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