VOLUME 17 NUMBER 3 SEPTEMBER 1994

An International Journal of Current Research and Theory with Open Peer Commentary

Appearing in this issue, with Commentary . . .

Characteristics of dissociable human learning systems David R. Shanks & Mark F. St. John

Two functional components of the hippocampal memory system Howard Eichenbaum, Tim Otto & Neal J. Cohen

Multiple book review of The Creative Mind: Myths and Mechanisms Margaret A. Boden

Also, Continuing Commentary on

"Multiple book review of How Monkeys See the World" (Cheney & Seyfarth) "Age preferences in mates reflect sex differences in human reproductive strategies" (Kenrick & Keefe)

Behavioral and Brain Sciences

Editor

Stevan Harnad

E-mail: harnad@clarity.princeton.edu or harnad@pucc.bitnet 20 Nassau St., Suite 240 Princeton, NJ 08542

Managing Editor Nancy Simon

Chief Copy Editor Avis Kniffin

Behavioral Biology Jack P. Hailman/U. Wisconsin Hubert Markl/U. Konstanz

Biosocial Behavior Glendon Schubert/U. Hawaii, Manoa

Cognition and Artificial Intelligence Zenon Pylyshyn/U. Western Ontario

Cognitive Development Annette Karmiloff-Smith/MRC, London and MPI, Nijmegen

Computational Neuroscience Stephen Grossberg/Boston U.

Evolutionary Biology Michael T. Ghiselin/California Academy of Sciences

Experimental Analysis of Behavior A. Charles Catania/U. Maryland, Baltimore County

History and Systems Julian Jaynes/Princeton Language and Cognition

Philip Johnson-Laird/Princeton

Editorial Policy Behavioral and Brain Sciences (BBS) is an international journal providing a special service called Open Peer Commentary* to researchers in any area of psychology, neuroscience, behavioral biology, or cognitive science who wish to solicit, from fellow specialists within and across these BBS disciplines, multiple responses to a particularly significant and controversial piece of work. (See *Instructions for Authors and Commentators*, inside back cover.) The purpose of this service is to contribute to the communication, criticism, stimulation, and particularly the unification of research in the behavioral and brain sciences, from molecular neurobiology to artificial intelligence and the philosophy of mind.

Papers judged by the editors and referees to be appropriate for Commentary are circulated to a large number of commentators selected by the editors, referees, and author to provide substantive criticism, interpretation, elaboration, and pertinent complementary and supplementary material from a full cross-disciplinary perspective. The article, accepted commentaries, and the author's response then appear simultaneously in BBS.

Commentary on BBS articles may be provided by any qualified professional in the behavioral and brain sciences, but much of it is drawn from a large body of BBS Associates who have become formally affiliated with the project.

Qualified professionals are eligible to become BBS Associates if they have (1) been nominated by a current BBS Associate, (2) refereed for BBS, or (3) had a commentary or article accepted for publication. A special subscription rate is available to Associates. Individuals interested in serving as BBS Associates are asked to write the editor.

This publication was supported in part by NIH Grant LM 03539 from the National Library of Medicine.

Copying This journal is registered with the Copyright Clearance Center (222 Rosewood Dr., Danvers, MA 01923). Orga-

*Modelled on the 'CA Comment' service of the journal Current Anthropology. Language and Language Disorders Max Coltheart/Macquarie U.

Linguistics Robert Freidin/Princeton Neurobiology

Irving Kupfermann/Columbia Neurobehavioral Genetics

Wim E. Crusio/Centre National de la Recherche Scientífique Neuropsychology

Jeffrey A. Gray/Inst. Psychiatry, London John C. Marshall/Radcliffe Infirmary, Oxford

Neurophysiology Sten Grillner/Karolinska Institutet

Paleoneurology Stephen Jay Gould/Harvard

Perception Bruce Bridgeman/U. California Richard Gregory/U. Bristol

Philosophy Daniel C. Dennett/Tufts Gilbert Harman/Princeton

Philosophy of Science Adolf Grünbaum/U. Pittsburgh Massimo Piatelli-Palmarini/MIT Primatology Horst D. Steklis/Rutgers Psychobiology Victor H. Denenberg/U. Connecticut Vision and Artificial Intelligence Stuart Sutherland/U. Sussex

nizations in the U.S.A. who are also registered with the CCC may therefore copy material (beyond the limits permitted by sections 107 and 108 of U.S. Copyright Law) subject to payment to the CCC of the per-copy fee indicated in the code on the first page of the article. This consent does not extend to multiple copying for promotional or commercial purposes.

ISI Tear Sheet Service, 3501 Market Street, Philadelphia, PA 19104, is authorized to supply single copies of separate articles for private use only.

For all other use, permission should be sought from the Cambridge or New York offices of the Press.

Subscriptions Behavioral and Brain Sciences (ISSN 0140-525X) is published quarterly in March, June, September, and December. Four parts form a volume. The subscription price for *institutions* of Volume 17 (1994) is US \$210.00 net in the U.S.A., Canada, and Mexico; UK £141.00 in the rest of the world; for *individuals* US \$85.00 net (£57.00); for BBS Associates and for students (in the U.S.A., Canada, and Mexico only) with proof of eligibility with order US \$49.00 net (£36.00); for APA, APS, and ASA members US \$68.00 net (£36.00) with proof of eligibility with order. Subscription price includes postage.

Single parts cost US \$54.00 net (£36.00) plus postage. Institutional orders may be sent to a bookseller, or, in the U.S.A., Canada, and Mexico direct to: Cambridge University Press, 40 West 20 Street, New York, NY 10011-4211; in the U.K. and rest of the world to: Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge CB2 2RU, England. Individuals must order direct from the Press. Second class postage paid at New York, N.Y., and at additional mailing offices. Postmaster: Send address changes in the U.S.A., Canada, and Mexico to Behavioral and Brain Sciences, Cambridge University Press, 40 West 20 Street, New York, NY 10011-4211.

Advertising Inquiries about advertising should be sent to the Journals Promotion Department of the Cambridge or New York Office of Cambridge University Press.

© 1994 Cambridge University Press

Contents Volume 17:3 September 1994

Shanks, D. R. & St. John, M. F. Characteristics of dissociable human learning systems

Open Peer Commentary

Andrade, J. Is learning during anaesthesia implicit?	395
Baeyens, F., De Houwer, J. & Eelen, P. Awareness	
inflated, evaluative conditioning under-	
estimated	396
Berry, D. C. A step too far?	397
Bornstein, R. F. Are subliminal mere exposure effects	
a form of implicit learning?	398
Brody, N. & Crowley M. J. Of what are we aware?	399
Carlson, R. A. Is implicit learning about consciousness?	400
Catania, A. C. The aware pigeon	400
Cleeremans, A. Awareness and abstraction are graded	
dimensions	402
Dienes, Z. & Perner, J. Dissociable definitions of	
consciousness	403
Ennen, E. Implicit practical learning	404
Goldstone, R. L. & Kruschke, J. K. Are rules and	
instances subserved by separate systems?	405
Holyoak, K. J. & Gattis, M. Implicit assumptions	
about implicit learning	406
Howe, M. L. & Rabinowitz, F. M. Development,	
learning, and consciousness	407
Kimmel, H. D. Human autonomic conditioning	
without awareness	408
Kourtzi, Z., Oliver, L. M. & Gluck, M. A. Can	
procedural learning be equated with unconscious	
learning or rule-based learning?	408
Lachter, J. Consciousness in natural language and	
motor learning	409
Lindsay, R. O. & Gorayska, B. Tacit knowledge and	
verbal report: On sinking ships and saving babies	410
Marsolek, C. J. Implementational constraints	
on human learning and memory systems	411
Merikle, P. M. On the futility of attempting	

to demonstrate null awareness 412

of the hippocampal memory system

Open Peer Commentary

Aggleton, J. P. Is Eichenbaum et al.'s proposal testable	
and how extensive is the hippocampal memory	
system?	472
Bingman, V. P. Remembering spatial cognition	
as a hippocampal functional component	473
Bolhuis, J. J. & Reid, I. C. The hippocampal system,	
time, and memory representations	474
Brown, M. W. Recording the recognition due	
to the parahippocampal region places hippocampal	
relational encoding in context	474
Fuster, J. M. In search of the engrammer	476
Gluck, M. A., Myers, C. E. & Goebel, J. K. A	
computational perspective on dissociating	
hippocampal and entorhinal function	476
Good, M. A. & Morris, R. G. M. A step linking	
memory to understanding?	477
Gray, J. A., Sinden, J. & Hodges, H.	
Psychoarithmetic or pick your own?	478
Grossberg, S. Hippocampal modulation of recognition,	
conditioning, timing, and space: Why so many	
functions?	479
Hampson, R. E. & Deadwyler, S. A. Hippocampal	
representations of DMS/DNMS in the rat	480
	100

Nagata, H. Faulty rationale for the two factors	
that dissociate learning systems	412
Overskeid, G. The intuitive mind	414
Packard, M. G. Dissociating multiple memory	
systems: Don't forsake the brain	414
Perruchet, P. & Gallego, J. What about unconscious	
processing during the test?	415
Poldrack, R. A. & Cohen, N. J. On the representational/	
computational properties of multiple memory	
systems	416
Rakover, S. S. Learning without awareness: What	
counts as an appropriate test of learning and	
of awareness	417
Reber, A. S. & Winter, B. What manner of mind is this?	418
Reed, J. & Johnson, P. New evidence for unconscious	
sequence learning	419
Rizzo, A. & Parlangeli, O. Learning strategies	
and situated knowledge	420
Seger, C. A. Criteria for implicit learning:	
Deemphasize conscious access, emphasize amnesia	421
Squire, L. R., Hamann, S. & Knowlton, B.	
Dissociable learning and memory systems	
of the brain	422
Stadler, M. A. & Frensch, P. A Whither learning,	
whither memory?	423
Svartdal, F. Is awareness necessary for operant	
conditioning?	424
Terrace, H. S. Are infants human?	425
Willingham, D. B. On the creation of classification	
systems of memory	426

367

449

Authors' Response

Shanks, D. R. & St. John, M. F. How should implicit	
learning be characterized?	427

Eichenbaum, H., Otto, T. & Cohen, N. J. Two functional components

Horel, J. A The localization of general memory	
functions	482
Humphreys, M. S. & Dennis, S. Going from task	
descriptions to memory structures	483
Jarrard, L. E. A call for greater concern regarding	
the underlying anatomy	483
Katz, D. B. & Steinmetz, J. E. How long do relational	
representations in the hippocampus last during	
classical eyelid conditioning?	484
Kesner, R. P. Hippocampus and memory for time	485
Mayes, A. R. What exactly do amnesics fail to store	
normally?	486
McNaughton, N. The hippocampus: Relational	
processor or antiprocessor?	487
Miller, E. K. Neocortical memory traces	488
Murray, E. A. Relational but not spatial memory:	
The task at hand	489
Nadel, L. Hippocampus, space, and relations	490
Rapp, P. R. Functional components of the hippocampal	
memory system: Implications for future learning	
and memory research in nonhuman primates	491
Rawlins, J. N. P., Deacon, R. M. J., Yee, B. K.	
& Cassaday, H. J. Does it still make sense to develop	
a declarative memory theory of hippocampal function?	492
a acciaracive memory meory or inprocampar functions	704

Shapiro, M. L. From Heisenberg's cat to Eichenbaum's rat: Uncertainty in predicting the neural		Tulving, E. & Markowitsch, H. J. What do animal models of memory model?	498
requirements for animal behavior	493	Wilson, F. A. W. Hippocampal neuronal activity in rat	
Solomon, P. R. & Yang, BY. What are the best		and primate: Memory and movement	499
strategies for understanding hippocampal function?	494		
Squire, L. R., Zola-Morgan, S. & Alvarez, P.			
Functional distinctions within the medial temporal			
lobe memory system: What is the evidence?	495	Authors' Response	
Suzuki, W. A. What can neuroanatomy tell us about		Eichenbaum, H., Otto, T. & Cohen, N. J. The	
the functional components of the hippocampal	100	hippocampal memory system and its functional	-
memory system?	496	components: Further explication and clarification	500

Boden, M. A. Précis of The creative mind: Myths and mechanisms

Open Peer Commentary C C

open i cer commentary	
Adams-Price, C. Can artificial intelligence explain age	
changes in literary creativity?	532
Bringsjord, S. Lady Lovelace had it right: Computers	
originate nothing	532
Bundy, A. What is the difference between real	
creativity and mere novelty?	533
Burns, B. D. Analogy programs and creativity	535
Campbell, R. L. On doing the impossible	535
Dartnall, T. Creativity, combination, and cognition	537
Donald, M. Computation: Part of the problem	
of creativity	537
Dunbar, K. & Baker, L. M. Goals, analogy, and	
the social constraints of scientific discovery	538
Fetzer, J. H. Creative thinking presupposes	
the capacity for thought	539
Flor, N. V. What about everyday creativity?	540
Fulford, K. W. M. Creativity, madness, and extra-	
strong AI	542
Gabora, L. M. The birth of an idea	543
Garnham, A. Art for art's sake	543
Gilhooly, K. J. Creativity theory: Detail and testability	544
Grasshoff, G. The historical basis of scientific discovery	545
Ippolito, M. F. Conscious thought processes and creativity	546

O'Rourke, J. The generative-rules definition	
of creativity	547
Pind, J. Computational creativity: What place	
for literature?	547
Ram, A., Domeshek, E., Wills, L., Nersessian, N.	
& Kolodner, J. Creativity is in the mind of the creator	549
Rehkämper, K. Imagery and creativity	550
Rowe, J. Creativity: Metarules and emergent systems	550
Shames, V. A. & Kihlstrom, J. F. Respecting the	
phenomenology of human creativity	551
Simonton, D. K. Individual differences, developmental	
changes, and social context	552
Sternberg, R. J. Can computers be creative, or even	
disappointed?	553
Treisman, M. Creativity: Myths? Mechanisms?	554
van der Maas, H. L. J. & Molenaar, P. C. M. The	
empirical detection of creativity	555
Weisberg, R. W. The creative mind versus the	
creative computer	555
Żytkow, J. M. Machine discoverers: Transforming	
the spaces they explore	557

519

Author's Response

Bod	len,	М.	А.	Creativity:	A	frameworl	٢f	for	researc	h S	558	3
-----	------	----	----	-------------	---	-----------	----	-----	---------	-----	-----	---

Continuing Commentary

On Cheney, D. L. & Seyfarth, R. M. (199 BBS 15:135-182.	92) Pré	cis of How monkeys see the world.	571
Bekoff, M., Townsend, S. E. & Jamieson, D. Beyond monkey minds: Toward a richer cognitive ethologyGallup, Jr., G. G. Monkeys, mirrors, and mindsPovinelli, D. J. A theory of mind is in the head, not	571 572	Authors' Response Cheney, D. & Seyfarth, R. Mirrors and the attribution of mental states	574
the heart	573		

On Kenrick, D. T. & Keefe, R. C. (1992) Age preferences in mates reflect sex differences in human reproductive strategies. BBS 15:75-133. 578

Waller, N. G. Individual differences in age		Authors' Response	
preferences in mates	578	Kenrick, D. T. & Keefe, R. C. Gender and sexual	
Response to Waller, N. G. by Buss, D. M. Individual		orientation: Why the different age preferences?	582
differences in mating strategies	581	, 0 I	