Network Science 10 (2): 190-206, 2022 CAMBRIDGE
doi:10.1017/nws.2022.17 UNIVERSITY PRESS

RESEARCH ARTICLE

Consensus embedding for multiple networks:
Computation and applications

Mengzhen Li' ¥, Mustafa Cogkun® and Mehmet Koyutiirk'

1Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, USA and 2Department of
Computer Engineering, Abdullah Giil University, Kayseri, Turkey
Corresponding author: Mengzhen Li, email: mx1994@case.edu

Action Editor: Christoph Stadtfeld

Abstract

Machine learning applications on large-scale network-structured data commonly encode network infor-
mation in the form of node embeddings. Network embedding algorithms map the nodes into a low-
dimensional space such that the nodes that are “similar” with respect to network topology are also close
to each other in the embedding space. Real-world networks often have multiple versions or can be “multi-
plex” with multiple types of edges with different semantics. For such networks, computation of Consensus
Embeddings based on the node embeddings of individual versions can be useful for various reasons, includ-
ing privacy, efficiency, and effectiveness of analyses. Here, we systematically investigate the performance
of three dimensionality reduction methods in computing consensus embeddings on networks with multi-
ple versions: singular value decomposition, variational auto-encoders, and canonical correlation analysis
(CCA). Our results show that (i) CCA outperforms other dimensionality reduction methods in computing
concensus embeddings, (ii) in the context of link prediction, consensus embeddings can be used to make
predictions with accuracy close to that provided by embeddings of integrated networks, and (iii) consen-
sus embeddings can be used to improve the efficiency of combinatorial link prediction queries on multiple
networks by multiple orders of magnitude.

Keywords: consensus embedding; dimensionality reduction methods; link prediction

1. Introduction

Large-scale information networks are becoming ubiquitous. Mining knowledge from these infor-
mation networks proves useful in a broad range of applications. For various analysis and
prediction tasks on networks, representation of networks in a hyperspace enables effective use
of out-of-the-shelf machine learning algorithms. In recent years, node embeddings have gained
popularity in network representation (Goyal & Ferrara, 2018).

Node embeddings aim to map each node in the network to a low-dimensional vector repre-
sentation to extract features that represent the topological characteristics of the network. Many
techniques are developed for this purpose (Grover & Leskovec, 2016; Ahmed et al., 2019; Tang et
al,, 2015), and these techniques are shown to be effective in addressing problems such as link pre-
diction (Yue et al., 2020; Kuo et al., 2013), node classification (Cavallari et al., 2017), and clustering
(Rozemberczki et al., 2019).

Many real-life networks are versioned (Cowman et al., 2020) or multiplex (Park et al., 2020).
Different versions of a network have the same set of nodes and different sets of edges. These dif-
ferent sets of edges may represent identical semantics but different sources (e.g., protein—protein

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.

https://doi.org/10.1017/nws.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.17
https://orcid.org/0000-0002-2266-4313
mailto:mxl994@case.edu
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/nws.2022.17

Network Science 191

interaction (PPI) networks obtained from different databases) or different semantics (e.g., phys-
ical PPIs vs. genetic interactions). Consensus embedding, a concept we introduced recently (Li
& Koyutiirk, 2020), aims to compute node embeddings for the integration of multiple network
versions using the embeddings obtained from the individual versions. To compute consensus
embeddings, we proposed two dimensionality reduction methods: singular value decomposition
(SVD) and Variational Autoencoder. We showed that the link prediction accuracy of consen-
sus embeddings is close to the accuracy provided by embeddings computed directly from the
integrated network. We also showed that consensus embedding can improve the efficiency of
processing combinatorial link prediction queries, and balances the trade-off between the earnings
in query runtime and pre-processing time.

In this paper, we extend the framework for computing consensus embeddings. First, we gener-
alize the notion of consensus embeddings such that the number of dimensions in the embedding
of different individual networks can be different. Observing that these embeddings represent
different hyperspaces, we adapt a well-established statistical method for mapping two spaces to
each other, namely Canonical Correlation Analysis (CCA) (Hotelling, 1936), to compute consen-
sus embeddings. For computing consensus embeddings of multiple network versions, we apply
Generalized Canonical Correlation Analysis (GCCA) (Kettenring et al., 1971).

Since versioned networks have identical node sets and their edge sets can overlap signifi-
cantly, it can be expected that the embedding spaces of different versions can be similar. Indeed,
state-of-the-art machine learning applications use simple aggregation to integrate embeddings
of multiplex networks (Park et al., 2020). To assess the correspondence between the embedding
spaces of networks with multiple versions, we also consider a baseline method that computes
a consensus embedding by taking mean of the individual embeddings. We also systematically
investigate the correspondence of the embedding dimensions of embeddings computed on dif-
ferent network versions. Finally, we systematically characterize the link prediction performance
of the four methods we consider for computing concensus embeddings, in terms of accuracy and
efficency of processing combinatorial link prediction queries.

Our results show that use of consensus embeddings do not significantly compromise the
accuracy of link prediction, and consensus embeddings can sometimes deliver more accurate
predictions than embeddings computed on the integrated networks. We observe that CCA outper-
forms SVD or Variational Autoencoder in link predicton across different numbers of embedding
dimensions. Our runtime analyses show that consensus embedding is multiple orders of mag-
nitude more efficient than computing the embeddings of the integrated networks at query time.
CCA also provides an efficient method for computing of consensus embeddings as compared
to Variational Autoencoder, and it is robust to large numbers of versions and large number of
dimensions.

2. Background

2.1 Node embedding

Node embedding aims to learn a low-dimensional representation of nodes in networks (Rossi
et al,, 2019). Given a graph G=(V,E), a node embedding is a function f:V — R? that maps
each node v € V to a vector in R? where d < |V|. A node embedding method computes a vec-
tor for each node in the network such that the proximity in the embedding space reflects the
proximity/similarity in the network.

There are many existing methods for computing node embeddings (Grover & Leskovec, 2016;
Ahmed et al., 2019; Perozzi et al., 2014). Node embedding methods can also be roughly divided
into community-based approaches and role-based approaches (Rossi et al., 2019). Community-
based approaches aim to preserve the similarity of the nodes in terms of the communities they
induce in the network. In contrast, role-based approaches aim to capture the topological roles of

https://doi.org/10.1017/nws.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.17

192 M. Lietal.

Version 1
nx dy matrix

% node embedding

Version 2

nX dz matrix WX (dy +dy + - + dy) matrix e d matrix
nede embedding
—i
dimensionali 5 reduction > Downstream
|:| D Tasks

Version k
n% dy matrix

node embedding
_—

Figure 1. The framework for the computation of consensus embeddings. The k network versions represent networks with
the same node set but different sets of edges. Our framework for the computation of consensus embeddings assumes that
embeddings for each network were computed separately, possibly using embedding spaces with different number of dimen-
sions. It then computes a d-dimensional consensus embedding that represents the superposition of the k versions, to be
used for downstream analysis tasks.

the nodes and map nodes with similar topological roles close to each other in the embedding space.
As representatives of these different approaches, we here consider node2vec (Grover & Leskovec,
2016) (community-based) and role2vec (Ahmed et al., 2019) (role-based) in our experiments.

2.2 Consensus embedding
Consensus embedding (Li & Koyutiirk, 2020) is defined as follows: Let G; =(V,E;), Gy =
(V,Ez), ... Gk = (V, Ex) be k versions of a network, their embeddings X, X, ..., X, are given.
X1, X2, ..., Xn can have same or different numbers of dimensions, but they all have n rows since
all versions have the same set of nodes. Our goal is to use X; € R"*% to compute d-dimensional
node embeddings X, for G, without knowledge of G or the G;s. Here, d; denotes the number of
dimensions of X; and d is our target dimension. d should be less than or equal to min{d;} to get a
meaningful result of consensus embedding.

The framework for the computation of consensus embeddings is shown in Figure 1. Consensus
embedding can be used in many downstream tasks, including link prediction and node classifica-
tion.

2.3 Link prediction
Link prediction is an important task in network analysis (Martinez et al., 2016). Given a network
G = (V, E), link prediction aims to predict the potential edges that are likely to appear in the
network based on the topological relationships between pairs of nodes. Link prediction can be
supervised (De Sa et al., 2011) or unsupervised (Kuo et al., 2013).

In our experiments, we use BioNEV (Yue et al., 2020) to test the performance of the link predic-
tion accuracy of the consensus embeddings. It is a supervised method that aims to systematically
evaluate embeddings. It outputs the AUC scores of the link predictions using the embeddings.

3. Methods
3.1 Computing consensus embeddings

Our framework is illustrated in Figure 1. In the framework, the dimensions of embeddings that
represent different network versions can be different from each other. The “node embedding” in

https://doi.org/10.1017/nws.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.17

Network Science 193

(b) M : nX D matrix
(@)
Fmieddog of & Embedding of Embedding of Gz
D G‘
Ermbedding of Ge \ ‘Sum of embeddings Consensus Embedding

Dended by &
Enin o / U nxXrmatrix S:rXrmatrix V irx D matrix

x X
Baseline
SVD (Singular Value Decomposition)
(d) X eR™P Y e R
(C) D-dimensional D-dimensional
Embedding of G / _‘_/ \
Txx
L L T Syy
— d-dimensional —
Embedding of Gz <
— Cholesky Decomposition
Encoding Dacoding P P Cholesky Decomposition
. > — Sxx 8y Sy
N -
Embedding of Gx < |— — /SVD
| | Wy=Sxx U Wy =5V
Autoencoder

CCA

Figure 2. Illustration of dimensionality reduction methods used to compute consensus embeddings.

the figure can be any embedding methods, we use node2vec and role2vec in our experiments. We
consider four methods for computing consensus embeddings: (i) Baseline (average of individual
embeddings, requiring individual embeddings to have the same number of dimensions), (ii) SVD,
(iii) Variational Autoencoder, (iv) CCA (for pairs of network versions), or GCCA (for more than
two network versions). Figure 2 illustrates the dimensionality reduction methods.

3.1.1 Baseline consensus embedding:

The baseline embedding we consider assumes that the embeddings of individual network versions
represent similar spaces and the dimensions of the embeddings align with each other (Park et al.,
2020). This requires that d; = dy = ... = dy. = d. Thus, provided that the embeddings of invidiual

https://doi.org/10.1017/nws.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.17

194 M. Lietal.

versions have the same number of dimensions, we compute the baseline embedding as follows:

k
(Baseline) __ Z‘:l Xk
x4 = ==Ltk

P (1)

3.1.2 Singular value decomposition (SVD):
SVD is a matrix decomposition method for reducing a matrix to its constituent parts. The singular
value decomposition of an m x p matrix M, whose rank is , is a factorization of the form US v,
where U is an m X r unitary matrix, Sis an r x r diagonal matrix, and V isan p x r unitary matrix.
S is a diagonal matrix and the diagonal values of S are called the singular values of M.

Let X be the n x D matrix obtained by concatenating X;, X3, ..., X, where D=d, +d, +
... +d. If we set our objective as one of choosing an n x D matrix Y with rank d to minimize
the Frobenius or 2-norm of the difference ||X — Y|, then the optimal solution is given by the
truncation of the SVD of X to the largest d singular values (and corresponding singular vectors)
of X.

In other words, letting M = X in the formulation of SVD, we obtain n x r dimensional matrix
U, r x r dimensional matrix S, and D x r dimensional matrix V, where r denotes the rank of
X and X = USVT. Now let U’, §', and V' denote the n x d, d x d, and D x d matrices obtained
by choosing the first d columns (also rows for S) of, respectively, U, S, and V. Then the matrix
Y = U'S'V'T provides the best rank-d approximation to X. Consequently, V' provides an optimal
mapping of the D dimensions in X to d-dimensional space. Based on this observation, SVD-based
dimensionality reduction sets

i.e., it maps the D-dimensional concatenated embedding of each node of the graph into the
d-dimensional space defined by the SVD of X.

3.1.3 Variational autoencoder:

An autoencoder is an unsupervised learning algorithm that applies backpropagation to obtain a
lower-dimensional representation of data, setting the target values to be equal to the inputs. The
autoencoder is a neural network with D inputs, each representing a column of the matrix X (i.e.,
a dimension in one of the k embeddings spaces). The encoder layer(s) map these D inputs to d
latent features shown in the middle, which are subsequently transformed into the D output by the
decoder layer(s). While training the network, each row of the matrix X (i.e., the embedding of
each node) is used as an input and the respective output. The neural network is trained using this
loss function:

LX, V)= X - Y3 (3)

where Y denotes the #n x D matrix whose rows represent the outputs of the network corresponding
to the inputs that represent the rows of X. Thus, the idea behind the variational autoenconder is
to learn an encoding of the D input dimensions into the d latent features (shown in the middle)
such that the D inputs can be reconstructed by the decoder with minimum loss. Observe that this
loss function is identical to that of SVD; however, the use of neural networks provides the ability
to perform nonlinear dimensionality reduction. Once the neural network is trained, we perform
dimensionality reduction by retaining the d-dimensional output of the encoder that corresponds

to each of the » training instances (rows of the matrix X or nodes in V). These n d-dimensional

vectors comprise the matrix X(CVAE), i.e, consensus embeddings of the nodes in V' computed by

variational autoencoder.
In our implementation, we use a convolutional autoencoder (Masci et al., 2011). Same as a stan-
dard autoencoder, a convolutional autoencoder also aims to output the same vectors as the input.

https://doi.org/10.1017/nws.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.17

Network Science 195

The convolutional autoencoder contains convolutional layers in the encoder part of the autoen-
coder. In every convolutional layer, there is a filter that slides around the input matrix to compute
the next layer. Convolutional autoencoder also have pooling layers after each convolutional layer.
In the decoder part, there are deconvolutional layers and unpooling layers that recovers the input
matrix.

3.1.4 Canonical correlation analysis (CCA):

Given two embedding matrices, X; € R™*% and X, e R"*%, computed by any embedding
algorithm, such as node2vec (Grover & Leskovec, 2016) for G; = (V, E;) and G, = (V, E;), respec-
tively. Our objective is to compute an n x d embedding matrix, where d = min{d,, d»}, such that
intrinsic information encoded in each of these embedding matrices is preserved.

CCA aims to find low-dimensional latent representations, W, € R *4 and W, € R%*4, such
that cosine angles between W TX, (i) and W, TX, (i) is minimized, where X; (i) and X, (i) denote
the vectors containing the ith rows of the respective matrices (Uurtio et al., 2017), i.e. they are the
embeddings of the same node in two different versions of the network.

We first discuss the case for d =1 for ease of exposition, and then generalize to the case
d > 2. Minimizing the cosine of the angle between two vectors can also be thought as minimizing
Euclidean distance between the vectors in a unit-ball. Thus, we can state CCA’s objective as follows:

. 1 o . 2
(Wi*, Wa*): =argmin ~ — § Wi TX1() — WL TX5(1)
W1,Wa h i—1 (4)

subject to H w1 TX,3) H2 =1 [W2Xo()ll, =1

By using the sample covariance matrix definition and ignoring constant terms, we can restate
CCA's objective function as a maximization problem (Uurtio et al., 2017). Furthermore, we can
extend the optimization problem to the case with d > 2, by adding the additional constraint that
the columns of Wy and W) are orthogonal:

(Wl*, Wz*): =argmax W1T212W2
Wi, W2 (5)

Subject to WlTEHWl =1, WZTZZZWZ =1.

1 1 N 1 N s
where X1 = ; Z?:l X1Xq T Yo = ; Z?:l Xz(l)Xz(l)T and X1, = ; Z?:l Xl(l)Xz(l)T are sam-

ple covariance matrices. By using Lagrange duality, this problem can be solved as a generalized
eigenvalue problem or SVD (Uurtio et al., 2017).

Namely, letting B = X, /251, X2, 71/? and computing the SVD of matrix B as B= U} S5 V3,
the best projection matrices sought by CCA are given as:

Wy =X, V2Up, Wy = 257 2V (6)

Finally, after computing W; and W, using the above framework, we construct consensus
embedding of G; and G as

XCCD = (W, "X, + W, TY,)/2. 7)

An illustration of the application of CCA to the computation of consensus embeddings is illus-
trated in Figure 3. The two versions of the network, G; and G, are shown in Figure 3(a) and
(b), respectively. The integrated network obtained by superposing these two versions is shown
in Figure 3(c). The two-dimensional embeddings of the two versions are shown in Figure 3(c).
Clearly, these embeddings are in different spaces, so we arbitrarily match the dimensions of the
two embeddings. The 10 x 2 matrices W Tx, and W,TY, are visualized in Figure 3(f). This rep-
resents the projection of the embeddings of the two versions to the common space computed by

https://doi.org/10.1017/nws.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.17

196 M. Lietal.

(a) (b) (c)
(d) (e)
15 5 .6.9-!3 0.8 :f
] I E ’
) 0.6 é
J
0.5 =
e
'ﬁ“,s 0.4 S
0.0
gl
.13
-0.51 02 Y
o
-1.01 Ob 00
—1.50-1.25-1.00-0.75-0.50—0.25 0.00 0.25 0.50 -125 -120 -115 -1.10 -1.05 -1.00
() (9)
& F
1.04
v
P J 05 3 5
0.5 { & &4 o
i 00| #
00{ @ €5 : J ¢
-0.5 1 <05 ¢
-1.0 .9'5
=1.0
-15
—-2.04 é =15 .
-0.2 —0.1 0.0 01 02 ~0.20-0.15-0.10-0.05 0.00 0.05 0.10 0.15 0.20

Figure 3. The computation of consensus embeddings using Canonical Correlation Analysis (CCA). (a, b) Red and blue
networks with identical sets of nodes labeled from 1 to 10. (c) The integrated network obtained by superposing the two
networks. (d) 2D embeddings of the individual networks. Note that the embeddings are in different spaces and we arbitrarily
match dimensions of embeddings to plot them in the same space. The colors and the numbers show the identity of the nodes
and the network each node belongs to. (e) 2D embedding of the integrated network. (f) The embeddings of the two networks
after space transformation via CCA. (g) The consensus embedding computed by taking the mean of the two transformed
embeddings.

CCA. As seen in the figure, the points that correspond to the same node are brought close together,

as captured by the objective function of CCA. The consensus embedding, XA i computed by
taking the mean of the two points that correspond to each node, and is shown in Figure 3(g). The
two-dimensional embedding of the integrated network is shown in Figure 3(c). Comparison of the
two embeddings shows that CCA is able to reconstruct the overall structure of the embeddings,
with the nodes in the two communities mapped close to each other.

The effect of CCA on multidimensional embeddings is illustrated in Figure 4(a). Given two
matrices (here we use two embeddings), the correlations between the dimensions do not have any

https://doi.org/10.1017/nws.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.17

Network Science 197

100
0 12 14
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00

Figure 4. The correspondence between the dimensions of embeddings computed on two or multiple different networks.
(a) The correlation matrix of the 16 embedding dimensions for the embeddings computed on G; and G, (Table 1). (b) The
correlation matrix of the 16 embedding dimensions after transformation via cannonical correlation analysis (CCA). (c) The
pairwise correlation matrices of the 16 embedding dimensions for the embeddings G, G,, and G3 before (top) and after
(bottom) transformation via Generalized Canonical Correlation Analysis (GCCA).

patterns (left panel in Figure 4(a)), i.e., the dimensions of the embeddings do not have a clear cor-
respondence. After application of CCA, the correlations between the corresponding dimensions
(diagonal of the matrix) become larger, and the correlations of the pairs other than corresponding
dimensions are all close to 0.

3.1.5 Generalized canonical correlation analysis (GCCA):
Since CCA is designed to work with two vector spaces, it can be applied to the computation of
consensus embeddings with two network versions. To compute consensus embeddings for k > 2
dimensions, the framework needs to be generalized.

Generalized CCA (Kettenring et al., 1971) is a method that applies CCA on more than two
matrices. Let Gy, Gy, ..., G; denote the k versions of a network with n nodes. Assume that we

https://doi.org/10.1017/nws.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.17

198 M. Lietal.

have the k respective embeddings X, X», ..., Xy available, where the embeddings are, respectively,
di, da, ..., dy dimensional. GCCA learns the following optimization problem:

k
. T 2
min Zl A —ZFx| (8)
1=

where A € R4*" is a shared representation of the n embedding spaces, and Z; € R%*9 are the
individual projection matrices for each embedding. Once A and Z;’s are computed, we use the
mean of the projected embeddings as the consensus embedding, i.e.

Xe=ZIXi + 21X + -+ ZIXp) /K.)

Figure 4(b) illustrates the effect of GCCA on the correlations between dimensions. Given three
16-dimensional embeddings X, X3, X3, the correlations between {X;, X5}, {X;, X3}, and {X, X3}
are shown in the upper panel of Figure 4(b). We can see no patterns in the three matrices.
However, after using GCCA, we get the lower panel of Figure 4(b). The darkest parts of those
three matrices appear close to their diagonals.

We use the software (Jameschapmanl9, 2020) in our implementations of CCA and GCCA
consensus embedding. It provides the implementations of multiple kinds of CCA-related
methods.

3.2 Processing combinatorial link prediction queries for versioned networks

Consider the following scenario: A graph database houses k versions of a network (as formulated
at the beginning of this section). These k versions may either come from different resources (e.g.,
different protein-protein interaction databases) or represent semantically different types of edges
between a common set of nodes (e.g., genetic interactions vs. physical interactions vs. functional
association among human proteins). In this setting, a “combinatorial” link prediction query can
be formulated as follows: The user chooses (i) a node g € V, and (ii) a subset S C {Gy, G2, ..., G} of
networks. The query seeks to identify the nodes that are most likely to be associated with the query
node g based on the topology of the integrated network G = (V, E®), where E® = J,_¢ E.
Such a flexible query framework is highly useful in the context of many applications, since the
relevance and reliability of different network versions can be variable, and different users may
have different needs and preferences.

The above framework defines a “combinatorial” query in the sense that a user can select any
combination of networks to integrate. This poses a significant computational challenge as the
number of possible combinations of networks is exponential in the number of networks in the
database, i.e., the user can choose from 2% — 1 possible combinations of networks.

Embedding-based link prediction can facilitate the development of effective solutions to the
combinatorial challenge associated with combinatorial link prediction queries, because link pre-
diction algorithms using node embeddings do not need to access to the network topology while
performing link prediction. By computing and storing node embeddings in advance, it is possi-
ble to efficiently process link prediction queries while giving the user the flexibility to choose the
combination of networks to integrate.

Consensus embeddings provide an alternate solution that can render storage feasible while
enabling real-time query processing for very large networks and large number of versions:
Compute and store the embeddings for each network separately. When the user selects a com-
bination, compute a consensus embedding for that combination and use it to process the query.
One important consideration in the application of this idea is the “inexact” nature of consensus
embeddings, i.e., consensus embeddings may not adequately capture the information represented
by the embeddings computed on the integrated network.

https://doi.org/10.1017/nws.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.17

Network Science 199

Table 1. The description and size of the human protein-protein interaction (PPI) networks used in our experiments

Version: G1 Gy G3 Gy Gs Gg Gy Gg

Interaction Affinity Affinity Affinity Negative Positive Synthetic Synthetic Two-

Type: Capture- Capture- Capture- g enetic g enetic growth lethality hybrid
MS RNA Western defect

Edges: 13472 3160 6132 65369 13018 9295 6842 4202

Table 2. The description and size of the yeast protein-protein interaction (PPI) networks
used in our experiments

Version: Gy Ga G3 Gy
Interaction Type: Coexpression Database Experimental Neighborhood
Edges: 93964 24288 38020 42882

4. Experimental results

In our experiments, we try to predict new links in the integrated network of multiple networks.
We use BioNEV to split multiple input graphs into training and testing sets, and compute the con-
sensus embedding of the training graphs. Then the consensus embedding of the training graphs
are used as an input of BioNEV evaluation to predict all the testing edges from the multiple graphs.

4.1 Datasets

In our computational experiments, we use human protein-protein interaction (PPI) networks
obtained from BioGRID (Stark et al., 2006) and yeast PPI networks from STRING (Franceschini
et al., 2012; Cho et al,, 2016). PPI networks contain physical interactions and functional associa-
tions between pairs of proteins. The human PPI dataset we use contains multiple PPI networks
separated based on experimental systems. Each network (version) contains a unique type of PPI
(genetic or physical). The yeast PPI network dataset contains four PPI networks derived from
different sources (e.g. experimental data, or curated database). The types of the interactions repre-
sented by each network version are shown in Tables 1 and 2. In order to obtain multiple networks
with the same set of nodes, we remove the nodes (proteins) that do not exist in all versions. After
preprocessing, all the human PPI versions have 1025 nodes , and all the yeast PPI versions have
1164 nodes. The type of PPI and the number of edges for each network are shown in Tables 1
and 2.

4.2 Experimental setup

We compare the link prediction performance of the node embeddings computed on integrated
networks and consensus embeddings computed based on the embeddings of individual net-
works. We consider two embedding algorithms, Node2vec (Grover & Leskovec, 2016) and
Role2vec (Ahmed et al., 2019), and multiple methods for computing consensus embeddings, SVD,
variational autoencoder, CCA (or GCCA for more than two versions), and baseline(average).

To assess link prediction performance, we use BioNEV(Yue et al., 2020), a Python package
that is developed to assess the performance of various tasks that utilize network embeddings. The
software splits an input graph into a training graph and a testing edge set. BIONEV uses the known
interactions as positive samples and randomly selects the negative samples. Both samples are split
into a training set (80%) and a testing set (20%). For each node pair, BloNEV concatenates the
embeddings of two nodes as the edge feature and then build a binary classifier. It outputs the
AUGC:s of the link predictions using the embeddings.

https://doi.org/10.1017/nws.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.17

200 M. Lietal.

In the experiments focusing on the consensus embeddings of pairs of versions, we are given
two embeddings X; € R"™ and X, € R"%% we compute the consensus embedding X, € R">4,
in which d = min{d;, d,}. We show results for cases d1 = d2 or d1 # d2, and compare different
dimensionality reduction methods. Note that, when d1 # d2, the baseline method for computing
consensus embeddings does not apply as it requires the embeddings to have equal number of
dimensions.

For multiple (more than two) networks, we consider the case where all embeddings have the
same number of dimensions, and the number dimensions of the consensus embedding is the same
as the embeddings of individual versions.

4.3 Link prediction for pairs of versions

As mentioned before, the dimensions of the individual embeddings can be the same or different.
In this section, we show the results of pairs of versions for both same numbers of dimensions and
different numbers of dimensions. We compute the consensus embedding of all combinations of
two networks from Table 1 (eight versions with 28 pairs), and get their link prediction accuracies
by BioNEV.

4.3.1 Two embeddings with same dimensions

We test all the combinations of the eight versions described in Table 1. Figure 5 shows the AUCs
provided by the consensus embeddings computed using four different methods, compared with
the AUC of the embedding of the integrated network. The embedding algorithm used in the figure
is node2vec. For most network pairs, consensus embeddings deliver better link prediction accu-
racy than the integrated network’s own embeddings. Among the three dimensionality reduction
methods, SVD and CCA are more stable and consistently deliver better accuracy than variational
autoencoder. As expected, the accuracy of the baseline consensus embedding (the average of the
pair of embeddings) is much lower, but is still better than would be expected at random. This sug-
gests that there can be some correspondence between the embedding spaces of different network
versions.

4.3.2 Two embeddings with different dimensions

Figure 6 shows the link prediction results of consensus embeddings for pairs of networks when the
numbers of dimensions of two embeddings are not the same. From Figure 6, the average accuracy
of consensus embedding using CCA is higher than SVD or autoencoder. The data points of SVD
or autoencoder are sparser in the range, and the lowest point is between 0.55 and 0.6. Unlike SVD
or autoencoder, all data points of CCA are above 0.65, and most of them are in the range of (0.70,
0.75).

4.4 Link prediction for multiple versions
Our experiments for multiple (> 2) networks are based on all combinations of the datasets
(8 versions with 247 potential combinations).

Figure 7 shows the link prediction results of consensus embeddings of more than two versions.
In these experiments, we use GCCA instead of CCA even for two versions. In each figure, the AUC
of link prediction is shown as a function of the number of network versions. We observe that, on
average, the accuracy of link prediction goes down with increasing number of versions that are
integrated. However, the performance difference between embedding of integrated network and
consensus embeddings are not very large. This observation suggests that the utility of concensus
embeddings can be more pronounced for network databases with larger number of versions.

https://doi.org/10.1017/nws.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.17

(@)

svd

autoencoder

cca

number of dimensions = 32

(b)

integrated baseline

number of dimensions = 64

Network Science

1.0

0.8

- 0.7

- 0.6

- 0.7

- 0.6

201

Figure 5. Link prediction accuracy of consensus embeddings on pairs of networks with equal number of dimensions for indi-
vidual node embeddings. All embeddings are computed using node2vec and results are displayed for (a) 32-dimensional and
(b) 64-dimensional embeddings. Each matrix shows the link prediction accuracy, assessed in terms of area under ROC curve
(AUC), of the respective embeddings for all (g) = 28 pairs of networks. Integrated: The embedding of the network obtained
by superposing the two networks. Baseline: The consensus embedding obtained by averaging the embeddings of the two
networks. SVD, Autoencoder, CCA: The consensus embedding computed using each of the three dimensionality reduction
methods we consider. Darker shade of blue indicates more accurate prediction performance.

https://doi.org/10.1017/nws.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.17

202 M. Lietal.

10 10 10
0s 09 o8
- v -~ o - . i n -
o .“;‘ d ; o8 : i 3 - 3 y z
H . “tjer . o i g X) H
07 it 5 07 .;' ...:-u:‘:.. - 4 o7 3 3. g‘
5 Ll 1 4 * L3 v :
+ X ¥
o8 o8 : 06
os svd autoencoder cca o svd autoencoder cca o8 wvd autoencoder
(d) (e) U]
10 10 10
os 0s 0s X .
e - - - v
§ 4 i ¥ * F) e % -
Jhe ¥ e g
) 08 e b &) 08 Mlene ety -) o8 : e
¥ = s, ¥ H -
- w g) g = -x«-
o7 :— & e o7 3. a - o7 ? = &
:) H
06 06 06 B
0s os os

svd autoencoder cca svd autoencoder a svd ‘autoencoder wa

Figure 6. Link prediction accuracy of consensus embeddings of pairs on networks with different number of dimensions in
individual embeddings. Each beeswarm plots shows the distribution of area under ROC curve (AUC) for the link prediction
performance of consensus embeddings computed using SVD (blue), Autoencoder (orange), CCA (green) across 8 x 7 =56
(ordered) pairs of networks. Each panel shows a different number of dimensions for the individual embeddings of each
network: (a) 16 vs. 32, (b) 16 vs. 64, (c) 16 vs. 128, (d) 32 vs. 64, (e) 32 vs. 128, (f) 64 vs. 128.

As seen in Figure 7, accuracy of link prediction is improved with increasing number of dimen-
sions in node embeddings. The embedding of the integrated network is the most accurate one
in most cases. The link prediction accuracy of GCCA is better in lower cases, and it exceeds
the accuracy of the integrated network when number of dimensions is 16. In larger numbers of
dimensions, SVD and autoencoder perform better than GCCA.

In this part, we include another embedding method, role2vec, to show that consensus embed-
ding also works for other embedding methods. GCCA performs better than SVD or variational
autoencoder when used in consensus embedding of role2vec. Also, in the results of role2vec, the
accuracy of consensus embedding become closer and closer to the accuracy of the embedding of
the integrated network as the number of dimensions goes higher.

We also plot the AUC as a function of dimensions (Figures 8 and 9). We take all the networks in
each dataset and compute the consensus embeddings by different methods. In general, the AUC
increases as the number of dimensions increases for both node2vec and role2vec. When the num-
ber of dimensions reaches 128, the accuracy does not increase as much as the lower dimensions, so
we might not gain much accuracy improvement when we use too large dimensions. In Figure 8,
the performance of the integrated networks’ embeddings is better than consensus embeddings,
but GCCA outperforms the integrated network in Figure 9, especially for role2vec.

From these results, consensus embedding performs good or even better than the embedding of
the integrated networks. Among the three kinds of dimensionality reduction methods, the results
of SVD and variational autoencoder are similar in most experiments, and GCCA is the best one in
most cases. Average might work well when the number of dimensions is low, but becomes worse
when the number of dimensions is higher. For role2vec, average is always the worst among all the
methods.

4.5 Runtime analysis

In this section, we investigate whether consensus embeddings improve the efficiency of process-
ing link prediction queries. For this purpose, we compare the query processing time for consensus

https://doi.org/10.1017/nws.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.17

Network Science 203

(a)
node2vec role2vec
1.0 10
— integrated — integrated
svd svd
—— autoencoder —— autoencoder
09T — geea a9, — geea
— average average
ogq " 08
u u
H E *
0.7 07
0.6 0.6 1 - :il::. |
| G -
05 0.5
2 3 4 s 6 7 8 2 3 4 5 6 7 8
number of networks number of networks
number of dimensions = 16
node2vec role2vec
1.0 10
— integrated — integrated
3 svd svd
—— autoencoder —— autoencoder
0.9 — gea 0.9 — geca
A average average
=
081 &
u
H
0.7
0.6
0.5 0.5
2 3 4 H [7 8 2 3 4 5 6 7 8
number of networks number of networks
number of dimensions = 32
(©
node2vec role2vec
10 10
| — integrated — integrated
svd svd
—— autoencoder —— autoencoder
09 N — geca 09 — gcca
“ - average average
0.8
u
E
0.7
0.6
05 0.5

number of networks number of networks

number of dimensions = 64

Figure 7. Accuracy of consensus embeddings in link prediction as a function of the number of networks that are integrated.
The dataset of the experiments are the human PPI networks. Results are shown for Node2vec and Role2vec. For each point
k on the x axis, each point in the plot shows the area under ROC curve (AUC) of link prediction for a specific combination of
k network versions for 1 < k < 8. The lines show the average AUC across all combinations. The blue, yellow, red, and green
points/lines, respectively, show the accuracy provided by the embeddings computed directly on the integrated network,
consensus embeddings computed using SVD, consensus embeddings computed using variational autoencoder, consensus
embeddings computed using GCCA, and the baseline consensus embedding (average of individual embeddings).

embeddings computed using different methods (SVD, autoencoder, and so on) against embed-
dings computed at query time after integrating the combination of networks selected by the user.

The results of this analysis are shown in Figure 10. As seen in the figure, processing queries
using consensus embeddings drastically improves the efficiency of query processing. “Consensus

https://doi.org/10.1017/nws.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.17

204 M. Lietal.

node2vec role2vec
10 10
—— integrated —— integrated
— svd — svd
—— autoencoder —— autoencoder
09 — geca 091 — geca
—— average —— average
0.8 T 0.8 1
g v
B 3
0.7 0.7 1
06 061 /
05 0.5
16 2 64 128 16 32 64 128
number of dimensions number of dimensions

Figure 8. The link prediction accuracies as a function of dimensions for the human PPI data (table 1). Results are shown for
Node2vec and Role2vec. The plot shows the link prediction AUC of the consensus embeddings of all the versions when the
numbers of dimensions are 16, 32, 64, and 128.

node2vec role2vec

10 10

—— integrated — integrated

- svd - svd

—— autoencoder —— autoencoder
0.9 — gca 081 — geca

— average —— average
0.8 0.8 1

auc
auc

07 074

06 0.6 1

05 0.5
16 2 64 128 16 32 64 128

number of dimensions number of dimensions.

Figure 9. The link prediction accuracies as a function of dimensions for the yeast PPl dataset (table 2). Results are shown for
Node2vec and Role2vec. The plot shows the link prediction AUC of the consensus embeddings of all the versions when the
numbers of dimensions are 16, 32, 64, and 128.

node2vec role2vec

100 integrated

z s —— autoencoder
£ £ — gca
= _ = -1
g 107 g w —— svd
c < average
1072 102
— integrated
—— autoencoder g
1072 — gcca 10
svd
1044 = average 104
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
number of networks number of networks

Figure 10. Runtime of combinatorial link prediction queries using consensus embeddings. The blue dots (for each combina-
tion)/curves (average of all combinations with the respective number of versions) show the query time corresponding to the
“Network Integration at Query Time” approach described in Section 3.2, while the red and yellow dots/curves show the query
time corresponding to the “Consensus Embedding at Query Time”. Results are shown for Node2vec and Role2vec, using four
methods for computing consensus embeddings: SVD (yellow), Autoencoder (red), GCCA (green), and baseline concensus
embedding (orange). The number of dimensions of the plots are 64.

Embedding at Query Time” using SVD enables processing of combinatorial link prediction
queries in real time across the board, while integration of networks at query time requires orders
of magnitude more time to process these queries. In most cases, “Consensus Embedding at Query
Time” of convolutional autoencoder is also faster than “Network Integration at Query Time”, but

https://doi.org/10.1017/nws.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.17

Network Science 205

its performance degrades with increasing number of networks that are being integrated. Also, the
runtime becomes longer when the number of dimensions goes higher.

The runtime of computing an embedding increases as networks become denser, especially for
node2vec, because node2vec runs random walks starting from every nodes. As seen in 10, the blue
dots in the plots of node2vec are separated into two groups. This is because G4 is extremely dense
(see Table 1), making the integrated networks that contain G4 also dense. Therefore, combinations
that contain G4 have a significantly higher query runtime as compared to those that do not contain
G4. Computation of consensus embeddings using SVD or CCA/GCCA is more robust to this
effect. Average of individual embeddings is the fastest, even much faster than SVD or CCA, and it
is also very stable.

5. Conclusions

In this work, we consider the problem of computing node embeddings for integrated networks
derived from the multiple network versions. We focus on the performance of link prediction using
consensus embeddings compared with using the embeddings of the integrated networks.

We introduce a new dimensionlity reduction method, CCA and GCCA, into the consensus
embedding process, and generalized the method such that the input embeddings can have differ-
ent dimensions. CCA performs better than SVD or autoencoder when the numbers of dimensions
of the pairs of embeddings are different.

We test the performance of link prediction of the consensus embeddings and found that accu-
racy of consensus embeddings is similar with the accuracy of embeddings computed directly from
the integrated network. When there are only two versions, consensus embedding (for embed-
dings of the same number of dimensions) performs better than the embedding of the integrated
network in link prediction in almost all experimental tests. For more than two versions, consen-
sus embeddings also perform good or even better than the embeddings of the integrated networks,
and CCA/GCCA performs better than SVD or variational autoencoder in most cases, especially
when the embedding method is role2vec.

From our results, linear methods like CCA/GCCA and SVD work better than nonlinear
methods like autoencoder. We guess that there are two main reasons:

o Network embedding algorithms use linear models to represent the proximity of nodes in a
network, thus linear methods may perform better in computing consensus embeddings.

o Autoencoder is a neural-network based method, thus it may need more training data, i.e.
the networks we are working with may be too small (in terms of the number of nodes) or
too sparse for them to learn reliable latent patterns. To this end, autoencoders require more
hyperparameters to be tuned, e.g. the number of layers, and the dimensions of each layer,
which may also have an adverse effect on their reliability.

Also, dimensionality reduction methods work better than using the average of the individuals
in predicting new links. In general, consensus embedding performs good link prediction com-
pared to the embeddings of the integrated networks, especially for smaller numbers of versions
and larger numbers of dimensions.

Moreover, from our runtime analyses, consensus embedding is much more efficient than
computing the embeddings of the integrated networks, especially for large networks.

Competing interests. None.

References

Ahmed, N. K, Rossi, R. A,, Lee, . B., Willke, T. L., Zhou, R., Kong, X., & Eldardiry, H. (2019). role2vec: Role-based network
embeddings. In Proc. DLG KDD (pp. 1-7).

https://doi.org/10.1017/nws.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.17

206 M. Lietal.

Cavallari, S., Zheng, V. W., Cai, H., Chang, K. C. C., & Cambria, E. (2017, November). Learning community embedding with
community detection and node embedding on graphs. In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management (pp. 377-386).

Cho, H., Berger, B., & Peng, J. (2016). Compact integration of multi-network topology for functional analysis of genes. Cell
Systems, 3(6), 540-548.

Cowman, T., Coskun, M., Grama, A., & Koyutiirk, M. (2020). Integrated querying and version control of context-specific
biological networks. Database, 2020.

De S4, H. R., & Prudéncio, R. B. (2011, July). Supervised link prediction in weighted networks. In The 2011 International Joint
Conference on Neural Networks (pp. 2281-2288). IEEE.

Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A,, ... & Jensen, L. J. (2012). STRING v9. 1:
protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Research, 41(D1), D808-
D815.

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based
Systems, 151, 78-94.

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 855-864).

Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28(3/4), 321-377. doi:10.2307/2333955

Jameschapman19. (2020). jameschapmanl9/cca_zoo: First pre-release (v1.1.6) [Computer software]. Zenodo.
https://doi.org/10.5281/ZENODO.4382740

Kettenring, J. R. (1971). Canonical analysis of several sets of variables. Biometrika, 58(3), 433-451.

Kuo, T. T., Yan, R, Huang, Y. Y., Kung, P. H,, & Lin, S. D. (2013, August). Unsupervised link prediction using aggrega-
tive statistics on heterogeneous social networks. In Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (pp. 775-783).

Li, M., & Koyutiirk, M. (2020). Consensus embeddings for networks with multiple versions. In International Conference on
Complex Networks and Their Applications (pp. 39-52). Cham: Springer.

Martinez, V., Berzal, F., & Cubero, J. C. (2016). A survey of link prediction in complex networks. ACM computing surveys
(CSUR), 49(4), 1-33.

Masci, J., Meier, U., Ciresan, D., & Schmidhuber, J. (2011, June). Stacked convolutional auto-encoders for hierarchical feature
extraction. In International Conference on Artificial Neural Networks (pp. 52-59). Berlin, Heidelberg: Springer.

Park, C., Kim, D., Han, J., & Yu, H. (2020, April). Unsupervised attributed multiplex network embedding. In Proceedings of
the AAAI Conference on Artificial Intelligence (Vol. 34(04), pp. 5371-5378).

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of
the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 701-710).

Rossi, R. A, Jin, D, Kim, S., Ahmed, N., Koutra, D., & Lee, J. (2019). From community to role-based graph embeddings.
ArXiv, abs/1908.08572.

Rozemberczki, B., Davies, R., Sarkar, R., & Sutton, C. (2019, August). Gemsec: Graph embedding with self clustering. In
Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (pp.
65-72).

Stark, C., Breitkreutz, B. J., Reguly, T., Boucher, L., Breitkreutz, A., & Tyers, M. (2006). BioGRID: A general repository
for interaction datasets. Nucleic Acids Research, 34 (Database issue), D535-D539. https://doi.org/10.1093/nar/
gkj109

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015, May). Line: Large-scale information network embedding. In
Proceedings of the 24th International Conference on World Wide Web (pp. 1067-1077).

Uurtio, V., Monteiro, J. M., Kandola, J., Shawe-Taylor, J., Fernandez-Reyes, D., & Rousu, J. (2017). A tutorial on canonical
correlation methods. ACM Computing Surveys (CSUR), 50(6), 1-33.

Yue, X., Wang, Z., Huang, J., Parthasarathy, S., Moosavinasab, S., Huang, Y., ... & Sun, H. (2020). Graph embedding on
biomedical networks: methods, applications and evaluations. Bioinformatics, 36(4), 1241-1251.

A preliminary version of this paper is cited as follows: Li, M., & Koyutiirk, M. (2020). “Consensus embeddings for networks
with multiple versions” in International Conference on Complex Networks and Their Applications (pp. 39-52). Cham: Springer.
https://doi.org/10.1007/978-3-030-65351-4_4

Cite this article: Li M., Coskun M. and Koyutiirk M. (2022). Consensus embedding for multiple networks: Computation and
applications. Network Science 10, 190-206. https://doi.org/10.1017/nws.2022.17

https://doi.org/10.1017/nws.2022.17 Published online by Cambridge University Press

https://doi.org/10.1093/nar/gkj109
https://doi.org/10.1093/nar/gkj109
https://doi.org/10.1007/978-3-030-65351-4_4
https://doi.org/10.1017/nws.2022.17
https://doi.org/10.1017/nws.2022.17

	Consensus embedding for multiple networks: Computation and applications
	Introduction
	Background
	Node embedding
	Consensus embedding
	Link prediction

	Methods
	Computing consensus embeddings
	Baseline consensus embedding:
	Singular value decomposition (SVD):
	Variational autoencoder:
	Canonical correlation analysis (CCA):
	Generalized canonical correlation analysis (GCCA):

	Processing combinatorial link prediction queries for versioned networks

	Experimental results
	Datasets
	Experimental setup
	Link prediction for pairs of versions
	Two embeddings with same dimensions
	Two embeddings with different dimensions

	Link prediction for multiple versions
	Runtime analysis

	Conclusions

