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Abstract: Almost periodic solutions of a first order almost periodic differential
equation in RP are shown to have less than p basic frequencies additional
to the basic frequencies of the almost periodic right hand of the equation.

1. Introduction

This paper is concerned with the frequency basis of an almost periodic
solution of the differential equation

(1 x' = y(x,1)

where x’ = (dx/dr), xe R? and Y¥(x,t) is almost periodic in t, uniformly for x
in any bounded subset of R?. When (x, t) satisfies sufficient conditions for the
solutions of (1) to be uniquely determined by their initial conditions we show
that the codimension of the frequency basis of /(x, t) with respect to the frequency
basis of any almost periodic solution of (1) is less than p. This includes two
special cases of particular interest. When equation (1) is autonomous the frequency
basis of an almost periodic solution contains no more than (p — 1) elements, and
when Y(x, 1) is periodic, and hence has only one element in its frequency basis,
the frequency basis of any almost periodic solution contains no more than p
elements.

This problem, with equation (1) Lipschitzian, has been considered recently
by Cartwright, [2] and [3]. The autonomous and periodic cases are dealt with in
the former paper while the latter is devoted to the general almost periodic case.
Cartwright uses the techniques of topological dynamics (see [6]) and examines
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the properties of certain almost periodic flows. In [3], the technical difficulties
encountered in using flows for non-autonomous equations as developed by
Sell, [10] and [11], and others, are overcome by finding a particular flow associated
with an almost periodic solution of (1) which allows the general case to be reduced
to an application of the results of [2]. Further, Lerman and Shilnikov have
recently announced some related results in [9]. They consider quasi-periodic
solutions of (1) and construct an r-parameter family of solutions which form an
integral manifold homeomorphic to the tube T" x R, where T7 is the r-dimen-
sional torus.

Here, by extending a technique due to W. A. Coppel we are able to give a
short, direct proof of Cartwright’s results. Our method incidentally generalises
the construction of Lerman and Shilnikov to the almost periodic case. It has the
additional advantages of not using topological dynamics or the concept of trans-
lation numbers of an almost periodic function. Furthermore the means by which
we avoid considering all equations in the closed hull of (1) can be applied to other
problems associated with almost periodic solutions of equation (1).

In Section 2 we give precise definitions and a statement of the general theorem.
Section 3 is devoted to the statement and proof of the theorem for the auto-
nomous case. While the general result is not proved by reducing it to the auto-
nomous case, as in [3], the simpler autonomous case provides a concise introduc-
tion to our method and shortens the proof of the general theorem in Section 4.
We make some concluding remarks in Section 5.

2. Definitions and Theorem 1

Since translation numbers play no part in this paper we adopt Bochner’s
criterion as our definition of an almost periodic function. A continuous (vector
valued) function ¢(t) is said to be almost periodic if every sequence {h,} of real
numbers contains a subsequence {k,} such that ¢(t + k,) converges uniformly on
the whole real axis R. )

The set of all almost periodic functions is a Banach space with respect to the
uniform norm

Il = sup [40)].

i
—0<t<ow

The closed hull of an almost periodic function ¢(f) is the set of all almost periodic
functions y(f) such that ¢(¢ + k,) — y(¢), with respect to the above norm, for some
real sequence {k,}, that is, uniformly on R.

To an almost periodic function ¢(#) in R” there corresponds a unique
Fourier expansion

2 dp) ~ X ce*

v=1
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where the Fourier coefficients ¢, are non-zero vectors in R, the numbers A, are
real and distinct, and the number of terms is finite or countably infinite.

The numbers A4, are called the frequencies. A set of real numbers §,, 8,, -+, is
called a basis for the set of frequencies {4,} or a frequency basis for the almost
periodic function ¢(¢) if they form a basis for the vector space generated by the
frequencies A, over the field of rational numbers. Thus each i, can be uniquely
expressed in the form

Pv
3 A, = X ry,B,, r,, rational, r,, #O0.
u=1

Each member of the closed hull of an almost periodic function ¢(¢) has the same
frequencies as ¢(). An almost periodic function does not have a unique frequency
basis, but for definiteness we select a standard basis as follows.

Let ¥(t) be an almost periodic function with Fourier expansion

) W) ~ T el
v=1

where the frequencies A} are real and distinct and the coefficients ¢¥ are non-zero
vectorsin R?. Put vy = 1 and ¥ = A.*. Let v, be the least integer v > 1 such that
Ay is not a rational multiple of B} and put g% = A%. In general, having defined
BY = Ay, Bx = A),, let v, be the least integer v > v, such that A} is rationally

independent of B, ---, B and put By, = A} . . In this way we define a finite or

infinite sequence {Bf} of rationally independent frequencies such that every
frequency A* can be uniquely expressed in the form

&) Ay = sy BT+ sk BT+ - + sy BY

with rational coefficients s}, and s}, # 0. That is, we obtain a basis for the set
of frequencies, each member of the basis being itself a frequency.

We extend the standard frequency basis for y(f) to a frequency basis for ¢(r)
and define the standard additional basis of {1,} with respect to {17} as follows.
Let v; be the least integer v such that A, is rationally independent of g}, 8%, -+,
and put f; = 4, . Let v, be the least integer v > v, such that A, is rationally
independent of B,,B7,B3,-+ and put B, = A,,. In general, having defined
By = A, Bs = 4, let v, ., be the least integer v > v, such that A, is rationally
independent of B,,8,,-,B,,B1,B3, - and put B,,, =4, . . In this way we
define a finite or infinite sequence {f;} of rétionally independent frequencies,
which, together with the sequence {Bf}, form a basis for {4,}, {1¥}. Moreover
every frequency {4,} can be uniquely expressed in the form

*
Py P

(6) =X rbu+ X r;"uB:
n=1 u=1
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with rational coefficients r,,, r}, and r,, # O for each A, which is not rationally
dependent on the elements of the set {85 }. It should be observed that the standard
additional basis {f,} alone is not, in general, a basis for {1,} without the elements
of the basis {f¢} for {1}}.

All of the above applies without change to almost periodic functions de-
pending uniformly on parameters (see, for example, Corduneanu [5], Chapter II).
We consider the differential equation (1) and suppose that y(x, 1) has the Fourier
series

0 Yx, )~ T cXx)e™
v=1

where the coefficients ¢¥(x) are not identically zero. We now state the main
theorem.

THEOREM 1. Let the differential equation
x" = yY(x,1),

where x' = dx|dt, xe R? and Y(x,t) is almost periodic in t, uniformly for x
in any bounded subset of R?, satisfy conditions sufficient for its solutions to be
uniquely determined by their initial values for all (x,t)e R” x R. Let ¢(t) be
an almost periodic solution of this differential equation. Then the codimension
of the frequency basis of Y(x,t) with respect to the frequency basis of $(t) is at
most p — 1.

We prove this result in Section 4 by showing that the standard additional
basis has less than p elements. Thus, without loss of generality we assume that
ryp, # 0in (6) for at least one value of v.

3. The autonomous case
For the autonomous equation
x' = P(x)

where x' = dx/dt, x € R?, let y(x) satisfy sufficient conditions for the solutions
of this equation to be uniquely determined by their initial conditions. Let ¢() be
an almost periodic solution with Fourier series

()~ T ce™
v=1

Then the set {87} is empty and the standard additional basis is just the standard
basis. Thus we need only show that this basis contains less than p elements.

Since the equation is autonomous translates of ¢(t) are also solutions of the
equation. We use this property to show that all of the functions ¢(t, 1,75, )
with Fourier series
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d)(t, Tl’ s, _") ~ E Cvei(rv1ﬂ111+...+r'p _ﬂpvrpv)ei).vt
v=1
which are in the closed hull of ¢(f), are also solutions. In particular, by
considering the initial values of these solutions we then show that R” contains
a homeomorphic image of the ‘‘cube’’

for any m < sup, p,. Hence sup, p, < p. A further argument shows that equality
cannot hold.

THEOREM 2. Let ¢(t) be an almost periodic solution of the autonomous
differential equation

(8) x" = ¥(x),

where x' = dx/dt, x € R?, with Fourier expansion

o)~ X ce™.
v=1
Let yi(x) satisfy sufficient conditions for the solutions of this equation to be
uniquely determined by their initial values. Then for any sequence of real
numbers {t,} there exists an almost periodic function ¢(t,7y,75,:+) in the
closed hull of ¢(t) with Fourier expansion

¢(t, 4, T3, ) ~ Z cvei(rvlﬁ,u +...+rvpvﬂpv)etkvt’
v=1

where
Zv = rvlﬁl + rv2ﬁ2 + e+ r\'pvﬁpva V= 1,2’ Tt

Moreover, ¢(t,1,,75,+) is also a solution of equation (8).

Proor. For each positive integer N, we write Py = max,=y,3,..xP» and f;
for the lowest common multiple of the denominators of the rational numbers
r, v=12-,N. The numbers [2n/B)f;]"', j=1,2,,Py are linearly
independent over the integers. Thus according to Kronecker’s Theorem ([7],
Theorem 444, p. 370) to each integer N and any 6 > 0 there corresponds a
real number ty and a set of integers k; such that

2n ' .
|:N—r,.—le,k,.|<a, j=1,2-,Py.
J

That is

|tN - TJ'| <d (mOd 27;’:’)9 ] = 1-92""’PN'
i
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By selecting é small enough we obtain

1
N’

lei(rvxlhn+...+rvpvﬂpvtpv) _ el'lvl‘.\' ' § V= 1, 2, ) N.

Since these inequalities continue to hold when the sequence {ty} is replaced
by any subsequence we can suppose that ¢(t + ty) converges uniformly for all
real t as N — co. The limit (1), say, is in the closed hull of ¢(¢) and has the
Fourier series

1) ~ Z ae™
where v=l

ihyty i(rviBity +"'+'vaﬁpv'pv)

a,= lim ce = c,e .

N-o>w

It remains now to prove that

X(t) = ¢(t’ T1, T2 "')

is also a solution of (8). It is sufficient to show, that if the real sequence {ty} is
such that &y = ¢(ty) > & as N — oo then ¢(¢t + ty) converges uniformly to the
solution w(t) of (8) with initial value & at t = 0.

In fact ¢(t + ty) is the almost periodic solution of (8) which takes the value
&y for t = 0. Any subsequence of {ty} contains a further subsequence {ty} such
that ¢(t + t)) converges uniformly for all real t. Because of the continuous de-
pendence of solutions on initial values (Coppel [4], Theorem 3) the limit function
must be w(t). Since the limit is independent of the choice of subsequence the
whole sequence ¢(f + ) must converge uniformly to w(f).

Thus if we denote by .# the closure of the range of ¢(¢) there is a function in
the closed hull of ¢(#) which is a solution of (8) and has as initial value any point of
#. The next result shows that for integers m < sup, p, there is a local homeo-
morphism between the initial values of the solutions ¢(t, t,,7;, ", T, 0,0, ---) and
the points (74,73, **, Tr)-

LemMMA 1. For any m < sup, p, the set # contains a homeomorphic image
of the cube

€:0 < Tk = n/ﬂk’ (k = 1’2""’ m)'
Proor. If

¢(0, 1'.1” T;’ '”) = ¢(0’ 1,1’71’2,9 "')

then the solutions ¢(t, 1,75, -+) and ¢(t, 17,75, --+) of (8) coincide because they
have the same initial value. Therefore they have the same Fourier coefficients.
That is,
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® rabi(ty — 1) + - + 1, B (75, — 75,) = 0 (mod 2m)
for all v. Since B, = 4, is rationally independent of the preceding f’s we have
Foow=1, 7, =0 for k # n.
Therefore taking v = v, in the preceding congruence we obtain
1, — 1, = 0 (mod2x/f,).

Let m be a fixed positive integer not exceeding the number of elements in
the basis B,, that is m < sup, p,. Suppose 0 < 7, 7y < n/f, for k = 1,---,m and
1, = 14 = 0 for k > m. Then if (9) holds we must have

=1 for k=1, m.
Thus the map
T:(ty, T » PO, 74,72, .7, 0,0,++)
of the “‘cube”
€:0=7 2 (k=1,--,m)

into R? is one-to-one. That this map is also continuous may be seen in the fol-
lowing way.

For any & > 0, there exists a trigonometric polynomial (e.g. the Bochner-
Fejér polynomial, see Besicovitch [1], pp. 46-51)

M Py
pit)= X p,ce™

v=1
with rational coefficients p, depending only on & and the A’s and satisfying
0 £ p, < 1, such that
|¢(t)—p(t)| Sefor —0<t< .

Moreover if we replace ¢(¢) by any function x(¢) in its closed hull and the Fourier
coefficients ¢, of ¢(f) by the corresponding Fourier coefficients y(f) then this
inequality continues to hold. We can now choose ¢ = d(g) > 0, so that if

-t 26,  (k=1,-m)

the first M Fourier coefficients of ¢(t, 13, 73, -+, 7,, 0, 0, ---) and ¢(¢, 7, 13, ---,
Tm,0,0,---) satisfy

’ "

c,— ¢

é XS’I— (V = 1a2,""M)'

Then the corresponding trigonometric polynomials satisfy
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|p()—p' (O] Se for —o0 <t <0,
and hence

lo(t, 7(, 75, -+, 1 0,0, +) — $(t, 77,75, -+, 71, 0,0, ) | < 38 for — o0 <1 < o0.

Since the cube € is compact, the inverse map T ~! is also continuous. Therefore
the set .# contains a homeomorphic image of %.

We can now proceed to the statement and the proof of Theorem 1 for the
autonomous case.

THEOREM 3. Let ¢(t) be an almost periodic solution of the autonomous
differential equation

x" = Y(x)

where x’ = dx/dt, xe€ RP. Let y(x) satisfy sufficient conditions for all of the
solutions of this equatiion to be uniquely determined by their initial conditions.
Then the frequency basis of ¢(t) contains less than p elements.

Proor. It follows from Lemma 1 that the dimensionst of the sets € and .#
satisfy the inequality

m = dim% £ dim 4.

On the other hand dim.# < p since # < RP. Therefore m < p. Thus {f,} the
frequency basis of ¢(f) contains at most p elements.

It remains to show that this basis contains strictly less than p elements.
Otherwise, if dim% = p, € contains a non empty open subset of R?. Therefore
# contains a non empty open subset G of R”. Let 7 be a point on the boundary
of the compact set .# and let x(¢) be the solution of (8) which takes the value 5
for t = 0. Since the range of x(¢) is dense in .# there is an £, € G and some t,e R
such that x(t,) = &,. For any £ e G let ¢(t; &) denote the solution of (8) which
takes the value ¢ for t = 0. In particular ¢(t; &) = x(t+1,).The map & ¢(—14; &)
is a homeomorphism of a neighbourhood of &, onto a neighbourhood of
¢( — to, &) = n. But this contradicts our choice of n as a boundary point of .

This completes the proof of Theorem 3.

4. The proof of Theorem 1

As in the preceding section we consider a whole family of solutions which
belong to the closed hull of the given almost periodic solution. However, in this
case these solutions are generated from the additional frequency basis of the
solution. The following analogue of Theorem 2, while in principle unchanged,

t For the properties of dimension which we require see Hurewicz and Wallman [8), in partic-
ular Theorems 3.1, 4.1 and 4.3.
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becomes more complicated to prove, since only particular sequences of translates
of the given solution converge to solutions of the equation.

THEOREM 4. Let ¢(t) be an almost periodic solution of the almost periodic
differential equation

(10) X' = y(x,1)

where x’ = dx/dt, x € R?, Y(x,t) is almost periodic in t, uniformly with respect
to x for x in any bounded subset of R? and ¢(t) and Y(x,t) have Fourier series

¢(t)~ z cveith

v=1
and

Y0~ T cxe™,

v=1

where

p noL
3 *
/'v= eruﬁu+zrvpu’

n=1 p=1

Gy
A= X spBl

pu=1

{Bi} is the standard frequency basis of Y(x, t), and {B,} is the standard additional
basis of ¢(t). Let Y(x, t) satisfy sufficient conditions for the solutions of (10) to be
uniquely determined by their initial values. Then, for any real numbers {t,}
there exists an almost periodic function ¢(t,7,,7,,-+) in the closed hull of
¢(t) with Fourlier expansion

1, T1,T, 0 ) ~ X ¢, @ BimE A rvpBptp) o,
v=1

Moreover ¢(t,1,,7,,+) is also a solution of (10).
PROOF' write PN = maxv=l,2,...,N pv’ PI;'; = rrlax\;=1,2,...,I‘1 {p:" qv}’ fj fOl’ the

lowest common multiple of the quotients of the rational numbersr ;,v=1,2,..-,N
and g; for the lowest common multiple of the denominators of the rational

numbers rf, s, v = 1,2, N. Set

vjs

n = PN+P:
T i = 1,2,""PN

0 i=Py+1,-,Py+P}
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2
_l;—rfl i= 1,29"'1PN
q; = l2
i . *
ﬂ* gi_PNl=PN+1,"',PN+PN.
i—PN

The numbers g7*,q, %, ---,q,”* are linearly independent over the integers. From
Kronecker’s Theorem ([7], Theorem 444, p. 370) corresponding to any & > 0
there exist integers k,, -+, k, and a real number ¢ such that

Ié—a,-—k,-qi|<5, i=1,2,--,n.

Writing ¢ = ty and k{ = k;,p, we have

2n
Zfiki| <8, for i = 1,2, Py,

-u=
and
It ;*g, =1,2, .-, Py
That is
ItN—'r,.| <5(mod%f,-), for i =1,2,--+, Py,
and

ltN| <5(modﬁ*g,), for i = 1,2,.-, P¥.

By combining these inequalities, and by selecting § small enough

11 el("vlﬁxn+...+rvpopvrpv)—llvtN _ 2

(11 | <y

and for v =1,2,-+ N
(12) M — 1] <o for v = 1,20, N

Since these inequalities continue to hold when the sequence {t} is replaced
by any subsequence we can suppose that both y(x,t + ty) and ¢(t + t,) converge
uniformly for all real ¢ as N — co. The function ¥(x, t + ty) converges to y(x, t).
For, the Fourier series of y(x, t + ty) is

Z ¢ (x)l). N l}.t

and the Fourier series of limy_, , y(x, t + ty) is
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Z cX(x)e™!
v=1

therefore, since the Fourier series of an almost periodic function uniquely deter-
mines the function

Y(x,t + ty) = Y(x, 1), uniformly.
Similarly
¢t + ty) —> 10
uniformly, where x(¢) has the Fourier series

A~ X ae™,

v=1

a, = lim cveilvm — cvei(""ﬂ‘“+-~-+’vpvﬁpv'pv)

N

Evidently we have
#(1,0,0,---) = (1)

Let {ty} be any real sequence such that Y(x,t + ty) = y(x, ) uniformly as
N — 00. We will show that if &y = ¢(ty) = £ as N — oo then ¢(t + ty) converges
uniformly on R to w(t) where w(?) is the solution of (10) such that w(0) = &.

In fact ¢(¢ + ty) is the almost periodic solution of
x" = Y(x,t + ty)

which takes the value &y for t = 0. It follows from a standard theorem (Coppel [4],
Theorem 3) that ¢(¢ + ty) converges uniformly on every compact interval of R.
But any subsequence {ty} of {ty} contains a further subsequence {ty} such that
¢(t + ty) converges uniformly for all real t and since the limit w(t) is independent
of the choice of subsequences the whole sequence ¢(t + ty) must converge to w(f)
uniformly on R.

Hence the functions ¢(,1,,1,,---) are all almost periodic solutions of (10).
Observe that these functions in general form a smaller set than in the autonomous
case, since we only admit functions obtained from ¢(f) by sequences {ty} for
which ¥(x,t + ty) = Y(x, ) uniformly with respect to x, for x in any bounded
subset of RP.

As in Section 3 we denote by .# the closure of the range of ¢(). Then the
initial values of the solutions ¢(t,1,,7,,-:-) for all sequences (74, 7,,+:-) form a
subset of #. The statement and proof of Lemma 1 now hold for this situation.

We now proceed to the proof of Theorem 1. We obtain from Lemma 1 that

m = dim% £ dim 4.
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On the other hand dim # < p, since # < R’. Therefore

m s p.

It remains to show that m # p. The argument of Theorem 3 applies unchanged'.
This completes the proof of Theorem 1.

5. Conclusion

In the article [2] Cartwright shows that in the autonomous case when
p = n — 1 the frequency basis is an integral basis. Thus

Ay=nyByr+ngfy+ 4 n, 18,4,
v=1,2,..., with n,, integers,
and the almost periodic solution ¢(t) is quasiperiodic. In other words,
¢ = 0,1, -, 1)

where ®(t;,1,,-,t,—¢) is periodic in f; with period 2n/f;, i=1,2,-.-,p—1.
Since the proof of the result for the almost periodic equation (8) is reduced to
the autonomous case this implies that in [3] when p = n — 1 the additional
frequency basis is integral and we have for the frequencies of the almost periodic
solution,

p-1 p; -
Ay= X n, B, + X ripl
p=1 p=1

This result has an independent proof in [2] which can be applied directly here.

If Y(x, t) satisfies a Lipschitz condition with Lipschitz constant independent
of t then every ¥(x,t) in the closed hull of Y(x, t) satisfies a Lipschitz condition
and the solutions of each ditferential equation

x" = ¥(x,1)

are uniquely determined by their initial values. Cartwright’s version of Theorem 1
assumes that y(x, t} is Lipschitzian, but not in an essential way.
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