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Abstract

We describe a general setting for the definition of semi-infinite cohomology of finite-
dimensional graded algebras, and provide an interpretation of such cohomology in
terms of derived categories. We apply this interpretation to compute semi-infinite
cohomology of some modules over the small quantum group at a root of unity,
generalizing an earlier result of Arkhipov (posed as a conjecture by B. Feigin).

1. Introduction

Semi-infinite cohomology of associative algebras was studied by Arkhipov in [Ark97a, Ark97b,
Ark98a]; see also [Sev01]. (These works are partly based on an earlier paper by Voronov [Vor93],
where the corresponding constructions were introduced in the context of Lie algebras.)

Recall that the definition of semi-infinite cohomology (see, e.g., [Ark97a, Definition 3.3.6])
applies in the following set-up. Suppose we are given an associative graded algebra A and two
subalgebras N, B ⊂A, such that A=N ⊗B as a vector space, and satisfy some additional
assumptions are satisfied. In this situation, the space of semi-infinite extensions, Ext∞/2+•(X, Y ),
is defined for X and Y in the appropriate derived categories. The definition makes use of explicit
complexes (a version of the bar resolution). The aim of this article is to show that, at least under
certain simplifying assumptions, Ext∞/2+•(X, Y ) is a particular case of a general categorical
construction.

To describe the situation in more detail, recall that starting from an algebra A=N ⊗B as
above, one can define another algebra A#, which also contains subalgebras that can be identified
with N and B so that A# =B ⊗N . The semi-infinite Ext functor, Ext∞/2+•(X, Y ), is then
defined for X ∈D(A#-mod) and Y ∈D(A-mod), where D(A#-mod) and D(A-mod) are derived
categories of modules with certain restrictions on the grading.

Our categorical interpretation relies on the following construction. Given small categories A,
A′ and B with functors Φ : B →A and Φ′ : B →A′, one can define for X ∈ A and Y ∈ A′ the set
of morphisms from X to Y through B; we denote this set by HomABA′(X, Y ). We then show that
if A=Db(A#-mod), A′ =Db(A-mod), and B is the full triangulated subcategory in A generated
by N -injective A#-modules, then B is identified with the full subcategory in A′ generated by
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Semi-infinite cohomology

N -projective A-modules and, under certain assumptions, one has

Ext∞/2+i(X, Y ) = HomABA′(X, Y [i]). (1)

Notice that description (1) of Ext∞/2+i(X, Y ) is ‘internal’ in the derived category, i.e. it refers
only to the derived categories and their full subcategories rather than to a particular category
of complexes.

An example of the situation considered in this paper is provided by a small quantum group
at a root of unity [Lus90] or by the restricted enveloping algebra of a simple Lie algebra in
positive characteristic. The computation of semi-infinite cohomology in the former case is due to
Arkhipov [Ark97a, Ark98b] (with the answer posed as a conjecture by B. Feigin). An attempt
to find a natural interpretation of this answer was the starting point for the present work. In
§ 6 we sketch a generalization of Arkhipov’s theorem based on our description of semi-infinite
cohomology and the results of [ABG04, BL07]. Similarly, the main result of [Bez06] yields a
description of semi-infinite cohomology of tilting modules over the ‘big’ quantum group restricted
to the small quantum group as cohomology with support of coherent IC sheaves on the nilpotent
cone [AB10, Bez00a].

It should be noted that some definitions of semi-infinite cohomology found in the literature
apply in a more general (or different) situation than the one considered in the present paper. An
important example is supplied by affine Lie algebras; in fact, semi-infinite cohomology was first
defined in that context, in relation to the physical notion of BRST reduction. We hope that our
approach can be extended to a more general setting such as this. Some of the ingredients needed
for the generalization are provided by [Pos07].

The paper is organized as follows. Section 2 is devoted to basic general facts about ‘Hom
through a category’. Section 3 contains the definition of the algebra A# and a summary of its
properties. In § 4 we recall the definition of semi-infinite cohomology in the present context, and
in § 5 we prove the main result linking that definition to the general categorical construction of
§ 2. In § 6 we discuss the example of a small quantum group.

2. Morphisms through a category

2.1 Preliminaries

Let A, A′ and B be small categories, and let Φ : B →A and Φ′ : B →A′ be functors. Fix
X ∈Ob(A) and Y ∈Ob(A′). We define the set of morphisms from X to Y through B as π0

of the category of diagrams

X
a−→ Φ(Z); Φ′(Z) a′−→ Y, Z ∈ B. (2)

This set will be denoted by HomABA′(X, Y ). Thus elements of HomABA′(X, Y ) are diagrams of
the form (2), with two diagrams (a1, Z1, a

′
1) and (a2, Z2, a

′
2) being identified if the objects Z1 and

Z2 can be connected by a chain of morphisms in category B satisfying the natural compatibility
condition. Specifically, a morphism f : Z→W in B identifies two diagrams (a, Z, a′) and (c, W, c′)
whenever c= Φ(f) ◦ a and a′ = c′ ◦ Φ′(f).

If the categories and the functors are additive (respectively, R-linear for a commutative
ring R), then HomABA′(X, Y ) is an abelian group (respectively, an R-module); to add two
diagrams of the form (2), one sets Z = Z1 ⊕ Z2 with the obvious arrows.
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We have the composition map

HomA(X ′, X)×HomABA′(X, Y )×HomA′(Y, Y ′)→HomABA′(X
′, Y ′);

in particular, in the additive setting, HomABA′(X, Y ) is an End(Y )–End(X)-bimodule.

2.2 Pro/Ind representable case

If the left adjoint functor ΦL to Φ is defined on X, then

HomABA′(X, Y ) = HomA′(Φ′(ΦL(X)), Y ),

because in this case the above category contracts to the subcategory of diagrams of the form

X
can−→ Φ(ΦL(X)); Φ′(ΦL(X))→ Y,

where ‘can’ stands for the adjunction morphism. If the right adjoint functor Φ′R is defined on Y ,
then

HomABA(X, Y ) = HomA(X, Φ(Φ′R(Y )))

for similar reasons.
More generally, we have the following theorem.

Proposition 1. Fix X ∈ A and Y ∈ A′. Assume that the functor FX : B → Sets, Z 7→
HomA(X, Φ(Z)) can be represented as a filtered inductive limit of representable functors
Z 7→HomB(ι(S), Z) where S ∈ I and ι : I → Bop is a functor between small categories. Then
we have

HomABA′(X, Y ) = lim−→
S∈I

HomA′(Φ′ι(S), Y ).

Alternatively, assume that the functor FY : Bop→ Sets, Z 7→Hom(Φ′(Z), Y ) can be represented
as a filtered inductive limit of representable functors Z 7→HomB(Z, ι(S)) where S ∈ I and
ι : I → B. Then

HomABA′(X, Y ) = lim−→
S∈I

HomA(X, Φι(S)).

Remark 1. The assumptions of the proposition can be rephrased by saying in the first case that
the functor FX is represented by the pro-object lim←− ι, and in the second case that the functor
FY is represented by the ind-object lim−→ ι.

Remark 2. The results of the proposition can be further generalized as follows. Fix X ∈ A
and Y ∈ A′; let ι : B′→B be a functor between small categories. Assume either that for
any morphism X → Φ(Z) the category of pairs of morphisms X → Φι(S), ι(S)→ Z making
the triangle X → Φι(S)→ Φ(Z) commutative is non-empty and connected, or that for any
morphism Φ′(Z)→ Y the category of pairs of morphisms Z→ ι(S), Φ′ι(S)→ Y making the
triangle Φ′(Z)→ Φ′ι(S)→ Y commutative is non-empty and connected. Then the natural map
HomAB′A′(X, Y )→HomABA′(X, Y ) is an isomorphism.

Example 1. Let M be a Noetherian scheme, and let A=A′ =Db(CohM ) be the bounded derived
category of coherent sheaves on M ; let Φ = Φ′ : B ↪→A be the full embedding of the subcategory
of complexes whose cohomology is supported on a closed subset i :N ↪→M . Then the right
adjoint functor i∗ ◦ i! is well-defined as a functor to a ‘larger’ derived category of quasi-coherent
sheaves, while the left adjoint functor i∗ ◦ i∗ is a well-defined functor to the Grothendieck–Serre
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Semi-infinite cohomology

dual category, the derived category of pro-coherent sheaves (introduced in Deligne’s appendix
to [Har66]).

Let C• be a complex of coherent sheaves representing the object X ∈Db(CohM ). Let
Xn be the object in the derived category represented by the complex Cin = Ci ⊗OM/J nN
(the non-derived tensor product), where JN is the ideal sheaf of N . For F ∈ B we have
lim−→Hom(Xn, F) ∼−→ Hom(X, F). Thus, upon applying Proposition 1 to ι : Z+→B given
by ι : n 7→Xn, we get

HomABA(X, Y ) = lim−→Hom(Xn, Y ) = Hom(i∗(i∗(X)), Y ) = Hom(X, i∗(i!(Y ))).

In particular, if X =OM is the structure sheaf, we get

HomABA(OM , Y [i]) =H i
N (Y ), (3)

where H•N (Y ) stands for cohomology with support on N (see, e.g., [Har66]).

2.3 Triangulated full embeddings
In all of the examples below, A, A′ and B will be triangulated, and Φ and Φ′ will be full
embeddings of a thick subcategory. Assume that this is the case and that, moreover, A=A′ and
Φ = Φ′.

Proposition 2. We have a long exact sequence

HomABA(X, Y )→HomA(X, Y )→HomA/B(X, Y )→HomABA(X, Y [1]).

Proof. The connecting homomorphism HomA/B(X, Y )→HomABA(X, Y [1]) is constructed as
follows. Let X ←X ′→ Y be a fraction of morphisms in A representing a morphism X → Y
in A/B; the cone K of the morphism X ′→X belongs to B. Assign to this fraction the
diagram X →K;K→ Y [1], where the morphism K→ Y [1] is defined as the composition
K→X ′[1]→ Y [1].

All the required verifications are straightforward; the hardest one to check is that the sequence
is exact at the term HomA/B(X, Y ). Here one shows that for any two diagrams X →K ′;K ′→
Y [1] and X →K ′′;K ′′→ Y [1] connected by a morphism K ′→K ′′ which makes the two triangles
commute, and for any two fractions X ←X ′→ Y and X ←X ′′→ Y to which the connecting
homomorphism assigns the respective diagrams, one can construct a morphism X ′→X ′′ that
makes the triangle formed by X ′, X ′′ and X commutative; the triangle formed by X ′, X ′′ and
Y will then commute up to a morphism X → Y . 2

3. The algebra A# and modules over it

All algebras below will be associative unital algebras over a field k.

3.1 The set-up
We make the following assumptions. A Z-graded finite-dimensional algebra A and graded
subalgebras K =A0, B =A60 and N =A>0 ⊂A are fixed and satisfy the following three
conditions.

(i) B =A60 and N =A>0 are graded by, respectively, Z60 and Z>0, and K =B ∩N is the
component of degree zero in N . Notice that we do not assume A60 and A>0 to be
the maximal non-positively graded and maximal non-negatively graded subalgebras of A,
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nor do we assume A0 to be the whole zero-degree component of A. The grading in graded
algebras and modules is denoted by lower indices.

(ii) K =A0 is semisimple and the map N ⊗K B→A provided by the multiplication map is an
isomorphism.

(iii) Consider the K–N -bimodule N∨ = HomKop(N, K). We require that the tensor product
S =N∨ ⊗N A be an injective right N -module.

3.2 N-modules, N∨-comodules and N#-modules
By a ‘module’ we shall mean a finite-dimensional graded left module, unless stated otherwise
(though all the results of this section are also applicable to ungraded or infinite-dimensional
modules).

Since N is a finitely generated projective right K-module, the K-bimodule N∨ has the natural
structure of a coring, i.e. there exist a comultiplication map N∨→N∨ ⊗K N∨ and a counit
map N∨→K satisfying the usual coassociativity and counity conditions. Consequently, there
is a natural algebra structure on N# = HomKop(N∨, K) and an injective morphism of algebras
K→N#. The category of right N -modules is isomorphic to the category of right N∨-comodules,
and the category of left N#-modules is isomorphic to the category of left N∨-comodules. In
particular, N∨ is an N#–N -bimodule.

Recall that the cotensor product P �N∨ Q of a right N∨-comodule P and a left N∨-comodule
Q is defined as the kernel of the pair of maps P ⊗K Q⇒ P ⊗K N∨ ⊗K Q, one of which is induced
by the coaction map P → P ⊗K N∨ and the other by the coaction map Q→N∨ ⊗K Q. There
are natural isomorphisms P �N∨ N

∨ ∼= P and N∨ �N∨ Q∼=Q.

Proposition 3.

(a) (i) For any right N -module P and any left N -module Q, there is a natural map of k-vector
spaces P ⊗N Q→ P �N∨ (N∨ ⊗N Q), which is an isomorphism, at least, when P is
injective or Q is projective.

(ii) For any right N -module P and any left N#-module Q, there is a natural map of
k-vector spaces P ⊗N (N �N∨ Q)→ P �N∨ Q, which is an isomorphism, at least, when
P is projective or Q is injective.

(b) The functors P 7→N∨ ⊗N P and M 7→N �N∨ M are mutually inverse equivalences between
the categories of projective left N -modules and injective left N#-modules.

(c) The functors P 7→N∨ ⊗N P and M 7→N �N∨ M are mutually inverse tensor equivalences
between the tensor category of N -bimodules that are projective left N -modules with the
operation of tensor product over N and the tensor category of N#–N -bimodules that are
injective left N#-modules with the operation of cotensor product over N∨.

Proof. Both statements of (a) assert the existence of associativity (iso)morphisms connecting
the tensor and cotensor products. In particular, in (i) we have to construct a natural map
(P �N∨ N

∨)⊗N Q→ P �N∨ (N∨ ⊗N Q). More generally, let us consider an arbitrary N#–
N -bimodule R and construct a natural map (P �N∨ R)⊗N Q→ P �N∨ (R⊗N Q). This map
can be defined in two equivalent ways. The first approach is to take the tensor product
of the exact sequence of right N -modules 0→ P �N∨ R→ P ⊗K R→ P ⊗K N∨ ⊗K R with
the left N -module Q. Since the resulting sequence is a complex, there exists a unique map
(P �N∨ R)⊗N Q→ P �N∨ (R⊗N Q) making a commutative triangle with the natural maps
of (P �N∨ R)⊗N Q and P �N∨ (R⊗N Q) into P ⊗K R⊗N Q. It is clear that this map is
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an isomorphism whenever Q is a flat N -module. Analogously, for any P , Q and R there
is a natural isomorphism (P �N∨ R)⊗K Q∼= P �N∨ (R⊗K Q), since K is semisimple. The
second approach is to take the cotensor product of the exact sequence of left N∨-comodules
R⊗K N ⊗K Q→R⊗K Q→R⊗N Q→ 0 with the right N∨-comodule P . Again, since the
resulting sequence is a complex, there exists a unique map (P �N∨ R)⊗N Q→ P �N∨ (R⊗N Q)
making a commutative triangle with the natural maps from P �N∨ R⊗K Q to (P �N∨ R)⊗N Q
and P �N∨ (R⊗N Q). Clearly, this map is an isomorphism whenever P is a coflat N∨-comodule
(i.e. the cotensor product with P preserves exactness). Now, any injective right N -module is a
coflat right N∨-comodule, since it is a direct summand of a direct sum of copies of N∨. The
two associativity maps that we have constructed coincide, since the relevant square diagram
commutes. The proof of (ii) is analogous.

To prove (b), note the isomorphisms N �N∨ (N∨ ⊗N P )∼=N ⊗N P ∼= P and N∨ ⊗N (N �N∨

M)∼=N∨ �N∨ M ∼=M for a projective left N -module P and an injective left N#-module M .
Since a projective left N -module is a direct summand of an N -module of the form N ⊗K V and
an injective left N#-module is a direct summand of an N#-module of the form HomK(N#, V )∼=
N∨ ⊗K V for aK-module V , the functors in question transform projectiveN -modules to injective
N#-modules and vice versa.

To deduce (c), note the isomorphism (N∨ ⊗N P ) �N∨ (N∨ ⊗N Q)∼=N∨ ⊗N P ⊗N Q for a
N -bimodule P and a projective left N -module Q. It is straightforward to check that this
isomorphism preserves the associativity constraints. 2

3.3 Definition of A#

It follows from condition (ii) of § 3.1 that A is a projective left N -module. By Proposition 3(c),
the tensor product S =N∨ ⊗N A is a ring object in the tensor category of N∨-bicomodules with
respect to the cotensor product over N∨. By condition (iii) of § 3.1 and the right analogue of
Proposition 3(c), the cotensor product A# = S �N∨ N

# is a ring object in the tensor category
of N#-bimodules with respect to the tensor product over N#. The embedding N →A induces
injective maps N∨→ S and N#→A#; these are unit morphisms of the ring objects in the
corresponding tensor categories. So A# has a natural associative algebra structure and N# is
identified with a subalgebra in A#. Notice that A# is a projective right N#-module by the
definition.

Proposition 4. There is a natural isomorphism between the N#–A-bimodule S =N∨ ⊗N A
and the A#–N -bimodule S# =A# ⊗N# N∨, making S an A#–A-bimodule. Moreover, there are
isomorphisms

A# ∼= EndAop(S), Aop ∼= EndA#(S#).

Proof. By the definition, we have S# = (S �N∨ N
#)⊗N# N∨ ∼= S �N∨ N

∨ ∼= S, since S is an
injective right N -module. Let us show that the right A-module and left A#-module structures
on S ∼= S# commute. The isomorphism S ⊗N A∼= S ⊗N (N �N∨ S)∼= S �N∨ S transforms the
right action map S ⊗N A→ S into the map S �N∨ S→ S defining the structure of a ring object
in the tensor category of N∨-bicomodules on S. Analogously, the isomorphisms A# ⊗N# S# ∼=
(S �N∨ N

#)⊗N# S ∼= S �N∨ S and S# ∼= S transform the left action map A# ⊗N# S#→ S#

into the same map S �N∨ S→ S. Finally, there is an isomorphism A# ⊗N# S ⊗N A∼= (S �N∨

N#)⊗N# S ⊗N (N �N∨ S)∼= S �N∨ S �N∨ S; so the right and left actions commute since S is
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an associative ring object in the tensor category of N∨-bicomodules. Now we have

HomAop(N∨ ⊗N A, N∨ ⊗N A)∼= HomNop(N∨, N∨ ⊗N A)∼= (N∨ ⊗N A) �N∨ N
# =A#,

HomA#(A# ⊗N# N∨, A# ⊗N# N∨)∼= HomN#(N∨, A# ⊗N# N∨)∼=N �N∨ (A# ⊗N# N∨)∼=A,

and thus the proof is complete. 2

3.4 N-projective (injective) modules
We shall denote the category of (graded finite-dimensional) left A-modules by A-mod.

Consider the full subcategory A-modN -proj ⊂A-mod, consisting of modules whose restriction
to N is projective, and the full subcategory A#-modN#-inj ⊂A#-mod, consisting of modules
whose restriction to N# is injective.

We abbreviate Db(A-mod) by D(A) and Db(A#-mod) by D(A#), and we let D∞/2(A)⊂
D(A) and D∞/2(A#)⊂D(A#) be the full triangulated subcategories generated by, respectively,
A-modN -proj and A#-modN#-inj.

Proposition 5. We have the canonical equivalences

A-modN -proj
∼=A#-modN#-inj and D∞/2(A)∼=D∞/2(A#).

Proof. Let us show that the adjoint functors P 7→ S ⊗A P and M 7→HomA#(S, M) between
the categories A-mod and A#-mod induce an equivalence between their full subcategories
A-modN -proj and A#-modN#-inj. It suffices to check that the adjunction morphisms P →
HomA#(S, S ⊗A P ) and S ⊗A HomA#(S, M)→M are isomorphisms when an A-module P is
projective over N and an A#-module M is injective over N#. There are natural isomorphisms
S ⊗A P ∼=N∨ ⊗N P and HomA#(S, M)∼= HomN#(N∨, M)∼=N �N∨ M , so it remains to apply
Proposition 3(b). To obtain the equivalence of categories D∞/2(A)∼=D∞/2(A#), it suffices
to check that D∞/2(A) is equivalent to the bounded derived category of the exact category
A-modN -proj and that D∞/2(A#) is equivalent to the bounded derived category of the exact
category A#-modN#-inj. Let us prove the former; the proof of the latter is analogous. It suffices
to check that for any bounded complex of N -projective A-modules P and any bounded complex
of A-modules X together with a quasi-isomorphism X → P , there exists a bounded complex of
N -projective A-modules Q together with a quasi-isomorphism Q→X. Let Q′ be a bounded-
above complex of projective A-modules mapping quasi-isomorphically into X; then the canonical
truncation Q′>−n for large enough n provides the desired complex Q. 2

3.5 The case of an invertible entwining map
Consider the multiplication map φ :B ⊗K N →A∼=N ⊗K B. It yields a map ψ :N∨ ⊗K B→
HomKop(N, B)∼=B ⊗K N∨. Assume that the map ψ is an isomorphism and consider the inverse
map ψ−1 :B ⊗K N∨→N∨ ⊗K B. By the analogous ‘lowering of indices’, we obtain from it a map
N# ⊗K B→HomKop(N∨, B) =B ⊗K N# that will be denoted by φ#.

We can then also define the algebra A# as the unique associative algebra with fixed
embeddings of N# and B into A# such that:

(i) the embeddings N#→A# and B→A# form a commutative square with the embeddings
K→N# and K→B;

(ii) the multiplication map induces an isomorphism B ⊗K N#→A#;
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(iii) the map induced by the multiplication map N# ⊗K B→A# ∼=B ⊗K N# coincides
with φ#.

Indeed, the existence of an algebra A with subalgebras N and B in terms of which the map φ
can be defined is easily seen to be equivalent to the map ψ satisfying the equations of a right en-
twining structure for the coring N∨ and the algebra B (see [BW03] or [Pos07] for the definition).
When ψ is invertible, it is a right entwining structure if and only if ψ−1 is a left entwining
structure, and the latter is equivalent to the existence of an algebra A# satisfying (i)–(iii) above.

To show that the two definitions of A# are equivalent, it suffices to check that the ring
object S in the tensor category of N∨-bicomodules can be constructed in terms of the entwining
structure ψ in the manner explained in [Brz02] or [Pos07].

3.6 The case of a self-injective N

Assume that N is self-injective. In this case A# is canonically Morita-equivalent to A; the
equivalence is defined by the A#–A-bimodule S, so it sends A-modN -proj =A-modN -inj to
A#-modN#-proj =A#-modN#-inj.

Indeed, N∨ is obviously an injective generator of the category of right N -modules. Since every
injective N -module is projective, N∨ is a projective right N -module. Since N is an injective right
N -module, it is a direct summand of a finite direct sum of copies of N∨. So N∨ is a projective
generator of the category of right N -modules; hence S =N∨ ⊗N A is a projective generator
of the category of right A-modules. Now it remains to use Proposition 4. Analogously, N# is
Morita-equivalent to N ; hence N# is also self-injective.

If N is Frobenius, N# is isomorphic to N and A# is isomorphic to A. Indeed, K is also
Frobenius. Choose a Frobenius linear function K→ k; then the right K-module Homk(K, k) is
isomorphic to K. Hence a Frobenius linear function N → k lifts to a right K-module map N →K.
Now the composition N ⊗K N →N →K of the multiplication map N ⊗K N →N and the right
K-module map N →K defines an isomorphism of right N -modules N →HomKop(N, K) =N∨.
By Proposition 4, this leads to the isomorphism A# ∼=A and, analogously, to the isomorphism
N# ∼=N ; these isomorphisms are compatible with the embeddings N →A and N#→A# but
not with the embeddings of K to N and N#, in general.

4. Definitions of Ext∞/2 by explicit complexes

4.1 Concave and convex resolutions

A complex of graded modules will be called convex if the grading ‘goes down’, i.e. for any n ∈ Z
the sum of graded components of degree greater than n is finite-dimensional; it will be called non-
strictly convex if the grading ‘does not go up’, i.e. the graded components of high enough degree
all vanish. In a similar sense, a complex of graded modules will be called concave (respectively,
non-strictly concave) if the grading ‘goes up’ (respectively, ‘does not go down’).

An A#-module M will be called weakly projective relative to N# if for any A#-module J
which is injective as an N#-module one has ExtiA#(M, J) = 0 for all i 6= 0. Analogously, we can
define A-modules that are weakly injective relative to N . Notice that any A#-module induced
from an N#-module is weakly projective relative to N#. The class of A#-modules that are
weakly projective relative to N# is closed under extensions and kernels of surjective morphisms.
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Lemma 1.

(i) Any A-module admits a left concave resolution by A-modules which are projective as
N -modules. Any A#-module admits a left non-strictly convex resolution by A#-modules
which are weakly projective relative to N#.

(ii) Any finite complex of A-modules is a quasi-isomorphic quotient of a bounded-above
concave complex of N -projective A-modules. Any finite complex of A#-modules is a quasi-
isomorphic quotient of a bounded-above non-strictly convex complex of A#-modules that
are weakly projective relative to N#.

Proof. To deduce (ii) from (i), choose a quasi-isomorphic surjection onto a given complex
C• ∈ Comb(A-mod) from a complex of A-projective modules P • ∈ Com−(A-mod) (notice that
condition (ii) of § 3.1 implies that an A-projective module is also N -projective) and apply (i) to
the module of cocycles Zn = P−n/d(P−n−1) for large n.

To check (i), it suffices to find for any M ∈A-mod a surjection P �M where P is N -
projective and, if n is such that all graded components Mi for i < n vanish, then Pi = 0 for i < n
and Pn

∼−→ Mn. It suffices to take P = IndAB(ResAB(M)). This is indeed N -projective because of
the equality

ResAN (IndAB(M)) = IndNK(ResBK(M)), (4)
which is a consequence of assumption (ii) of § 3.1.

The second assertions in (i) and (ii) can be proven in an analogous way, except that one
would use the induction from N# (which is even simpler, as weak relative projectivity of the
relevant modules is obvious). 2

4.2 Definition of semi-infinite Ext functors
Definition 1 (cf. [BFS98, § 2.4]). Suppose the assumptions (i)–(iii) of § 3.1 are enforced. Let
X ∈D(A#) and Y ∈D(A). Let PX↙ be a non-strictly convex bounded-above complex of A#-
modules weakly projective relative to N# that is quasi-isomorphic to X, and let P Y↖ be a concave
bounded-above complex of N -injective A-modules that is quasi-isomorphic to Y . Then we set

Ext∞/2+i(X, Y ) =H i(Hom•A#(PX↙ , S ⊗A P Y↖)). (5)

The right-hand side of (5) is independent of the choice of PX↙ and P Y↖; this follows from Theorem 1
below.

Remark 3. Notice that Hom in the right-hand side of (5) is Hom in the category of graded
modules. As usual, it is convenient to denote by Ext∞/2+i(X, Y ) the graded space which, with
the present notation, is written as

⊕
n Ext∞/2+i(X, Y (n)), where (n) refers to the shift of grading

by −n.

Remark 4. Definition 1 is compatible with [Ark97a, Definition 3.3.6] in the sense explained
below. In this remark we will use freely the notation of [Ark97a].

For a finite-dimensional algebra A, the definition of the algebra A# given in [Ark97a, 3.3.2]
reduces to A# = EndAop(S), where S is defined by S = Homk(N, k)⊗N A. So, according to
Proposition 4, this agrees with our definition (see also § 3.5). Notice that in [Ark97a] it is
presumed that K = k, so one has N# =N .

Let L ∈ Comb(A#-mod) and M ∈ Comb(A-mod). Then the restricted Bar-resolution
Bar•(A#, N#, L) is a non-strictly convex bounded-above resolution of L by A#-modules weakly
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projective relative to N#, and Bar•(A, B, M) is a concave bounded-above resolution of M by
N -projective A-modules. Thus the definition of semi-infinite cohomology

Ext∞/2+i(L, M) = Hom•A#(Bar•(A#, N#, L), S ⊗A Bar•(A, B, M))

from [Ark97a] is a particular case of our definition in any situation where both are applicable.

4.3 Alternative assumptions
The conditions on the resolutions PX↙ and P Y↖ used in (5) were formulated in terms of the subalge-
bras N ⊂A and N# ⊂A#; the subalgebra B ⊂A is not mentioned there (and the left-hand side
of (9) in Theorem 1 below does not depend on it either). However, existence of a ‘complemental’
subalgebra B is used in the construction of a resolution P Y↖ with the required properties.
Moreover, the next lemma shows that conditions on the resolutions PX↙ and P Y↖ can be rephrased
in terms of the subalgebra B and any non-positively graded subalgebra B# ⊂A# such that
B# ⊗K N# ∼=A#, provided that such a subalgebra exists (for example, in the assumptions of
§ 3.5 or when N is Frobenius and B ⊗K N ∼=A).

Lemma 2.

(i) An A-module is N -projective if and only if it has a filtration with subquotients of the form
IndAB(M), M ∈B-mod.

(ii) Assume that B# ⊂A# is a subalgebra graded by non-positive integers such that K ⊂B#

and the multiplication map induces an isomorphism B# ⊗K N#→A#. Then an A#-
module is N#-injective if and only if it has a filtration with subquotients of the form
CoIndA

#

B#(M), M ∈B#-mod. Consequently, an A#-module is weakly projective relative to
N# if and only if it is B#-projective.

Proof. The ‘if’ direction follows from the semisimplicity of K and equality (4) above. To show
the ‘only if’ part, let M be a projective N -module and let M− be its graded component of
minimal degree; then the canonical morphism

IndNKM
−→M (6)

is injective and its cokernel is again a projective N -module. If M is actually an A-module, then
the injection M−→M is an embedding of B-modules and hence yields a morphism of A-modules

IndABM
−→M. (7)

Relation (4) shows that ResAN sends (7) into (6); in particular, (7) is injective and has an N -
projective cokernel. Thus the bottom submodule of the required filtration is constructed, and
the proof is finished by induction. The proof of (ii) is analogous. 2

Remark 5. By replacing the assumption of existence of a subalgebra B ⊂A (assuming only that
A is a projective left N -module) with the assumption of existence of a non-positively graded
subalgebra B# ⊂A# such that B# ⊗K N# ∼=A#, one can define Ext∞/2+i(X, Y ) in terms of
injective resolutions rather than projective ones. Specifically, for X ∈D(A#) and Y ∈D(A), let
JX↘ be a convex bounded-below complex of N#-injective modules that are quasi-isomorphic to
X, and let JY↗ be a non-strictly concave bounded-below complex of A-modules that are weakly
injective relative to N . Then set

Ext∞/2+i(X, Y ) =H i(Hom•(HomA#(S, JX↘), JY↗)).
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An analogue of Theorem 1 below holds for this definition as well; hence the two definitions are
equivalent whenever both are applicable.

4.4 Comparison with ordinary Ext and Tor
In four special cases, Ext∞/2+i(X, Y ) coincides with a combination of traditional derived
functors. First, suppose that ResAN (Y ) has finite projective dimension; then one can use a finite
complex P Y↖ in (5) above. It follows immediately that, in this case,

Ext∞/2+i(X, Y )∼= HomD(A#)(X, S
L
⊗A Y [i]).

Analogously, in the assumptions of Remark 5 above, whenever ResA
#

N#(X) has finite injective
dimension, one has

Ext∞/2+i(X, Y )∼= HomD(A)(RHomA#(S, X), Y [i]).

On the other hand, suppose that the complex PX↙ in (5) can be chosen to be a finite complex
of A#-modules whose terms have filtrations with subquotients being A#-modules induced from
N#-modules. We claim that in this case we have

Ext∞/2+i(X, Y )∼=H i(RHomA#(X, S)
L
⊗A Y ).

This isomorphism is an immediate consequence of the next lemma. Analogously, in the situation
of Remark 5, whenever JY↗ can be chosen to be a finite complex of A-modules whose terms have
filtrations with subquotients being A-modules coinduced from N -modules, one has

Ext∞/2+i(X, Y )∼=H i(X∗
L
⊗A# RHomA(S∗, Y )).

Here we denote by V 7→ V ∗ the passage to the dual vector space, V ∗ = Homk(V, k), and the
corresponding functor on the level of derived categories.

Lemma 3. Let L ∈A#-mod and M ∈A-mod be such that L has a filtration with subquotients
being A#-modules induced from N#-modules, while M is N -projective. Then the following hold.

(a) (i) ExtiA#(L, S) = 0 and TorAi (HomA#(L, S), M) = 0 for i 6= 0.

(ii) TorAi (S, M) = 0 and ExtiA#(L, S ⊗AM) = 0 for i 6= 0.

(b) The natural map

HomA#(L, S)⊗AM −→HomA#(L, S ⊗AM) (8)
is an isomorphism.

Proof. The first equality in (i) holds because S is an injective N#-module. To check
the second one, notice that if L= IndAN#L0, then HomA#(L, S)∼= HomN#(L0, N

∨ ⊗N A)∼=
HomN#(L0, N

∨)⊗N A is a right A-module induced from a right N -module. The first equality
in (ii) holds because the right A-module S is induced from a right N -module, and the second
one is verified because S ⊗AM is N#-injective. Let us now deduce (b) from (a). Observe that
(a) implies that both sides of (8) are exact in M (and also in L), i.e. they send exact sequences
0→M ′→M →M ′′→ 0, with M ′ and M ′′ being N -projective, into exact sequences. Also, (8)
is evidently an isomorphism for M =A. For any N -projective M , there exists an exact sequence

An
φ−→Am→M → 0

with the image and kernel of φ being N -projective. Thus both sides of (8) turn into exact
sequences, which shows that (8) is an isomorphism for any N -projective M . 2
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5. Main result

Theorem 1. Let D∞/2 ⊂D(A#), D∞/2 ⊂D(A), be the full triangulated subcategory of D(A#)
generated by N#-injective modules, which is equivalent to the full triangulated subcategory of
D(A) generated by N -projective modules. For X ∈Db(A#-mod) and Y ∈Db(A-mod), we have
a natural isomorphism

HomD(A#)D∞/2
D(A)(X, Y [i])∼= Ext∞/2+i(X, Y ). (9)

Example 2. Assume that A=N is a Frobenius algebra and K = k. Then A# ∼=A and, according
to § 4.4, we have Ext∞/2+i(X, Y ) = TorA−i(X

∗, Y ). In this case, we can identify A′ with A, so
that Φ′ = Φ is the embedding of the category of perfect complexes. The long exact sequence of
Proposition 2 becomes a standard sequence linking Ext, Tor and Hom in the stable category A/B;
in particular, for modules over a finite group, we recover the description of Tate cohomology as
Hom functors in the stable category. (Thanks are due to A. Beilinson for suggesting this example.)

Remark 6. Notice that the definition of the left-hand side in (9) applies also to non-graded
algebras and modules. Thus the theorem allows one to extend the definition of semi-infinite
cohomology to non-graded algebras. Another definition of the semi-infinite cohomology of non-
graded algebras was given in [Pos07].

Let us point out that these two definitions are not equivalent: for example, when k is a finite
or a countable field, the left-hand side of (9) in the non-graded case is no more than countable,
while the semi-infinite cohomology defined in [Pos07] can have the cardinality of continuum.

The proof of Theorem 1 is based on the following lemma.

Lemma 4.

(i) Every N -projective A-module admits a non-strictly convex left resolution consisting of
A-projective modules.

(ii) A finite complex of N -projective A-modules is quasi-isomorphic to a non-strictly convex
bounded-above complex of A-projective modules.

Proof. Assertion (ii) follows from assertion (i) as in the proof of Lemma 1. (Recall that, according
to a well-known argument due to Hilbert, if a bounded-above complex of projectives represents
an object of the derived category which has finite projective dimension, then for large negative
n the module of cocycles is projective.)

To prove (i), it is enough to find for any N -projective module M a surjection Q�M , where
Q is A-projective and Qn = 0 for i > n provided that Mi = 0 for i > n. (Notice that the kernel of
such a surjection is N -projective, because Q is N -projective by condition (ii) in § 3.1.) We can
take Q to be IndAN (ResAN (M)), and the condition on grading is then clearly satisfied. 2

Proposition 6. Let P↖ be a concave bounded-above complex of A-modules representing an
object Y ∈D−(A-mod). Let Pn↖ be the (−n)th stupid truncation of P↖ (thus Pn↖ is a subcomplex
of P↖).

Let Z be a finite complex of N -projective A-modules. Then

HomD−(A-mod)(Z, Y ) ∼−→ lim−→HomD(A)(Z, P
n
↖). (10)

In fact, for n large enough, we have

HomD−(A-mod)(Z, Y ) ∼−→ HomD(A)(Z, P
n
↖).
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Proof. Let Q↙ be a non-strictly convex bounded-above complex of A-projective modules that
are quasi-isomorphic to Z (which exists by Lemma 4(ii)). Then the left-hand side of (10) equals
HomHot(Q↙, P↖), where Hot stands for the homotopy category of complexes of A-modules.
The conditions on gradings of our complexes ensure that there will be only finitely many
degrees for which the corresponding graded components in both Q↙ and P↖ are non-zero;
thus any morphism between the graded vector spaces Q↙ and P↖ factors through the finite-
dimensional sum of the corresponding graded components. In particular, Hom•(Q↙, Pn↖) ∼−→
Hom•(Q↙, P↖) for large n, and hence

HomD(A)(Z, P
n
↖) = HomHot(Q↙, Pn↖) ∼−→ HomHot(Q↙, P↖)

for large n. 2

Corollary 1. Let P↖ be a concave bounded-above complex of N -projective A-modules,
and let X be the corresponding object of D−(A-mod). Then the functor on D∞/2 given by
Z 7→HomD−(A-mod)(Z, Y ) is represented by the ind-object lim−→ Pn↖.

Proof of Theorem 1. We keep the notation of Definition 1. It follows from Proposition 6 that

HomD(A#)D∞/2
D(A)(X, Y [i]) = lim−→

n

HomD(A#)(X, S ⊗A (P Y↖)n[i]).

The right-hand side of (9) (defined in (5)) equals H i(Hom•A#(PX↙ , S ⊗A P Y↖)). The conditions
on gradings of PX↙ and P Y↖ show that for large n, we have

Hom•A#(PX↙ , S ⊗A (P Y↖)n) ∼−→ Hom•A#(PX↙ , S ⊗A P Y↖).

Since ExtiA#(L, S ⊗AM) = 0 for i > 0 if L is weakly projective relative to N# and M is
N -projective, we have

HomD(A#)(X, S ⊗A (P Y↖)n[i]) =H i(Hom•A#(PX↙ , S ⊗A (P Y↖)n)),

and the theorem is proved. 2

Remark 7. There is a version of Theorem 1 that is applicable in the situation where the condition
that K be the component of degree zero of N in assumption (i) of § 3.1 is replaced by the
condition that K be the component of degree zero of B. One just needs to change the conditions
on the complexes PX↙ and P Y↖ in Definition 1, requiring that PX↙ be convex and P Y↖ be non-strictly
concave, and make the corresponding changes in the proof.

6. Semi-infinite cohomology of the small quantum group

This section concerns the example provided by a small quantum group. Let g be a simple Lie
algebra over C with a fixed triangular decomposition g = n⊕ t⊕ n−. Let q ∈ C be a root of
unity of order l, and let A= uq = uq(g) be the corresponding small quantum group [Lus90].
We assume that l is large enough (larger than the Coxeter number) and is prime to twice the
maximal multiplicity of an edge in the Dynkin diagram of g.

Let A>0 = u+
q ⊂ uq and A60 = u−q ⊂ uq be, respectively, the upper and lower triangular

subalgebras (small quantum Borel subalgebras). The algebra uq carries a canonical grading by
the weight lattice. We fix an arbitrary element in the dual coweight lattice which is a dominant
coweight; thus we obtain a Z-grading on uq. Then conditions (i)–(iii) of § 3.1 are satisfied.

For an augmented k-algebra R, we write H•(R) for ExtR(k, k); we abbreviate H•(uq) by H•.
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The cohomology algebra H• and the semi-infinite cohomology Ext∞/2+•(k, k) were
computed, respectively, in [GK93] and in [Ark97a, Ark98b]. Let us recall the results of these
computations. In what follows, by ‘Hom’ we will mean graded Hom, as in Remark 3 above.

Let N ⊂ g be the cone of nilpotent elements, and let n⊂N be a maximal nilpotent
subalgebra. Then a theorem of Ginzburg and Kumar asserts the existence of canonical
isomorphisms

H• ∼=O(N ), (11)

H•(u+
q ) =O(n) (12)

such that the restriction map O(N )→O(n) coincides with the map arising from functoriality of
cohomology with respect to maps of augmented algebras.

Moreover, a conjecture of Feigin proved by Arkhipov [Ark97a, Ark98b] asserts that

Ext∞/2+•(k, k)∼=Hd
n−(N ,O), (13)

where d is the dimension of n− and Hn− denotes cohomology with support in n−; one also has
H i

n−(N ,O) = 0 for i 6= d.
The aim of this section is to show how (a generalization of) this isomorphism follows from

Theorem 1.

6.1 D∞/2 and cohomological support
Let D• denote the category defined by

Ob(D•) = Ob(D), HomD•(X, Y ) = Hom•(X, Y ) =
⊕
i

Hom(X, Y [i]).

Then D• is an HH•-linear category, i.e. we have a canonical homomorphism HH•→ End(IdD•),
where HH• denotes the Hochschild cohomology of uq. Since uq is a Hopf algebra, we have a
canonical homomorphism H•→HH•; thus D• is an H•-linear category. For an object X ∈D•,
its cohomological support supp(X)⊂ Spec(H•) is the set-theoretic support of the H•-module
End•(X).

Proposition 7. For an object X ∈D, we have

X ∈D∞/2 ⇐⇒ supp(X)⊆ n.

Proof. It is well known that supp(X)⊂ supp(Y ) ∪ supp(Z) provided that there exists a
distinguished triangle Y →X → Z→ Y [1]; thus the set of objects with cohomological support
contained in n forms a full triangulated subcategory. In view of Lemma 2, to check the
implication⇒ it suffices to check that supp(X)⊂ n if X = CoInduq

u+
q

(M) for some M . For such X

we have Ext•uq
(X, X) = Ext•

u+
q

(X,M). Moreover, it is not hard to check that this isomorphism
is compatible with the H• action, with the action on the right-hand side obtained as the
composition H•→H•(u+

q )→ Ext•
u+

q
(M,M) and the canonical right action of Ext•

u+
q

(M,M).
Thus in this case Ext•uq

(X, X) is set-theoretically supported on n.
Assume now that X ∈D is such that supp(X)⊆ n. To check that X ∈D∞/2, it suffices

to show that Ext•
u−q

(M, X) is finite-dimensional for any M ∈Db(u−q -mod). It is a standard

fact that Ext•(M1, M2) is a finitely generated H•(u−q )-module for any M1, M2 ∈Db(u−q -mod).
Therefore it suffices to show that the H•(u−q )-module Ext•

u−q
(M, X) is supported at {0} ⊂ n− =

Spec(H•(u−q )); but this is clear, since viewed as a H•-module it is supported on n. 2
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6.2 A description of the derived uq-modules category via coherent sheaves
Let Ñ = T ∗(B) = {(b, x) | b ∈ B, x ∈ rad(b)}, where B =G/B is the flag variety of G identified
with the set of Borel subalgebras in g and ‘rad’ stands for the nil-radical. Let π : Ñ →N be the
Springer map, π : (b, x) 7→ x.

The result of [BL07] (based on [ABG04]) yields a triangulated functor Ψ :Db(CohGm(Ñ ))→
Db(uq-Mod), where Gm acts on Ñ by t : (b, x) 7→ (b, t2x) and uq-Mod stands for the category of
finite-dimensional modules. Notice that, in contrast to the definition of uq-mod, the modules in
uq-Mod do not carry a grading.1

The functor satisfies the following properties:

Ψ(F(1))∼= Ψ(F)[1], (14)

where F(1) is the twist of F by the tautological character of Gm;

Ψ :
⊕
n∈Z

Hom(F , G[n](n)) ∼−→ Hom(Ψ(F),Ψ(G)); (15)

〈Im(Ψ)〉=Db(uq-Mod0), (16)
where 〈Im(Ψ)〉 denotes the full triangulated subcategory generated by objects of the form Ψ(F)
and uq-Mod0 is the block (direct summand) of the category uq-Mod which contains the trivial
representation; and

Ψ(OÑ ) = k. (17)

The following slight generalization of this result is proved by a straightforward modification
of the argument in [BL07].

Proposition 8. Let C be a subtorus in the maximal torus T , and let uq-modC be the
category of uq-modules carrying a compatible grading by weights of C. There exists a functor
ΨC :Db(CohC×Gm(Ñ ))→Db(uq-modC) that satisfies properties (14)–(17) above.

6.3 Semi-infinite cohomology as cohomology with support
From now on, we fix C to be a copy of the multiplicative group corresponding to the coweight used
to define the grading on uq (see the beginning of this section); thus we have uq-modC = uq-mod.

Theorem 2. For F ∈Db(CohC×Gm), we have a canonical isomorphism

Ext∞/2+i
uq

(k,Ψ(F))∼=RΓin (π∗(F)).

Proof. We have
RΓ•n (π∗(F))∼= lim−→ Ext•(OÑ /π

∗(I), F),
where I runs over C ×Gm-invariant ideals in ON with support on n. We have a canonical arrow
Ψ(OÑ )→Ψ(OÑ /π

∗(I)), and in view of Proposition 7 we have Ψ(OÑ /π
∗(I))⊂D∞/2. Thus, by

Theorem 1, we have a natural map

RΓn (π∗(F))−→ Ext∞/2+i
uq

(k,Ψ(F)).

1 In fact, Db(CohGm(Ñ )) can be identified with the derived category of a block in the category of graded modules
over uq compatible with a certain grading on uq, as defined in [AJS94]. However, unlike the natural grading
by weights and its modifications, this grading is neither explicit nor elementary; it is similar to a grading on
the category O of g-modules with highest weight arising from Hodge weights on the Hom space between Hodge
D-modules or from Frobenius weights.
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In view of Proposition 1, to check that this map is an isomorphism it suffices to show that the
pro-object Ψ̂(O) in D∞/2 defined by Ψ̂(O) = lim←−Ψ(OÑ /π

∗(I)) represents the same functor on
D∞/2 as the object k = Ψ(O) ∈D.

Let X ∈D∞/2, and let f1, . . . , fn be a regular sequence in O(N ) whose common set
of zeros equals n. We can and will assume that fi is an eigenfunction for the action of
C ×Gm. There exists N such that fNi maps to 0 ∈ End•(X). Then any morphism k→X
factors through kN = Ψ(O/(fNi )). This shows that the map lim−→Hom(kN , X)→Hom(k, X) is
surjective. Similarly, for large N , the map Hom(kN , X)→Hom(k2N , X) kills the kernel of the
map Hom(kN , X)→Hom(k, X). Thus the map lim−→Hom(kN , X)→Hom(k, X) is injective. 2

Corollary 2. Let T be a tilting module over Lusztig’s ‘big’ quantum group Uq. The semi-

infinite cohomology Ext∞/2+i
uq (k, T ) either vanishes or is canonically isomorphic to RΓn (F),

where F ∈Db(CohG(N )) is a certain (explicit) irreducible object in the heart of the perverse
t-structure corresponding to the middle perversity (see [AB10, Bez00a]).

Proof. By the result of [Bez06], we have T = Ψ(F̃ ) for some F̃ ∈Db(CohG×Gm(Ñ )) such that
π∗(F̃ ) either vanishes or is an (explicit) irreducible perverse equivariant coherent sheaf as above.
The statement now follows from Theorem 2. 2

Example 3. If T = k is the trivial module, then it is clear from the construction of [Bez06] that
we can set F̃ =OÑ . Thus F ∼=ON , and so Corollary 2 yields the main result of [Ark97a, Ark98b].

Acknowledgements

We are grateful to S. Arkhipov for helpful discussions. This work owes its existence to W. Soergel:
when refereeing the (presently unpublished) preprint [Bez00b] for the Journal of Algebra, he
suggested extending the results to greater generality. This is accomplished in the present paper,
and we thank Wolfgang for his stimulating suggestion.

References

AJS94 H. H. Andersen, J. C. Jantzen and W. Soergel, Representations of quantum groups at a pth root
of unity and of semisimple groups in characteristic p: independence of p, Astérisque 220 (1994).
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