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On the Littlewood Problem Modulo a
Prime

Ben Green and Sergei Konyagin

Abstract. Let p be a prime, and let f : Z/pZ → R be a function with E f = 0 and ‖bf ‖1 6 1. Then

minx∈Z/pZ | f (x)| = O(log p)−1/3+ǫ. One should think of f as being “approximately continuous”; our

result is then an “approximate intermediate value theorem”.

As an immediate consequence we show that if A ⊆ Z/pZ is a set of cardinality ⌊p/2⌋, thenP
r |

b1A(r)| ≫ (log p)1/3−ǫ. This gives a result on a “mod p” analogue of Littlewood’s well-known

problem concerning the smallest possible L1-norm of the Fourier transform of a set of n integers.

Another application is to answer a question of Gowers. If A ⊆ Z/pZ is a set of size ⌊p/2⌋, then

there is some x ∈ Z/pZ such that

||A ∩ (A + x)| − p/4| = o(p).

1 Introduction

The Littlewood problem to which the title refers is the following question. If A ⊆ Z

is a set of n integers, what is the smallest possible value of the L1-norm of the expo-

nential sum over A? That is to say, what is

I(n) := min
A⊆Z,|A|=n

∫ 1

0

∣∣∣∣∣
∑

n∈A

e2πinθ

∣∣∣∣∣ dθ ?

The problem of determining the exact minimum, known as the strong Littlewood
conjecture, is still unresolved (the conjecture is that the minimum occurs when A is

an arithmetic progression). However the bound I(n) ≫ log n, which is tight up to a

constant factor, was obtained independently some 20 years ago by the second author
[8] and by McGehee, Pigno, and Smith [10].

There are various natural variants of the problem that one might consider. In this

paper we will be interested in the discrete setting of functions defined on the group
Z/pZ. If f : Z/pZ → R is a function, then instead of discussing exponential sums,

we speak of the Fourier transform of f . This is defined for r ∈ Z/pZ by

f̂ (r) := Ex∈Z/pZ f (x)e(rx/p).
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142 B. Green and S. Konyagin

Here e(θ) = e2πiθ, as is customary, and E denotes the averaging operator, which in
this instance is the same as p−1

∑
x∈Z/pZ

. If A ⊆ Z/pZ is a set then we write 1A for its

characteristic function. We will often be concerned with the Fourier transform 1̂A.

Question 1.1 Let p be a prime, and let A ⊆ Z/pZ be a set of size ⌊p/2⌋. What is

S(p), defined as the minimum possible value of

‖1̂A‖1 :=
∑

r∈Z/pZ

|1̂A(r)| ?

There is no serious reason for restricting attention to sets of size exactly ⌊p/2⌋,

though clearly if sets of any size are allowed, then S(p) can equal 1. An obvious

lower bound for S(p) is p−1⌊p/2⌋ = 1/2 + O(p−1), since this is the contribution to
‖1̂A‖1 from the term r = 0. It is already non-trivial to obtain a bound of the form

S(p) → ∞. We will obtain a very weak bound of this sort in Section 2, followed in
Section 4 by the following stronger result.

Theorem 1.2 We have S(p) ≫ (log p/ log log p)1/3.

The best upper bound we have comes by considering the set A = {1, . . . , ⌊p/2⌋},

which illustrates that S(p) ≪ log p. By analogy with the strong Littlewood conjec-
ture, one might guess that this represents the truth.

Theorem 1.2 will be obtained as a straightforward consequence of the next result,

which is the main theorem in our paper.

Theorem 1.3 Let f : Z/pZ → R be a function with E f = 0 and ‖ f̂ ‖1 6 1. Then

min
x∈Z/pZ

| f (x)| = O
(

(log log p/ log p)1/3
)
.

The condition ‖ f̂ ‖1 6 1 may be thought of as expressing a (rather strong) kind of

“continuity” or “smoothness” of f . Indeed one knows from harmonic analysis on the

circle that if f : R/Z → R is twice continuously differentiable, then f̂ (m) ≪ |m|−2

for m ∈ Z \ {0}, and hence f̂ lies in l1(Z).

The conclusion of Theorem 1.3 may be thought of as a type of intermediate value

theorem.
Taking f (x) = cp/(p + 1) log p for x = 0, 1, . . . , ⌊p/2⌋ and f (x) = −cp/(p −

1) log p for x = −1, . . . ,−⌊p/2⌋, where c is a suitably small constant, one sees that

the bound in Theorem 1.3 could not be improved beyond O(1/ log p). It may be that
this is best possible.

As a corollary of Theorem 1.3, we are able to obtain some information on a ques-
tion of Gowers, the consideration of which was in fact the starting point of our in-

vestigations. Gowers asked whether, if A ⊆ Z/pZ is a set of size ⌊p/2⌋, there is some

x ∈ Z/pZ such that ∣∣ |A ∩ (A + x)| − p/4
∣∣ = o(p).

Note that p/4 is roughly the expected value of |A ∩ (A + x)|. One interesting feature

of this question, and of Theorem 1.3, is that similar statements do not hold in abelian

https://doi.org/10.4153/CJM-2009-007-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-007-4
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groups G more general than Z/pZ; for example if G = F
m
2 and if A is a hyperplane,

then clearly |A ∩ (A + x)| is always either 0 or |G|/2. We answer a generalisation of

Gowers’ question in the affirmative, obtaining as a consequence of Theorem 1.3 the
following quantitative bound.

Theorem 1.4 Let A, B ⊆ Z/pZ be subsets of Z/pZ with |A| = αp, |B| = βp. Then

there is some x ∈ Z/pZ such that

∣∣ |A ∩ (B + x)| − αβp
∣∣ = O

(
p(log log p/ log p)1/3

)
.

If f , g : Z/pZ → R are two functions then we define their convolution f ∗ g by

f ∗ g(x) := Ey f (y)g(x − y).

Note that |A ∩ (B + x)| = p1A ∗ 1◦B(x), where we have written f ◦(x) = f (−x). It is

thus easy to see that Theorem 1.4 is a special case of the following result.

Theorem 1.5 Let f , g : Z/pZ → R be two functions with ‖ f ‖2, ‖g‖2 6 1. Then there

is some x ∈ Z/pZ such that

∣∣ f ∗ g(x) − E f Eg
∣∣ = O(log log p/ log p)1/3.

For Gowers’ original problem it is not clear how much one can hope for, since

there are no obvious examples of sets A for which |A∩(A+x)| is always quite different
from p/4.

In Sections 5 and 6 we prove the following results.

Theorem 1.6 For any prime p there is a function f : Z/pZ → R such that E f = 0,

‖ f ‖2 6 1, and | f ∗ f ◦(x)| > c/ log p for all x ∈ Z/pZ.

Theorem 1.7 For any prime p > 3 there is a set A ⊆ Z/pZ, |A| = ⌊p/2⌋, such that

|A ∩ (A + x) − p/4| > cp/ log p log log p

for all x ∈ Z/pZ.

It would be of interest to close the gap between Theorem 1.4 and 1.7, and also to
obtain the correct bound in Theorem 1.3.

2 The Continuity Argument and a Simple Lower Bound

The goal of this section is to motivate our main argument, and in so doing to prove a
weak version of Theorem 1.3.

Theorem 2.1 Let f : Z/pZ → R be a function with E f = 0 and ‖ f̂ ‖1 6 1. Then

min
x∈Z/pZ

| f (x)| = o(1).
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By the Fourier inversion formula we have

f (x) =

∑

r∈Z/pZ

f̂ (r)e(−rx/p).

Since ‖ f̂ ‖1 is so small, one might hope to have some rather direct control on this

expression. Let us imagine, for a moment, that we know something even stronger

about f̂ , namely that for some fairly small set R ⊆ Z/pZ we have
∑

r /∈R

| f̂ (r)| 6 ǫ/3.

By a well-known pigeonhole argument of Dirichlet, to be recalled in Section 3, we
may find some t 6= 0 such that the fractional parts {tr/p}, r ∈ R, are all small (we

define our fractional parts to lie between −1/2 and 1/2). This implies that |e(tr/p)−
1| is always at most ǫ/3, say. Thus we have

| f (x) − f (x + t)| =

∑

r∈Z/pZ

f̂ (r)
(

e(rx/p) − e(r(x + t)/p)
)

6
∑

r∈R

| f̂ (r)||1 − e(rt/p)| + 2
∑

r /∈R

| f̂ (r)|

6 ǫ/3 + 2ǫ/3 = ǫ

for all x. Since E f (x) = 0, there must be some value of x for which f (x) and f (x + t)
have opposing signs. For this value of x it is clear that | f (x)| 6 ǫ.

Remark. What we have done here is identify a length, t , along which f is somewhat

continuous in the sense that | f (x + t) − f (x)| is always small.

We now proceed to show how the above argument may be modified to give a weak

version of Theorem 1.3. It need not be the case that most of the L1-norm of f̂ is

concentrated on a few modes, but by using a certain pigeonholing argument one

may select a set R of modes so that the contribution of
∑

r /∈R f̂ (r)e(−rx/p) is small

for many x.

Let ǫ > 0, and define a sequence (δ j)
∞
j=0 by δ0 = 1 and δl+1 = ǫ2+1/δl 2−6/δl−4 for

l > 0. Take J = ⌈3/ǫ⌉. Then there exists l ∈ {0, . . . , J} such that
∑

r:δl+16|bf (r)|<δl

| f̂ (r)| 6 ǫ/3.

For this value of l, define

f (1)(x) =

∑

r:|bf (r)|>δl

f̂ (r)e(−rx/p),

f (2)(x) =

∑

r:δl+16|bf (r)|<δl

f̂ (r)e(−rx/p),

f (3)(x) =

∑

r:|bf (r)|<δl+1

f̂ (r)e(−rx/p).
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By construction we have the estimate

(2.1) ‖ f (2)‖∞ 6 ǫ/3,

and also the bound

(2.2) ‖ f (3)‖2
2 =

∑

r:|bf (r)|<δl+1

| f̂ (r)|2 6 δl+1.

Write R for the set of frequencies occurring in f (1), that is to say R := {r : | f̂ (r)| >

δl}, and set k := |R|. By the assumption on ‖ f̂ ‖1 we have k 6 1/δl. Consider the
Bohr set

B(R, η) := {x ∈ Z/pZ : |{xr/p}| 6 η for all r ∈ R}.
By Dirichlet’s argument we have the bound

(2.3) |B(R, η)| > pηk
> pη1/δl .

For details, and more properties of Bohr sets, see Section 3 (particularly Lemma 3.1(i)

and its proof).
Let B := B(R, ǫ/48). Suppose that B \ {0} is nonempty, and select an element t

from it. By the same argument we had earlier, we have

| f (1)(x) − f (1)(x + t)| 6
∑

r∈R

| f̂ (1)(r)||1 − e(rt/p)| 6 ǫ/6.

Once again, since E f (1)(x) = 0, there is x0 such that f (1)(x0) and f (1)(x0 + t) have

opposing signs, which implies that | f (1)(x0)| 6 ǫ/6. For any t ∈ B we then have
| f (1)(x0 + t)| 6 ǫ/3.

Set X := x0 + B. Combining the above observations with (2.1) we have, if x ∈ X,

the inequality | f (x)| 6 2ǫ/3+ | f (3)(x)|. To conclude the argument it remains to show
that there is some x ∈ X for which | f (3)(x)| 6 ǫ/3. To this end, note that if this were

not the case then we should have

(2.4) ‖ f (3)‖2
2 = Ex∈Z/pZ f (3)(x)2

>
|B|
p

Ex∈X f (3)(x)2 > |B|ǫ2/9 > ǫ2+1/δl 2−6/δl−4 p,

which contradicts (2.2).

The only condition that must be satisfied to make this argument work is that
B \ {0} must be non-empty. By dint of (2.3) this will be so if p(ǫ/48)1/δ J > 1. Since

δ J is subject to a lower bound depending only on ǫ, this can certainly be satisfied with

ǫ = o(1), and in fact one can take 3/ǫ = log∗(p)+O(1). This is a very slowly growing
function, of course. The reason for this is that 1/δ J looks like a tower of exponentials

of height about J, this being forced by the need to have δ j+1 exponentially smaller
than δ j .

Before moving on, let us highlight the weakness in the above argument which we

will be able to tighten up in subsequent sections, leading to a superior bound. It lies

https://doi.org/10.4153/CJM-2009-007-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-007-4


146 B. Green and S. Konyagin

in the fact that (2.4) represents not just a lower bound for ‖ f (3)‖2
2, but in fact for

Ex∈X| f (3)(x)|2. In order to exploit this properly one needs to modify (2.2) appropri-

ately. Writing β(x) := 1B(x)/|B| for the normalised Bohr cutoff associated to B, our
interest lies in finding a Fourier expression for Ex∈Z/pZ| f (3)(x)|2β(x + x0). This is not

hard; indeed we have

Ex| f (3)(x)|2β(x + x0) = Ex

∑

r,r ′

f̂ (3)(r) f̂ (3)(r ′)e((r ′ − r)x/p)β(x + x0)

=

∑

r,r ′

f̂ (3)(r) f̂ (3)(r ′)β̂(r − r ′)e((r − r ′)x0/p),

(2.5)

an expression we will find very useful later on. In exploiting it we will require a few
facts concerning Bohr sets and their Fourier transforms. We develop these in the next

section.

3 Properties of Bohr Sets

The material in this section is somewhat technical, but is rapidly becoming part of the
foundation of additive combinatorics. It has its origins in the work of Bourgain [2]

on 3-term arithmetic progressions. See [12] for a recent exposition of this work.
For examples of subsequent work in a similar vein, see either [5] or [13], and for a

more leisurely discussion of Bohr sets and the need for the results of this section, see

[6]. We work in the context of an arbitrary finite abelian group G, since this is most
natural, though our interest is in the case G = Z/pZ. In fact, a lot of the material in

this paper is valid in this more general setting, the key exception being the “discrete

intermediate value theorem” in Section 1. The failure of this, of course, means that
the key theorems as stated in Section 1 are only valid when G = Z/pZ.

If f : G → R is a function and if γ ∈ G∗ is a character, then we define the Fourier

transform f̂ by f̂ (γ) := Ex∈G f (x)γ(x). It is easy to tie this in with the definition we

had in the case G = Z/pZ; in that group, all characters are of the form x 7→ e(rx/p)
for some r ∈ Z/pZ.

Now if Γ ⊆ G∗ is a set of d characters and ǫ > 0, then we define the Bohr set

B = B(Γ, ǫ) by

B(Γ, ǫ) := {x ∈ G : | 1
2π arg γ(x)| 6 ǫ for all γ ∈ Γ}.

We also define β = βΓ,ǫ (the normalised Bohr cutoff associated to B) by β(x) :=

1B(x)/|B|.
The next lemma details some well-known facts concerning the size of Bohr sets.

Lemma 3.1 Let Γ ⊆ G∗ be a set of d characters, and let δ > 0. Then we have the

bounds

(i) |B(Γ, δ)| > δd|G|;
(ii) |B(Γ, 2δ)| 6 5d|B(Γ, δ)|.
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Proof For any η, write Sη for the set of all y = (y1, . . . , yd) ∈ R
d/Z

d for which
‖y j‖∞ 6 η/2 for all j = 1, . . . , d. (To define the ‖ · ‖∞ norm on R/Z we identify it

with (− 1
2
, 1

2
]. ) Let Γ = {(γ1, . . . , γd)}. Now if x ∈ G write

v(x) =
1

2π (arg γ1(x), . . . , arg γd(x)) ∈ R
d/Z

d.

If v(x) and v(x ′) both lie in some translate a + Sδ , then x − x ′ ∈ B(Γ, δ), and so
for fixed x ′ ∈ G ∩ v−1((a + Sδ)) the map x 7→ x − x ′ defines an injection from

G ∩ v−1(a + Sδ) to B(Γ, δ). Hence

(3.1) |v(G) ∩ (a + Sδ)| 6 |B(Γ, δ)|.

Proof of (i) By a simple averaging there is some translate a + Sδ such that

|v(G) ∩ (a + Sδ)| > |Sδ||v(G)| = |Sδ| = δd|G|.

The result is now immediate from (3.1).

Proof of (ii) From (3.1) one has
∣∣v(B(Γ, 2δ)) ∩ (a + Sδ)

∣∣ 6
∣∣v(G) ∩ (a + Sδ)

∣∣ 6 |B(Γ, δ)|.

Now v(B(Γ, 2δ)) ∩ (a + Sδ) is empty unless a ∈ S5δ , and so

|B(Γ, 2δ)| =
1

|Sδ|

∫

Rd/Zd

∣∣v(B(Γ, 2δ)) ∩ (a + Sδ)
∣∣da

6 |B(Γ, δ)| · |S5δ|
|Sδ|

= 5d · |B(Γ, δ)|.

Suppose now that x ∈ B(Γ, ǫ) and that x ′ ∈ B(Γ, ǫ ′), where ǫ ′ ≪ ǫ. Then

x + x ′ ∈ B(Γ, ǫ + ǫ ′). Assuming that B(Γ, ǫ + ǫ ′) is not much bigger than B(Γ, ǫ), this
means that B(Γ, ǫ) + B(Γ, ǫ ′) ≈ B(Γ, ǫ). After passing to the associated normalised

cutoff functions β and β ′, we might anticipate that β ∗ β ′ ≈ β. When true this

property, which says that Bohr cutoffs are roughly invariant under convolution by
narrower Bohr cutoffs, is extremely useful.

Unfortunately the property does not always hold, since the size of B(Γ, t) need

not vary very smoothly with t . For example, suppose that G = F
n
5 and that

δ1 < 1/5 < δ2. Then if |Γ| consists of d linearly independent characters, we have

|B(Γ, δ1)| = 5−d|G| while |B(Γ, δ2)| = (3/5)d|G|.
Bourgain showed, and we shall repeat his argument, that for a fixed Γ there is

a plentiful supply of ǫ such that the function |B(Γ, t)| does vary quite regularly for

t ≈ ǫ, in the following sense.

Definition 3.2 (Regular value) Let Γ be a set of d characters. We say that B(Γ, ǫ) is

regular value, or that ǫ is a regular value for Γ, if

1 − 100d|κ| 6
|B(Γ, (1 + κ)ǫ)|

|B(Γ, ǫ)| 6 1 + 100d|κ|

whenever |κ| 6 1/100d.
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Proposition 3.3 Let Γ, |Γ| = d, be a fixed set of characters. Let δ ∈ (0, 1). Then there

is ǫ ∈ (δ, 2δ) which is regular for Γ.

Proof Set f (α) = |B(Γ, 2αδ)|. Then f (α) is a non-decreasing function on [ 1
2
, 1]

and, by Lemma 3.1,

(3.2) f (1) 6 5d f (1/2).

We wish to show that there is α ∈ [1/2, 1] such that

1 − 100d|κ| 6 f ((1 + κ)α)/ f (α) 6 1 + 100d|κ|
for all |κ| 6 1/100d. Suppose then that this is false. Observe that 1

1−x
> 1 + x when

x > 0; hence for every α ∈ [1/2, 1] there is tα ∈ [0, 1/100d] such that

(3.3)

∣∣∣∣
f
(

(1 + tα)α
)

f
(

(1 − tα)α
)

∣∣∣∣ > 1 + 100dtα > e50dtα ,

the last step following because 1 + x > ex/2 for x 6 1.

The next lemma is related to the Vitali covering lemma, but is so simple that we
provide an independent proof. For an anecdotal discussion see [3].

Lemma 3.4 Suppose a finite collection of closed intervals I1, . . . , Ik covers [0, 1]. Then

we can pick a subcollection Ii1
, . . . , Iim

whose members are disjoint except possibly at

their endpoints, with total measure at least 1/2.

Proof Without loss of generality suppose that the collection I1, . . . , Ik is minimal in

that if any I j is removed, the intervals no longer cover [0, 1]. It is then easy to see that

no point x lies in three of the I j , because there are two in tervals Ir and Is containing
x such that any other It containing x lies in Ir ∪ Is. But it is then easy to describe the

form of the intervals exactly. Suppose that the I j = [a j, b j] with a1 6 a2 6 · · · 6 ak.

Then
a1 6 a2 6 b1 6 a3 6 b2 6 a4 6 · · · 6 bk−1 6 bk.

It follows that the two collections I1 ∪ I3 ∪ · · · and I2 ∪ I4 ∪ · · · contain disjoint

intervals. The result is now obvious.

To apply Lemma 3.4, recall (3.3). By compactness we may take a finite set

{α1, . . . , αk} ⊆ [ 1
2

+ 1
100d

, 1 − 1
100d

]

such that the intervals
[(

1 − tαi

)
αi ,

(
1 + tαi

)
αi

]
cover

[
1
2

+ 1
100d

, 1 − 1
100d

]
. Since

tαi
6 1/100d, all of these intervals are contained in [ 1

2
, 1]. By Lemma 3.4, we can

pick a disjoint subcollection of measure at least 1
4

(
1 − 1/100d

)
> 1

5
. Letting these

intervals correspond to {α1, . . . , αl}, one has 2
∑l

i=1 αitαi
> 1/5, and so

∑l
i=1 tαi

>
1/10. Using this in (3.3) gives

l∏

i=1

∣∣∣ f ((1 + tαi
)αi)

f ((1 − tαi
)αi)

∣∣∣ > e50d
P

i tαi > e5d.

However, the left-hand side is at most f (1)/ f (1/2), and hence by (3.2) we have 5d >
e5d. This is a contradiction, and Proposition 3.3 is established.
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Remark. Actually, Proposition 3.3 easily follows from weak-type estimates for the
Hardy–Littlewood maximal function. Let ν be a bounded non-decreasing function

R → R with an associated Radon–Stieltjes measure ν[a, b) = ν(b) − ν(a) (a < b).
Note that

ν(R) = lim
b→∞

ν[−b, b).

The Hardy–Littlewood maximal function is defined as

Mν(t) = sup
a<t<b

ν(b) − ν(a)

b − a
.

The weak-type estimates for Mn(u) claim that for any α > 0

(3.4) µ{t : Mν(t) > α} ≤ 2ν(R)

α
,

where µ is the Lebesgue measure. For an absolutely continuous ν this inequality is

classical; a general case was established in [9]. One can prove (3.3) by applying (3.4)
to the function ν such that ν(x) = log f (ex) for x ∈ [− log 2, 0], ν(x) = ν(− log 2)

for x < − log 2, and ν(x) = ν(0) for x > 0.

Lemma 3.5 Let Γ ⊆ G∗ be a set of d characters, and let δ, ǫ > 0. Suppose that η
is a regular value for Γ, and let β = βΓ,η be the normalised Bohr cutoff associated to

B(Γ, η). Suppose that y ∈ B(Γ, η ′), where η ′ 6 ǫη/200d. Then

Ex∈G|β(x + y) − β(x)| 6 ǫ.

Proof Set δ := ǫ/200d. If β(x+y)−β(x) 6= 0, then x ∈ B(Γ, η(1+δ))\B(Γ, η(1−δ)).
Thus, since B = B(Γ, η) is regular, we have

∑

x

|1B(x + y) − 1B(x)| 6 200dδ|B|,

which immediately implies the result.

The following corollary will be very useful. It tells us that if β̂(γ) is moderately

large, then γ(y) ≈ 1 for y in a smaller Bohr set B(Γ, η ′).

Lemma 3.6 Let B(Γ, η) be a regular Bohr set with normalised cutoff β = βΓ,η . Sup-

pose that κ1, κ2 > 0. Suppose that γ is a character for which |β̂(γ)| > κ1, and that

y ∈ B(Γ, η ′), where η ′ 6 κ1κ2η/200d. Then |1 − γ(y)| 6 κ2.

Proof We have

κ1|1 − γ(y)| 6 |β̂(γ)||1 − γ(y)| =
∣∣Ex∈G(β(x + y) − β(x))γ(x)

∣∣ ,
which is at most κ1κ2 by Lemma 3.5. The result follows.

Remark. By employing appropriate smoothing devices, one may obtain a reasonably

good quantitative description of the set of γ for which |β̂Γ,ǫ(γ)| > δ when B(Γ, ǫ) is

regular. If Γ = {γ1, . . . , γd}, these characters will all be of the form γa1

1 · · ·γad

d , where

the ai are integers bounded in absolute value by some F(δ).

We will not need to use such information in this paper.
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4 Proofs of the Main Theorems

Our first task in this section will be to supply a proof of Theorem 1.3. We begin with

some motivating remarks which, it will turn out, take us some distance into the proof

itself. Let f : Z/pZ → R be a function with ‖ f̂ ‖1 6 1, as in the statement of that

theorem. Suppose to begin with that we have defined a splitting f = f (1) + f (2) where

f (1)(x) :=
∑

γ∈Γ

f̂ (γ)γ(x)

for some reasonably small set Γ. If f (1)(x0) is small, then f (1)(x + x0) will also be
small provided x ∈ B(Γ, η), for suitably small η. Our first observation is that much

the same would be true if Γ = {γ1, . . . , γd} were replaced by some set {γa1

1 · · · γad

d :

|ai | 6 M}, consisting of small combinations of elements of Γ. By remarks made
at the end of Section 3, the characteristic function of this set rather resembles the

function β̂Γ,η for suitable η. Once this is noticed, one might think to redefine

f (1) :=
∑

γ

β̂Γ,η(γ) f̂ (γ)γ(x) = f ∗ βΓ,η ,

which looks extremely natural. To begin one takes Γ = ∅; we add frequencies ac-

cording to an iterative procedure.

Lemma 4.1 Suppose that B(Γ, η) is regular, that | f (1)(x0)| 6 ǫ, and that x ∈ B(Γ, η ′)
for some η ′ 6 ǫ2η/200d. Then | f (1)(x + x0)| 6 3ǫ.

Proof We have

| f (1)(x + x0) − f (1)(x0)| =
∣∣ ∑

γ

f̂ (γ)β̂Γ,η(γ)γ(x0)(γ(x) − 1)
∣∣

6 sup
γ

∣∣ β̂Γ,η(γ)
∣∣ ∣∣1 − γ(x)

∣∣ .

Now if
∣∣ β̂Γ,η(γ)

∣∣ 6 ǫ, then clearly

(4.1)
∣∣ β̂Γ,η(γ)

∣∣ ∣∣1 − γ(x)
∣∣ 6 2ǫ.

If, however,
∣∣ β̂Γ,η(γ)

∣∣ > ǫ and if x ∈ B(Γ, η ′) then Lemma 3.6 tells us that

|1 − γ(x)| 6 ǫ, and so (4.1) holds in this case too.

Now define

(4.2) f (2) := f − f (1).

Suppose that f (1)(x0) is small. By Lemma 4.1 we know that f (1)(x + x0) is small for
all x ∈ B(R, η ′), provided η ′ is not too large. Our hope is that f (1)(x + x0) will also

be small for some such x. To this end we look at

(4.3) E := Ex∈G| f (2)(x + x0)|2βΓ,η ′(x) 6
∑

γ,γ ′

| f̂ (2)(γ)|| f̂ (2)(γ ′)||β̂Γ,η(γ − γ ′)|,
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the inequality being an immediate consequence of (2.5). Write

U := {χ : |β̂Γ,η ′(χ)| > ǫ2}.

Observing that

∑

γ

| f̂ (2)(γ)| =

∑

γ

| f̂ (γ)||1 − β̂Γ,η(γ)| 6 ‖ f̂ ‖1 sup
γ

|1 − β̂Γ,η(γ)| 6 2,

it is immediate from (4.3) that

E 6 4ǫ2 +
∑

γ,γ ′

γ−γ ′∈U

| f̂ (2)(γ)|| f̂ (2)(γ ′)||β̂Γ,η ′(γ−γ ′)| 6 4ǫ2 + 2 sup
γ

∑

γ ′ :γ ′−γ∈U

| f̂ (2)(γ ′)|.

Now if

(4.4) sup
γ

∑

γ ′ :γ ′−γ∈U

| f̂ (2)(γ ′)| 6 ǫ2,

then E 6 6ǫ2, and there is indeed x ∈ B(Γ, η ′) such that | f (2)(x + x0)| 6 ǫ
√

6 6 3ǫ.
For this x, we have | f (x + x0)| 6 | f (1)(x + x0)| + | f (2)(x + x0)| 6 6ǫ.

If, on the other hand, there is an γ such that

(4.5)
∑

γ ′ :γ ′−γ∈U

| f̂ (2)(γ ′)| > ǫ2,

then we must find an alternative argument. It is tempting to somehow “add” the
offending characters u+γ, u ∈ U , into the definition of f (1). Thus we might consider

a new set Γ̃ := Γ ∪ {γ} and some η̃ ≪ η such that β̂eΓ,eη(s) ≈ 1 for s = u + γ.

Once this is done, one may iterate the whole procedure starting with (4.2). If
things are done carefully, the obstacle (4.5) will not be encountered more than ǫ−2

times since each new instance corresponds to at least ǫ2 of the total L1-mass of f̂ ,

which we are assuming is at most 1. Care must be taken to ensure that these portions
of L1-mass are all disjoint, but we will see later on that this can be arranged.

Working out the details of the above argument, one obtains a bound minx | f (x)| =

O((log p)−1/4+ε) in Theorem 1.3. To obtain the superior exponent 1
3
, we exploit the

fact that it is not necessary for f (2) itself to satisfy (4.4); we may perturb f (2) by an

arbitrary function f (3) for which ‖ f̂ (3)‖1 6 ǫ, since then

(4.6) | f (3)(x)| =
∣∣ ∑

γ

f̂ (3)(γ)γ(x)
∣∣ 6 ‖ f̂ (3)‖1 6 ǫ

for an arbitrary x. Thus in effect we wish to write f = f (1) + f (2) + f (3), where f (2)

satisfies (4.4) and ‖ f̂ (3)‖1 6 ǫ. This, it transpires, can be achieved by a slight variant
of the above iterative scheme in which the number of iterations is reduced to just ǫ−1.

We now turn to the proof proper of Theorem 1.3, beginning with a lemma sum-

marising the above discussion.
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Lemma 4.2 Let B = B(Γ, η) and B ′
= B(Γ, η ′) be regular Bohr sets with normalised

Bohr cutoffs β = βΓ,η and β ′
= βΓ,η ′ . Suppose that η ′ 6 ǫ2η/200d. Set

U := {χ : |β̂ ′(χ)| > ǫ2}.

Suppose that f = f (1) + f (2) + f (3), where f (1)
= f ∗ β, that

sup
γ

∑

γ ′ :γ ′−γ∈U

| f̂ (2)(γ ′)| 6 ǫ2,

and that ‖ f̂ (3)‖1 6 ǫ. Suppose that minx | f (1)(x)| 6 2ǫ. Then min | f (x)| 6 8ǫ.

Proof Suppose that | f (1)(x0)| 6 2ǫ. Then Lemma 4.1 tells us that for any x ∈
B(R, η ′) we have | f (1)(x + x0)| 6 4ǫ. Now by the discussion leading to (4.4) we
know that there is x ∈ B(R, η ′) for which | f (2)(x + x0)| 6 3ǫ, and finally from (4.6)

we have | f (3)(x + x0)| 6 ǫ for any x whatsoever. The result follows.

The next lemma asserts that there is a decomposition of the type discussed in

Lemma 4.2.

Lemma 4.3 Let ǫ > 0. Then there is a set of characters Γ, |Γ| 6 2/ǫ2, an η >

(ǫ9/221)2/ǫ, and an η ′ > 2−10ǫ3η such that the hypotheses of Lemma 4.2 are satisfied,

with the possible exception of the inequality minx | f (1)(x)| 6 ǫ.

Proof We will have a kind of double iterative scheme, the STEPs of which will be in-

dexed by pairs ( j, i). The two coordinates of STEP will be denoted STEP1 and STEP2.
The algorithm will proceed by first incrementing STEP2, that is to say according to

the following scheme:

(0, 0) → (0, 1) → · · · → (0, l0) → (1, 0) → (1, 1) → · · · → (1, l1) → (2, 0) → · · ·

While STEP1 = j, there will be a set Γ j of characters and regular Bohr sets B(Γ j , η j),

B(Γ j, η
′
j ) with normalised Bohr cutoffs β j := βΓ j ,η j

and β ′
j := βΓ j ,η ′

j
. The parameters

η j and η ′
j will be related by the inequalities

ǫ2η j/400d 6 η ′
j 6 ǫ2η j/200d,

in order that we may apply Lemma 4.2. In fact η ′
j can simply be an arbitrary param-

eter in this range for which B(Γ j, η
′
j ) is regular. There will also be disjoint sets S j,i of

characters, i = 1, 2, . . . . When STEP = ( j, i) we will have occasion to discuss the
union

Ω j :=
⋃

j ′< j

⋃
i6l j ′

S j ′,i

of all characters which were defined while STEP1 < j. Things will have been arranged
so that B(Γ j, η j) ⊆ B(Ω j, ǫ); the set Ω j should be thought of as containing small

combinations of elements of Γ j , and in fact the proof could be set up in such a way

that this is made explicit (see the remarks at the end of Section 3). In proceeding
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from STEP = ( j, 0) to STEP = ( j, i) we will have accrued a collection {γ j,1, . . . , γ j,i}
of characters that will be used to define Γ j+1.

To initialize the iteration set STEP = (0, 0), and define Γ0 = ∅ and η0 = 1. Now
suppose that STEP = ( j, i). Define f (1)

j := f ∗ β j , and set g j := f − f (1)
j .

Define U j := {s : |β̂ ′
j (s)| > ǫ2}. We will have reached STEP = ( j, i) by increment-

ing STEP2, starting from STEP = ( j, 0). During this process we will have defined dis-

joint sets S j,1, S j,2, . . . , S j,i of frequencies, and also a collection {γ j,1, . . . , γ j,i}. The
construction will be such that

(4.7) S j,i ⊆ γ j,i + U j

for all i. We begin by asking whether or not

(4.8)
∑

γ ′∈S j,1∪S j,2∪···∪S j,i

|ĝ j(γ
′)| > ǫ.

If so, it is time to increment STEP1 and to define Γ j+1 and η j+1. We set STEP =

( j + 1, 0), Γ j+1 := Γ j ∪ {γ j,1, . . . , γ j,i} and choose η j+1,

ǫ3η ′
j/800|Γ j| 6 η j+1 6 ǫ3η ′

j/400|Γ j|,

in such a way that the Bohr set B(Γ j+1, η j+1) is regular. Clearly η j+1 6 min(η j , ǫ/2).

Note that Ω j+1 = Ω j ∪ S j,1 ∪ S j,2 ∪ · · · ∪ S j,i .

Claim 1. We have the inclusion B(Γ j+1, η j+1) ⊆ B(Ω j+1, ǫ).

Proof Clearly

B(Γ j+1, η j+1) ⊆ B(Γ j, η j) ⊆ B(Ω j , ǫ) ⊆ B(Ω j+1, ǫ),

and so it suffices to check that B(Γ j+1, η j+1) ⊆ B(S j,i , ǫ). For this, in view of (4.7), we

only need confirm that

B(Γ j+1, η j+1) ⊆ B(γ j,i , ǫ/2) ∩ B(U j, ǫ/2)

for each i. The inclusion B(Γ j+1, η j+1) ⊆ B(γ j,i , ǫ/2) is immediate from the fact that

η j+1 6 ǫ/2. To see that B(Γ j+1, η j+1) ⊆ B(U j, ǫ/2), we use Lemma 3.6. Indeed if

γ ∈ U j and if y ∈ B(Γ j, η j+1), then by that lemma we have |1 − γ(y)| 6 ǫ/2, which
is exactly what we need.

Now if (4.8) does not hold, then we carry on incrementing STEP2. Split g j as

f (2)
j,i + f (3)

j,i , where

f (3)
j,i (x) :=

∑

γ∈Ω j∪S j,1∪···∪S j,i

ĝ j (γ)γ(x).

If

sup
γ

∑

γ ′∈γ+U j

| f̂ (2)
j,i (γ ′)| 6 ǫ2
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then STOP. Otherwise, there is a γ j,i+1 with

(4.9)
∑

γ ′∈γ j,i+1+U j

| f̂ (2)
j,i (γ ′)| > ǫ2.

Set STEP = ( j, i + 1), S j,i+1 := (γ j,i+1 + U j) \ (Ω j ∪ S j,1 ∪ · · · ∪ S j,i). An important

point to note is that

(4.10)
∑

γ ′∈S j,i+1

| f̂ (2)
j,i (γ ′)| > ǫ2.

Although this is ostensibly a stronger statement than (4.9), this is merely an illusion,

since by construction the support of f̂ (2)
j,i is disjoint from Ω j ∪ S j,1 ∪ · · · ∪ S j,i .

Claim 2. The algorithm terminates, and in fact we have the bound |Γl| 6 2ǫ−2,

independently of l.

Proof To each element γ j,i , j 6 l contained in Γl is associated, by (4.10), a set S j,i

with the property that ∑

γ∈S j,i

|̂f (2)
j,i−1(γ)| > ǫ2.

This implies that

2
∑

γ∈S j,i

| f̂ (γ)| >
∑

γ∈S j,i

| f̂ (γ)||1 − β j(γ)| =

∑

γ∈S j,i

|̂f (2)
j,i−1(γ)| > ǫ2.

Recalling that the sets S j,i are disjoint and that ‖ f̂ ‖1 6 1, the claim follows.

Suppose that the algorithm terminates when STEP1 = l. The whole purpose of

having an iteration somewhat more complicated than the one we outlined at the
start of the section is that we can beat the crude bound l 6 2ǫ−2 which follows from

Claim 2.

Claim 3. We have l 6 2/ǫ.

Proof Set S j =
⋃

i S j,i . For any j we have

2
∑

γ∈S j

| f̂ (γ)| >
∑

γ∈S j

| f̂ (γ)||1 − β̂ j(γ)| =

∑

γ∈S j

|ĝ j(γ)| > ǫ.

Since the sets S j are disjoint and ‖ f̂ ‖1 6 1, we do indeed have l 6 2/ǫ.

To conclude the proof of Lemma 4.3, suppose that STEP = (l, m) at termination.

By construction the decomposition

f = f (1)
l,m + f (2)

l,m + f (3)
l,m

satisfies all of the properties required. It remains to check the bounds claimed. This is

a simple matter; using the crude estimate η j+1 > ǫ5η ′
j/211 > ǫ9η j/221, we do indeed

have ηl > (ǫ9/221)2/ǫ.
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In order to apply Lemma 4.3, we must be able to exhibit a value of x for which
| f (1)(x)| is small. This is where we invoke a kind of “discrete intermediate value

theorem” of the type used in Section 1. This argument, as the reader will appreciate,
is specific to the case G = Z/pZ.

Lemma 4.4 Let f : Z/pZ → R be a function with Ex f (x) = 0. Let B = B(Γ, η) be a

regular Bohr set with normalised cutoff β, and suppose that f (1)
= f ∗ β. Suppose that

(ǫ2η/200d)d p > 1. Then min | f (1)(x)| 6 2ǫ.

Proof We invoke Lemma 4.1, or rather the proof of it, which tells us that if η ′
=

ǫ2η/200d and if t ∈ B(Γ, η ′), then

(4.11) | f (1)(x + t) − f (1)(x)| 6 2ǫ

for any x. The conditions of the lemma, together with the simple bound of

Lemma 3.1(i), imply that |B(Γ, η ′)| > 1, so there is some t ∈ B(Γ, η ′), t 6= 0.

The elements {0, t, 2t, 3t, . . . , (p − 1)t} are in fact just the elements of Z/pZ, listed
once each. Since Ex f (1)(x) = 0, there must be a value of j for which f (1)( jt)

and f (1)(( j + 1)t) have opposing signs. For this value of j, (4.11) guarantees that
| f (1)( jt)| 6 2ǫ.

Proof of Theorem 1.3 Lemma 4.3 tells us that there is a set Γ, d := |Γ| 6 2/ǫ2, and
an η > (ǫ9/221)2/ǫ for which the hypotheses of Lemma 4.2 are satisfied. If in addition

minx | f (1)(x)| 6 2ǫ, then the conclusion of that lemma implies that minx | f (x)| 6 8ǫ.
By Lemma 4.4, this will be the case if (ǫ2η/200d)d p > 1, which will be satisfied if

ǫ = C(log p/ log log p)1/3 for suitable C.

It is a simple matter to deduce Theorem 1.2 from Theorem 1.3. Recall that S(p) is

the smallest possible value of ‖1̂A‖1, where A ⊆ Z/pZ is a set with cardinality ⌊p/2⌋.

Proof of Theorem 1.2 Set f (x) := (21A(x) − 1)/‖(21A − 1)∧‖1, so that ‖ f̂ ‖1 = 1,
and apply Theorem 1.3. One obtains

‖(21A − 1)∧‖−1
1 = min

x
| f (x)| = O(log log p/ log p)1/3.

Now

(21A − 1)∧(r) =

{
21̂A(r) if r 6= 0

O(1/p) if r = 0,

which means that

‖(21A − 1)∧‖1 > 2‖1̂A‖1 + O(1).

The result follows immediately.

To conclude this section we give the proof of Theorem 1.5 and hence, by the re-

marks in Section 1, answer the question of Gowers.
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Proof of Theorem 1.5 Consider the functions

f0(x) := f (x) − E f ,

g0(x) := g(x) − Eg,

h(x) := f ∗ g − E f Eg.

It is easy to see that E f0 = Eg0 = 0, that ‖ f0‖2, ‖g0‖2 6 1, and that h = f0 ∗ g0. In

particular we have, by the Cauchy–Schwarz inequality and Parseval’s identity, that

‖ĥ‖1 6 ‖ f0‖2‖g0‖2 6 1

(this is a special case of Young’s inequality). The result follows immediately from

Theorem 1.3.

5 The Proof of Theorem 1.6

Lemma 5.1 For any prime p there is a function F : Z/pZ → R such that EF = 0,

‖F̂‖1 6 1, F̂(r) = F̂(−r) > 0 for all r ∈ Z/pZ, and minx |F(x)| ≫ (log p)−1.

Proof We may, of course, assume that p is sufficiently large. Consider to begin with

the very simple function

g1(x) :=

{
1 if |x/p| < 1/4

−1 otherwise.

We have Eg1 = O(1/p), while the Fourier transform ĝ1(r) satisfies ĝ1(r) = ĝ1(−r)

and

(5.1) |ĝ1(r)| 6
1

p| sin(πr/p)| 6
1

2|r|

for |r| < p/2. For suitable C, the function F1(x) := g1(x)/C log p satisfies all the

requirements of the lemma except for the condition that F̂1(r) be non-negative (and
the condition that EF1 = 0, though this can be achieved by a very small perturbation

of F1).

To construct a function with non-negative Fourier transform, we begin by con-
sidering an auxilliary function on R/Z. Define

f1(θ) := −2 log |2 sin πθ|

for θ 6= 0, and f1(0) = 0. Note that f ∈ Lp for all p ∈ [1,∞). We claim that the

Fourier transform of f1 is given by

(5.2) f̂1(m) =

{
1/|m| if m ∈ Z \ {0}
0 otherwise.
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Heuristically, this can be seen by observing the Taylor expansion

− log(1 − z) = z +
z2

2
+

z3

3
+ . . . ,

setting z = e2πiθ and z = e−2πiθ, and adding. To justify the assertion rigourously, one

could proceed as follows. Using Cauchy’s formula for derivatives, one confirms that

(5.3)
1

2πi

∫

Γ(ǫ)

log(1 − z)

zn+1
dz = − 1

n

for n > 1, where Γ(ǫ) is the contour consisting of the circle |z| = 1 indented to the

left near z = 1 using a semicircle of radius ǫ. The contribution from the semicircle of
radius ǫ is O(ǫ log(1/ǫ)), which tends to 0 as ǫ → 0. The remainder of the integral is

∫

θ∈R/Z:|θ|>ǫ

log(1 − e2πiθ)e−2πinθ dθ.

This differs from the integral over all θ ∈ R/Z by an error of

O
(∫ ǫ

0

| log θ| dθ
)

,

which is O(ǫ log(1/ǫ)). Letting ǫ → 0 in (5.3), then we see that

(5.4)

∫

θ∈R/Z

log(1 − e2πiθ)e−2πinθ dθ = − 1

n

for n > 1. By a similar argument, this integral vanishes when n 6 0. Furthermore by
an almost identical argument one may confirm that

∫

R/Z

log(1 − e−2πiθ)e−2πinθ
=

{
1/n if n 6 −1

0 otherwise
.

Adding this to (5.4) establishes the claim (5.2).

Now f1 is useless to us as it stands, since f̂1 does not lie in l1(Z). We must also

transfer f1 to a function defined on Z/pZ. We modify f1 by defining

(5.5) f2 := f1 ∗ χ ∗ χ,

where

χ(θ) =
C p

2
1|θ|61/C p(θ)

for some large constant C to be specified later. Note that

f̂2(m) = f̂1(m)
( C p sin 2πm/C p

2πm

) 2

,
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where the bracketed expression is to be interpreted as 1 if m = 0. Consider the
function g2 : Z/pZ → R defined by

(5.6) g2(x) =

∑

m∈Z

f̂2(m)e2πimx/p.

Since f̂2 ∈ l1(Z), the series converges uniformly and g2(x) = f2(x/p) provided that

x 6= 0.

Now we have

| f ′
1 (θ)| = |2π cot πθ| 6

2

|θ|
for all 0 < |θ| 6 1/2. From the definition (5.5), it follows that

(5.7) |g2(x) − f1(x/p)| 6
2

C p
sup

|θ−x/p|62/pC

| f ′
1 (θ)| 6 8/C

provided that x 6= 0 and C > 4.

All we need to know about g2(0) is that it is large, to which end the bound

(5.8) g2(0) > g2(1)

will be quite sufficient.

The Fourier transform ĝ2(r) on Z/pZ is given by

(5.9) ĝ2(r) =

∑

m∈Z

m≡r(mod p)

f̂2(m).

(This is an instance of the Poisson summation formula, but in this case it follows

from the inversion formula

g2(x) =

∑

r

ĝ2(r)e2πirx/p

upon comparing with (5.6) and recalling the uniqueness of Fourier expansion.) In

particular ĝ2(r) = ĝ2(−r). Now f̂2(m) is real and non-negative, and hence so is ĝ2(r)

and we have

ĝ2(r) > f̂2(r),

where r is the unique integer with |r| < p/2 and r ≡ r(mod p). Using the inequality

sin θ/θ > 1 − θ2/6 and (5.2), we have

(5.10) ĝ2(r) > f̂1(r)
(

1 − 2π2|r|2
3C2 p2

) 2
>

1

|r|
(

1 − 4

C2

)

for r 6= 0.
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In the other direction, we have the estimate

‖ĝ2‖1 =

∑

m

f̂2(m) =

∑

m∈Z

m6=0

1

|m|
( C p sin 2πm/C p

2πm

) 2

6 2

∞∑

m=1

min
( 1

m
,

C2 p2

4π2m3

)
≪ log p.

(5.11)

Now define g3 := g1 + g2. From (5.1) and (5.10), we see that ĝ3(r) = ĝ3(−r), and that

ĝ3(r) > 0 for all r 6= 0, provided that C2 > 8. From (5.1) and (5.11) we see that

(5.12) ‖ĝ3‖1 ≪ log p.

We claim that if C > 1000, then |g3(x)| > 1/4 for all x. To see this, observe from

(5.7) that if 1/4 < |x/p| 6 1/2, then

g3(x) = −1 + g2(x) 6 −1 + f1(x/p) + 8/C 6 −1 − log 2 + 8π/C 6 −1.

If 0 < |x/p| < 1/4, then we have

g3(x) = 1 + g2(x) > 1 + f1(x/p) − 8/C > 1 − log 2 − 8π/C > 1/4.

Finally from (5.8) we have

g3(0) = 1 + g2(0) > 1 + g2(1/p) > 1 + f1(1/p) − 8/C > 1/4.

This proves the claim.

The function F (whose construction is our goal) will essentially be a rescaled ver-
sion of g3, but it is required to satisfy EF = 0. To this end we note that Eg1 = O(1/p),

while, from (5.9), we have

Eg2 =

∑

m≡0(mod p)

f̂2(m) 6 2

∞∑

m=1
m≡0(mod p)

min(
1

m
,

C2 p2

4π2m3
) = O(1/p).

Thus Eg3 = O(1/p), and so if we define g4 := g3 − Eg3 then we still have |g4(x)| >

1/4 + O(1/p) > 1/5 for p sufficiently large. Of course, since ĝ4(r) = ĝ3(r) for r 6= 0,

we also have ĝ4(r) = ĝ4(−r) > 0.
At last we may define F by F(x) := g4(x)/‖ĝ4‖1. The asserted properties of F are

immediate from the definition, the facts we have assembled about g4, and (5.12).

We conclude this section by proving Theorem 1.6, which asserted the existence of

a function f : Z/pZ → R with E f = 0, ‖ f ‖2 6 1, and | f ∗ f ◦(x)| > c/ log p for all x.

Proof of Theorem 1.6 Let F be the function constructed in Lemma 5.1. Take the

function f with f̂ =

√
F̂. Then

E f = f̂ (0) =

√
F̂(0) =

√
EF = 0,

E f 2
=

∑

r

f̂ (r)2
= ‖F̂‖1 6 1,

and f ∗ f ◦ = F. The theorem follows.
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6 An Example for Gowers’ Question

In this section we prove Theorem 1.7, which asserted that there is a set A ⊆ Z/pZ

with |A| = ⌊p/2⌋ and

|A ∩ (A + x) − p/4| > c/ log p log log p

for all x. Noting that

|A ∩ (A + x) − p/4| = p f ∗ f ◦(x),

where f := 1A − 1/2, we see that this is a matter of finding a function f in Theo-
rem 1.6 which somehow “resembles a set”. The function f constructed at the end of

Section 5 need not have this property. Note, however, that we could have exercised

considerable freedom in our choice of f : any function such that f̂ (r) = ξr

√
F̂(r),

where ξr ∈ {−1, 1}, would have done. By choosing the signs ξr at random we may

force f to behave well in L∞, and hence to resemble a set. The rest of the section is

devoted to the details of such an argument.
Suppose, then, that ξ = {ξr ∈ {±1}, 0 6 r < p/2} is a sequence of indepen-

dent random signs and that f = fξ is the function whose Fourier transform satisfies

f̂ (r) = ξr

√
F̂(r), 0 6 r < p/2, and f̂ (r) = f̂ (−r).

Let us reiterate the properties enjoyed by fξ. It satisfies E fξ = 0, ‖ fξ‖2 6 1, and

| fξ ∗ f ◦ξ (x)| ≫ 1/ log p for all x.

Lemma 6.1 There is an absolute constant c and a choice of signs ξ such that

Ex∈Z/pZ exp
(
c fξ(x)2

)
≪ 1.

Proof Let (ar)06r<p/2 be any sequence of real numbers. It is well known (a simple

instance of Khintchine’s inequality, see for example [7]) that

Eξ|
∑

r

arξr|2k
6

(
C0k

∑

r

a2
r

) k

for some absolute C0. It follows that for any c > 0 we have

(6.1) Eξ exp
(

c
( ∑

r

arξr

) 2)
6

∑

k>0

1

k!

(
cC0k

∑

r

a2
r

) k
.

Now for any x ∈ Z/pZ we have

fξ(x) =

∑

0<r<p/2

2ξr

√
F̂(r) cos(2πxr/p).

For each fixed x this has the form
∑

r arξr where ar = 2
√

F̂(r) cos(2πxr/p). Since

‖F̂‖1 6 1, we have
∑

r a2
r 6 4. In view of (6.1) this means that

Eξ exp(c fξ(x)2) 6
∑

k>0

1

k!
(4cC0k)k.
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By Stirling’s formula this series converges provided that 4cC0 < 1/e, an inequality
which can certainly be achieved by selecting c sufficiently small.

Averaging over x, we see that ExEξ exp(c fξ(x)2) ≪ 1. In particular there is at least
one choice of the signs ξ for which the claimed inequality is true.

The next lemma is a technical fact used in the proof of Lemma 6.3 below.

Lemma 6.2 Let f1, f2 : Z/pZ → R be two functions. Then the following inequality

holds:

‖ f1 ∗ f ◦1 − f2 ∗ f ◦2 ‖∞ 6 ‖ f1 − f2‖2(‖ f1‖2 + ‖ f2‖2).

Proof By the Cauchy–Schwarz inequality we have | f ∗ g(x)| 6 ‖ f ‖2‖g‖2 for any two
functions f , g and for any x ∈ Z/pZ. Setting g := f1 − f2 we have

|( f1 ∗ f ◦1 )(x) − ( f2 ∗ f ◦2 )(x)| 6 | f2 ∗ g◦(x)| + |g ∗ f ◦1 (x)| 6 ‖ f2‖2‖g‖2 + ‖ f1‖2‖g‖2,

as required.

The next lemma is a stronger version of Theorem 1.6.

Lemma 6.3 There is a function f : Z/pZ → R such that E f = 0, ‖ f ‖2 ≪ 1,

| f ∗ f ◦(x)| ≫ 1/ log p for all x, and with the additional property that ‖ f ‖∞ ≪√
log log p.

Proof Take a function fξ satisfying the conclusion of Lemma 6.1, that is to say for

which the inequality

(6.2) Ex exp(c fξ(x)2) ≪ 1

is satisfied. Let C be a large absolute constant, and consider the set

A := {x : | fξ(x)| > C
√

log log p}.

It follows from (6.2) that, for a suitable choice of C, we have E1A ≪ (log p)−10.

Choose an arbitrary set A ′ such that A ⊆ A ′ and

(6.3) (log p)−10 ≪ E1A ′ ≪ (log p)−10.

Define f by

f (x) :=

{
fξ(x) if x /∈ A ′;

κ if x ∈ A ′,
.

where κ is selected so that E f = 0.

Observe that |κ| = |Ex∈A ′ fξ(x)| 6 Ex∈A ′ | fξ(x)|. From (6.2) one may deduce

without difficulty that Ex∈S| fξ(x)| ≪
(

log(1/E1S)
) 1/2

for any nonempty set S ⊆
Z/pZ. Hence, in view of (6.3), we have the bound

|κ| ≪
√

log log p.
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This immediately implies that ‖ f ‖∞ ≪
√

log log p.
To obtain the upper bound on ‖ f ‖2, it suffices to note that

‖ f − fξ‖2 = ‖( fξ − κ)1A‖2 ≪
√

log p(E1A)1/2 ≪ (log p)−4.

Furthermore, this inequality together with Lemma 6.2 implies that

‖ f ∗ f ◦ − fξ ∗ f ◦ξ ‖∞ ≪ (log p)−4.

In view of the fact that | fξ ∗ f ◦ξ (x)| ≫ 1/ log p for all x ∈ Z/pZ, we obtain the desired

lower bound | f ∗ f ◦(x)| ≫ 1/ log p.

Remark. A well-known conjecture of Komlós implies that if (ai j)16i, j6n are any

scalars, then there is a choice of signs ξ j so that

∣∣ ∑

j

ai jξ j

∣∣ 6 C
( ∑

j

a2
i j

) 1/2
,

for some absolute constant C. This conjecture, if true, would allow us to replace

the
√

log log p appearing in Lemma 6.3 by an absolute constant and to remove all
subsequent appearances of log log p. The best result towards Komlós’ conjecture is

due to Banaszczyk [1]; it may be that his ideas may be applied in our context to

reduce the log log p factors to something a little smaller, but it does not seem worth
the effort of pursuing this line of inquiry.

Using a simple linear transformation, Lemma 6.3 has the following consequence.

Lemma 6.4 There exists a function f : Z/pZ → [0, 1] such that E f = 1/2 and

(6.4) | f ∗ f ◦(x) − 1/4| ≫ 1/ log p log log p

for all x ∈ Z/pZ.

To complete the proof of Theorem 1.7 we use probabilistic arguments again, in

a fairly standard manner. We choose a set B by selecting each x ∈ Z/pZ to lie in B

independently at random with probability f (x), and then show that with high prob-
ability |B| is close to p/2 and 1B ∗ 1◦B(x) is close to f ∗ f ◦(x) whenever x 6= 0. We

then modify B by adding or deleting a small number of elements to give a set A with
|A| = ⌊p/2⌋.

For each x ∈ Z/pZ we write Xx for the random variable which is 1 with probability

f (x) and 0 with probability 1 − f (x). To prove the statements we need, it is natural
to use one of the standard large-deviation type inequalities. Amongst inequalities

of this sort, one particularly suited to our purpose is Hoeffding’s inequality (see, for

example, [4]).

Lemma 6.5 (Hoeffding’s inequality) Suppose that Y1, . . . ,Ym are independent ran-

dom variables such that |Yi | 6 1 for each i. Write Y := m−1(Y1 + · · · + Ym) and

µ := EY . Then for any t > 0 we have P(|Y − µ| > t) 6 2e−mt2/2.
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It follows immediately from this, applied with m = p and Yx = Xx , that

(6.5) P(||B| − p/2| > p2/3) ≪ e−p1/3/2.

Fix x ∈ Z/pZ, x 6= 0, and look at the expression

1B ∗ 1◦B(x) = p−1
∑

y

XyXy−x.

Writing Zy := XyXy−x, we have p−1
∑

y EZy = f ∗ f ◦(x). Hoeffding’s inequality

does not immediately apply to the family (Zy)y∈Z/pZ, since these random variables
are not independent. However we may partition the family into three subfamilies

(Zy)y∈Si
, i = 1, 2, 3, where |Si| > p/5, and within each family the random variables

Zy are jointly independent. This may be achieved by forming the graph on vertex set
Z/pZ in which verex i is joined to vertex j if i − j = x; this is a cycle of length p, and

we partition its vertex set into 3 classes each having size at least p/5.
Hoeffding’s inequality now applies, and we have

P

(∣∣ |Si |−1
∑

y∈Si

Zy − |Si|−1
∑

y∈Si

EZy

∣∣ > t
)

6 2e−pt2/10

for i = 1, 2, 3. It follows using the triangle inequality that

P

(∣∣ p−1
∑

y∈Z/pZ

Zy − p−1
∑

y∈Z/pZ

EZy

∣∣ > t
)

6 6e−pt2/10,

that is to say

P
( ∣∣ (1B ∗ 1◦B)(x) − ( f ∗ f ◦)(x)

∣∣ > t
)

6 6e−pt2/10.

Taking t = p−1/3, we see from this and (6.5) that with probability close to 1 we have

both

(6.6)
∣∣ |B| − p/2

∣∣ 6 p2/3

and

(6.7)
∣∣1B ∗ 1◦B(x) − f ∗ f ◦(x)

∣∣ 6 p−1/3

for all x 6= 0. Fix a specific set B verifying (6.6) and (6.7). Form a set A by adding to
or deleting from B arbitrary elements so that |A| = ⌊p/2⌋. In view of (6.6) we have

‖1A − 1B‖2 6 2p−1/6,

and hence by Lemma 6.2 we infer that ‖1A ∗ 1◦A − 1B ∗ 1◦B‖∞ 6 4p−1/6. It follows

from this, (6.7), and (6.4) that

|1A ∗ 1◦A(x) − 1/4| ≫ 1/ log p log log p

for all x 6= 0. This inequality is manifestly true for x = 0 as well, and this completes

the proof of Theorem 1.7.
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7 A Recent Development

We have recently learned that Sanders [11] has combined some of our methods

with some new ideas, and has been able to improve the bound in Theorem 1.3 to
(log p)−1/2+ǫ.
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