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Abstract

A system of functional equations satisfied by the components of a quadratic function is derived via
their corresponding circulant matrix. Given such a system of functional equations, general solutions
are determined and a stability result for such a system is established.
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1. Introduction

Let n ∈ N, n ≥ 2, and let ωn := exp(2πi/n) be a primitive nth root of unity. A type- j
function, first introduced by Schwaiger in [8], is a function f : C→ C satisfying

f (ωnx) = ω
j
n f (x).

They are referred to as the components of f because

f =

n−1∑
j=0

f j where f j(x) =
1
n

n−1∑
k=0

ω
−k j
n f (ωk

nx).

Applying this concept, Schwaiger [8] derived and solved the following system of
functional equations satisfied by the components of an exponential function.

f j(x + ωm
n y) =

j∑
`=0

ω
( j−`)m
n f`(x) f j−`(y) +

n−1∑
`= j+1

ω
(n+ j−`)m
n f`(x) fn+ j−`(y), (1.1)

for j = 0, 1, . . . , n − 1, where m ∈ {0, 1, . . . , n − 1} is fixed. The stability of the system
(1.1) was established one year later by Förg-Rob and Schwaiger in [2]. In 2005,
Muldoon [7] simplified and systematised the results in [8] and [2] through the use
of a circulant matrix.

c© 2019 Australian Mathematical Publishing Association Inc.

304

https://doi.org/10.1017/S000497271900025X Published online by Cambridge University Press

https://orcid.org/0000-0003-0480-0382
https://orcid.org/0000-0002-7357-1061
https://doi.org/10.1017/S000497271900025X


[2] A system of functional equations 305

A quadratic function is a function q : C→ C satisfying

q(x + y) + q(x − y) = 2q(x) + 2q(y) (x, y ∈ C). (Q)

Note that quadratic functions are even functions, that is, q(−x) = q(x) for x ∈ C.
Using Muldoon’s approach, we find here a system of functional equations satisfied

by the components of a quadratic function via their corresponding circulant matrix.
Given such a system of functional equations, their solutions are determined and the
stability of such a system is investigated.

2. Preliminary results

Throughout, let n be a fixed integer ≥ 2 and let ωn = exp(2πi/n) be a primitive nth
root of unity. As in Muldoon [7], the following notation is adopted.

The n × n (symmetric) Fourier matrix and its complex-conjugate matrix are defined,
respectively, by

Fn =
1
√

n


1 1 · · · 1
1 ω−1

n · · · ω−(n−1)
n

...
...

. . .
...

1 ω−(n−1)
n · · · ω−(n−1)2

n

 , F ∗
n =

1
√

n


1 1 · · · 1
1 ωn · · · ω(n−1)

n
...

...
. . .

...

1 ω(n−1)
n · · · ω(n−1)2

n

 .
Note that Fn is unitary, that is, FnF ∗

n = In = F ∗
n Fn, where In denotes the n × n

identity matrix.
The diagonal matrix Ωn is defined by

Ωn = diag(1, ωn, ω
2
n, . . . , ω

n−1
n ) :=


1 0 · · · 0
0 ωn · · · 0
...

...
. . .

...
0 0 · · · ωn−1

n

 .
Given a sequence {a0, . . . , an−1} ⊂ C, its circulant matrix is defined by

circ(a0, a1, . . . , an−1) :=


a0 a1 · · · an−1

an−1 a0 · · · an−2
...

...
. . .

...
a1 a2 · · · a0


and its diagonal matrix is defined by

diag(a0, a1, . . . , an−1) :=


a0 0 · · · 0
0 a1 · · · 0
...

...
. . .

...
0 0 · · · an−1

 .
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The circulant matrix corresponding to the sequence {0, 1, 0, . . . , 0} is

πn := circ(0, 1, 0, . . . , 0) =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0


.

Observe that

(1) π−1
n = πT

n (T denoting transpose), that is, πn is orthogonal.
(2) The circulant matrix circ(a0, a1, . . . , an−1) can be written as

circ(a0, a1, . . . , an−1) = a0In + a1πn + · · · + an−1π
n−1
n .

(3) F ∗
n ΩnFn = πn and, equivalently, Ωn = FnπnF ∗

n .

The following basic results are taken from [7].

Lemma 2.1 [7, Lemmas 2.1 and 2.2].

(I) If A = circ(a0, a1, . . . , an−1), then

FnAF ∗
n =
√

n diag(F ∗
n ā)T , ā =


a0
...

an−1

 .
(II) Let m be a nonnegative integer. If A is a circulant matrix, then

Fn(Ω−m
n AΩm

n )F ∗
n = πm

n (FnAF ∗
n )π−m

n .

Lemma 2.2 [7, Lemma 2.4]. Any f : C→ C can be written uniquely as a sum of
functions f j ( j ∈ {0, 1, . . . , n − 1}) of type- j (called its j-components):

f (x) = f0(x) + f1(x) + · · · + fn−1(x),

where 
f0(x)
f1(x)
...

fn−1(x)

 =
1
√

n
Fn


f (x)

f (ωnx)
...

f (ωn−1
n x)

 =
1
√

n
F ∗

n


f (x)

f (ω−1
n x)
...

f (ω−(n−1)
n x)

 .
The circulant matrix corresponding to a function f , whose j-components are f j, is

F(x) := circ( f0(x), f1(x), . . . , fn−1(x)) =


f0(x) f1(x) · · · fn−1(x)

fn−1(x) f0(x) · · · fn−2(x)
...

...
. . .

...
f1(x) f2(x) · · · f0(x)

 .
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Lemma 2.3. The circulant matrix function F(x) corresponding to f : C→ C satisfies

(I) F(x) = F ∗
n diag( f (x), f (ωnx), . . . , f (ωn−1

n x))Fn and, equivalently,

FnF(x)F ∗
n = diag( f (x), f (ωnx), . . . , f (ωn−1

n x));

(II) F(ωm
n x) = Ω−m

n F(x)Ωm
n for each m ∈ N.

Proof. Part I is Lemma 2.6 in [7]. The case m = 1 in Part II is Lemma 2.8 in [7]. We
proceed now to prove the general case of m ∈ N. By multiplying the three matrices,

Ω−m
n F(x)Ωm

n =


f0(x) ωm

n f1(x) · · · ω(n−1)m
n fn−1(x)

ω(n−1)m
n fn−1(x) f0(x) · · · ω(n−2)m

n fn−2(x)
...

...
. . .

...
ωm

n f1(x) ω2m
n f2(x) · · · f0(x)


=


f0(ωm

n x) f1(ωm
n x) · · · fn−1(ωm

n x)
fn−1(ωm

n x) f0(ωm
n x) · · · fn−2(ωm

n x)
...

...
. . .

...
f1(ωm

n x) f2(ωm
n x) · · · f0(ωm

n x)

 = F(ωm
n x).

This completes the proof of Lemma 2.3. �

Lemma 2.4.

(I) Let m be a nonnegative integer. If B = diag(b0, b1, . . . , bn−1), then

πm
n Bπ−m

n = diag(bm, bm+1, . . . , bm+n−1),

where suffixes are taken modulo n.
(II) If B is a diagonal matrix, then F ∗

n BFn is a circulant matrix.

Proof. (I) When m = 1, the result follows by multiplying the matrices:

πnBπ−1
n = πndiag(b0, b1, . . . , bn−1)π−1

n

=



0 b1 0 · · · 0
0 0 b2 · · · 0
...

...
...

. . .
...

0 0 0 · · · bn−1
b0 0 0 · · · 0





0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0



T

= diag(b1, b2, . . . , b0).

Assume the result holds up to m, that is, πm
n Bπ−m

n = diag(bm, bm+1, . . . , bm+n−1), where
suffixes are taken modulo n. Since πm+1

n Bπ−m−1
n = πn(πm

n Bπ−m
n )π−1

n , using the induction
hypothesis and the result of the case m = 1,

πm+1
n Bπ−m−1

n = πndiag(bm, bm+1, . . . , bm+n−1)π−1
n = diag(bm+1, bm+2, . . . , bm+n),

as desired.
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(II) The result follows from another matrix calculation:

F ∗
n BFn =


d0 d1 · · · dn−1

dn−1 d0 · · · dn−2
...

...
. . .

...
d1 d2 · · · d0

 = circ(d0, d1, . . . , dn−1),

where d j = (1/n)
∑n−1

k=0 ω
n−k j
n bk ( j = 0, 1, . . . , n − 1). �

3. A system of functional equations

In this section, we first find a system of functional equations satisfied by the
components of a quadratic function (see (Q) in Section 1) via the corresponding
circulant matrix, and then consider the problem of solving such a system.

Theorem 3.1. If f : C → C satisfies (Q), then its corresponding circulant matrix
function F(x) satisfies

F(ωm
n x + y) + F(ωm

n x − y) = 2Ω−m
n F(x)Ωm

n + 2F(y)

for any m ∈ {0, 1, . . . , n − 1}.

Proof. From Lemma 2.3(I) and Lemma 2.3(II),

F(ωm
n x + y) + F(ωm

n x − y)
= F ∗

n diag( f (ωm
n x + y) + f (ωm

n x − y), f (ωn(ωm
n x + y)) + f (ωn(ωm

n x − y)),

. . . , f (ωn−1
n (ωm

n x + y)) + f (ωn−1
n (ωm

n x − y)))Fn

= F ∗
n diag(2 f (ωm

n x) + 2 f (y), 2 f (ωn(ωm
n x)) + 2 f (ωny),

. . . , 2 f (ωn−1
n (ωm

n x)) + 2 f (ωn−1
n y))Fn

= 2F(ωm
n x) + 2F(y) = 2Ω−m

n F(x)Ωm
n + 2F(y). �

The following lemma, whose easy proof is omitted, is needed in the proof of
Theorem 3.3.

Lemma 3.2. Let m ∈ {0, 1, . . . , n − 1} be fixed and let d = gcd(n,m). Then for every
s, u ∈ {0, 1, . . . , d − 1} and t, v ∈ {0, 1, . . . , n/d − 1},

s + tm . u + vm (mod n),

except when s = u and t = v.

Theorem 3.3. Let F(x) be a circulant matrix with first row ( f0(x), f1(x), . . . , fn−1(x)),
where fi : C→ C are arbitrary functions which need not be components of the same
function. If F satisfies

F(ωm
n x + y) + F(ωm

n x − y) = 2Ω−m
n F(x)Ωm

n + 2F(y), (3.1)
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for a fixed m ∈ {0, 1, . . . , n − 1}, then putting d := gcd(m, n), when d = n,
f0(x)
f1(x)
...

fn−1(x)

 =
1
√

n
Fn


B0(x, x)
B1(x, x)

...
Bn−1(x, x)

 ,
and when 1 ≤ d < n,

f0(x)
f1(x)
...

fn−1(x)

 =
1
√

n
Fn


α(x)

α(ωm
n x)
...

α(ωm(n/d−1)
n x)

 with α(x) =


B0(x, x)
B1(x, x)

...
Bd−1(x, x)

 ,
where the Bi : C × C→ C are symmetric, bi-additive functions defined by

Bi(x, y) =
1
4

(gi(x + y) − gi(x − y)), with gi(x) :=
n−1∑
k=0

ωik fk(x) (i = 0, . . . , n − 1).

Proof. Suppose that F(x) satisfies (3.1). Then

FnF(ωm
n x + y)F ∗

n + FnF(ωm
n x − y)F ∗

n = 2FnΩ−m
n F(x)Ωm

n F ∗
n + 2FnF(y)F ∗

n .

Using Lemma 2.1(I) and (II), this equation becomes

G(ωm
n x + y) + G(ωm

n x − y) = 2Gm(x) + 2G(y), (3.2)

where we write

diag(g0(x), g1(x), . . . , gn−1(x)) = G(x) = FnF(x)F ∗
n =
√

n diag(F ∗
n f̄ (x))T , (3.3)

Gm(x) = πm
n G(x)π−m

n .

Equation (3.2) and Lemma 2.4(I) yield a system of n equations

g0(ωm
n x + y) + g0(ωm

n x − y) = 2gm(x) + 2g0(y)
g1(ωm

n x + y) + g1(ωm
n x − y) = 2gm+1(x) + 2g1(y)

...

gn−1(ωm
n x + y) + gn−1(ωm

n x − y) = 2gm+n−1(x) + 2gn−1(y).

Using Lemma 3.2, we subdivide these n equations into d different classes each with
n/d equations:

gk+ jm(ωm
n x + y) + gk+ jm(ωm

n x − y) = 2gk+( j+1)m(x) + 2gk+ jm(y), (3.4)

where j = 0, 1, . . . , n/d − 1 and k = 0, 1, . . . , d − 1. Substituting x = y = 0 in (3.4),

gk(0) = gk+m(0) = · · · = gk+(n/d)m(0) = 0. (3.5)
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Substituting y = 0 in (3.4) and using (3.5),

gk+( j+1)m(x) = gk+ jm(ωm
n x) ( j = 0, 1, . . . , n/d − 1; k = 0, 1, . . . , d − 1). (3.6)

Substituting (3.6) into (3.4),

gk+ jm(ωm
n x + y) + gk+ jm(ωm

n x − y) = 2gk+ jm(ωm
n x) + 2gk+ jm(y). (3.7)

Replacing x by ω−m
n x in (3.7),

gk+ jm(x + y) + gk+ jm(x − y) = 2gk+ jm(x) + 2gk+ jm(y).

This last relation shows that each gk+ jm is a quadratic function. Invoking Theorem 4.1
of [6, page 222],

gk+ jm(x) = Bk+ jm(x, x), (3.8)

where Bk+ jm : C × C→ C are symmetric bi-additive functions given by

Bk+ jm(x, y) = 1
4 (gk+ jm(x + y) − gk+ jm(x − y)).

If d = n, then m = 0 and from (3.8),

gk(x) = Bk(x, x) (k = 1, . . . , n − 1).

From (3.3) and the above relation,
f0(x)
f1(x)
...

fn−1(x)

 =
1
√

n
Fn


g0(x)
g1(x)
...

gn−1(x)

 =
1
√

n
Fn


B0(x, x)
B1(x, x)

...
Bn−1(x, x)

 .
If 1 ≤ d < n, then the system (3.6) can be rewritten as

gk+m(x) = gk(ωm
n x)

gk+2m(x) = gk+m(ωm
n x) = gk(ω2m

n x)
...

gk+(n/d)m(x) = gk+(n/d−1)m(ωm
n x) = · · · = gk(ω(n/d)m

n x).

From (3.8) and these relations,

gk+ jm(x) = gk(ω jm
n x) = Bk(ω jm

n x, ω jm
n x) ( j = 0, 1, . . . , n/d − 1; k = 0, 1, . . . , d − 1).

From (3.3) and the last relation,
f0(x)
f1(x)
...

fn−1(x)

 =
1
√

n
Fn


g0(x)
g1(x)
...

gn−1(x)

 =
1
√

n
Fn


α(x)

α(ωm
n x)
...

α(ωm(n/d−1)
n x)


with α(x) = [B0(x, x) B1(x, x) · · · Bd−1(x, x)]T . �
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We work out two examples for the results of Theorem 3.3 corresponding to the
cases n = 2 and 3, respectively.

Example 3.4. If n = 2, then (3.1) becomes

F(ωm
2 x + y) + F(ωm

2 x − y) = 2Ω−m
2 F(x)Ωm

2 + 2F(y) (m = 0, 1) (3.9)

where F(x) = circ( f0(x), f1(x)).
For m = 0, (3.9) reads

F(x + y) + F(x − y) = 2F(x) + 2F(y) (3.10)

and Theorem 3.3 gives f0(x) = 1
2 (B0(x, x) + B1(x, x)), f1(x) = 1

2 (B0(x, x) − B1(x, x)),
where B0, B1 are symmetric, bi-additive functions. Equating the elements in (3.10),

fi(x + y) + fi(x − y) = 2 fi(x) + 2 fi(y) (i = 0, 1),

showing that f0, f1 are quadratic functions.
If we assume that f0, f1 are components of a function f , that is, f (x) = f0(x) + f1(x),

then f is a quadratic function, and so is an even function. Thus, its odd part f1(x) ≡ 0
yielding B0(x, x) = B1(x, x) and f (x) = f0(x) = B0(x, x), that is, f has only trivial
components.

For m = 1, (3.9) reads

F(ω2x + y) + F(ω2x − y) = 2Ω−1
2 F(x)Ω2 + 2F(y) (3.11)

and Theorem 3.3 gives

f0(x) = 1
2 (B0(x, x) + B0(ω2x, ω2x)), f1(x) = 1

2 (B0(x, x) − B0(ω2x, ω2x)),

where B0 is a symmetric, bi-additive function. Equating the elements in (3.11),

fi(ω2x + y) + fi(ω2x − y) = 2ωi
2 fi(x) + 2 fi(y) (i = 0, 1). (3.12)

Substituting x = y = 0 in (3.12),

fi(0) = 0. (3.13)

Substituting y = 0 in (3.12) and using (3.13),

fi(ω2x) = ωi
2 fi(x). (3.14)

Replacing y by ω2y in (3.12) and using (3.14),

fi(x + y) + fi(x − y) = 2 fi(x) + 2 fi(y) (i = 0, 1),

showing again that f0, f1 are quadratic functions.
If we assume that f0, f1 are components of a function f , then as in the previous

case f is a quadratic function, f1(x) = 0, and f (x) = f0(x) = B0(x, x), that is, f has only
trivial components.
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Example 3.5. If n = 3, then (3.1) becomes

F(ωm
3 x + y) + F(ωm

3 x − y) = 2Ω−m
3 F(x)Ωm

3 + 2F(y) (m = 0, 1, 2) (3.15)

where F(x) = circ( f0(x), f (1)(x), f2(x)).
For m = 0, (3.15) reads

F(x + y) + F(x − y) = 2F(x) + 2F(y) (3.16)

and Theorem 3.3 gives

f0(x) = 1
3 (B0(x, x) + B1(x, x) + B2(x, x))

f1(x) = 1
3 (B0(x, x) + ω2

3B1(x, x) + ω3B2(x, x)) (3.17)

f2(x) = 1
3 (B0(x, x) + ω3B1(x, x) + ω2

3B2(x, x)),

where B0,B1,B2 are symmetric, bi-additive functions. Equating the elements in (3.16),

fi(x + y) + fi(x − y) = 2 fi(x) + 2 fi(y) (i = 0, 1, 2),

showing that f0, f1, f2 are quadratic functions.
If we assume that f0, f1, f2 are components of a function f , that is, f is given by

f (x) = f0(x) + f1(x) + f2(x), then f is also a quadratic function. In contrast to the case
n = 2, we now show that f can have nontrivial components. So, suppose that f has
only trivial components, that is, the following three possibilities occur.

Either f (x) = f0(x) and f1(x) = f2(x) = 0;

or f (x) = f1(x) and f0(x) = f2(x) = 0;

or f (x) = f2(x) and f0(x) = f1(x) = 0.

If f (x) = f0(x) and f1(x) = f2(x) = 0, by solving the system (3.17),

B0(x, x) = B1(x, x) = B2(x, x). (3.18)

If f (x) = f1(x) and f0(x) = f2(x) = 0, by solving the system (3.17),

B1(x, x) = ω3B0(x, x), B2(x, x) = ω2
3B0(x, x). (3.19)

If f (x) = f2(x) and f0(x) = f1(x) = 0, by solving the system (3.17),

B1(x, x) = ω2
3B0(x, x), B2(x, x) = ω3B0(x, x). (3.20)

Since the three symmetric bi-additive functions B0, B1, B2 are arbitrary, it is possible
to choose these B j in such a way that that the three requirements (3.18), (3.19) and
(3.20) do not hold.

We leave the discussion of the remaining cases (m = 1, 2) to the reader.
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4. Stability

The concept of the stability of functional equations arose in 1940 when Ulam
in [9] asked: Under what conditions does there exist an additive mapping near an
approximately additive mapping? This question was answered in 1941 by Hyers [3]
with the result: If f : E1 → E2 is a mapping satisfying

‖ f (x + y) − f (x) − f (y)‖ ≤ δ

for all x, y ∈ E1, where E1 and E2 are Banach spaces and δ is a given positive number,
then there exists a unique additive mapping T : E1 → E2 such that

‖ f (x) − T (x)‖ ≤ δ

for all x ∈ E1. If f (x) is a real continuous function of x over R, and

| f (x + y) − f (x) − f (y)| ≤ δ,

it was shown by Hyers and Ulam [5] that there exists a constant k such that

| f (x) − kx| ≤ 2δ.

For recent developments, see [1, 4]. In this section, we establish the stability of the
circulant matrix functional equation

F(ωm
n x + y) + F(ωm

n x − y) = 2Ω−m
n F(x)Ωm

n + 2F(y).

As in [7], we use the usual 1-norm for a square matrix A = (ai j) defined by

‖A‖ = max
0≤i≤n−1

n−1∑
j=0

|ai j|.

Theorem 4.1. Let F(x) be a circulant matrix whose first row is ( f0(x), f1(x), . . . , fn−1(x)),
where fi : C→ C are arbitrary functions which need not be components of the same
function, and let ε > 0. If F satisfies

‖F(ωm
n x + y) + F(ωm

n x − y) − 2Ω−m
n F(x)Ωm

n − 2F(y)‖ ≤ ε, (4.1)

for a fixed m ∈ {0, 1, . . . , n − 1}, then there exists a circulant matrix Q(x) satisfying the
matrix functional equation

Q(x + y) + Q(x − y) = 2Q(x) + 2Q(y) (4.2)

such that

‖F(x) −Q(x)‖ ≤
5n3

2
ε.
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Proof. Multiplying by ‖Fn‖ on the left-hand side and by ‖F ∗
n ‖ on the right-hand side

of (4.1),

‖FnF(ωm
n x + y)F ∗

n + FnF(ωm
n x − y)F ∗

n − 2FnΩ−m
n F(x)Ωm

n F ∗
n − 2FnF(y)F ∗

n ‖

≤ ‖Fn‖ε‖F
∗
n ‖.

By Lemma 2.1(I) and (II), this last inequality becomes

‖G(ωm
n x + y) + G(ωm

n x − y) − 2Gm(x) − 2G(y)‖ ≤ nε, (4.3)

where

diag(g0(x), g1(x), . . . , gn−1(x)) = G(x) = FnF(x)F ∗
n =
√

n diag (F ∗
n f̄ (x))T ,

Gm(x) = πm
n G(x)π−m

n .

Putting x = y = 0 in (4.3),

‖Gm(0)‖ ≤
nε
2
. (4.4)

Putting x = 0 in (4.3) and using (4.4),

‖G(y) −G(−y)‖ ≤ 2nε (y ∈ C). (4.5)

Replacing x by x + z and x − z, respectively, in (4.3),

‖G(ωm
n x + ωm

n z + y) + G(ωm
n x + ωm

n z − y) − 2Gm(x + z) − 2G(y)‖ ≤ nε (4.6)
‖G(ωm

n x − ωm
n z + y) + G(ωm

n x − ωm
n z − y) − 2Gm(x − z) − 2G(y)‖ ≤ nε. (4.7)

Replacing y by y + ωm
n z and y − ωm

n z, respectively, in (4.3),

‖G(ωm
n x + y + ωm

n z) + G(ωm
n x − y − ωm

n z) − 2Gm(x) − 2G(y + ωm
n z)‖ ≤ nε (4.8)

‖G(ωm
n x + y − ωm

n z) + G(ωm
n x − y + ωm

n z) − 2Gm(x) − 2G(y − ωm
n z)‖ ≤ nε. (4.9)

Using (4.6) and (4.8),

‖G(ωm
n x + ωm

n z − y) −G(ωm
n x − y − ωm

n z) − 2Gm(x + z)
− 2G(y) + 2Gm(x) + 2G(y + ωm

n z)‖ ≤ 2nε. (4.10)

Using (4.7) and (4.9),

‖G(ωm
n x − ωm

n z − y) −G(ωm
n x − y + ωm

n z) − 2Gm(x − z)
− 2G(y) + 2Gm(x) + 2G(y − ωm

n z)‖ ≤ 2nε. (4.11)

Using (4.10) and (4.11),

‖Gm(x + z) + Gm(x − z) − 2Gm(x) + 2G(y) −G(y + ωm
n z) −G(y − ωm

n z)‖ ≤ 2nε.
(4.12)
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Replacing x by z in (4.3),

‖G(ωm
n z + y) + G(ωm

n z − y) − 2Gm(z) − 2G(y)‖ ≤ nε. (4.13)

Using (4.12) and (4.13),

‖Gm(x + z) + Gm(x − z) − 2Gm(x) − 2Gm(z) + G(ωm
n z − y) −G(y − ωm

n z)‖ ≤ 3nε.
(4.14)

Using (4.5), the inequality (4.14) becomes

‖Gm(x + z) + Gm(x − z) − 2Gm(x) − 2Gm(z)‖ ≤ 5nε.

By Lemma 2.4(I), the elements of Gm(x) and G(x) are the same (but possibly in a
different order), and so

‖G(x + z) + G(x − z) − 2G(x) − 2G(z)‖ ≤ 5nε.

Since G(x) = diag(g0(x), g1(x), . . . , gn−1(x)), by the definition of norm,

|gi(x + z) + gi(x − z) − 2gi(x) − 2gi(z)| ≤ 5nε (i = 0, 1, . . . , n − 1).

By Theorem 6.24 of [6, page 323], there exist unique quadratic functions hi : C→ C
satisfying (Q) such that

|gi(x) − hi(x)| ≤
5n
2
ε (i = 0, 1, . . . , n − 1).

Let H(x) := diag(h0(x), h1(x), . . . , hn−1(x)). Using the definition of norm,

‖G(x) −H(x)‖ = max
0≤i≤n−1

n−1∑
j=0

|gi j(x) − hi j(x)| ≤
5n2

2
ε.

Multiplying by ‖F ∗
n ‖ on the left-hand side and by ‖Fn‖ on the right-hand side of the

last relation and noting that F(x) = F ∗
n G(x)Fn,

‖F(x) −Q(x)‖ ≤
5n3

2
ε,

where Q(x) = F ∗
n H(x)Fn. Since H(x) is a diagonal matrix, Lemma 2.4(II) and its

proof show that Q(x) is a circulant matrix whose first row is (q0(x), q1(x), . . . , qn−1(x)),
where

q j(x) =
1
n

n−1∑
k=0

ω
n−k j
n hk(x) ( j = 0, 1, . . . , n − 1).

Since each hk satisfies (Q), the function elements q j satisfy (Q), that is Q(x) satisfies
(4.2). �
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