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ASPERO-MOTA ITERATION AND THE SIZE OF THE CONTINUUM
TERUYUKI YORIOKA

Abstract. In this paper we build an Asper6o—Mota iteration of length w, that adds a family of R,
many club subsets of w; which cannot be diagonalized while preserving R,. This result discloses a technical
limitation of some types of Asper6—Mota iterations.

§1. Introduction. Shelah introduced countable support iterations of proper
forcing notions, which enable us to obtain a large number of consistency results.
But by technical limitations, the size of the continuum cannot be larger than X; in
such consistency results. Asperé and Mota introduced a new iteration technique
for proper forcing notions that enables us to obtain some consistency results
with the continuum larger than N,. Aspero-Mota iterations are equipped with
symmetric systems of models as side conditions, idea due to Todorcevic (see, e.g.,
[12. Section 4]). The main ingredient is not only the use of symmetric systems of
models but also symmetric systems of models with markers. Asper6—Mota iterations
are used in the papers [2-5, 10, 13]. In [5, 10], the iterations require that markers
of models in symmetric systems also have symmetry in a suitable sense (Definition
4.1(el), (ho), (up). and (down)).

The Asper6—Mota iterations used in [10] have length w, and are proper. The
Aspero—Mota iterations used in [5] have length beyond w, and are claimed to
be proper. The proof, however, contains a flaw, which has been acknowledged in
personal communication. The problems of the proof from [5] are generated by the
fact that the iteration in the paper is greater than w,.'

The forcing iteration in this paper deals with Asper6-Mota iterations with
symmetric markers, like in [5, 10]. We disclose a technical limitation of this type
of iterations; in fact our results show that the length of Aspero—Mota iterations
with symmetric markers in the style of [5, 10] must be at most @, in order to ensure
their properness.

To achieve our goal, we consider a family of club subsets of ;. Specifically, it is
proved that Asper6-Mota iteration can force a certain assertion, which is called (c)
in this paper, concerning the existence of a family of club subsets of w; which cannot
be diagonalized while preserving X,. The assertion was introduced by Justin Tatch
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1388 TERUYUKI YORIOKA

Moore in personal communication and was inspired by the results in [, Section 2].
Moreover, the natural proof of properness does not work when the length of the
iteration is greater than w;.

This paper is organized as follows. Section 2 is devoted to the basic facts of
the assertion (c): In Section 2.1, the assertion (¢) is introduced: in Section 2.2,
we introduce forcing notions to force the assertion (¢). Forcing notions stated
in Section 2.2 consist of finite objects. This idea is applied to the Aspero—Mota
iterations presented in this paper. The rest of the sections are devoted to our main
goal, that is, to prove that the assertion (c) can be forced by Asperd—Mota iterations.
In Section 3, we introduce relational structures with which we will equip our Aspero—
Mota style iterations. This notion is necessary for symmetric systems with symmetric
markers. We define our iteration in Section 4, and in Section 5 we prove that it
forces (c). As part of this proof, we show that the iteration is proper whenever its
length is at most w;. In the last section we explain why the proof of properness
breaks down when the length of our the iteration is greater than w,.

§2. The assertion (c) and forcing (c) by finite approximations.

2.1. The assertion (c). Galvin showed that, if the Continuum Hypothesis holds,
then for any family of X, many club subsets of w;, there exists a subfamily of size
N; whose intersection is a club [8, Section 3.2]. Abraham and Shelah showed that
the assumption of CH in this theorem of Galvin is necessary. More precisely, they
showed that it is consistent that there exists a family of N, many club subsets of
; such that the intersection of any uncountable subfamily is finite [1, Section 2].
(Notice that such a family cannot be diagonalized without collapsing X;.) They
proved this consistency result by an involved forcing construction using countable
objects and ccc forcing notions. Justin Tatch Moore introduced the assertion (c),
which is inspired by this result of Abraham-Shelah. His assertion (¢) can be forced
by a countable support iteration of proper forcing notions.

All definitions, propositions, and remarks in the subsection are due to Moore.
Throughout the article, we assume the following.

ASSUMPTIONS THROUGHOUT THE PAPER 2.1.

e C = (Cys:0 € w) NLim) is a ladder system on w, that is, each Cj is a cofinal
subset of 0 of order type w: moreover, we suppose that each Cs consists of
successor ordinals (hence, for any limit ordinals 6 and y in w; with 6 <y,
CGny+1)=Csny).

o the set 2<¢ is equipped with the discrete topology, and (2<?)” is considered
as the product space of copies of the discrete space 2<?,

e for each v € (2<?)<“, we denote

v]:=={g € (2s?)”:v Cg}.

which is a basic open subset of the space (2<”)w; here we recall that v C g
means that, for every n € dom(v), v(n) = g(n).

DEerINITION 2.2.  For a set X of injective functions from w into 2<® and r € 2%, we
say that a club subset E of w; captures r relative to (C and) X if, for any limit point J
of E, there are / € X and e € J such that, forany ¢ € (ENd) \ e, f(|CsNE|) Cr.
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PROPOSITION 2.3.  Suppose that R is a set of reals and X is a set of injective functions
Sfrom @ into 2<% of size X\ . If, for each r € R, there exists a club subset E, of w\ which
captures r relative to X and if the set {E, : r € R} can be diagonalized, then the size
of R is not larger than N,.

ProoOF. Suppose that a club subset E of w; diagonalizes all club sets E,, r € R,
(i.e., for each r € R, E \ E, is bounded in w;) and R is of size > N,. Then there
exists 7 € w; such that the set

R :={reR:E\nCE}

is of size > N,. Let 0 be a limit point of the set E \ #. Since X is of size X, there are
an injective function f in X and € € J such that € > # and the set

R":={reR :v¢e(E Nnd)\e f(|CsNE&|) Cr}
is of size > W,. But then, for any r € R”,
vee(End)\e f(IGnE])Cr
This contradicts the fact that R” has at least two different reals. o

DEeFINITION 2.4. Define the assertion (¢) to be the statement that there are a set X
of injective functions from w into 2<% of size N; and a collection of N,-many reals
each one of which can be captured by a club of w, relative to X.

REMARK 2.5. By Proposition 2.3, any collection of X, many club subsets each of
which captures a real r relative to X cannot be diagonalized in any outer model with
the same N, if all the ’s are distinct.

REMARK 2.6. Moore pointed out that, if X is a non-meager subset of injective
functions from  into 2<® and r € 2%, the forcing notion of all countable
approximations to a club subset of w; that captures r is proper and adds no new
reals (however it may not be o-closed). Moreover, if CH holds, then it satisfies the
N,-proper isomorphic condition (N,-pic). Therefore, the assertion (¢) can be forced
by a countable support iteration.

2.2. Forcing (c) by finite approximations. In thissubsection, we deal with a forcing
notion to force the assertion (¢) different from the one referred to in Remark 2.6.
Our forcing notion is equipped with models as side conditions [12, Section 4]. The
proofs of the basic facts of this forcing notion should help the reader understand
the machinery of the proofs dealing with our Asper6—Mota iteration in Section 5.

Suppose that X is a non-meager subset of injective functions from @ into
2<® and r €2¢. Let k := (2“0)+. Define 9(X,r) to be the set of countable
elementary submodels of H, which contain the set {C, X, r}. Each member of
9M(X,r) is considered as a substructure of the structure (Hg, €,01,C, X, r). For
each M € M(X,r), the transitive collapse of M is considered as the structure
(trcl(M),E,wl NM,C | M XNMr), which is denoted by ‘M. ¥, denotes the
transitive collapsing map from M onto M. For each M € OM(X,r), since M is
countable and w; is of uncountable cofinality, w; N M is a countable ordinal.
And if M and M’ in 9M(X, r) have the same transitive collapse, then w; N M =
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w1 N M’, and the composition ‘PMFI o Wy is an isomorphism from the structure
(M, €, w.C, X, r) onto the structure (M’, €, w;,C, X, r).

In this subsection, we suppose 280 = R If M and M’ in M (X, r) satisfyw; N M =
w; N M’ thenRN M = RnN M. So the set of Borel codes in M coincides with those
in M’. Therefore, for any f € (2<?)“, f is Cohen over M iff f is Cohen over M’.
In this subsection, we identify a non-meager set X (which is of size N;) with some
fixed enumeration of X of length w;. Then, if M and M’ in (X, r) satisfies
w1 NM =w NM' then X "M = X N M'. We notice that, for any M € 9M(X,r)
and any f € (2<?)” which is Cohen over M, the set {n € w : f(n) C r} is infinite.

In Section 4, we will define an Asper6—Mota iteration of forcing notions playing
the same role as the following forcing notions.

DEFINITION 2.7. Define the forcing notion Q(X.r) consisting of the triples
= (V). N, 4,) such that
(sym) Np UN} is a finite subset of 9(X. r) such that
e for each M, M’ GNSUNI},ifwl NM=cw NM . then M = M’
o for each M, M’ € /\/l(,) UNI}, if o; N M’ < w; N M, then there exists M" €
J\/'I(,) UN; such that M = M and M’ € M",
(ob) A4, is a finite set of tuples of the form ¢ = (e5.J5. 75. f ) such thate;.6,. 75 €
W1, g <05 < yg.and f, € X,
(ob-2)
e the set {d; : 0 € 4,} includes the set {w; NN : N ENI(,)}, and the set
{76 : 0 € 4,} includes the set {w; N M : M € N}}.
e foranyog € A, andany N € ./\/'19, if w1 N N = J,, then there exists M € Nll
suchthat N € M and o1 N M = vy,
e foranyoc € A, andany M € N;, ifw; N M = vy, then f, is Cohen over M,

oforanyaeApandNeNg,ifég<w1ﬁN,thena€N,

(cl) for any {a.7} € [4,]’. either 3, < & or y; <. and

(w) for any ¢ € 4,. if 6, is a limit ordinal, then the set {n cw: fon)Cr }
infinite. and for any v € 4, \ {o} with g5 <6; <J5. f4+(|Cs, NJ; | Cr an
fa(|c(‘,, N (e + 1)|) Cr,

for each p.q € Q(X. 7). ¢ <g(x,) pif/\/:? QJ\/;?,J\/(} QJ\/;,A(] DA,

We notice that. for any p € Q(X.r). any N € N} and any M € N}, o, N N #
wrNM.

LEmMA 2.8. For any non-meager set X of injective functions from w into 2<% and
any r € 2°, Q(X, r) is proper.

ProOF. Let 0 be a large enough regular cardinal, N* a countable elementary
submodel of Hy which contains {C,X.r,H,}. and p € Q(X,r)NN*. Let M*
be a countable elementary submodel of H, which has the set {N*}, and let
€« € w1 N N* such that d, < e, for every o € 4,. We denote N, := N* N H, and
M, := M* N Hy.Since X is non-meager and M * is countable, there exists a function
[« in X which is Cohen over M*. Define o, := (€., w1 N N, 01 N M., f.) and
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pr=NJU{N.} . NyU{M,}.4,U{0.}). p" is a condition of Q(X.r). and
hence is an extension of p.

Let us show that p* is an N*-generic condition of Q(X. r). Let D be a predense
subset of Q(X,r) which belongs to N*, and ¢ an extension of p* in Q(X,r). By
extending ¢ if necessary, we may assume that ¢ is an extension of some member
of D. Moreover, by extending ¢ if necessary again, we may assume that the set
(V7 UN) N N, includes the set

{((‘PN*)’l o‘PN) (K): N e N2 withwy NN = NN,
Ke W un)nn}.

Define € to be the set of the conditions u of Q(X, r) such that

e 1 is an extension of some member of D in Q(X, r),

e NJNN =N) NN NJ N M =N} N M, (=N NN.).and N € M for some
N € N? and some M € N},

e A, D A;NN,, and, for any o€ A4,\(4,NN,) and any 7€ A4,
(Vs U{o4}).

max (Cs, N Ny) < Jq-.
Then p* € . Since the set
{QX.r). DN AN N, N M, Ay NN, (C5. NN, 1T € Ay \ (N U{o.}))}

belongs to N*, by elementarity of N*, £ belongs to N*. We note that
& ifuec NN, thenforanyo € 4, \ (4, N N,)andanyt € 4, \ (N, U{0.}).

Cgr No, = C,;T NYe = Cb} NN, = Cé} 050*.
It follows from elementarity of N* that

¢ foranyn € w; N N, thereexistsu € £ N N*such that, foreveryr € 4, \ (A,, N
N.,).n < J;. hence, for any n € w, there exists u € £ N N* such that, for every
T € A, \ (Ag N N). |Coyrn, N 2| = |Coprn, NS:| > 1.

Define Z to be the set of the functions g from w into 2<“ such that there exists
u € EN N* which satisfies that for any 7 € 4, \ (4, N N). g(|Coyrn, N6:|) Cr
and g(|Cme* N (y; + 1)|) C r. Since Z is defined from € and C,,nw, (= Gs,,).
and the set {£. N*, Co, v, } is in M*, Z belongs to M*. By the property 4 of
ENN*, Zis a dense open subset of the space (2<*)®. Since [, is Cohen over M *,
f . belongs to Z. Let u be a witness that £, belongs to Z.

Define u’ = (V. N},. 4,/) such that
N =N UN]

u

u[ (‘PN’I o ‘PN*) (N'): N € N2 withwy NN = NN, N’ € N}B},

https://doi.org/10.1017/js1.2022.37 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2022.37

1392 TERUYUKI YORIOKA

N =N} UN]
U{ (‘PM’l o‘PN*) (M'): M € N withw "M = w1 N M,.
M’EN,}},
Ay =4, U A,

Let us show that u’ is a condition of Q(X, r). Then it follows that ' is a common
extension of ¢ and u, which completes the proof. Since u and ¢ satisfies (ob)
and (ob-2), so does u’. Since A4,/ is an end-extension of 4, N N, and u’ € N*,
A, satisfies (cl). We will check two non-trivial cases of (w) for u’. Suppose
that o € 4, \ (4,N N,) and 7 € 4, \ (N, U{o.}). Then §, < ;. If &; < J,. then
g; < w1 N Ny, and so, by #,

fr(|C6, ﬂ50|) = fr(|C(51 N (ya + 1)|) = fr(|C§1 ﬂ50*|) Cr

This takes care of one non-trivial case. Since u is a witness that [, € Z,

fo.(|Cs,. N4]) = (| Coprv, N6|) S 7
and
fo.(|Cs,, Ny + D)) = ful|Coprv. N (s + D) S
This takes care of the other non-trivial case. Therefore, 4,/ satisfies (w). —

PROPOSITION 2.9.  For any non-meager set X of injective functions from w into 2<%
and any r € 2%,

Foxn) “U {I05.751: p € G.o € 4,} 2 (w; \ &) N Lim for some d € w;”,
where [0,7] :={& € y+1:0 < &}, and Lim denotes the class of the limit ordinals.

Proor. Let p € Q(X.r) and & € w; NLim. Suppose that ¢ is not in the set
U [05.75] and that there exists gy € 4, such thaty,, < ¢.Since ¢ is a limit ordinal.
g€Ap
Vs, + 1 < &. We may assume that oy is a largest tuple of 4, with this property. Take
foe X NN l(?) .

If there are no 7€ A4, such that & <J,, then let 6 € £ be a successor
ordinal such that y, < < ¢ for every o € A,. and define ¢ := (N).N}. 4, U
{{og-0.& + 1. fo)} ). Suppose that & < p, for some 7 € A,. Let o € 4, be the
smallest tuple with the property that £ < y,,. Then by our assumption. & < &, . If d,,
is a successor ordinal, then define g := (N3, N}, A, U {(yoy. 75y + 1.96, — 1. fo)} ). If
0, 1s a limit ordinal, then take y € d,, such that, for any r € 4, withJd; > J,,. if 6,
is a limit ordinal, then

G, N(y+1)=Cs5, Ny,

It follows that. if e, < d,,. then f-(|Cs, N (y + 1)]) C r. By extending y if necessary.
we may assume that

S0 (G, Ny + 1) S
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This can be done because the set {n € w : f}, (n) Cr} is infinite. Define ¢ :=
W Ny Ap U (g 70 +1.7: fo)}):

In each case, ¢ is a condition of Q(X,r), and hence it is an extension of p in
Q(X.r) and

q lFoun “C€ U {[60,7/,7] ‘ueG.,oe Au}”,
which finishes the proof. -
It follows from this proposition that

IFoex,) “theset {6, : p € G.a € 4,} is a club subset of w;, and captures r
relative to X .

The following lemma shows that Q(X, r) almost preserves C°" in the sense of
Goldstern [9, Section 6, Application 3] (see also [7, Section 6.3.C]). It follows that
Q(X.r) preserves non-meager sets of reals (from [7, Lemmas 6.3.16 and 6.3.17]).
This is necessary to guarantee that a countable support iteration of forcing notions
of the form Q(X, r) is still proper because the non-meagerness of X is used to prove
properness of Q(X, ). The preservation of C°" is closed under countable support
iterations [7, Theorems 6.1.13 and 6.3.20]. Therefore, for any non-meager set X of
injective functions from w into 2<%, a countable support iteration of forcing notion
of the form Q(X, r) is still proper and forces X to be non-meager.

LeEmMmA 2.10. Let X be a non-meager set of injective functions from w into 2<%,
r € 2%, 0 a regular cardinal such that H,, € Hy, and 4 a regular cardinal such that
Hy € H;. Then, for any countable elementary submodel N* of H, which contains the
set {C. X,r, Hg, Hyp}. any ¢ € 2 which is Cohen over N*, and any p € Q(X,r) N N*,
there exists an extension p* of p in Q(X.r) such that p* is an (N*, Q(X, r))-generic
condition and

Pt kg “cis Cohen over N*[Gg(y,]-

PrOOF. As in the previous proof, let N* be a countable elementary submodel of
H, which contains {C, X, r, H,;, Hp, p}, M* a countable elementary submodel of H;
which has the set {N*}, £, € w; N N* such that 7 < e, for every o € 4,. and f,
a member of X which is Cohen over M*. Define .. := {e., 0 "N N*, 0 " M*, f,)
and

pr=WJU{N"NH}.NyU{M*NH.}.A4,U{0.}).
We have shown in Lemma 2.8 that p* is (N*, Q(X, r))-generic. Let us show that
ptIFguy, “cis Cohen over N*[Goxn]”-

Suppose not. Then there are a Q(X. r)-name F for a nowhere dense subset of 2
and ¢ <g(x,) p such that ¥ € N* and

q “_Q(Xr> “C c F”.

Define D to be the set of the conditions u of Q(X, r) such that there are countable
elementary submodels N’ and M’ of Hy such that
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o (MJUNJUA) NN = (NJUN UAy) NN*,

. {C,X,;’,H,€,F,{Cg>~(7 NN*:g€d,\ (N*U{o.})} . {es: 0 eAq}ON*} €
N' e M,

e N'NH,cN?and M' N H, € N}, and

e thereisa o € A, such that w; N N’ =, and w1 N M’ = y,.

Then ¢ € D € N*. Since ¢ is (N*, Q(X, r))-generic, there exists u € DN N* that
is compatible with ¢ in Q(X, r). Let ¢ be a common extension of g and uin Q(X, r)
such that there are countable elementary submodels N and M of Hy such that

o MPUN!UA) NN = (NQUN}uA,)NN™,

o {C X Ho F G, AN 10 € 4 \(N* U (o]} {es 10 € 4y} N N7
€Ny € MyeN*,

e No:=NjyNH,¢c /\/'qo+ and My := Mj N Hy, € Nqﬂ, and

e there is a unique g € A + such that w; N No = dg, and w1 N My = 4.

As seen in the previous lemma, ¢ is (N, Q(X. r))-generic. By extending ¢* if

necessary, we may assume that the set (/\/'qo+ U qu+) N N* contains the set

{ ((\PNW,N)*1 o ‘I’N) (K):N € N?. withawy NN = NN*.
K € (/\/q“+ u/\/qh) N N].
Let {y € w1 N Ny be such that

o foreveryg € 4, N Ny (= Ay N N* = 4,+ N Np). 75 < {o. and
o forevery o € A, \ Ny (thendy > w1 N N* > w; N Ny = dg,).
—if Cs, NNy # (), then max (C(s(7 N No) < {p, and
— ife; < w1 N Ny, then e, < (.

For each v € 2<¢_each# € ;. and each x € [DN(X, r)]<N0, define £(v. 7. x) to be
the set of the conditions u of Q(X, r) such that

o A,N(n*x X) = A,N Nyand, forany t € 4, \ (4,1 Ny)., 5 >,
4 the set

{ea. Cs, . fo 1 |Cs, Nm|) i 0 € Ay \ (44 N No) with e; < 17}
is equal to the set
{{es. Cs, N No. fo I |Cs, N No|): 0 € 44\ Ny withe, < (o} .

o there are N € V) and M € N} such that x € N. N NN = NJ) N Ny. w; N
N =min{d, : 0 € A, \ (44 N No)}. N} " M = Nj N My (= Nj N Np). oy N
M =min{y, :0 € A4, \ (44N Ny)}.and N € M.,

o ulbgux,y FNV]#D”.

By the choice of N, the set

{E(v,;y,x) 1y €259 € wy.x € [M(X. r)]<N°}
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belongs to Ny. Define

Y = [a €2¢: forany k € w, any 5 € w; \ {o. and any x € [IN(X, r)]<No,
Ela [k,n,x);é(l)}.

Y also belongs to Nj.
We claim that Y is nowhere dense in 2¢. Let v be in 2<®. Take an extension ¢’ of
¢ in Q(X.r) and an end extension v/ of v in 2<® such that

¢ "o “FNDM1=0"

By extending ¢’ if necessary, we may assume that the set (N;?, UN ql,) N Ny includes
the set

H ((‘I’NO)*1 o ‘PN> (K):N € /\/'(?, with w; "N = w; N Ny,
0 1
K e (J\/q, U/\/q,) mN}.
Let us show that ¥ N[v'] = (. Suppose not. Then there exists a € ¥ N[v']. Let

k € w be such that v/ C a | k, and let {; € w; N Ny be such that

o forevery o € A,/ N Ny, 75 < {1, and
e forevery o € Ay \ (NoU{ao}). if C5, N Ny # 0. then max (Cs, N No) < ;.

Define Z to be the set of the functions /~ from @ into 2<% such that
there exists u € E(a | k. (. (NZ), Uqu,) N No) N N; which satisfies that, for any

o € Ay \ (AN No). h(|Coyrn, N6s]) € r and h(|Coynn, N (ys +1)|) € r. Since
a € Y, it follows from elementarity of N again that Z is a dense open subset
of (2<*)”. We note that Z is in M{. Since f, is Cohen over M. fg, is

in Z. Take u € £(a | k., (1. (J\/';/ UNJ,) N No) N Ng which witnesses f, € Z. So
thereare N € N and M € N such thatw; NN = min {5, : 6 € 4, \ (4, N Ny)}.
oy NM =min{y, :0 € 4, \ (4, Ny)}. (N;, qul) NNoENEMNNN =
./\/q0 N No, and V! N M = qu N My. Then
NN =N]NNg CN) NNy N €N
and
NinOM =N;NN =N NN CNyNNyeNeMEeN,.

Therefore, if 4, Udy satisfies (w), as in the proof of properness of QX.r)., u
and ¢’ are compatible in Q(X.r). However, a common extension of u and ¢’ in
Q(X.r) forces both F N[v'] =0 and F N[a | k] # 0. which contradicts v’ C a | k.
Therefore. if 4, U 4,/ satisfies (w). then Y N [v'] = 0.

We will show that 4, U 4,/ satisfies (w). The non-trivial case is that ¢ € 4, \

(A4 N No) such that e, < {;.and 7 € (4, N No) \ 4, such that e, < ;. Then d; <
{1 < 6,. Moreover by 4. there exists ¢’ € A, \ Ny such that

(e+ Coy N1 o 11Cay NG = {012 Coy O N0 Sor 1| Cay 01 MO )-
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Then ¢’ € A4, C A+ € Ay. Since 7€ Ay NNy, 6. <y < {1 < w1 N Ny. Thus
Cs, N6, = G5, N, and Cs, N (: + 1) = G5, N (y: + 1). Thus, since {a’, 7} C A4,/
ande,r =g, <0; < w; NNy <y,

f¢7(|C(5J ﬂ51|) = fa’(

)Cr

C(;a, Na,

and

fﬂ(‘C(Sg N (yr + 1)‘) :fa/(

Since ¢ is Cohen over N*, ¢ is not in Y. Thus, there are k € w, 7 € w; \ {o, and
x € [MM(X. r)]<Mosuchthat E(c | k.. x)isempty. Since ¢ | k € N, by elementarity
of N§. we may assume that 7 € () N Ng) \ . and x € [M(X. r)]<¥ N N;. But
then ¢ belongs to £(c | k., 7. x), which is a contradiction. -

Gy, NG+ 1]

As in the proof of Proposition 5.1 that we will see later on, we can show that
Q(X.r) has the Ny-chain condition (N,-cc). Moreover, as in [12, Section 4], we
can show that Q(X, r) has the R,-pic, which is defined by Shelah [11, Chapter VIII,
Section 2] (see also [12, Section 4]). The R,-picis a stronger condition than the R,-cc.
and is closed under countable support iterations. Therefore, the following theorem
is a consequence of the lemmas and observations in the present subsections.

THEOREM 2.11. Suppose that 280 =Ny, X is a non-meager subset of injective
functions from w into 2=, and some diamond principle (which is used in the book-
keeping argument of a countable support iteration) holds. Then a countable support
iteration of forcing notions of the form Q(X, r) with some booking argument forces the
assertion (c).

§3. Symmetric systems of relational structures. This section is similar to Section 4
of the paper [10]. The idea of this section is due to Tadatoshi Miyamoto. The notion
in this section will be used in the definition of our forcing notion which forces the
assertion (c).

ASSUMPTIONS THROUGHOUT THE PAPER 3.1. Throughout the rest of the paper,
suppose that

o 2% = X, holds, }

e R stands for the set of real numbers, and R is a fixed enumeration of R,

e X is a non-meager set of injective functions from w into 2<% (of size V1),

e k is an uncountable regular cardinal such that k > N, and 2<% = «,

e @ is a surjection from & to H, such that for every x € H,. ®![{x}] is

unbounded in .

If M and M’ are countable elementary submodels of H,, with the set {I@} such

that oy "M = w; N M’, then RN M =RN M’'. So, as in Section 2.2, the set of
Borel codes in M coincides with the one in M. Therefore, for any f € (2<®)”, f is
Cohen over M iff /' is Cohen over M.

ASSUMPTIONS THROUGHOUT THE PAPER 3.2.
e X =(f5:0 €wp) is an enumeration of X such that, for any countable

elementary submodel M of H, which contains the set {I@} S winm is Cohen
over M.
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DEerINITION 3.3. 91 is the set of countable elementary submodels N of H,, such
that {]f{ X ] € N and the structure (N, €, ® N N) is an elementary substructure of
the structure (H,, €, D).

As in Section 2.2, we always consider the members of 9y as substructures of
the structure <H,i, €, w1, f% X , CI)>. For each M € 901y, the transitive collapse of M

is considered as the structure <trcl(M), €, w1 N M, RNM XN M DN M> which

is denoted by M. where ® N M is considered as the image. under the collapsing
function of M, of d)_ﬁ M. As in Section 2.2, ¥, denotes the transitive collapsing
map from M onto M. So when M and M’ in My are isomorphic, the composition

‘PMFI o W}, is an isomorphism from the structure (M c. w1, @, X’, dN M) onto the

structure <M’,€,w1,I§<,A7,(DmM’>.

DErFINITION 3.4. A finite subset M of 9y is called a symmetric system if

(ho) foreach M, M' € M, ifoy N M =wy N M’, then M = M’,

(up) fogeh M, M € M, if o; N M' < w; N M, then there exists M" € M such
that M = M and M’ € M",

(down) for each My M; € M and each M’ € MnN M,, if My= M, then
(Par, ! 0 Pag,) (M') belongs to M. and

(id) foreach M, M' € M. if oy N M = w; N M’, then the function

(\PM,*I o ‘PM) L (M M)
is the identity.

The requirement (id) comes from the Aspero—Mota iteration [3]. This was used to
show properness whenever the length of the iteration has uncountable cofinality. In
this paper, the requirement (id) will be used in other places, for example, Propositions
3.10 and 3.11.

We will deal with symmetric systems of relational structures. To introduce such
systems, we define the following notions, and mention some necessary propositions.

DEFINITION 3.5. Let (P, <p) be a forcing notion with the k-chain condition such
that P C H,. We define the expanded relational structure by P to the relational
structure

(He.e.P.<p. HE RE.RER. X, @),

where

e H' := VP n H,. where I'F denotes the class of all P-names,
e R ={(p.t.n) e PxVEXVF)NH,:plrp “c=n"} and
e RE={(p.n) e BxVEXVE)NH,:plp“ren”}.

For each M € 9y, M is also considered as the substructure

<M,€ M2 PN M. <p ﬂMZ,HfﬂM,REﬂM3,R]gﬂM3,H§,)?,<I)mM>
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of the expanded relational structure by P, and we write M < P when the structure
M is an elementary substructure of the expanded relational structure by P.

The forcing notions we will define in Section 4 are not members of H,, but subsets
of Hy. The following can be proved in a similar way as in [1 1, Chapter III, Section 2].
Here, p € Pis called (M, P)-generic if, for any predense subset D € M of P, DN M
is predense below p in IP. For the proof of the following proposition, see, e.g., [11,
Chapter 111, Theorem 2.11].

PrROPOSITION 3.6. Suppose that P is a forcing notion with the k-chain condition
such that®? C H,..

1. If 0 is a large enough regular cardinal for P and M* is a countable elementary
submodel of Hy which contains the set

{H,g, €.P.<p.R. X, cb}

as a member, then M* N H, € Mgand M* N H, < P.
2. Forany M € 9y with M < P, and any p € P, the followings are equivalent:
o p is (M, P)-generic,
o plkp “M[G]N H," = M. where H,” denotes H,, in the ground model. and

e plkp “M[GINK=MNK".
3. Forany M € 9y with M < P,

lbp “the structure
(M[G], e NM[GT2. HY N M[G].PN M[G]. <p NM[G]?.G N M[G].
HE N M[G], RE N M[G]}, RE N M[G].R, X, ®N M[G]>
is an elementary substructure of the structure
(HNV[G], €. HY P.<p.G.HF.R®*.RE.R. X, <D>”.

NotatioN 3.7. For e« € Kk +1, n € w, and a sequence <Xg’ rienée oz> of
subsets of H,., we denote
(Xitienlea):={(ilx):iencaxecX}.
Then the tuple (X! : i € n.¢ € a)) is also a subset of H,.

DErFINITION 3.8. Let oo € K+ 1, and (P: : & < ) a sequence of forcing notions
such that P: C H,, and IP: has the x-chain condition for each ¢ < a. We define the
expanded relational structure by (P: : & < a) to the structure

P P P
(He. € Po. <o, HE* R RE(HERE RE ¢ € a)).
For each M € 9y, M is also considered as the substructure
<M, € NM2. P, N M. <p, NM2, HFe 0 M, R 0 M3, RE* 1 M3,
(H NMREAM3 REAM?: & €an M)>>
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of the expanded relational structure by (P: : & < o), and we write M < (P: : £ < o)
when the structure M is an elementary substructure of the expanded relational
structure by (P: : & < o).

The following is a variation of Proposition 3.6 for iterated forcing.

PROPOSITION 3.9.  Suppose that o € k + 1, and (P: : & < ) is a sequence of forcing
notions such that P: C H,, and P has the k-chain condition for each & < a.

1. If 0 is a large enough regular cardinal for the iteration (Pr : & < o) and M* is a
countable elementary submodel of Hy which contains the set

{H,i,e, <P¢:5ga>,ﬂi,)?,q>}

as a member, then M* N H, € My and M* N H, < (P: : ¢ < a).
2. If a < k, then for any M € My with M < (P : & < a), a belongs to M.
3. Forany M € My with M < (Pz : £ < a)andany f € o, if f € M, then M <

(Pe:C < B).

The following is necessary for our symmetric systems of relational structures.
This is the reason why we introduce the relational structures equipped with forcing
notions that are subsets of H,..

ProposiTiION 3.10. Suppose that M, Ny, N1 € My are elementary substructures
of the expanded relational structure by (P: : & < a). Ny and N, are isomorphic as
substructures of the expanded relational structure by the sequence (P: : & < a) (then

the map ¥ = ‘PNI*I oWy, is the isomorphism from No onto Ny as substructures of
the expanded relational structure by (P: : & < &), f < a is such that ¥(f) = ., and
M € My N Ny. Then

o if M < <IP’5 ¢ < a), then the structure
<M, € M2 Py N M. <p, "M% H," 0 M.R 0 M3 R 0 M>,
(He* N M REAM3 REAM3: ¢ cpn M>)>
is an elementary substructure of the structure
(No. € NNo%. By 0 No. <, NNo2 He? 01 No. RZ (1 No®. R 01 NP,
(He® N Ny RE AN RE NN : & € p N0>>>,

and
e ¥(M) < (Ps : & < P). and the structure

<‘P(M), € NW(M)2. Py N ¥(M). <p, "¥(M)*. H,' N ¥(M).RZ 0 (M),
R AWM, (H nW(M), RE nW(M) RS NW(M): & epn ‘I’(M)>>>
is an elementary substructure of the structure
(Nl, € NN 2By NNy, <p, \N\2 H" NN1.RZ A NP RZ 0N,
(He* AN RE QNP REAND ¢ p ﬂN1>>>.
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The following is a key point of the proof of properness of our forcing notions.

ProposiTION 3.11. Suppose that o € wy < Kk, Ny, N1 € My, and Ny and Ny are
isomorphic as the substructures of the expanded relational structure by (P: : & < o).
Then NoNa = Ny Na.

PrOOF. Let us only show the case that « is uncountable. By our assumption, a €
Ny N Ny and Ny N w; = Ny Nw;. Then there exists a bijection f : w; — a which is
in both Ny and N;. Then

Noﬂa:f[NoﬂCO]]:f[Nlﬂa)l]:NlﬂOz. =

§4. Definition of Asper6—Mota iteration to force (c). In this section, we define our
forcing notion PP, that forces the assertion (c). P, is defined by an Asperé—Mota
iteration of forcing notions playing the same role as Q(X, r) in Section 2.2.

We notice that, for each M € My and o € « + 1, any initial segment of @ N M is
of the form f N M for some € o + 1 (which is not necessary unique). For each
a € k + 1, we will define the forcing notion P, to be a subset of the set

Ua i= [M]™

X U (MY x (BAM):Z € [My x (a+ 1)
(M.pyez

X U ([w) x @ x w1]<w)D

Defa]<No

Since My is a subset of H,. for each a € k + 1, the forcing notion P, is a subset
of H,.

To define P,, we introduce the following notation. For each a € Kk + 1 and
p=W,.R,.4,) € U,.

e dom(R,) := {M : thereis { € a so that (M.{) € R,}.

e ran(R,) := {{ : thereis M € My so that (M.() € Rp}.

e foreach I C «,

R, '[I1:={M : thereis { € I so that (M.{) € R,}.
e for each M € dom(R)).
Ry(M) :={{ eran(R,) : (M.{) € Rp}.

e for each f € . define p | f = (Nprﬂ=RpF/3’ApFﬁ) to be the member of Uy
such that

- Np B = Np,

- R,1p = Rpﬂ(moxﬁ),.aqd .

— App = Ap | B, the restriction of the function 4, to the set 8.
For p € U, and M € N, members of the set R, (M) are called markers of M.
We define a forcing notion P, satisfying the X;-cc (under CH), by recursion on

a € k + 1. When we have defined the sequence (P: : ¢ < a) of forcing notions, we
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will define the subset IMZ of 91, by
ME = {M eMy: M < (P:: &< a)}.

As in Proposition 3.9(2), if & € k and M € smg , then o« € M. As seen below, for
each a € k, P, will be defined from the set

{wl,ﬂé,f,Hﬂ,Q, (m? ¢ e a>>}.

IP,, can be considered as the direct limit of (P, : & € ).

DEerFINITION 4.1. The forcing notion P, is defined by recursion on a € s + 1.
However, each P, is defined uniformly. P, consists of the members p = (V. R,. 4,)
of U, satisfying the following conditions:

(ob) e \V, is finite and forms a symmetric system, and

e dom(R,) C N,. and. for each M € dom(R,). R,(M) is an initial segment
of theseta N M.

(el) Foreach{ € a, R, '[{¢}] C Dﬁg.
(ho) For each { € a and each My, M| € Rpfl[{C}], if o1 N My = w; N My, then
the structure <M0, c.R.X. @ I My. (P : ¢ € C+1n M0>>>is isomorphic to

the structure <M1, e RX.®| M, (Pe:&e(C+1) OM1>>>.

(up) For each { € o and each M, Ny € R,fl[{C}], if ;N M < w; N Ny, then
there exists Ny € Rp’l [{}] such that M € N} and w; N N} = w1 N Ny.
(down) For each { € a and each M, Ny, N € R, '[{¢}]. if M € Ny and w; N
No = w; N Ny, then (\PN;I o ‘I’NO>(M) e R, LY.
(g) If & € dom(4,) and p | & belongs to P;, then ®(&) = {F:} such that 7: is a
Pz-name for a function from w into 2. Moreover,
(g-ob) A4,(&) is a finite set of triples of the form o = (g5.d,. ) such that
€s €05 € V5 € W1,
(g-ob-2) the set {J, : 0 € 4, } includes the set {w; NN : N € R, [{¢}}.

(g-cl) for each {0, 7} € [Ap(f)]z, either y, < &; or y; < g,
(g-w) for any o € A,(&). if d, is a limit ordinal, then

pléikp, “{new: f,,(n) Crel isinfinite, and, for any v € 4,(¢) \ {o}
with e, < J; < dq. f3,(|Cs, NJ¢|) C 7 and
fr(|Co, 0 (e + 1)]) S 7™,

(g-m) for each o € 4,(¢) and each N € R, '[{¢}] (that is, {N} x
((E+1)NN) C R,) withw; NN = 6. thereexists M € N, ﬂimg such
that
e NecM,

e w1 N M =y,,and
o {M} x (6N M) C R, (then, by (g-ob-2) and (g-cl), M & R, '[{¢}]).
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By definition, we can check that, for each p € P, and { € a, p [ { is a condition
of P;. The order of P, is defined as follows: For each p.q € Py,. g <p, p iff

L4 Nq ) Nps

® R; DO Rp.

e dom(4,) O dom(A4)).

o for each & € dom(4,). 4,(¢) D 4,(8).

By definition, we can check that, for each p, ¢ € P, withg <p, p.andeach({ € a.
q I'{ <p, p I (. By definition, P is equivalent to the direct limit of (P, : a € k).

LemMa 4.2. Suppose that o, f € k + 1 with f < o. Then Pg can be completely
embeddable into P,,.

Proor. By definition, any condition of Py is also a condition of IP,. Suppose that
q€Pp.pePy andg <p; P [ . Then define

ri=WN,UN,.R;UR,. AU (4, | [B.a))).

We can check that r is a condition of P;. So r is an extension of p in P,. Such an r
is a canonical common extension of g and p in IP,. Hence the identity map from PPy
into IP,, is a complete embedding. !

DEFINITION 4.3, For each & € k. define the P, -name E: by
\hpéﬂ “Eg = {55 iq € GP5+1’G € Ap(f)} 7.

OBSERVATION 4.4. It is proved in the next section that for each & € ws. Ps is
proper. Then, as in the case of Q(X, r) in Section 2.2, Eé is a Pz, ;-name for a club
subset of w;. By the definition, for each & € w,, if ®(¢) = {r:} and F¢ is a P:-name
for a function from w into 2, then P;, forces that E: captures 7 relative to X.

OBSERVATION 4.5. The requirement (g-cl) is necessary in the definition of P, to
show Lemma 5.2. To show properness of P,, (for each a < w;,) equipped with (g-cl),
we want the requirements (el), (ho), (up), and (down) in Definition 4.1. This is the
reason why we introduced a symmetric system of relational structures.

§5. Forcing (c) by P,,.

PrROPOSITION 5.1.  Forevery a € k + 1, P, has the Ry-chain condition. In fact, every
subset of P, of size Xy has a pairwise compatible subset of size N,.

ProOF. Suppose that o € k + 1 and {p : { € w} is a set of Rp-many conditions
in P,. Recall that CH holds (Assumption 3.1). By shrinking the set if necessary, we
may assume that

o the set {\,, : { € w,} forms a A-system,
e the set {dom(4),) : { € w,} forms a A-system with root D,

(o) the set {(U NP¢> Nk:( e wz} forms a A-system with root K (which is a

countable subset of &),
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(o) for each & € K, the set
{3 ;e R, e k) | no? |

does not depend on { € w»,

(o) for each { € wy, (dom(4,,)\ D)NK =0,

(o) for each {,{" € wy, each M € N, and each M’ ¢ Noper- if M = M’, then
M Nk and M’ N k are order isomorphic and the corresponding isomorphism
fixes k N M N M’ (which is a subset of K)*, and

o for each £ € D, the coordinate 4, () € [w) x wy x 1] does not depend
on{ € wy.

Then we claim that for each distinct { and {’, p; and p;s are compatible in P,. To
see this, let ¢ € U, such that

o Ny =Ny, UN,,.

* R, = RP: U Rp(,, and

e A, is the function with domain dom(4,)Udom(4,,,) such that, for each
¢ € dom(4),) U dom(Apg, ).

A44(8) = 4,,(8) Udy, (¢)
(which is equal to 4, (&) or Ap,, &)).

Such a ¢ is a canonical amalgamation of p; and p;s. Then by the above items (e).
N, and R, satisfy Definition 4.1(ob). (el), (ho). (up). and (down). Recall that for each
M € My and each o € k. if o« ¢ M, then M ¢ L. So for any {¢.{'} € [w,]* and
any a € dom(4,,) \ D.dom(R,,)N M? = 0, and hence R, '[{a}] = Rpg’l[{a}].
Therefore ¢ satisfies (g). Thus ¢ is a condition of P, and is a common extension of
peand per. -

LEmMMA 5.2, Each o in wy + 1 satisfies the following assertions.

(p)o: For any p € Py and any N € N, NIME such that {N} x (aNN) C R,.pis
(N.P,)-generic.

(C)y: Forany p € Py and any N € N, NONE such that {N} x (a N N) C R,

p ke, “fw,nn is Cohen over N[G]pa]”.

This is proved by induction on @ € w, + 1. A point is that, ifa € w, + 1, p € P,
and N € NV, then R,(N) C w,. In the following proof, we will use Propositions
3.10 and 3.11 frequently.

PROOF OF (p),. This proof'is a standard proof in the context of the side condition
method (see, e.g., [12, Lemma 4]), and similar to the proof in [10]. Suppose that
pEPy(thenR,=4,=0), N € N, NIME. D € N is a predense subset of Py, and
g <p, p- We notice that ¢ is of the form (N, 0.0). It suffices to find u' € DN N
which is compatible with ¢ in Py.

2In [3]. Asper6 and Mota point out that the corresponding isomorphism between A and M’
fixes Kk N M N M’ iff for every two consecutive ordinals & and . the order types of the sets
{pernM: & <u<éyand {uernnM & <u< &} are the same (these order types are
countable ordinals).
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By extending ¢ if necessary, we may assume that there exists u € D such that
q <p, u. Define
£ = [r € Py : there are u’ € D and M € N, such that r <p, u" and
N.OM =N, NN ]
Since the set A, N N belongs to N. £ is a definable class in the expanded relational
structure by Py with parameters in N. Moreover, we note that g € £. So by

elementarity of N, there exist € £N N and u’ € DN N such that r <p, u". Define
q' € Uy such that

Nq’ Z:./\/q U./\[r
u{ (‘PMFI o‘{’N) (M) : M' € N, withw; N M’ = w; N\ N. M eM}.

N, forms a symmetric system. ¢’ is the canonical amalgamation of ¢ and r.
Therefore, ¢’ is a condition of Py and a common extension of ¢ and r in Py. o

PrOOF OF (C),. Suppose that p € Py, N € N, N IL. and {F, : n € w} isaset of
Py-names for nowhere dense subsets of (2<¢)” such that the sequence (Fn n € w)
belongs to V. Let us show that

p ”_IP’O “fwlﬂN g U Fn”-
new

Suppose not, and let ¢ be an extension of p in Py such that, for some n € w,
q H_]P’O “fw]ﬁN €r,”.

For each v € (2<?)~”, each x € [93?5]<N0, and each r € IPy. define ¢o(v. x,7) to be
the assertion that there exists K € N, such that

e{oiNM:MeN.NK}={wo;NM:MecN;,NN},
oNqﬁNQMﬁK,

e x € K, and

o7 lkp, F,nv]#0”,

and define
Y = {g € (2<2)”: forany k € w and any x € [93“(5]<R0, thereis r € Py

which satisfies o (g | k. x, r)}

Since {F,.N, NN} € N € M. we have ¥ € N.
We claim that Y is nowhere dense. To show this, let v € (2<©)”. Take V' €
(2<©)=“ and s <p, ¢ such that v C v/, and

slkp, “F,N[1=0"

Let us show that Y N [v'] = 0. If not, there exists g € ¥ N[v']. Let k € w be such
that v/ C g | k. Then there exists r € Py which satisfies ¢o(g | k. N, r). Let us fix
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K € N, witness to po(g | k, Ny.r). Define ' € Uy such that
Ny =Ny UN;
u{ (\PMrl o‘I’K) (M): M’ €N, withaw, "M’ =, N K. M € M].
Then r’ is a common extension of s and r in Py, and hence
kg, “F,N[v]1=0and F,N[g | k] # 0",

which is a contradiction.
We claim that f,, ny belongs to Y. This contradicts the fact that f, ~x is Cohen
over N. To show that f, ny € Y. assume that f,, v & Y. Then there are k € @

and x € [} ]<N° such that there are no r € Py which satisfies @o(fw,nn | k. x. 7).
Since f A~ | k£ € N and N is an elementary substructure of the expanded relational
structure by Py, there exists x’ € [smg ]<N° N N such that there are no r € Py which

satisfies o(fw,nn | k.x'.r). However, ¢ satisfies o(fw,nn | k.x".¢q). which is a
contradiction. —

PROOF OF (p),,;. Suppose that a € wy. p € Pat1. N € N, NI which
satisfies that {N} x ((a + 1) N N) C R,, D € N is a predense subset of P, and
q <p,,, p-Byextending ¢ if necessary, we may assume that ¢ is an extension of some
member of D. Since N € MZ . by Proposition 3.9(3) and the fact that  + 1 € N
(hence o € N), N € ML, So by the induction hypothesis (p),. ¢ | o is (N,Py)-
generic. It suffices to find u € P,.; N N which is compatible with ¢ in P, such
that u is an extension of some member of D N N. When a ¢ dom(4,), the argument
is similar to the proof of (p),. So we suppose that o € dom(4,).

Define £ to be the set of the conditions u of P, ; such that

e y is an extension of some member of D in P, 1,

e N,NM =N;NN and 4,(c) "M = A,(a) N N for some M € R, '[{a}].

and

e forany g € Ay(a) \ N withdy > w; NN and Cs, NN # 0.

max (G5, " N) <min{d; : 7 € Ay(a)\ (44(e) N N)}.

Then ¢ € £, and £ is a definable class in the expanded relational structure by P,
with parameters D, N; NN, A,(a) " N.{Cs, NN :0 € Ay(a) \ N.Jy > w1 NN},
all of which are in N. Since ¢ | « is (N, P,)-generic, for any 7 € w; N N,

x ¢ | o lFp, “there exists u € £N N such that u | a € Gp, and
n<min{d; : v € Ay(a) \ (44(a) NN)}”.

Define Z to be a P,,-name such that

kg, “Z is the set of the functions g from w into 2= such that there exists
u € ENN such thatu | a € Gp, and. for any 7 € 4,(a) \ (44(a) N N).
g(’CwlﬂN ﬂé,’) - ':oz andg(‘cwlﬁN N (Vr + 1)}) C ’:a”-

By (g-ob-2). (g-cl).and N € R, '[{a}]. there exists the unique gy € A, (c) such that
J, = w1 N N. By (g-m). we can take M € N; "M% such that N € M. o, N M =
Voo- and {M} x (& N M) C R,. By xabove, ¢ | « IFp,“Z is dense open in (2<°)“”.
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Z is defined from the set {N. A,(a) N N. Cyyn.Fa) (Which is in M), € and Gp,.
and is forced to be an open subset of (2<”)®. Since M is an elementary substructure
of the expanded relational structure by P, by Proposition 5.1, Z can be considered
as an element of M. By the induction hypothesis (C),. ¢ | a lFp,“ fu,na is Cohen
over M[G'pa] ”. Itfollows thatg | a IFp,“ fu,nam € Z”.Taker e Pyandu e ENN
such that r <p_, ¢ | o and

r g, “uisa witness that fo,,ny € Z7.

Let 7' be a common extension of r and u | «. Define ¢’ € U, such that

o Ny =Ny,
L] qu = Rr’

u{ (Py ' oPy) (K).a): M' € R [{a}] withw; N M’ = w; NN,
K € R\ R, '{a}1).

° Aq/ l'a:= A,s, and

o Ay (a) = A,(a) U Ay(a).

We claim that ¢’ is a condition of P, ;. Since ¢’ | « =1/, ¢’ | « is a condition
of P,. Since ¢ € Py, u € P NN, N € 9ﬁ5+1, and a € w;, by Propositions
3.10 and 3.11, R, '[{a}] satisfies (el). (ho). (up). and (down). Since ¢ and u are
conditions of P,1. A, () satisfies (g-ob). (g-ob-2). and (g-cl). It follows from the
choice of r and u that Aq/(a) satisfies (g-w). Moreover, by a € w, and Proposition
3.10. A, (o) satisfies (g-m). Therefore ¢’ is a condition of Po1. So ¢ is a common
extension of ¢ and u in P, ;. By elementarity of N and the fact thatu € EN N, uis
an extension of some member of DN N in Py . =

The following proposition will be used in the rest of the proof.

PROPOSITION 5.3. Suppose that o € w;. (p)qy holds. p € Poi1. N € Ny 9L
such that {N} x ((a +1)NN) C R,. and D is a definable class in the expanded
relational structure by P, 1 with parameters in N such that p € D. Then there exists

q € DN N which is compatible with p in Py 1.

PROOF OF PROPOSITION 5.3. Define D’ to be the set of the conditions u of P,
such that either u € D or u is incompatible with any element of D in P, ;. Then
D’ is a predense subset of P,,;. Since N is an elementary substructure of the
expanded relational structure by P, ;. by Proposition 5.1, there exists a maximal
antichain A in N that is a subset of D’. By (p),, . p is (N, Po1)-generic. So there
exists ¢ € AN N such that ¢ is compatible with p in P,,;. Since p € D, ¢ has
to be in D. o

The following proof has similarities with the proof of Lemma 2.10 (although it is
not identical to it).

PrOOF OF (C),,;. Suppose that p € Pori, N € N, NN | which satisfies that

{N}x ((a+1)NN) C R,. and {F, : n € w} is a set of Py, -names for nowhere
dense subsets of (2<?)” such that {F, :n € w} € N. Let us show that p Irp,_|

« fwlﬂN ¢ U,,Ew Fn 7.
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Suppose not, and let ¢ <p_,, p and n € ® be such that

q H_IP’QH “fwlﬁN cF,”.

Let oy € A,() be such that d,, = w; N N.

Only in this paragraph, for each set x (in the ground model), we denote by X
the canonical P,-name which represents the set x in the forcing extension. For each
v € (2<*)<” and each 4 € [w; x @ x @;]<™, define 2’ (v, 4) to be the P,-name

which consists of all the pairs <u E) such that

eucP,and B € [w x w1 X 0],

o there exists u’ € P, such that
~u<p, u'|a,
- RA{e NN € Ry Mol
— Au/(a) =AUB,
— forany ¢ € 4 and any 7 € B, d, < J,, and
—u' lFp,, F,N[v] =0 (here we omit the check-notation for Py, 1).

For each v € (2<?)<” and each 4 € [w] x w; x @]<N0, 2/ (v, A) is a definable class
in the expanded relational structure by P, 1 with parameters in H (k). Moreover,
if A € N, then X/(v, A) is a definable class in the expanded relational structure by
P, with parameters in N. By Proposition 5.1, there exists £ € H (k) such that
X C (2<9)< x [w) x 01 X 01N x Py X [w] X @ x 01]<N0,
efor each ve (2<?)<? and each A.B€[w; x o x ©;]<N0, the set
A(v.A.B) :={u € Py : (v. A,u, B) € £} is a maximal antichain (of size XNy),

and, for each u € A(v, A, B), either <u, é> € ¥'(v, A). or no extension v of u in
P, satisfies <v, E’) e ¥ (v, A).

Since N is an elementary substructure of the expanded relational structure by P, 1,
we may assume that £ € N. Foreachv € (2<¢)~” and each 4 € [w; x o1 x ]<M0,
define (v, 4) to be the P,-name such that

(v, A4) = U {<ué> cu € A(v, A, B) and <u}§> € 2'(V,A)} )

Be[w) Xy ><(1)1]<N0

Then, the sequence (X(v.A):v € (25°)<” .4 € [w) x w1 x @]<N0) belongs to
N. and. for each v € (2<*)<” and each A4 € [w; X @] x @]<N0, IFp“E(v. 4) =
¥'(v, A) ”. From now on, we omit the check-notation in the forcing language.
Since {N} x ((@ +1)NN) C R,. by (p),,; and Proposition 5.3, there exists
q' € Poy1 N N such that
e ¢’ is compatible with ¢ in Py, 1,
e R '{a}]INN C Ry '[{a}].
o there exists Ny € R, '[{a}] such that
— Ay(a) NNy = A44(a) NN,
— the set
{(60-, C(sa N No,fya [ ’C&U N N0‘> NS Aql(a) \ Ny with e, € Ny
& s £ w1 N N()}
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is equal to the set
{{es. Cs, NN, [, 1|C5, "N|):0 € Ag(e) \ (N U{on}) withes € N},
and
— Ny contains the sets {e5 : 0 € Ag(a) \ N}NN.{C,, "N :0 € A4(a) \
(NU{on})} and <Z'J(v,A) (v € (259)SY 4 € [y X wy X w1]<N0> as
members.
Let ¢ be a common extension of ¢’ and ¢ in P, ;. We notice that N, contains
the set {Co, v N No. froy | (| Cooyav N No| + 1) } and
q+ ra |FJP7Q “f",'aN(|C(ulﬂN N N0|) c i‘a”-

In a similar way as in the definition of P (v, A) before, we have a P,-name 7z
for a subset of (2<®)” such that Z is a definable class in the expanded relational
structure by P, | with parameters in N and, for any u € P, and any v € (2<®)~%,
ifulbp,“[v] C Z”. then there exists u’ € P, such that

ou<p ula,
ou' <p,,, ¢
e foreach 7 € 4,/ () N Ny. if €5y < J¢. then p; + 1 < w; N Ny and

u' e} |FIP’(, “f}’aN(|Cw1r‘|N mé‘ri) C 7y and fVaN(|CwlﬂN N (VT + 1)|) Cia”,
e 4,/(a) has o such that J; = w; N Ny, and
ou'lFp “F,N[]=0".

a+l

Now F), is a P, j-name for a nowhere dense subset of (2<“)®, gy € Ay ().
A,+(a) has o such that 0, = w; N No. and g% <p_,, ¢’.s0

¢ | alFp, “Zisa dense open subset of (2<°)

@ 9y

Since Z is a definable class in the expanded relational structure by P,.; with
parameters in N, by Proposition 5.1, Z can be considered as an element of N.
So by (C),.

g lalrp, “forn €27
Thus, there are r <p, ¢* [ @ and k € w such that
rle, “[foov [K1C 27,
Let ug € Py 41 be a witness to 7 IFp,“[ fo,nn [ k] C Z”. Then
rlrp, “Auy \ No € Z(fwynn |k, Ayy(e) N No)”.

Let {y € w1 N Ny be such that

e for any t € A,,(a) N Ny, 7 < (o.
o forany o € 4,(a) \ N.
—ife; € N, thene; < (. and
- G5, NNy € &o.
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Since {No} x (N Ny) € R+ C R,. by (p),. r is (No.P,)-generic. Since the
set {fw,nn | k. Ay, (a) N No} is in No. X(fo,nn | k. Ayy(a) N Ng) is also in Nj.
Moreover, A,,(c) \ Ny has o such thatd, = w; N Ny. which is larger than {,. Hence.
by Proposition 5.3, there are ¥’ <p_, r and B € [w] X ®] X ®1]<%0 N Ny such that

o forevery r € B, {y <9, and
o' IFp“B € X(fonn | k. Ayy(a) N Npy) .

Since {N} x (aNN) C R,+ CR,. by (p),. ' is (N.P,)-generic. Since N is an
elementary substructure of the expanded relational structure by P, , there exists
u; € P,y N N which witnesses r’ IFp,“B € 2(f(ulﬂN | k. Ay, () N'Ny) ”. Then r' is
a common extension of u; and ¢ | a in P,. Define s € U, such that

ON = M./,
® Ry =Ry, URy

u| (Py ' oPy) (K).a): M € Ry [{a}] withw N M =w; NN,
K € Ry H{a}]).
e A | a:= A, and
o Ag(a) = Ay, (o) U 4y(ar).

Now s [ a =" € P,. Since u; € N and
Ry e INN € Ry '[{e}] € N € Ry [{al]

R, '[{a}]satisfies (el). (ho). (up). and (down). 4, (a) satisfies (g-ob). (g-0b-2). (g-c).
and (g-m). We will check that 4, (o) satisfies (g-w). Since u; <p_,, ¢’.

Aq(a) NN = Aql(a) NNy C A4, (o) N No.
By the choice of u,
Au1 (Oé) = (Auo(a) ﬁN()) UBCNyCN.

Let 7 € A, (a) and 0 € Ay(a) \ (N U{oy}). Then there exists o’ € A, (a)\ Ny
such that

<e’;‘a, C()‘a ﬁNo,f},, [ |C§U ON0|> = <Ea/, C(;a, ON’fVa’ I ’C(;a, ﬁN’)
Soif e, < ;. then, since u; <p_,, ¢’.

i L alkp, “f,(|Cs, N3.]) = f,g,()C,;a, Nd.|) € 7, and
F10(1Co, OV G+ DD = 13,(|Co,y 0 G+ D)) € ™
Let ¢’ € A,,(a) N Ny. By the choice of u;. if &5, < J;. then
w T albe, “fy, (|Cojnn Nd:|) Craand £, (|Cojnn N (e +1)]) C 7™

Let t” € A, (a)\ No. Then (y<d», and hence Cuny N = Copnn N
(perr +1) = Cyyan N No. Since 1’ <p, ¢ | a.
r! IhP’a “fynN <|Cw|ﬂN 057"|) = fyaN( Cme N (Vr” + 1)|)
= Sy (| Coynv M No|) C ™
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Thus A, () satisfies (g-w). Therefore s is a condition of P, 1. It follows that s is a
common extension of #; and ¢g. However, then

slee,  “Fy 0 [foon [kl =0and fony € F,”.
which is a contradiction, and finishes the proof of (C),, ;. -
We will use Proposition 5.5 in the proof of (p), and (C),, for a limit ordinal «.
PROPOSITION 5.4. Suppose that o € w, + 1, (p)g and (C) 4 hold for every f < o,

pEP,. Ecdom(4,). M € R,'[{¢}]N ML . and N € ML O M contains the set

N, MM (A4,(()NM :{ edom(4,)N(E+1) N M)} and is such that, for every
{edom(A4,)N(E+1)NN andeveryo € A,({) withe, < w1 NN < d,,

pllIe, “f3,(1Cs, N1 NN|) C 7™

Then there is some q <p,,, p | (¢ + 1) such that (N.&) € Ryand A, = A, U{a} for
some g withd, = w; N N.

PrOOF OF PROPOSITION 5.4. We will prove this by induction on &. Let & :=
max (dom(4,) N¢&N M). Note that & € N, and hence N € Dﬁg) N M. By the

induction hypothesis, there exists py <P P (& + 1) such that N € R, '[{& ).

Let pj = (Npy. Rpy U Rp. Apy U (A4, T [0+ 1.£))). which is a canonical common
extension of pg and p in P;. Since pj is (M. P¢)-generic, by Proposition 5.3, we
can take an extension p <p, pyand Ny € R ,,1’1[{5 1N M which contains N as
a member. Then, by (g-ob-2) and (g-w). for every { € dom(4,,) " N and every
o € Ay ({) withe, < wi NNj <0,

prlCle, “f3,(1Cs, Nt N NY|) C 7.

Recall that, for each limit ordinal 6, Cs Ny NNy = Cs N (w1 NNy +1). Take e €
w1 N N such that

max{y, :0 € 4,(()N M} <e.
Define g € Ugy; such that NV := N,,.
Ry = Ryype U {(x" o War) (V).€) 1 K € R, TN
WithwlﬁKZwlﬂM},
Ay 1¢:=4, 1< and
Aq(f) = Ap(f) U {(5,001 NN, w; ﬂN1>}.

By Propositions 3.10 and 3.11, R, satisfies (el). (ho). (up). and (down) in Definition
4.1. By (C): and the fact that {N;} x (( N Ny) C R, ¢ € R,.

q I £ IFp.“ fw,nn, is Cohen over Nl[G.]pE] and 7: € Nj, hence
{new: fonn(n) Cre isinfinite”.

Moreover, by the roles of ¢ and N, 4,(£) satisfies (g-ob). (g-ob-2) (g-cl). and (g-w).
By the role of the set Ny, 4,(&) satisfies (g-m) for R,. Therefore, ¢ is a condition of
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;1. This ¢ is what we want. (We notice that ¢ | & is an extension of p; [ & in P;;
however, ¢ may not be an extension of p; in Pz;.) -

PROPOSITION 5.5. Suppose that o € vy + 1, (p)g and (C) 4 hold for every f < a.,
q.r € Py, and & < « is such that

e q | Candr | ¢ are compatible in P,
o £ ¢ dom(A4,) and & € dom(4,).
o there exists N € Ry '[{E}] such that r € N and, for any M € Ry, [{&}]. o1 N

M >wNNand M € zmgﬂ.

Then there exists a common extension q' € Pz of ¢ | (E+ 1) and r | (E+1) in
P: such that

{0510 € 4,(E)\ 4:(8)} = {wl nM:Me R(,’l[{é}]}-

PROOF OF PROPOSITION 5.5. Let p_; € P, be such that

e p_y | ¢ isacommon extension of ¢ [ and r | £ in Pe,
e p_j is an extension of rin Pg .

* Ry, '{&}] = R '[{¢}]. and

o 4p,(&) =4,(8).

Take a maximal €-chain {M; : i < n} of R, '[{¢}] such that My, = N. For each
i <n,since {M;} x (ENM;) C R, . forevery { € dom(4, )N<&N M; and every
o€ A, (()withe, <w; NM; <,

p e, “f,(|Cs, Nt N M;|) Cie”.

By using Proposition 5.4 (n + 1) times repeatedly, for each i < n, we can construct
an extension p; € Ps such that

e p; | £ is an extension of p;_q,
o (M;.&) € R, and
o A, (&) =4, (&) U{o;} for some g; such that d,, = w; N M;.

Then p, is what we want. -

PROOF OF (p),, FOR A LIMIT ORDINAL c. Suppose that a € w; + 1is a limit ordinal,
p EPy. N € N, NML satisfies that {N} x (¢NN)C R,. D€ N is a predense
subset of P,, and g <p, p is an extension of some member of D. By extending ¢
if necessary, we may assume that there exists # € D such that ¢ <p_, u. It suffices
to find ¥’ € DN N which is compatible with ¢ in P,. We have the case when «
has uncountable cofinality and the case when it has countable cofinality. In the
latter case, « N N is cofinal in o and hence we can take f € a N N such that
max(dom(4,)) < 8. But we may not be able to take such a f in the former case.
that is, it may happen that dom(4,) is not bounded by sup(a N N). So we need
more argument for the former case than for the latter case.

Suppose that « is of uncountable cofinality and dom(4,) € sup(a N N). (If
dom(4,) C sup(a N N), then the proof will be simpler, same to the proof of the
case that « is of countable cofinality.) Since AV, forms a symmetric system, for each
M’ e Nywithow; " M' < w; N N, thereexists M € N, suchthato, N M =w; NN
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and M’ € M, and then, by the requirement (id) in Definition 3.4,
sup(M' NN Na) = sup((\PNmL,;1 o ‘{’M) (M) M Na)

< Sup((\PNﬁH,;l o ‘PM) (M) Na).

Since N thinks that the set (‘I‘NQHK*I o‘}’M) (M') is countable and « is of

uncountable cofinality,
sup(<lPNmH;1 o ‘I’M) (M')Na) e NNa.

So there are large enough f € a N N and { € w; N N, which means that

e max(dom(4,) Nsup(a N N)) < B.
e max({ sup(R,(M)) : M € dom(R,)} N N) < B.
o for every M’ € N, withwy N M’ < w; NN,

sup(M'NNnNa) < p.
eloyNM:MecN;,NN}CC.
e for any ¢ € dom(4,) "N andany o € 4,(E) NN, y, < (.
By the second and the third requirements on S, we observe that
(1) forevery ¢ € [f.a) N N and every K € NV, withwy NK <w NN, K ¢£m§
(because if K was in 9%, ¢ would be in K).
Define
£ = {r [ p: r €P, such that

o there exists u € D so that r <p, u, and
. {me:Ke/\f,,}mg:{me:KeNq}mN].

Wenoticethatg | f € £ and £ is a definable class in the expanded relational structure
by P, with parameters in N. By Proposition 3.9, since f € N € M[. N € My,
Moreover, it follows that

{N}x (BNN)C R,ip C Rypp-

So. by the induction hypothesis (p);. ¢ | f is (V. Pg)-generic. Hence there exists p;
in the set £ N N which is compatible with the condition ¢ [ finPg. Letr € P, N N
and u € DN N witness that p; € €.

Let us show that ¢ and r are compatible in P, which finishes the proof of this
case. Let p, € Py be a common extension of ¢ | f and p; (=r | ). We note that
dom(4,,) C fand

(2) dom(A4,) Ndom(A4,) N [B. ) = 0. more precisely.

B < min (dom(4,) \ f) < max (dom(4,))

< sup(a N N) < min (dom(A4,) \ B).
because dom(4,) C N and max(dom(4,) Nsup(a N N)) < f.Since r € N,
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(3) N. ©N.
(4) foreach & € [f.a) N
—if ¢ € dom(4,). thenA () C N,
- {K eER/M[¢a)] ﬂi)ﬁp 01 NK < w ON} () (which follows from
(1)), and
—if M € R, '[{¢}]. thenw; N M > oy N N and sup(R,(M)) > sup(a N N)
(by the role of ), and hence M € R, '[{¢ +1}] C Dﬁfﬂ
and
(5) foreach & € [B.a)\ N, N, N fmg = (), in fact, no element of N, contains ¢
as a member.

Let & := min (dom(4,) \ B). Define p € Uy, such that
° Rpé = sz @] R
q«awowm<>a<K@eRmoMeRﬁ{@
with o N M = w; QN},

. Npé = dom(Rpé), and
(] Apé = Apz-

Now dom(4,)N¢& =dom(4,)Nf and dom(4,)N <& =dom(4,)Np. By
Propositions 3.10 and 3.11 and the fact that a € w,, Ry satisfies (el), (ho),
(up). and (down) in Definition 4.1, and so pj} is a condition of P;,. Hence p} is a
common extension of r | & and ¢ | &.

By (4), we can apply Proposition 5.5 to find a common extension qéo of ph.r |
(o+1).and g | (& + 1) in P . Let {& : i < m} be the increasing enumeration
of the set dom(4,) \ . By (4) again, for each i < m with i # 0, we can apply
Proposition 5.5 to find a common extension qC ofqg rl(&+1),andg | (& +1)
in ]P)gl+l

Define ¢/, € U, such that

° Rq& = Rq:‘m U Rq

DU {(#a 0 ®y) (R} (€ + D0 (Far 0 %) (K))
[ > BAK.0) € Ry (ML) € Ry withowy N M = mN},

o N, :=dom(R, ). and
o Ay = Aqi U (dg | [B.@)).

By Propositions 3.10 and 3.11 and the fact that o € w, again, R, satisfies (el),
(ho). (up). and (down) in Definition 4.1. By (5), for each & € dom( ) N[B ).
A, (&) satisfies (g) for R, . Therefore, ¢y, is a condition of P,, and so is a common
extension of r and ¢ in IP,,. This finishes the proof of this case.

Suppose that « is of countable cofinality. Take a large enough ordinal f € a N N,
which means that

e max(dom(4,)) < f. and
o for each M € dom(Ry). either R,(M) C f or R,(M) is cofinal in e,
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and define

= [r [ p: r €P, such that
e there exists #’ € D so that r <p_ u’,
e dom(4,) C . and
e foreach M € N, either R,(M) C f or R.(M) is cofinal in a}.

We note that ¢ € £ and £ is a definable class in the expanded relational structure
by P, with parameters in N. By the induction hypothesis (p) 4 and the fact that f €
Nemb ¢ Bis (N, IPg)-generic. So there exists p; € £ N N which is compatible
with the condition ¢ [ finPs. Letr € P, N N and u’ € D N N witness that p; € £,
and let p; € Py be a common extension of ¢ | f and p; (=7 | f).
Define ¢’ € U, such that
o R,y =R, UR, UR,
DU (P o Wn) (K)) (@ (Pa7! 0 W) (K)) -
&> P (K.E) € Ry (M.E) € Ry withwy N M = o mN},
e Ny :=dom(R,/). and
[ Aq/ = APZ'

Then ¢’ is a condition of P, and is a common extension of ¢, r, and v’ in P,,. -
The following proof is similar to one of Lemma 2.10.

PrOOF OF (C),, FOR A LIMIT ORDINAL . Suppose thata € wy + lisalimit ordinal,
p €Po. N € N, NNY satisfies that {N} x (a N N) € R,.and {F, : n € w}isaset
of P,-names for nowhere dense subsets of (2<*)” such that {F, : n € } € N. Let
us show that p IFp,” fo,nn & Upew Fn -
Suppose not, and let ¢ <p, p and n € w be such that
q ”_IP’Q “fwlﬁN S Fn”.

As in the proof of (p), when « is a limit ordinal, we need to separate two cases.
Suppose that « is of uncountable cofinality and dom(A4,) Z sup(a N N). Let
f€anN and { € w; NN be large enough ordinals for the condition ¢ as in the
proof of (p),. By the induction hypothesis (p)s and the fact that f € N € IME,
q | B is (N.Py)-generic. For each v € (2<?)~” each p’ € a \ f. each 5 € w; and
each u € P,. define o, (v. ', . u) to be the assertion that
e dom(4,) N p' =dom(4,)N B.
e{wNK:KeN}nn={wNK:KeN;}NN.and
o ulbp “F, N[V #07.

Define a Pg-name Y such that

IFp, “Y = {g € (2<*)”: forany k € w, any ' € '\ f. and any#n € w; \ {.
there exists u € P, suchthatu [ f € G]pﬂ and

walg Ik p'.m. u)}
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Then Y isa definable class in the expanded relational structure by P, with parameters
in N. Y is forced to be a closed subset of (2<?)”. So by Proposition 5.1, ¥ can be
considered as an element of N.

We claim that

qlp IFp, “Y is nowhere dense”.

Letr <p, q [ fandv € (2<?)=*_ and let ¢’ be a common extension of both r and
= such that

¢ in P,. Then there are ¢” <p, ¢’ and an end-extension v’ of v in (2<%)
q/l ”_[Pa “Fn ﬁ [VI] — @n'
q" | B is an extension of r in IP4. Let us show that
q// rﬁ ‘y[P[; uY N [V/] # @99.
Assume not. Let ¢ a Pg-name such that
q" I Blre, “g€ ¥ NPT
Take s <p, ¢" | f.k € w.and V" € (2<)=“ such that

slhp, V' Cg Tk =v".

Let f/ € (anNN)\ Bandletn € (w; N N)\ { be large enough ordinals for ¢” as in
the proof of (p), . By the definition of ¥, {¥. #’..v"} € N.and the fact that¢” |
is also (N.Pg)-generic and that N is an elementary substructure of the expanded
relational structure by P, there exists an extension s’ of s in Pg and u € P, N N
such that s" <p, u [ ff and ¢, (v"". f’.57.u). As in the proof of (p),. by the roles of
B’ and 5. we can build a common extension ¢ of s’, ¢”, and u in P,. (To build ¢,
for each coordinate ¢ in (dom(4,) Udom(4,)) N[f.sup(e N N)). we construct a
preparatory condition : € Pe; like ¢ as in the proof of (p),-) Then

tlrp, “F,N[']1=0and F, N[v"] # 07,

which is a contradiction.
We claim that

g1 BlFe, “foon €Y.

This contradicts the induction hypothesis (C) - and finishes the proof of this case.
Assume not. Then there exists r <, q f such that

rlke, “fon & Y7,

By extending r if necessary, we may assume that there are k € w, ' € a\ 5, and
7 € w; \ { such that

r kg, “there are no u € P, such thatu [ f € Gpﬂ and o (fo,nv [k pon.u)”.

By the induction hypothesis (p) g 18 (N.Pp)-generic. So by extending r again if
necessary, we may assume that g’ € (¢ N N)\ g and 7 € (o N N) \ {. However,
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then
rikz, “q | € Gryand po(foon 1 k' 1.9)7

which is a contradiction.

Suppose that « is of countable cofinality. The proof below is similar to the one
in the case of uncountable cofinality. The differences are the necessary property of
f and the definition of Y. Let # € a N N be a large enough ordinal as in the proof
of (p),,. Let { € w; N N be such that

{oiNK:KeN}n{={oiNK:KeN}NN.

For each v € (2<?)=”, each 5 € w;. and each u € P,. define ¢, (v.5.u) to be the
assertion that

e dom(4,) C B.

e for each M € N,,, either R, (M) C B or R,(M) is cofinal in o,
e{wiNK:KeN,Jnn={wNK:KeN;}NN.and
eulrp“F,N[v] #£07,

and define Y to be a Pg-name such that
IFp, “y = {g € (2<*)”: forany k € w and any 5 € w; \ {, there exists u € P,
suchthatu | § € G.]pp, and ¢, (g | k, n,u)]”.

Then Y isa definable class in the expanded relational structure by P, with parameters
in NV, and is forced to be a closed subset of (2<?)“. So by Proposition 5.1, Y can be

considered as an element of N.
We claim that

q | plFe, “Y is nowhere dense”.

Letr <p, q [ Bandv € (2<)=?, and let ¢’ be a common extension of both r and ¢
in P,. Then there are ¢”’ <p, ¢’ and an end-extension v/ of v in (2<®)=“ such that
q// ”_]P’a “Fn m [Vl] — (Z)”.

g" | pis an extension of r in Pg. Let us show that

4" 1B Ve, <Y DT A0
Assume not, and let ¢ be a Pg-name such that

q" I Blke, “¢ €Y NPT
Take s <p, ¢" | f. k € w and V" € (2<)=* such that

s IF]P’[] r.cv/ g g rk — VN”.

Take 17 € w; NN such that # > { and, for any & € dom(4,+) N[f.a) NN (then
N € Ry#[{¢}]) and any ¢ € A,#(&) NN, y, < 7. As in the previous case, we take
anextensionsofg” [ finPgandu € P, N N suchthats <p, u I Band o, (v, 5. u).
For any ¢ € dom(A4,/) N[f. ).
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e if £ € N, then
- N e Ry '[{EnmE .
~REN=RMN{E+ 11 C E)J”(if+1 (because u satisfies o (v, 5. 1)),
—fornM M e R{EN N C {65 10 € A (E)}.
— forany o € 4,() NNy, <1.and
—max{w; N M : M€ R, {EH} <wr NN,

e if ¢ ¢ N. by Proposition 3.11 and the fact that u € N, R, '[{&}] = 0.

Hence, as the construction of qém in the proof of (p), before, we can find a
common extension ¢ of s, . and ¢”. But then 7 forces a contradiction.
We claim that

g1 B, “fonn € Y”.

This contradicts the induction hypothesis (C) - and finishes the proof of this case.
Assume not, then there exists r <p 41 f such that

ritp, “forw €Y.

By extending r if necessary, we may assume that there are k € w and 7 € w; \ { such
that

r Il—pﬂ “there arenou € P, such thatu [ f € Gpﬂ and (Pa(fwlﬂN lh.n.u)”.

By the induction hypothesis (p)y. r is (N, Py)-generic. So by extending r again if
necessary, we may assume that 47 € (w; \ {) N N. However then

rlre, “q | B € Gpyand @o(fuyw [ hm.q)7
which is a contradiction. B

LEMMA 5.6. For any P,,,-name i for a member of 2,

II—]pw2 “there is a € w such that E, captures ¥ relative to the set X .

PrOOF. Eé is defined in Definition 4.3. By Proposition 5.1, we may assume that
i belongs to H (k). Let p € P,,,. Take o € w, such that ®(a) = {fo} = {F}. and
ran(R,) C a. Then dom(4,) C a.

Let 0 be a large enough regular cardinal for the forcing notion P,.;. Take
any € € oy, and take countable elementary submodels N; and N} of Hy such
that {R. ¥, Hy.Pq. p.a.e| € Ny € Ny Then both Nj 1 Hy and Nj 1 Hy are in
ML N9ML . By Proposition 5.4, there exists an extension ¢ of p in P, such that
R, '{a}] = {Ny N H,} and 4,(a) = {(e. 01 N Nj. w1 N Ny)}. Then, by Lemma
5.2, Pa4 is proper and ¢ is (N N Hy. Po1)-generic. So as seen in Observation 4.4,

q e, “E, is a club subset of w; and captures 7 (= i, ) relative to X”.
Since P,,, forces that 2% = R,, we conclude the following.

THEOREM 5.7. P, forces the assertion (c).
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§6. Properness and the length of the iteration. For each ¢ € . define the Pe -
name S¢ by

e, “Sei={ornN:pedp,, . NeRr,{EN]"

Let p € P, and & € dom(4),) (then & € ;). If M belongs to R, '[{&}]. that is.
{M} x ((E+1)NM) C R,. then

prE+D e, “orNM €S

P

R then p is (M, P:)-generic by Lemma 5.2,

Moreover, if M also belongs to Mt
and therefore

p I (E+1) ke, “wi N M isalimit point of S¢”.
We notice that

pl(E+1) e, “S. is a stationary subset of w;”.
If ®(¢) = {F:} and r¢ is a Pz-name for a function from w into 2, then

lFp. , “theset Sé is a stationary subset of w;, and captures r relative to X,

that is, for any limit point § of S: (which means thatJ € S; and
SeN 5 is cofinal in J), there exists / € X and ¢ € J such that, for any
e (Seno)\e f(IGNED) Cr.

Suppose that p € P, &.¢ € dom(4,) with & < (. and M € R, '[{{}] (then p
forces w; N M to be in Sg)- If ¢ € M, then

&+l

p H_[p[ “orNM € Sg”.

Therefore, by Proposition 3.10 and the requirements (ho) and (up) in the definition
of P,

P H_[pv[ “Sﬁ \ M g Sé”.
Therefore, PP, forces that there are R € 2212 and a sequence (Se: & € wy) of
stationary subsets of w; such that

e for each r € R, there exists ¢ € w, such that S captures r relative to X.
e foreach &, { € w,.if & < (. then S; \ S; is bounded in w;.

As in the proof of Proposition 2.3, the set {S; : £ € w,} cannot be diagonalized
by any stationary subset of w; without collapsing ®,. This observation leads to the
following conclusion.

LEMMA 6.1. If k > wa, then (p),, . in Lemma 5.2 fails.

wy+
This suggests that P, 1 should not be proper.

PrOOF. Suppose that (p),,,; in Lemma 5.2 holds. Then, as we have already
proved, Swz is a P,,,1-name for a stationary subset of w;. For each € w,. the
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set of conditions p of P, such that there are M € N, and & € w, \ # such that
{&awnteM. {M} x ((w+1)NM)CR,. and {& w2} C dom(4,) is dense in
P, +1. Therefore

e, “{f dp € G]pw ., (¢ edom(4,)N a)z)} is of size N»,
Sw2 is a stationary subset of w; and diagonalizes the set

{55 Ip e Gy, (¢ €dom(4,) mwz)} »

wy+1 (
However, this is a contradiction. -

REMARK 6.2. There are reasons to suspect that P,, for a > w;, may fail to
be proper, even disregarding the working parts of the forcing. Suppose that the
length of the iteration is wy + 1. ¢ € Py, 1. {M. N} C qul[{cog}], rePy, NN
which is a nice copy of ¢ inside N as in the proof of (p), for a limit ordinal «,
{M(),Ml,Mz.,M3} - R,fl[{wz}] \ M such that M, € My, M3 € M, MoNw; =
MyNw, M) Nw; = M3Nw;, and Mi/ = (“PM O\PN)( ) EN \(N UN)

foreach i € {0, 1,2, 3}, as in the following figure.

/___N___\ =

M-

/ /\W‘\‘ TNy
Sy

Afo A{l /10 \1\

/ Mz M3 \ oMy MY

Then {Mj. M|, M;. M3} C Rq/*l[{wz}], and qu’l[{wz}] forms a symmetric
system. Let { € «. It should be satisfied that qul [{{H < Smf and qul [{¢}] forms
a symmetric system. Now we have no guarantees that the assertion R -! [{¢ }] C sz’

is true. And even if this is true, since Proposition 3.11 may fail for @ = wy. R,/ '[{¢ }
may fail to form a symmetric system. For example, it may happen that C € M,
{ € Mj (hence { € M{). and { ¢ M;. Then qu’l[{(}] does not satisfy (down).
Therefore. in this case, ¢ and r may fail to be compatible in P,,, ;1.
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