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ASPERÓ–MOTA ITERATION AND THE SIZE OF THE CONTINUUM

TERUYUKI YORIOKA

Abstract. In this paper we build an Asperó–Mota iteration of length �2 that adds a family of ℵ2

many club subsets of�1 which cannot be diagonalized while preserving ℵ2. This result discloses a technical
limitation of some types of Asperó–Mota iterations.

§1. Introduction. Shelah introduced countable support iterations of proper
forcing notions, which enable us to obtain a large number of consistency results.
But by technical limitations, the size of the continuum cannot be larger than ℵ2 in
such consistency results. Asperó and Mota introduced a new iteration technique
for proper forcing notions that enables us to obtain some consistency results
with the continuum larger than ℵ2. Asperó–Mota iterations are equipped with
symmetric systems of models as side conditions, idea due to Todorčević (see, e.g.,
[12, Section 4]). The main ingredient is not only the use of symmetric systems of
models but also symmetric systems of models with markers. Asperó–Mota iterations
are used in the papers [2–5, 10, 13]. In [5, 10], the iterations require that markers
of models in symmetric systems also have symmetry in a suitable sense (Definition
4.1(el), (ho), (up), and (down)).

The Asperó–Mota iterations used in [10] have length �2 and are proper. The
Asperó–Mota iterations used in [5] have length beyond �2 and are claimed to
be proper. The proof, however, contains a flaw, which has been acknowledged in
personal communication. The problems of the proof from [5] are generated by the
fact that the iteration in the paper is greater than �2.1

The forcing iteration in this paper deals with Asperó–Mota iterations with
symmetric markers, like in [5, 10]. We disclose a technical limitation of this type
of iterations; in fact our results show that the length of Asperó–Mota iterations
with symmetric markers in the style of [5, 10] must be at most �2 in order to ensure
their properness.

To achieve our goal, we consider a family of club subsets of �1. Specifically, it is
proved that Asperó–Mota iteration can force a certain assertion, which is called (c)
in this paper, concerning the existence of a family of club subsets of�1 which cannot
be diagonalized while preserving ℵ2. The assertion was introduced by Justin Tatch
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Moore in personal communication and was inspired by the results in [1, Section 2].
Moreover, the natural proof of properness does not work when the length of the
iteration is greater than �2.

This paper is organized as follows. Section 2 is devoted to the basic facts of
the assertion (c): In Section 2.1, the assertion (c) is introduced; in Section 2.2,
we introduce forcing notions to force the assertion (c). Forcing notions stated
in Section 2.2 consist of finite objects. This idea is applied to the Asperó–Mota
iterations presented in this paper. The rest of the sections are devoted to our main
goal, that is, to prove that the assertion (c) can be forced by Asperó–Mota iterations.
In Section 3, we introduce relational structures with which we will equip our Asperó–
Mota style iterations. This notion is necessary for symmetric systems with symmetric
markers. We define our iteration in Section 4, and in Section 5 we prove that it
forces (c). As part of this proof, we show that the iteration is proper whenever its
length is at most �2. In the last section we explain why the proof of properness
breaks down when the length of our the iteration is greater than �2.

§2. The assertion (c) and forcing (c) by finite approximations.

2.1. The assertion (c). Galvin showed that, if the Continuum Hypothesis holds,
then for any family of ℵ2 many club subsets of �1, there exists a subfamily of size
ℵ1 whose intersection is a club [8, Section 3.2]. Abraham and Shelah showed that
the assumption of CH in this theorem of Galvin is necessary. More precisely, they
showed that it is consistent that there exists a family of ℵ2 many club subsets of
�1 such that the intersection of any uncountable subfamily is finite [1, Section 2].
(Notice that such a family cannot be diagonalized without collapsing ℵ1.) They
proved this consistency result by an involved forcing construction using countable
objects and ccc forcing notions. Justin Tatch Moore introduced the assertion (c),
which is inspired by this result of Abraham–Shelah. His assertion (c) can be forced
by a countable support iteration of proper forcing notions.

All definitions, propositions, and remarks in the subsection are due to Moore.
Throughout the article, we assume the following.

Assumptions throughout the paper 2.1.

• C = 〈C� : � ∈ �1 ∩ Lim〉 is a ladder system on �1, that is, each C� is a cofinal
subset of � of order type �; moreover, we suppose that each C� consists of
successor ordinals (hence, for any limit ordinals � and � in �1 with � < �,
C� ∩ (� + 1) = C� ∩ �),

• the set 2<� is equipped with the discrete topology, and (2<�)� is considered
as the product space of copies of the discrete space 2<� ,

• for each � ∈ (2<�)<� , we denote

[�] :=
{
g ∈

(
2<�

)� : � ⊆ g
}
,

which is a basic open subset of the space (2<�)� ; here we recall that � ⊆ g
means that, for every n ∈ dom(�), �(n) = g(n).

Definition 2.2. For a set X of injective functions from� into 2<� and r ∈ 2� , we
say that a club subset E of�1 captures r relative to (C and) X if, for any limit point �
of E, there are f ∈ X and ε ∈ � such that, for any � ∈ (E ∩ �) \ ε, f(|C� ∩ �|) ⊆ r.
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Proposition 2.3. Suppose that R is a set of reals and X is a set of injective functions
from� into 2<� of size ℵ1. If, for each r ∈ R, there exists a club subsetEr of�1 which
captures r relative to X and if the set {Er : r ∈ R} can be diagonalized, then the size
of R is not larger than ℵ1.

Proof. Suppose that a club subset E of �1 diagonalizes all club sets Er , r ∈ R,
(i.e., for each r ∈ R, E \ Er is bounded in �1) and R is of size ≥ ℵ2. Then there
exists � ∈ �1 such that the set

R′ := {r ∈ R : E \ � ⊆ Er}

is of size ≥ ℵ2. Let � be a limit point of the set E \ �. Since X is of size ℵ1, there are
an injective function f in X and ε ∈ � such that ε ≥ � and the set

R′′ := {r ∈ R′ : ∀� ∈ (Er ∩ �) \ ε, f(|C� ∩ �|) ⊆ r}

is of size ≥ ℵ2. But then, for any r ∈ R′′,

∀� ∈ (E ∩ �) \ ε, f(|C� ∩ �|) ⊆ r.

This contradicts the fact that R′′ has at least two different reals. 


Definition 2.4. Define the assertion (c) to be the statement that there are a set X
of injective functions from � into 2<� of size ℵ1 and a collection of ℵ2-many reals
each one of which can be captured by a club of �1 relative to X.

Remark 2.5. By Proposition 2.3, any collection of ℵ2 many club subsets each of
which captures a real r relative to X cannot be diagonalized in any outer model with
the same ℵ2 if all the r’s are distinct.

Remark 2.6. Moore pointed out that, if X is a non-meager subset of injective
functions from � into 2<� and r ∈ 2� , the forcing notion of all countable
approximations to a club subset of �1 that captures r is proper and adds no new
reals (however it may not be 	-closed). Moreover, if CH holds, then it satisfies the
ℵ2-proper isomorphic condition (ℵ2-pic). Therefore, the assertion (c) can be forced
by a countable support iteration.

2.2. Forcing (c) by finite approximations. In this subsection, we deal with a forcing
notion to force the assertion (c) different from the one referred to in Remark 2.6.
Our forcing notion is equipped with models as side conditions [12, Section 4]. The
proofs of the basic facts of this forcing notion should help the reader understand
the machinery of the proofs dealing with our Asperó–Mota iteration in Section 5.

Suppose that X is a non-meager subset of injective functions from � into
2<� , and r ∈ 2� . Let κ :=

(
2ℵ0

)+
. Define M(X, r) to be the set of countable

elementary submodels of Hκ which contain the set {C, X, r}. Each member of
M(X, r) is considered as a substructure of the structure 〈Hκ,∈, �1, C, X, r〉. For
each M ∈ M(X, r), the transitive collapse of M is considered as the structure
〈trcl(M ),∈, �1 ∩M, C �M,X ∩M, r〉, which is denoted by M . ΨM denotes the
transitive collapsing map from M onto M . For each M ∈ M(X, r), since M is
countable and �1 is of uncountable cofinality, �1 ∩M is a countable ordinal.
And if M and M ′ in M(X, r) have the same transitive collapse, then �1 ∩M =
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�1 ∩M ′, and the composition ΨM ′–1 ◦ ΨM is an isomorphism from the structure
〈M,∈, �1, C, X, r〉 onto the structure 〈M ′,∈, �1, C, X, r〉.

In this subsection, we suppose 2ℵ0 = ℵ1. If M andM ′ inM(X, r) satisfy�1 ∩M =
�1 ∩M ′, thenR ∩M = R ∩M ′. So the set of Borel codes in M coincides with those
in M ′. Therefore, for any f ∈ (2<�)� , f is Cohen over M iff f is Cohen over M ′.
In this subsection, we identify a non-meager set X (which is of size ℵ1) with some
fixed enumeration of X of length �1. Then, if M and M ′ in M(X, r) satisfies
�1 ∩M = �1 ∩M ′, then X ∩M = X ∩M ′. We notice that, for anyM ∈ M(X, r)
and any f ∈ (2<�)� which is Cohen over M, the set {n ∈ � : f(n) ⊆ r} is infinite.

In Section 4, we will define an Asperó–Mota iteration of forcing notions playing
the same role as the following forcing notions.

Definition 2.7. Define the forcing notion Q(X, r) consisting of the triples
p =

〈
N 0
p ,N 1

p , Ap
〉

such that
(sym) N 0

p ∪N 1
p is a finite subset of M(X, r) such that

• for eachM,M ′ ∈ N 0
p ∪ N 1

p , if �1 ∩M = �1 ∩M ′, thenM =M ′,
• for each M,M ′ ∈ N 0

p ∪ N 1
p , if �1 ∩M ′ < �1 ∩M , then there exists M ′′ ∈

N 0
p ∪N 1

p such thatM ′′ =M andM ′ ∈M ′′,
(ob)Ap is a finite set of tuples of the form 	 = 〈ε	, �	 , �	 , f	〉 such that ε	, �	, �	 ∈
�1, ε	 < �	 < �	 , and f	 ∈ X ,

(ob-2)
• the set

{
�	 : 	 ∈ Ap

}
includes the set

{
�1 ∩N : N ∈ N 0

p

}
, and the set{

�	 : 	 ∈ Ap
}

includes the set
{
�1 ∩M :M ∈ N 1

p

}
,

• for any 	 ∈ Ap and any N ∈ N 0
p , if �1 ∩N = �	 , then there existsM ∈ N 1

p

such that N ∈M and �1 ∩M = �	 ,
• for any 	 ∈ Ap and anyM ∈ N 1

p , if�1 ∩M = �	 , thenf	 is Cohen over M,
• for any 	 ∈ Ap and N ∈ N 0

p , if �	 < �1 ∩N , then 	 ∈ N ,

(cl) for any {	, �} ∈
[
Ap

]2, either �	 < �� or �� < �	 , and
(w) for any 	 ∈ Ap, if �	 is a limit ordinal, then the set

{
n ∈ � : f	(n) ⊆ r

}
is

infinite, and for any � ∈ Ap \ {	} with ε	 < �� < �	 , f	(
∣∣C�	 ∩ ��

∣∣) ⊆ r and
f	(

∣∣C�	 ∩ (�� + 1)
∣∣) ⊆ r,

for each p, q ∈ Q(X, r), q ≤Q(X,r) p if N 0
q ⊇ N 0

p , N 1
q ⊇ N 1

p , Aq ⊇ Ap.

We notice that, for any p ∈ Q(X, r), any N ∈ N 0
p and any M ∈ N 1

p , �1 ∩N �=
�1 ∩M .

Lemma 2.8. For any non-meager set X of injective functions from � into 2<� and
any r ∈ 2� , Q(X, r) is proper.

Proof. Let � be a large enough regular cardinal, N ∗ a countable elementary
submodel of H� which contains {C, X, r,Hκ}, and p ∈ Q(X, r) ∩N ∗. Let M ∗

be a countable elementary submodel of H� which has the set {N ∗}, and let
ε∗ ∈ �1 ∩N ∗ such that �	 < ε∗ for every 	 ∈ Ap. We denote N∗ := N ∗ ∩Hκ and
M∗ :=M ∗ ∩Hκ. Since X is non-meager andM ∗ is countable, there exists a function
f∗ in X which is Cohen over M ∗. Define 	∗ := 〈ε∗, �1 ∩N∗, �1 ∩M∗, f∗〉 and
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p+ :=
〈
N 0
p ∪ {N∗} ,N 1

p ∪ {M∗} , Ap ∪ {	∗}
〉
. p+ is a condition of Q(X, r), and

hence is an extension of p.
Let us show that p+ is an N ∗-generic condition of Q(X, r). Let D be a predense

subset of Q(X, r) which belongs to N ∗, and q an extension of p+ in Q(X, r). By
extending q if necessary, we may assume that q is an extension of some member
of D. Moreover, by extending q if necessary again, we may assume that the set(
N 0
q ∪N 1

q

)
∩N∗ includes the set

{ (
(ΨN∗)–1 ◦ ΨN

)
(K) : N ∈ N 0

q with �1 ∩N = �1 ∩N∗,

K ∈
(
N 0
q ∪N 1

q

)
∩N

}
.

Define E to be the set of the conditions u of Q(X, r) such that

• u is an extension of some member of D in Q(X, r),
• N 0

u ∩N = N 0
q ∩N∗,N 1

u ∩M = N 1
q ∩M∗ (= N 1

q ∩N∗), andN ∈M for some
N ∈ N 0

u and someM ∈ N 1
u ,

• Au ⊇ Aq ∩N∗, and, for any 	 ∈ Au \ (Aq ∩N∗) and any � ∈ Aq \
(N∗ ∪ {	∗}),

max
(
C�� ∩N∗

)
< �	.

Then p+ ∈ E . Since the set
{
Q(X, r),D,N 0

q ∩N∗,N 1
q ∩M∗, Aq ∩N∗, 〈C�� ∩N∗ : � ∈ Aq \ (N∗ ∪ {	∗})〉

}

belongs to N ∗, by elementarity of N ∗, E belongs to N ∗. We note that

♠ if u ∈ E ∩N∗, then for any 	 ∈ Au \ (Aq ∩N∗) and any � ∈ Aq \ (N∗ ∪ {	∗}),

C�� ∩ �	 = C�� ∩ �	 = C�� ∩N∗ = C�� ∩ �	∗ .

It follows from elementarity of N ∗ that

♦ for any � ∈ �1 ∩N∗, there exists u ∈ E ∩N ∗ such that, for every � ∈ Au \ (Aq ∩
N∗), � < �� , hence, for any n ∈ �, there exists u ∈ E ∩N ∗ such that, for every
� ∈ Au \ (Aq ∩N∗),

∣∣C�1∩N∗ ∩ ��
∣∣ ≥ ∣∣C�1∩N∗ ∩ ��

∣∣ ≥ n.

Define Z to be the set of the functions g from � into 2<� such that there exists
u ∈ E ∩N ∗ which satisfies that for any � ∈ Au \ (Aq ∩N∗), g(

∣∣C�1∩N∗ ∩ ��
∣∣) ⊆ r

and g(
∣∣C�1∩N∗ ∩ (�� + 1)

∣∣) ⊆ r. Since Z is defined from E and C�1∩N∗ (= C�	∗ ),
and the set

{
E , N ∗, C�1∩N∗

}
is in M ∗, Z belongs to M ∗. By the property � of

E ∩N ∗, Z is a dense open subset of the space (2<�)� . Since f∗ is Cohen overM ∗,
f∗ belongs to Z. Let u be a witness that f∗ belongs to Z.

Define u′ =
〈
N 0
u′ ,N 1

u′ , Au′
〉

such that

N 0
u′ := N 0

q ∪ N 0
u

∪
{ (

ΨN
–1 ◦ ΨN∗

)
(N ′) : N ∈ N 0

q with �1 ∩N = �1 ∩N∗, N
′ ∈ N 0

u

}
,
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N 1
u′ := N 1

q ∪ N 1
u

∪
{ (

ΨM
–1 ◦ ΨN∗

)
(M ′) :M ∈ N 1

q with �1 ∩M = �1 ∩M∗,

M ′ ∈ N 1
u

}
,

Au′ := Aq ∪ Au.

Let us show that u′ is a condition of Q(X, r). Then it follows that u′ is a common
extension of q and u, which completes the proof. Since u and q satisfies (ob)
and (ob-2), so does u′. Since Au′ is an end-extension of Aq ∩N∗ and u′ ∈ N ∗,
Au′ satisfies (cl). We will check two non-trivial cases of (w) for u′. Suppose
that 	 ∈ Au \ (Aq ∩N∗) and � ∈ Aq \ (N∗ ∪ {	∗}). Then �	 < �� . If ε� < �	 , then
ε� < �1 ∩N∗, and so, by ♠,

f�(|C�� ∩ �	 |) = f�(|C�� ∩ (�	 + 1)|) = f�(|C�� ∩ �	∗ |) ⊆ r.

This takes care of one non-trivial case. Since u is a witness that f∗ ∈ Z,

f	∗(
∣∣C�	∗ ∩ �	

∣∣) = f∗(
∣∣C�1∩N∗ ∩ �	

∣∣) ⊆ r
and

f	∗(
∣∣C�	∗ ∩ (�	 + 1)

∣∣) = f∗(
∣∣C�1∩N∗ ∩ (�	 + 1)

∣∣) ⊆ r.
This takes care of the other non-trivial case. Therefore, Au′ satisfies (w). 


Proposition 2.9. For any non-meager set X of injective functions from � into 2<�

and any r ∈ 2� ,

�Q(X,r) “
⋃ {

[�	, �	 ] : p ∈ Ġ, 	 ∈ Ap
}
⊇ (�1 \ �) ∩ Lim for some � ∈ �1”,

where [�, �] := {� ∈ � + 1 : � ≤ �}, and Lim denotes the class of the limit ordinals.

Proof. Let p ∈ Q(X, r) and � ∈ �1 ∩ Lim. Suppose that � is not in the set⋃
	∈Ap

[�	, �	 ] and that there exists 	0 ∈ Ap such that �	0 < �. Since � is a limit ordinal,

�	0 + 1 < �. We may assume that 	0 is a largest tuple of Ap with this property. Take
f0 ∈ X ∩

⋂
N 0
p .

If there are no � ∈ Ap such that � < �� , then let � ∈ � be a successor
ordinal such that �	 < � < � for every 	 ∈ Ap, and define q :=

〈
N 0
p ,N 1

p , Ap ∪{〈
�	0 , �, � + 1, f0

〉} 〉
. Suppose that � < �� for some � ∈ Ap. Let 	1 ∈ Ap be the

smallest tuple with the property that � < �	1 . Then by our assumption, � < �	1 . If �	1

is a successor ordinal, then define q :=
〈
N 0
p ,N 1

p , Ap ∪
{〈
�	0 , �	0 + 1, �	1 – 1, f0

〉} 〉
. If

�	1 is a limit ordinal, then take � ∈ �	1 such that, for any � ∈ Ap with �� > �	1 , if ��
is a limit ordinal, then

C�� ∩ (� + 1) = C�� ∩ �	1 .

It follows that, if ε� < �	1 , then f�(|C�� ∩ (� + 1)|) ⊆ r. By extending � if necessary,
we may assume that

f�	1 (|C�	1 ∩ (� + 1)|) ⊆ r.

https://doi.org/10.1017/jsl.2022.37 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.37
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This can be done because the set {n ∈ � : f�	1 (n) ⊆ r} is infinite. Define q :=〈
N 0
p ,N 1

p , Ap ∪
{〈
�	0 , �	0 + 1, �, f0

〉} 〉
.

In each case, q is a condition of Q(X, r), and hence it is an extension of p in
Q(X, r) and

q �Q(X,r) “� ∈
⋃ {

[�	, �	 ] : u ∈ Ġ, 	 ∈ Au
}
”,

which finishes the proof. 


It follows from this proposition that

�Q(X,r) “the set
{
�	 : p ∈ Ġ, 	 ∈ Ap

}
is a club subset of �1, and captures r

relative to X”.

The following lemma shows that Q(X, r) almost preserves �Cohen in the sense of
Goldstern [9, Section 6, Application 3] (see also [7, Section 6.3.C]). It follows that
Q(X, r) preserves non-meager sets of reals (from [7, Lemmas 6.3.16 and 6.3.17]).
This is necessary to guarantee that a countable support iteration of forcing notions
of the form Q(X, r) is still proper because the non-meagerness of X is used to prove
properness of Q(X, r). The preservation of �Cohen is closed under countable support
iterations [7, Theorems 6.1.13 and 6.3.20]. Therefore, for any non-meager set X of
injective functions from � into 2<� , a countable support iteration of forcing notion
of the form Q(X, r) is still proper and forces X to be non-meager.

Lemma 2.10. Let X be a non-meager set of injective functions from � into 2<� ,
r ∈ 2� , � a regular cardinal such that Hκ ∈ H� , and 
 a regular cardinal such that
H� ∈ H
. Then, for any countable elementary submodel N ∗ of H
 which contains the
set {C, X, r,Hκ,H�}, any c ∈ 2� which is Cohen overN ∗, and any p ∈ Q(X, r) ∩N ∗,
there exists an extension p+ of p in Q(X, r) such that p+ is an (N ∗,Q(X, r))-generic
condition and

p+ �Q(X,r) “c is Cohen over N ∗[ĠQ(X,r)]”.

Proof. As in the previous proof, let N ∗ be a countable elementary submodel of
H
 which contains {C, X, r,Hκ,H�, p},M ∗ a countable elementary submodel ofH

which has the set {N ∗}, ε∗ ∈ �1 ∩N ∗ such that �p	 < ε∗ for every 	 ∈ Ap, and f∗
a member of X which is Cohen overM ∗. Define 	∗ := 〈ε∗, �1 ∩N ∗, �1 ∩M ∗, f∗〉
and

p+ :=
〈
N 0
p ∪ {N ∗ ∩Hκ} ,N 1

p ∪ {M ∗ ∩Hκ} , Ap ∪ {	∗}
〉
.

We have shown in Lemma 2.8 that p+ is (N ∗,Q(X, r))-generic. Let us show that

p+ �Q(X,r) “c is Cohen over N ∗[ĠQ(X,r)]”.

Suppose not. Then there are a Q(X, r)-name Ḟ for a nowhere dense subset of 2�

and q ≤Q(X,r) p such that Ḟ ∈ N ∗ and

q �Q(X,r) “c ∈ Ḟ ”.

Define D to be the set of the conditions u of Q(X, r) such that there are countable
elementary submodels N ′ andM ′ ofH� such that
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•
(
N 0
u ∪N 1

u ∪ Au
)
∩N ′ =

(
N 0
q ∪ N 1

q ∪ Aq
)
∩N∗,

•
{
C, X, r,Hκ, Ḟ ,

{
C�	 ∩N∗ : 	 ∈ Aq \ (N∗ ∪ {	∗})

}
,
{
ε	 : 	 ∈ Aq

}
∩N∗

}
∈

N ′ ∈M ′,
• N ′ ∩Hκ ∈ N 0

u andM ′ ∩Hκ ∈ N 1
u , and

• there is a 	 ∈ Au such that �1 ∩N ′ = �	 and �1 ∩M ′ = �	 .

Then q ∈ D ∈ N ∗. Since q is (N ∗,Q(X, r))-generic, there exists u ∈ D ∩N ∗ that
is compatible with q in Q(X, r). Let q+ be a common extension of q and u in Q(X, r)
such that there are countable elementary submodels N ∗

0 andM ∗
0 of H� such that

•
(
N 0
u ∪N 1

u ∪ Au
)
∩N∗

0 =
(
N 0
q ∪ N 1

q ∪ Aq
)
∩N∗,

•
{
C, X, r,Hκ, Ḟ ,

{
C�	 ∩N∗ : 	 ∈ Aq \ (N∗ ∪ {	∗})

}
,
{
ε	 : 	 ∈ Aq

}
∩N∗

}

∈ N∗
0 ∈M∗

0 ∈ N∗,
• N0 := N∗

0 ∩Hκ ∈ N 0
q+ andM0 :=M∗

0 ∩Hκ ∈ N 1
q+, and

• there is a unique 	0 ∈ Aq+ such that �1 ∩N0 = �	0 and �1 ∩M0 = �	0 .

As seen in the previous lemma, q+ is (N ∗
0 ,Q(X, r))-generic. By extending q+ if

necessary, we may assume that the set
(
N 0
q+ ∪N 1

q+

)
∩N ∗ contains the set

{ (
(ΨN∗∩Hκ )–1 ◦ ΨN

)
(K) : N ∈ N 0

q+ with �1 ∩N = �1 ∩N ∗,

K ∈
(
N 0
q+ ∪N 1

q+

)
∩N

}
.

Let �0 ∈ �1 ∩N0 be such that

• for every 	 ∈ Aq ∩N0 (= Aq ∩N∗ = Aq+ ∩N0), �	 < �0, and
• for every 	 ∈ Aq \N0 (then �	 ≥ �1 ∩N∗ > �1 ∩N0 = �	0),

– if C�	 ∩N0 �= ∅, then max
(
C�	 ∩N0

)
< �0, and

– if ε	 < �1 ∩N0, then ε	 < �0.

For each � ∈ 2<� , each � ∈ �1, and each x ∈ [M(X, r)]<ℵ0 , define E(�, �, x) to be
the set of the conditions u of Q(X, r) such that

• Au ∩ (�3 × X ) = Aq ∩N0 and, for any � ∈ Au \ (Aq ∩N0), �� ≥ �,
♦ the set

{〈
ε	, C�	 ∩ �, f	 �

∣∣C�	 ∩ �
∣∣〉 : 	 ∈ Au \

(
Aq ∩N0

)
with ε	 < �

}

is equal to the set
{〈
ε	, C�	 ∩N0, f	 �

∣∣C�	 ∩N0
∣∣〉 : 	 ∈ Aq \N0 with ε	 < �0

}
,

• there are N ∈ N 0
u and M ∈ N 1

u such that x ∈ N , N 0
u ∩N = N 0

q ∩N0, �1 ∩
N = min

{
�	 : 	 ∈ Au \ (Aq ∩N0)

}
, N 1
u ∩M = N 1

q ∩M0 (= N 1
q ∩N0), �1 ∩

M = min
{
�	 : 	 ∈ Au \ (Aq ∩N0)

}
, and N ∈M ,

• u �Q(X,r)“ Ḟ ∩ [�] �= ∅ ”.

By the choice of N ∗
0 , the set

{
E(�, �, x) : � ∈ 2<�, � ∈ �1, x ∈

[
M(X, r)

]<ℵ0
}
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ASPERÓ–MOTA ITERATION AND THE SIZE OF THE CONTINUUM 1395

belongs to N0. Define

Y :=
{
a ∈ 2� : for any k ∈ �, any � ∈ �1 \ �0, and any x ∈ [M(X, r)]<ℵ0 ,

E(a � k, �, x) �= ∅
}
.

Y also belongs to N0.
We claim that Y is nowhere dense in 2� . Let � be in 2<� . Take an extension q′ of

q+ in Q(X, r) and an end extension � ′ of � in 2<� such that

q′ �Q(X,r) “Ḟ ∩ [� ′] = ∅”.

By extending q′ if necessary, we may assume that the set
(
N 0
q′ ∪N 1

q′

)
∩N0 includes

the set { ((
ΨN0

)–1 ◦ ΨN
)

(K) : N ∈ N 0
q′ with �1 ∩N = �1 ∩N0,

K ∈
(
N 0
q′ ∪N 1

q′

)
∩N

}
.

Let us show that Y ∩ [� ′] = ∅. Suppose not. Then there exists a ∈ Y ∩ [� ′]. Let
k ∈ � be such that � ′ ⊆ a � k, and let �1 ∈ �1 ∩N0 be such that

• for every 	 ∈ Aq′ ∩N0, �	 < �1, and
• for every 	 ∈ Aq′ \ (N0 ∪ {	0}), if C�	 ∩N0 �= ∅, then max

(
C�	 ∩N0

)
< �1.

Define Z to be the set of the functions h from � into 2<� such that
there exists u ∈ E(a � k, �1,

(
N 0
q′ ∪ N 1

q′

)
∩N0) ∩N ∗

0 which satisfies that, for any

	 ∈ Au \ (Aq ∩N0), h(
∣∣C�1∩N0 ∩ �	

∣∣) ⊆ r and h(
∣∣C�1∩N0 ∩ (�	 + 1)

∣∣) ⊆ r. Since
a ∈ Y , it follows from elementarity of N ∗

0 again that Z is a dense open subset
of (2<�)� . We note that Z is in M ∗

0 . Since f	0 is Cohen over M ∗
0 , f	0 is

in Z. Take u ∈ E(a � k, �1,
(
N 0
q′ ∪ N 1

q′

)
∩N0) ∩N ∗

0 which witnesses f	0 ∈ Z. So

there areN ∈ N 0
u andM ∈ N 1

u such that�1 ∩N = min {�	 : 	 ∈ Au \ (Aq ∩N0)},

�1 ∩M = min {�	 : 	 ∈ Au \ (Aq ∩N0)},
(
N 0
q′ ∪N 1

q′

)
∩N0 ∈ N ∈M , N 0

u ∩N =

N 0
q ∩N0, and N 1

u ∩M = N 1
q ∩M0. Then

N 0
u ∩N = N 0

q ∩N0 ⊆ N 0
q′ ∩N0 ∈ N ∈ N 0

u

and

N 1
u ∩M = N 1

u ∩N = N 1
q ∩N0 ⊆ N 1

q′ ∩N0 ∈ N ∈M ∈ N 1
u .

Therefore, if Au ∪ Aq′ satisfies (w), as in the proof of properness of Q(X, r), u
and q′ are compatible in Q(X, r). However, a common extension of u and q′ in
Q(X, r) forces both Ḟ ∩ [� ′] = ∅ and Ḟ ∩ [a � k] �= ∅, which contradicts � ′ ⊆ a � k.
Therefore, if Au ∪ Aq′ satisfies (w), then Y ∩ [� ′] = ∅.

We will show that Au ∪ Aq′ satisfies (w). The non-trivial case is that 	 ∈ Au \
(Aq ∩N0) such that ε	 < �1, and � ∈

(
Aq′ ∩N0

)
\ Aq such that ε	 < �� . Then �� <

�1 < �	 . Moreover by �, there exists 	′ ∈ Aq \N0 such that

〈ε	, C�	 ∩ �1, f	 � |C�	 ∩ �1|〉 =
〈
ε	′ , C�	′ ∩N0, f	′ �

∣∣∣C�	′ ∩N0

∣∣∣
〉
.
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Then 	′ ∈ Aq ⊆ Aq+ ⊆ Aq′ . Since � ∈ Aq′ ∩N0, �� < �� < �1 < �1 ∩N0. Thus
C�	 ∩ �� = C�	′ ∩ �� andC�	 ∩ (�� + 1) = C�	′ ∩ (�� + 1). Thus, since {	′, �} ⊆ Aq′
and ε	′ = ε	 < �� < �1 ∩N0 < �	′ ,

f	(|C�	 ∩ �� |) = f	′(
∣∣∣C�	′ ∩ ��

∣∣∣) ⊆ r
and

f	(|C�	 ∩ (�� + 1)|) = f	′(
∣∣∣C�	′ ∩ (�� + 1)

∣∣∣) ⊆ r.
Since c is Cohen over N ∗, c is not in Y . Thus, there are k ∈ �, � ∈ �1 \ �0, and

x ∈ [M(X, r)]<ℵ0 such that E(c � k, �, x) is empty. Since c � k ∈ N ∗
0 , by elementarity

of N ∗
0 , we may assume that � ∈

(
�1 ∩N ∗

0

)
\ �0, and x ∈ [M(X, r)]<ℵ0 ∩N ∗

0 . But
then q belongs to E(c � k, �, x), which is a contradiction. 


As in the proof of Proposition 5.1 that we will see later on, we can show that
Q(X, r) has the ℵ2-chain condition (ℵ2-cc). Moreover, as in [12, Section 4], we
can show that Q(X, r) has the ℵ2-pic, which is defined by Shelah [11, Chapter VIII,
Section 2] (see also [12, Section 4]). Theℵ2-pic is a stronger condition than theℵ2-cc,
and is closed under countable support iterations. Therefore, the following theorem
is a consequence of the lemmas and observations in the present subsections.

Theorem 2.11. Suppose that 2ℵ0 = ℵ1, X is a non-meager subset of injective
functions from � into 2<� , and some diamond principle (which is used in the book-
keeping argument of a countable support iteration) holds. Then a countable support
iteration of forcing notions of the form Q(X, r) with some booking argument forces the
assertion (c).

§3. Symmetric systems of relational structures. This section is similar to Section 4
of the paper [10]. The idea of this section is due to Tadatoshi Miyamoto. The notion
in this section will be used in the definition of our forcing notion which forces the
assertion (c).

Assumptions throughout the paper 3.1. Throughout the rest of the paper,
suppose that

• 2ℵ0 = ℵ1 holds,
• R stands for the set of real numbers, and �R is a fixed enumeration of R,
• X is a non-meager set of injective functions from � into 2<� (of size ℵ1),
• κ is an uncountable regular cardinal such that κ ≥ ℵ2 and 2<κ = κ,
• Φ is a surjection from κ to Hκ such that for every x ∈ Hκ, Φ–1[{x}] is

unbounded in κ.

If M and M ′ are countable elementary submodels of Hκ with the set
{�R

}
such

that �1 ∩M = �1 ∩M ′, then R ∩M = R ∩M ′. So, as in Section 2.2, the set of
Borel codes in M coincides with the one inM ′. Therefore, for any f ∈ (2<�)� , f is
Cohen over M iff f is Cohen overM ′.

Assumptions throughout the paper 3.2.

• �X = 〈f� : � ∈ �1〉 is an enumeration of X such that, for any countable

elementary submodel M of Hκ which contains the set
{�R

}
, f�1∩M is Cohen

over M.
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Definition 3.3. M0 is the set of countable elementary submodels N of Hκ such

that
{ �R, �X

}
∈ N and the structure 〈N,∈,Φ ∩N 〉 is an elementary substructure of

the structure 〈Hκ,∈,Φ〉.

As in Section 2.2, we always consider the members of M0 as substructures of

the structure
〈
Hκ,∈, �1, �R, �X,Φ

〉
. For each M ∈ M0, the transitive collapse of M

is considered as the structure
〈
trcl(M ),∈, �1 ∩M, �R ∩M, �X ∩M,Φ ∩M

〉
, which

is denoted by M , where Φ ∩M is considered as the image, under the collapsing
function of M, of Φ ∩M . As in Section 2.2, ΨM denotes the transitive collapsing
map from M ontoM . So when M andM ′ in M0 are isomorphic, the composition

ΨM ′–1 ◦ ΨM is an isomorphism from the structure
〈
M,∈, �1, �R, �X,Φ ∩M

〉
onto the

structure
〈
M ′,∈, �1, �R, �X,Φ ∩M ′

〉
.

Definition 3.4. A finite subset M of M0 is called a symmetric system if

(ho) for eachM,M ′ ∈ M, if �1 ∩M = �1 ∩M ′, thenM =M ′,
(up) for eachM,M ′ ∈ M, if �1 ∩M ′ < �1 ∩M , then there existsM ′′ ∈ M such

thatM ′′ =M andM ′ ∈M ′′,
(down) for each M0,M1 ∈ M and each M ′ ∈ M∩M0, if M0 =M1, then(

ΨM1
–1 ◦ ΨM0

)
(M ′) belongs to M, and

(id) for eachM,M ′ ∈ M, if �1 ∩M = �1 ∩M ′, then the function
(

ΨM ′–1 ◦ ΨM
)

� (M ∩M ′)

is the identity.

The requirement (id) comes from the Asperó–Mota iteration [3]. This was used to
show properness whenever the length of the iteration has uncountable cofinality. In
this paper, the requirement (id)will be used in other places, for example, Propositions
3.10 and 3.11.

We will deal with symmetric systems of relational structures. To introduce such
systems, we define the following notions, and mention some necessary propositions.

Definition 3.5. Let (P,≤P) be a forcing notion with the κ-chain condition such
that P ⊆ Hκ. We define the expanded relational structure by P to the relational
structure 〈

Hκ,∈,P,≤P, H
P
κ , R

P
=, R

P
∈, �R, �X,Φ

〉
,

where

• HP
κ := V P ∩Hκ, where V P denotes the class of all P-names,

• RP
= :=

{
(p, �, �) ∈

(
P× V P × V P

)
∩Hκ : p �P “� = � ”

}
, and

• RP
∈ :=

{
(p, �, �) ∈

(
P× V P × V P

)
∩Hκ : p �P “� ∈ � ”

}
.

For eachM ∈ M0, M is also considered as the substructure
〈
M,∈ ∩M 2,P ∩M,≤P ∩M 2, H P

κ ∩M,RP
= ∩M 3, RP

∈ ∩M 3, �R, �X,Φ ∩M
〉
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of the expanded relational structure by P, and we writeM ≺ P when the structure
M is an elementary substructure of the expanded relational structure by P.

The forcing notions we will define in Section 4 are not members ofHκ, but subsets
ofHκ. The following can be proved in a similar way as in [11, Chapter III, Section 2].
Here, p ∈ P is called (M,P)-generic if, for any predense subset D ∈M of P, D ∩M
is predense below p in P. For the proof of the following proposition, see, e.g., [11,
Chapter III, Theorem 2.11].

Proposition 3.6. Suppose that P is a forcing notion with the κ-chain condition
such that P ⊆ Hκ.

1. If � is a large enough regular cardinal for P and M ∗ is a countable elementary
submodel of H� which contains the set

{
Hκ,∈,P,≤P, �R, �X,Φ

}

as a member, thenM ∗ ∩Hκ ∈ M0 andM ∗ ∩Hκ ≺ P.
2. For anyM ∈ M0 withM ≺ P, and any p ∈ P, the followings are equivalent:

• p is (M,P)-generic,
• p �P “M [Ġ ] ∩HκV =M”, whereHκV denotesHκ in the ground model, and
• p �P “M [Ġ ] ∩ κ =M ∩ κ”.

3. For anyM ∈ M0 withM ≺ P,

�P “the structure〈
M [Ġ ],∈ ∩M [Ġ ]2, HVκ ∩M [Ġ ],P ∩M [Ġ ],≤P ∩M [Ġ ]2, Ġ ∩M [Ġ ],

H P
κ ∩M [Ġ ], RP

= ∩M [Ġ ]3, RP
∈ ∩M [Ġ ]3, �R, �X,Φ ∩M [Ġ ]

〉

is an elementary substructure of the structure〈
HV [Ġ ]
κ ,∈, HVκ ,P,≤P, Ġ ,H

P
κ , R

P
=, R

P
∈, �R, �X,Φ

〉
”.

Notation 3.7. For α ∈ κ + 1, n ∈ �, and a sequence
〈
X i� : i ∈ n, � ∈ α

〉
of

subsets ofHκ, we denote

〈〈X i� : i ∈ n, � ∈ α〉〉 := {〈i, �, x〉 : i ∈ n, � ∈ α, x ∈ X�} .

Then the tuple 〈〈X i� : i ∈ n, � ∈ α〉〉 is also a subset of Hκ.

Definition 3.8. Let α ∈ κ + 1, and 〈P� : � ≤ α〉 a sequence of forcing notions
such that P� ⊆ Hκ and P� has the κ-chain condition for each � ≤ α. We define the
expanded relational structure by 〈P� : � ≤ α〉 to the structure

〈
Hκ,∈,Pα,≤Pα ,H

Pα
κ , R

Pα
= , R

Pα
∈ , 〈〈H

P�
κ , R

P�
= , R

P�
∈ : � ∈ α〉〉

〉
.

For eachM ∈ M0, M is also considered as the substructure
〈
M,∈ ∩M 2,Pα ∩M,≤Pα ∩M 2, H Pα

κ ∩M,RPα
= ∩M 3, RPα

∈ ∩M 3,

〈〈H P�
κ ∩M,RP�

= ∩M 3, R
P�
∈ ∩M 3 : � ∈ α ∩M 〉〉

〉
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of the expanded relational structure by 〈P� : � ≤ α〉, and we writeM ≺ 〈P� : � ≤ α〉
when the structure M is an elementary substructure of the expanded relational
structure by 〈P� : � ≤ α〉.

The following is a variation of Proposition 3.6 for iterated forcing.

Proposition 3.9. Suppose thatα ∈ κ + 1, and 〈P� : � ≤ α〉 is a sequence of forcing
notions such that P� ⊆ Hκ and P� has the κ-chain condition for each � ≤ α.

1. If � is a large enough regular cardinal for the iteration 〈P� : � ≤ α〉 andM ∗ is a
countable elementary submodel of H� which contains the set

{
Hκ,∈, 〈P� : � ≤ α〉 , �R, �X,Φ

}

as a member, thenM ∗ ∩Hκ ∈ M0 andM ∗ ∩Hκ ≺ 〈P� : � ≤ α〉.
2. If α < κ, then for anyM ∈ M0 withM ≺ 〈P� : � ≤ α〉, α belongs to M.
3. For anyM ∈ M0 withM ≺ 〈P� : � ≤ α〉 and any � ∈ α, if � ∈M , thenM ≺

〈P� : � ≤ �〉.

The following is necessary for our symmetric systems of relational structures.
This is the reason why we introduce the relational structures equipped with forcing
notions that are subsets of Hκ.

Proposition 3.10. Suppose that M,N0, N1 ∈ M0 are elementary substructures
of the expanded relational structure by 〈P� : � ≤ α〉, N0 and N1 are isomorphic as
substructures of the expanded relational structure by the sequence 〈P� : � ≤ α〉 (then
the map Ψ = ΨN1

–1 ◦ ΨN0 is the isomorphism from N0 onto N1 as substructures of
the expanded relational structure by 〈P� : � ≤ α〉), � ≤ α is such that Ψ(�) = � , and
M ∈ M0 ∩N0. Then

• ifM ≺
〈
P� : � ≤ α

〉
, then the structure

〈
M,∈ ∩M 2,P� ∩M,≤P�

∩M 2,H
P�
κ ∩M,RP�

= ∩M 3, R
P�
∈ ∩M 3,

〈〈HP�
κ ∩M,RP�

= ∩M 3, R
P�
∈ ∩M 3 : � ∈ � ∩M 〉〉

〉

is an elementary substructure of the structure
〈
N0,∈ ∩N0

2,P� ∩N0,≤P�
∩N0

2,H
P�
κ ∩N0, R

P�
= ∩N0

3, R
P�
∈ ∩N0

3,

〈〈HP�
κ ∩N0, R

P�
= ∩N0

3, R
P�
∈ ∩N0

3 : � ∈ � ∩N0〉〉
〉
,

and
• Ψ(M ) ≺

〈
P� : � ≤ �

〉
, and the structure

〈
Ψ(M ),∈ ∩Ψ(M )2,P� ∩ Ψ(M ),≤P�

∩Ψ(M )2,H
P�
κ ∩ Ψ(M ), R

P�
= ∩ Ψ(M )3,

R
P�
∈ ∩ Ψ(M )3, 〈〈HP�

κ ∩ Ψ(M ), R
P�
= ∩ Ψ(M )3, R

P�
∈ ∩ Ψ(M )3 : � ∈ � ∩ Ψ(M )〉〉

〉

is an elementary substructure of the structure
〈
N1,∈ ∩N1

2,P� ∩N1,≤P�
∩N1

2,H
P�
κ ∩N1, R

P�
= ∩N1

3, R
P�
∈ ∩N1

3,

〈〈HP�
κ ∩N1, R

P�
= ∩N1

3, R
P�
∈ ∩N1

3 : � ∈ � ∩N1〉〉
〉
.
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The following is a key point of the proof of properness of our forcing notions.

Proposition 3.11. Suppose that α ∈ �2 ≤ κ, N0, N1 ∈ M0, and N0 and N1 are
isomorphic as the substructures of the expanded relational structure by 〈P� : � ≤ α〉.
Then N0 ∩ α = N1 ∩ α.

Proof. Let us only show the case that α is uncountable. By our assumption, α ∈
N0 ∩N1 and N0 ∩ �1 = N1 ∩ �1. Then there exists a bijection f : �1 → α which is
in both N0 and N1. Then

N0 ∩ α = f[N0 ∩ �1] = f[N1 ∩ �1] = N1 ∩ α. 


§4. Definition of Asperó–Mota iteration to force (c). In this section, we define our
forcing notion Pκ that forces the assertion (c). Pκ is defined by an Asperó–Mota
iteration of forcing notions playing the same role as Q(X, r) in Section 2.2.

We notice that, for eachM ∈ M0 and α ∈ κ + 1, any initial segment of α ∩M is
of the form � ∩M for some � ∈ α + 1 (which is not necessary unique). For each
α ∈ κ + 1, we will define the forcing notion Pα to be a subset of the set

Uα := [M0]<ℵ0

×

⎧⎨
⎩

⋃
〈M,�〉∈Z

{M} × (� ∩M ) : Z ∈ [M0 × (α + 1)]<ℵ0

⎫⎬
⎭

×

⎛
⎝ ⋃

D∈[α]<ℵ0

(
[�1 × �1 × �1]<�

)D
⎞
⎠ .

Since M0 is a subset of Hκ, for each α ∈ κ + 1, the forcing notion Pα is a subset
ofHκ.

To define Pα , we introduce the following notation. For each α ∈ κ + 1 and
p = (Np,Rp,Ap) ∈ Uα ,

• dom(Rp) :=
{
M : there is � ∈ α so that 〈M, �〉 ∈ Rp

}
,

• ran(Rp) :=
{
� : there isM ∈ M0 so that 〈M, �〉 ∈ Rp

}
,

• for each I ⊆ α,

Rp
–1[I ] :=

{
M : there is � ∈ I so that 〈M, �〉 ∈ Rp

}
,

• for eachM ∈ dom(Rp),

Rp(M ) :=
{
� ∈ ran(Rp) : 〈M, �〉 ∈ Rp

}
,

• for each � ∈ α, define p � � = (Np�� ,Rp�� , Ap�� ) to be the member of U�
such that

– Np�� := Np,
– Rp�� := Rp ∩ (M0 × �), and
– Ap�� := Ap � � , the restriction of the function Ap to the set � .

For p ∈ Uα andM ∈ Np, members of the set Rp(M ) are called markers of M.
We define a forcing notion Pα satisfying the ℵ2-cc (under CH), by recursion on

α ∈ κ + 1. When we have defined the sequence 〈P� : � ≤ α〉 of forcing notions, we
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will define the subset MP
α of M0 by

MP
α := {M ∈ M0 :M ≺ 〈P� : � ≤ α〉}.

As in Proposition 3.9(2), if α ∈ κ and M ∈ MP
α , then α ∈M . As seen below, for

each α ∈ κ, Pα will be defined from the set
{
�1, �R, �X,Hκ,Φ, 〈〈MP

� : � ∈ α〉〉
}
.

Pκ can be considered as the direct limit of 〈Pα : α ∈ κ〉.

Definition 4.1. The forcing notion Pα is defined by recursion on α ∈ κ + 1.
However, eachPα is defined uniformly.Pα consists of the membersp = (Np,Rp,Ap)
of Uα satisfying the following conditions:

(ob) • Np is finite and forms a symmetric system, and
• dom(Rp) ⊆ Np, and, for eachM ∈ dom(Rp), Rp(M ) is an initial segment

of the set α ∩M .
(el) For each � ∈ α, Rp–1[{�}] ⊆ MP� .

(ho) For each � ∈ α and eachM0,M1 ∈ Rp–1[{�}], if �1 ∩M0 = �1 ∩M1, then

the structure
〈
M0,∈, �R, �X,Φ �M0, 〈〈P� : � ∈ (� + 1) ∩M0〉〉

〉
is isomorphic to

the structure
〈
M1,∈, �R, �X,Φ �M1, 〈〈P� : � ∈ (� + 1) ∩M1〉〉

〉
.

(up) For each � ∈ α and each M,N0 ∈ Rp–1[{�}], if �1 ∩M < �1 ∩N0, then
there exists N1 ∈ Rp–1[{�}] such thatM ∈ N1 and �1 ∩N1 = �1 ∩N0.

(down) For each � ∈ α and each M,N0, N1 ∈ Rp–1[{�}], if M ∈ N0 and �1 ∩
N0 = �1 ∩N1, then

(
ΨN1

–1 ◦ ΨN0

)
(M ) ∈ Rp–1[{�}].

(g) If � ∈ dom(Ap) and p � � belongs to P� , then Φ(�) =
{
ṙ�

}
such that ṙ� is a

P�-name for a function from � into 2. Moreover,
(g-ob) Ap(�) is a finite set of triples of the form 	 = 〈ε	, �	, �	〉 such that
ε	 ∈ �	 ∈ �	 ∈ �1,

(g-ob-2) the set
{
�	 : 	 ∈ Ap

}
includes the set

{
�1 ∩N : N ∈ Rp–1[{�}]

}
,

(g-cl) for each {	, �} ∈
[
Ap(�)

]2, either �	 < �� or �� < �	 ,
(g-w) for any 	 ∈ Ap(�), if �	 is a limit ordinal, then

p � � �P�
“
{
n ∈ � : f�	 (n) ⊆ ṙ�

}
is infinite, and, for any � ∈ Ap(�) \ {	}

with ε	 < �� < �	, f�	 (
∣∣C�	 ∩ ��

∣∣) ⊆ ṙ� and
f�	 (

∣∣C�	 ∩ (�� + 1)
∣∣) ⊆ ṙ�”,

(g-m) for each 	 ∈ Ap(�) and each N ∈ Rp–1[{�}] (that is, {N} ×(
(� + 1) ∩N

)
⊆ Rp) with�1 ∩N = �	 , there existsM ∈ Np ∩MP� such

that
• N ∈M ,
• �1 ∩M = �	 , and
• {M} × (� ∩M ) ⊆ Rp (then, by (g-ob-2) and (g-cl),M �∈ Rp–1[{�}]).
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By definition, we can check that, for each p ∈ Pα and � ∈ α, p � � is a condition
of P� . The order of Pα is defined as follows: For each p, q ∈ Pα , q ≤Pα p iff

• Nq ⊇ Np,
• Rq ⊇ Rp,
• dom(Aq) ⊇ dom(Ap),
• for each � ∈ dom(Ap), Aq(�) ⊇ Ap(�).

By definition, we can check that, for each p, q ∈ Pα with q ≤Pα p, and each � ∈ α,
q � � ≤P�

p � � . By definition, Pκ is equivalent to the direct limit of 〈Pα : α ∈ κ〉.

Lemma 4.2. Suppose that α, � ∈ κ + 1 with � < α. Then P� can be completely
embeddable into Pα .

Proof. By definition, any condition of P� is also a condition of Pα . Suppose that
q ∈ P� , p ∈ Pα , and q ≤P�

p � � . Then define

r :=
〈
Nq ∪ Np,Rq ∪Rp,Aq ∪

(
Ap � [�, α))

〉
.

We can check that r is a condition of P� . So r is an extension of p in Pα . Such an r
is a canonical common extension of q and p in Pα . Hence the identity map from P�
into Pα is a complete embedding. 


Definition 4.3. For each � ∈ κ, define the P�+1-name Ė� by

�P�+1 “Ė� :=
{
�	 : q ∈ ĠP�+1 , 	 ∈ Ap(�)

}
”.

Observation 4.4. It is proved in the next section that for each � ∈ �2, P� is
proper. Then, as in the case of Q(X, r) in Section 2.2, Ė� is a P�+1-name for a club
subset of �1. By the definition, for each � ∈ �2, if Φ(�) = {ṙ�} and ṙ� is a P�-name
for a function from � into 2, then P�+1 forces that Ė� captures ṙ� relative to X.

Observation 4.5. The requirement (g-cl) is necessary in the definition of Pκ to
show Lemma 5.2. To show properness of Pα (for each α ≤ �2) equipped with (g-cl),
we want the requirements (el), (ho), (up), and (down) in Definition 4.1. This is the
reason why we introduced a symmetric system of relational structures.

§5. Forcing (c) by P�2 .

Proposition 5.1. For everyα ∈ κ + 1,Pα has theℵ2-chain condition. In fact, every
subset of Pα of size ℵ2 has a pairwise compatible subset of size ℵ2.

Proof. Suppose that α ∈ κ + 1 and {p� : � ∈ �2} is a set of ℵ2-many conditions
in Pα . Recall that CH holds (Assumption 3.1). By shrinking the set if necessary, we
may assume that

• the set
{
Np� : � ∈ �2

}
forms a Δ-system,

• the set
{
dom(Ap� ) : � ∈ �2

}
forms a Δ-system with root D,

(•) the set
{(⋃

Np�
)
∩ κ : � ∈ �2

}
forms a Δ-system with root K (which is a

countable subset of κ),
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(•) for each � ∈ K , the set
{
M :M ∈ Rp� –1[ [�, κ)

]
∩MP�

}

does not depend on � ∈ �2,
(•) for each � ∈ �2,

(
dom(Ap� ) \D

)
∩K = ∅,

(•) for each �, � ′ ∈ �2, each M ∈ Np� and each M ′ ∈ Np�′ , if M =M ′, then
M ∩ κ andM ′ ∩ κ are order isomorphic and the corresponding isomorphism
fixes κ ∩M ∩M ′ (which is a subset of K)2, and

• for each � ∈ D, the coordinate Ap� (�) ∈ [�1 × �1 × �1]<ℵ0 does not depend
on � ∈ �2.

Then we claim that for each distinct � and � ′, p� and p�′ are compatible in Pα . To
see this, let q ∈ Uα such that

• Nq := Np� ∪ Np�′ ,
• Rq := Rp� ∪Rp�′ , and
• Aq is the function with domain dom(Ap� ) ∪ dom(Ap�′ ) such that, for each
� ∈ dom(Ap� ) ∪ dom(Ap�′ ),

Aq(�) := Ap� (�) ∪ Ap�′ (�)

(which is equal to Ap� (�) or Ap�′ (�)).

Such a q is a canonical amalgamation of p� and p�′ . Then by the above items (•),
Nq andRq satisfy Definition 4.1(ob), (el), (ho), (up), and (down). Recall that for each
M ∈ M0 and each α ∈ κ, if α �∈M , thenM �∈ MP

α . So for any {�, � ′} ∈ [�2]2 and
any α ∈ dom(Ap� ) \D, dom(Rp�′ ) ∩MP

α = ∅, and hence Rq
–1[{α}] = Rp�

–1[{α}].
Therefore q satisfies (g). Thus q is a condition of Pα , and is a common extension of
p� and p�′ . 


Lemma 5.2. Each α in �2 + 1 satisfies the following assertions.
(p)α : For any p ∈ Pα and any N ∈ Np ∩MPα such that {N} × (α ∩N ) ⊆ Rp, p is

(N,Pα)-generic.
(C)α : For any p ∈ Pα and any N ∈ Np ∩MPα such that {N} × (α ∩N ) ⊆ Rp,

p �Pα “f�1∩N is Cohen over N [ĠPα ]”.

This is proved by induction on α ∈ �2 + 1. A point is that, if α ∈ �2 + 1, p ∈ P,
and N ∈ Np, then Rp(N ) ⊆ �2. In the following proof, we will use Propositions
3.10 and 3.11 frequently.

Proof of (p)0. This proof is a standard proof in the context of the side condition
method (see, e.g., [12, Lemma 4]), and similar to the proof in [10]. Suppose that
p ∈ P0 (then Rp = Ap = ∅), N ∈ Np ∩MP

0 , D ∈ N is a predense subset of P0, and
q ≤P0 p. We notice that q is of the form (Nq, ∅, ∅). It suffices to find u′ ∈ D ∩N
which is compatible with q in P0.

2In [3], Asperó and Mota point out that the corresponding isomorphism between M and M ′

fixes κ ∩M ∩M ′ iff for every two consecutive ordinals �0 and �1, the order types of the sets
{� ∈ κ ∩M : �0 < � < �1} and {� ∈ κ ∩M ′ : �0 < � < �1} are the same (these order types are
countable ordinals).
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By extending q if necessary, we may assume that there exists u ∈ D such that
q ≤P0 u. Define

E :=
{
r ∈ P0 : there are u′ ∈ D andM ∈ Nr such that r ≤P0 u

′ and

Nr ∩M = Nq ∩N
}
.

Since the set Nq ∩N belongs to N, E is a definable class in the expanded relational
structure by P0 with parameters in N. Moreover, we note that q ∈ E . So by
elementarity of N, there exist r ∈ E ∩N and u′ ∈ D ∩N such that r ≤P0 u

′. Define
q′ ∈ U0 such that

Nq′ := Nq ∪ Nr

∪
{ (

ΨM ′–1 ◦ ΨN
)

(M ) :M ′ ∈ Nq with �1 ∩M ′ = �1 ∩N,M ∈ Nr
}
.

Nq′ forms a symmetric system. q′ is the canonical amalgamation of q and r.
Therefore, q′ is a condition of P0 and a common extension of q and r in P0. 


Proof of (C)0. Suppose that p ∈ P0,N ∈ Np ∩MP
0 , and

{
Ḟn : n ∈ �

}
is a set of

P0-names for nowhere dense subsets of (2<�)� such that the sequence
〈
Ḟn : n ∈ �

〉
belongs to N . Let us show that

p �P0 “f�1∩N �∈
⋃
n∈�
Ḟn”.

Suppose not, and let q be an extension of p in P0 such that, for some n ∈ �,

q �P0 “f�1∩N ∈ Ḟn”.

For each � ∈ (2<�)<� , each x ∈
[
MP

0

]<ℵ0 , and each r ∈ P0, define ϕ0(�, x, r) to be
the assertion that there exists K ∈ Nr such that

• {�1 ∩M :M ∈ Nr ∩K} =
{
�1 ∩M :M ∈ Nq ∩N

}
,

• Nq ∩N ⊆ Nr ∩K ,
• x ∈ K , and
• r �P0“ Ḟn ∩ [�] �= ∅ ”,

and define

Y :=
{
g ∈ (2<�)� : for any k ∈ � and any x ∈

[
MP

0

]<ℵ0 , there is r ∈ P0

which satisfies ϕ0(g � k, x, r)
}
.

Since
{
Ḟn,Np ∩N

}
∈ N ∈ MP

0 , we have Y ∈ N .
We claim that Y is nowhere dense. To show this, let � ∈ (2<�)<� . Take � ′ ∈

(2<�)<� and s ≤P0 q such that � ⊆ � ′, and

s �P0 “Ḟn ∩ [� ′] = ∅”.

Let us show that Y ∩ [� ′] = ∅. If not, there exists g ∈ Y ∩ [� ′]. Let k ∈ � be such
that � ′ ⊆ g � k. Then there exists r ∈ P0 which satisfies ϕ0(g � k,Ns , r). Let us fix
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K ∈ Nr witness to ϕ0(g � k,Ns , r). Define r′ ∈ U0 such that

Nr′ := Ns ∪ Nr

∪
{ (

ΨM ′–1 ◦ ΨK
)

(M ) :M ′ ∈ Nr with �1 ∩M ′ = �1 ∩K,M ∈ Ns
}
.

Then r′ is a common extension of s and r in P0, and hence

r′ �P0 “Ḟn ∩ [� ′] = ∅ and Ḟn ∩ [g � k] �= ∅”,

which is a contradiction.
We claim that f�1∩N belongs to Y . This contradicts the fact that f�1∩N is Cohen

over N. To show that f�1∩N ∈ Y , assume that f�1∩N �∈ Y . Then there are k ∈ �
and x ∈

[
MP

0

]<ℵ0 such that there are no r ∈ P0 which satisfies ϕ0(f�1∩N � k, x, r).
Sincef�1∩N � k ∈ N and N is an elementary substructure of the expanded relational

structure by P0, there exists x′ ∈
[
MP

0

]<ℵ0 ∩N such that there are no r ∈ P0 which
satisfies ϕ0(f�1∩N � k, x′, r). However, q satisfies ϕ0(f�1∩N � k, x′, q), which is a
contradiction. 


Proof of (p)α+1. Suppose that α ∈ �2, p ∈ Pα+1, N ∈ Np ∩MP
α+1 which

satisfies that {N} × ((α + 1) ∩N ) ⊆ Rp, D ∈ N is a predense subset of Pα+1, and
q ≤Pα+1 p. By extending q if necessary, we may assume that q is an extension of some
member of D. Since N ∈ MP

α+1, by Proposition 3.9(3) and the fact that α + 1 ∈ N
(hence α ∈ N ), N ∈ MP

α . So by the induction hypothesis (p)α , q � α is (N,Pα)-
generic. It suffices to find u ∈ Pα+1 ∩N which is compatible with q in Pα+1 such
that u is an extension of some member of D ∩N . When α �∈ dom(Aq), the argument
is similar to the proof of (p)0. So we suppose that α ∈ dom(Aq).

Define E to be the set of the conditions u of Pα+1 such that

• u is an extension of some member of D in Pα+1,
• Nu ∩M = Nq ∩N and Au(α) ∩M = Aq(α) ∩N for some M ∈ Ru–1[{α}],

and
• for any 	 ∈ Aq(α) \N with �	 > �1 ∩N and C�	 ∩N �= ∅,

max
(
C�	 ∩N

)
< min

{
�� : � ∈ Au(α) \

(
Aq(α) ∩N

)}
.

Then q ∈ E , and E is a definable class in the expanded relational structure by Pα+1

with parameters D, Nq ∩N ,Aq(α) ∩N , {C�	 ∩N : 	 ∈ Aq(α) \N, �	 > �1 ∩N},
all of which are in N. Since q � α is (N,Pα)-generic, for any � ∈ �1 ∩N ,

� q � α �Pα“there exists u ∈ E ∩N such that u � α ∈ ĠPα and
� < min

{
�� : � ∈ Au(α) \

(
Aq(α) ∩N )

}
”.

Define Ż to be a Pα-name such that

�Pα “Ż is the set of the functions g from � into 2<� such that there exists
u ∈ E ∩N such that u � α ∈ ĠPα and, for any � ∈ Au(α) \

(
Aq(α) ∩N ) ,

g(
∣∣C�1∩N ∩ ��

∣∣) ⊆ ṙα and g(
∣∣C�1∩N ∩ (�� + 1)

∣∣) ⊆ ṙα”.

By (g-ob-2), (g-cl), andN ∈ Rq–1[{α}], there exists the unique 	0 ∈ Aq(α) such that
�	0 = �1 ∩N . By (g-m), we can takeM ∈ Nq ∩MP

α such that N ∈M , �1 ∩M =
�	0 , and {M} × (α ∩M ) ⊆ Rq . By � above, q � α �Pα“Ż is dense open in (2<�)�”.
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Ż is defined from the set
{
N,Aq(α) ∩N,C�1∩N , ṙα

}
(which is in M), E and ĠPα ,

and is forced to be an open subset of (2<�)� . Since M is an elementary substructure
of the expanded relational structure by Pα , by Proposition 5.1, Ż can be considered
as an element of M. By the induction hypothesis (C)α , q � α �Pα“ f�1∩M is Cohen
overM [ĠPα ] ”. It follows that q � α �Pα“ f�1∩M ∈ Ż ”. Take r ∈ Pα and u ∈ E ∩N
such that r ≤Pα q � α and

r �Pα “u is a witness that f�1∩M ∈ Ż”.

Let r′ be a common extension of r and u � α. Define q′ ∈ Uα+1 such that

• Nq′ := Nr′ ,
• Rq′ := Rr′

∪
{ 〈(

ΨM ′–1 ◦ ΨN
)

(K), α
〉

:M ′ ∈ Rq–1[{α}] with �1 ∩M ′ = �1 ∩N,
K ∈ Ru–1[{α}] \Rq–1[{α}]

}
,

• Aq′ � α := Ar′ , and
• Aq′(α) = Au(α) ∪ Aq(α).

We claim that q′ is a condition of Pα+1. Since q′ � α = r′, q′ � α is a condition
of Pα . Since q ∈ Pα+1, u ∈ Pα+1 ∩N , N ∈ MP

α+1, and α ∈ �2, by Propositions
3.10 and 3.11, Rq′

–1[{α}] satisfies (el), (ho), (up), and (down). Since q and u are
conditions of Pα+1, Aq′(α) satisfies (g-ob), (g-ob-2), and (g-cl). It follows from the
choice of r and u that Aq′(α) satisfies (g-w). Moreover, by α ∈ �2 and Proposition
3.10, Aq′(α) satisfies (g-m). Therefore q′ is a condition of Pα+1. So q′ is a common
extension of q and u in Pα+1. By elementarity of N and the fact that u ∈ E ∩N , u is
an extension of some member of D ∩N in Pα+1. 


The following proposition will be used in the rest of the proof.

Proposition 5.3. Suppose that α ∈ �2, (p)α+1 holds, p ∈ Pα+1, N ∈ Np ∩MP
α+1

such that {N} × ((α + 1) ∩N ) ⊆ Rp, and D is a definable class in the expanded
relational structure by Pα+1 with parameters in N such that p ∈ D. Then there exists
q ∈ D ∩N which is compatible with p in Pα+1.

Proof of Proposition 5.3. Define D′ to be the set of the conditions u of Pα+1

such that either u ∈ D or u is incompatible with any element of D in Pα+1. Then
D′ is a predense subset of Pα+1. Since N is an elementary substructure of the
expanded relational structure by Pα+1, by Proposition 5.1, there exists a maximal
antichain A in N that is a subset of D′. By (p)α+1, p is (N,Pα+1)-generic. So there
exists q ∈ A ∩N such that q is compatible with p in Pα+1. Since p ∈ D, q has
to be in D. 


The following proof has similarities with the proof of Lemma 2.10 (although it is
not identical to it).

Proof of (C)α+1. Suppose that p ∈ Pα+1, N ∈ Np ∩MP
α+1 which satisfies that

{N} × ((α + 1) ∩N ) ⊆ Rp, and
{
Ḟn : n ∈ �

}
is a set of Pα+1-names for nowhere

dense subsets of (2<�)� such that
{
Ḟn : n ∈ �

}
∈ N . Let us show that p �Pα+1

“ f�1∩N �∈
⋃
n∈� Ḟn ”.

https://doi.org/10.1017/jsl.2022.37 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.37
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Suppose not, and let q ≤Pα+1 p and n ∈ � be such that

q �Pα+1 “f�1∩N ∈ Ḟn”.
Let 	N ∈ Aq(α) be such that �	N = �1 ∩N .

Only in this paragraph, for each set x (in the ground model), we denote by x̌
the canonical Pα-name which represents the set x in the forcing extension. For each
� ∈ (2<�)<� and each A ∈ [�1 × �1 × �1]<ℵ0 , define Σ̇′(�, A) to be the Pα-name

which consists of all the pairs
〈
u, B̌

〉
such that

• u ∈ Pα and B ∈ [�1 × �1 × �1]<ℵ0 ,
• there exists u′ ∈ Pα+1 such that

– u ≤Pα u
′ � α,

– Rq–1[{α}] ∩N ⊆ Ru′–1[{α}],
– Au′(α) = A ∪ B ,
– for any 	 ∈ A and any � ∈ B , �	 < �� , and
– u′ �Pα+1“ Ḟn ∩ [�] = ∅ ” (here we omit the check-notation for Pα+1).

For each � ∈ (2<�)<� and each A ∈ [�1 × �1 × �1]<ℵ0 , Σ̇′(�, A) is a definable class
in the expanded relational structure by Pα+1 with parameters in H (κ). Moreover,
if A ∈ N , then Σ̇′(�, A) is a definable class in the expanded relational structure by
Pα+1 with parameters in N. By Proposition 5.1, there exists Σ ∈ H (κ) such that

• Σ ⊆ (2<�)<� × [�1 × �1 × �1]<ℵ0 × Pα × [�1 × �1 × �1]<ℵ0 ,
• for each � ∈ (2<�)<� and each A,B ∈ [�1 × �1 × �1]<ℵ0 , the set
A(�, A, B) := {u ∈ Pα : 〈�, A, u, B〉 ∈ Σ} is a maximal antichain (of size ℵ1),

and, for each u ∈ A(�, A, B), either
〈
u, B̌

〉
∈ Σ̇′(�, A), or no extension v of u in

Pα satisfies
〈
v, B̌

〉
∈ Σ̇′(�, A).

Since N is an elementary substructure of the expanded relational structure by Pα+1,
we may assume that Σ ∈ N . For each � ∈ (2<�)<� and eachA ∈ [�1 × �1 × �1]<ℵ0 ,
define Σ̇(�, A) to be the Pα-name such that

Σ̇(�, A) :=
⋃

B∈[�1×�1×�1]<ℵ0

{〈
u, B̌

〉
: u ∈ A(�, A, B) and

〈
u, B̌

〉
∈ Σ̇′(�, A)

}
.

Then, the sequence
〈
Σ̇(�, A) : � ∈ (2<�)<� ,A ∈ [�1 × �1 × �1]<ℵ0

〉
belongs to

N, and, for each � ∈ (2<�)<� and each A ∈ [�1 × �1 × �1]<ℵ0 , �Pα“Σ̇(�, A) =
Σ̇′(�, A) ”. From now on, we omit the check-notation in the forcing language.

Since {N} × ((α + 1) ∩N ) ⊆ Rq , by (p)α+1 and Proposition 5.3, there exists
q′ ∈ Pα+1 ∩N such that

• q′ is compatible with q in Pα+1,
• Rq–1[{α}] ∩N ⊆ Rq′–1[{α}],
• there exists N0 ∈ Rq′–1[{α}] such that

– Aq′(α) ∩N0 = Aq(α) ∩N ,
– the set{ 〈

ε	, C�	 ∩N0, f�	 �
∣∣C�	 ∩N0

∣∣〉 : 	 ∈ Aq′(α) \N0 with ε	 ∈ N0
& �	 �= �1 ∩N0

}
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is equal to the set
{〈
ε	, C�	 ∩N,f�	 �

∣∣C�	 ∩N
∣∣〉 : 	 ∈ Aq(α) \ (N ∪ {	N}) with ε	 ∈ N

}
,

and
– N0 contains the sets

{
ε	 : 	 ∈ Aq(α) \N

}
∩N , {C�	 ∩N : 	 ∈ Aq(α) \

(N ∪ {	N})} and
〈
Σ̇(�, A) : � ∈ (2<�)<� ,A ∈ [�1 × �1 × �1]<ℵ0

〉
as

members.

Let q+ be a common extension of q′ and q in Pα+1. We notice that N0 contains
the set

{
C�1∩N ∩N0, f�	N �

(∣∣C�1∩N ∩N0
∣∣ + 1

) }
and

q+ � α �Pα “f�	N (
∣∣C�1∩N ∩N0

∣∣) ⊆ ṙα”.

In a similar way as in the definition of Σ̇′(�, A) before, we have a Pα-name Ż
for a subset of (2<�)� such that Ż is a definable class in the expanded relational
structure by Pα+1 with parameters in N and, for any u ∈ Pα and any � ∈ (2<�)<� ,
if u �Pα“[�] ⊆ Ż ”, then there exists u′ ∈ Pα+1 such that

• u ≤Pα u
′ � α,

• u′ ≤Pα+1 q
′,

• for each � ∈ Au′(α) ∩N0, if ε	N < �� , then �� + 1 < �1 ∩N0 and

u′ � α �Pα “f�	N (
∣∣C�1∩N ∩ ��

∣∣) ⊆ ṙα and f�	N (
∣∣C�1∩N ∩ (�� + 1)

∣∣) ⊆ ṙα”,

• Au′(α) has 	 such that �	 = �1 ∩N0, and
• u′ �Pα+1“ Ḟn ∩ [�] = ∅ ”.

Now Ḟn is a Pα+1-name for a nowhere dense subset of (2<�)� , 	N ∈ Aq+(α),
Aq+(α) has 	 such that �	 = �1 ∩N0, and q+ ≤Pα+1 q

′, so

q+ � α �Pα “Ż is a dense open subset of (2<�)
� ”.

Since Ż is a definable class in the expanded relational structure by Pα+1 with
parameters in N, by Proposition 5.1, Ż can be considered as an element of N.
So by (C)α ,

q+ � α �Pα “f�1∩N ∈ Ż”.

Thus, there are r ≤Pα q
+ � α and k ∈ � such that

r �Pα “[f�1∩N � k] ⊆ Ż”.

Let u0 ∈ Pα+1 be a witness to r �Pα“[f�1∩N � k] ⊆ Ż ”. Then

r �Pα “Au0 \N0 ∈ Σ̇(f�1∩N � k,Au0 (α) ∩N0)”.

Let �0 ∈ �1 ∩N0 be such that

• for any � ∈ Au0(α) ∩N0, �� < �0,
• for any 	 ∈ Aq(α) \N ,

– if ε	 ∈ N , then ε	 < �0, and
– C�	 ∩N0 ⊆ �0.
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Since {N0} × (α ∩N0) ⊆ Rq+ ⊆ Rr , by (p)α , r is (N0,Pα)-generic. Since the
set

{
f�1∩N � k,Au0 (α) ∩N0

}
is in N0, Σ̇(f�1∩N � k,Au0 (α) ∩N0) is also in N0.

Moreover,Au0(α) \N0 has 	 such that �	 = �1 ∩N0, which is larger than �0. Hence,
by Proposition 5.3, there are r′ ≤Pα r and B ∈ [�1 × �1 × �1]<ℵ0 ∩N0 such that

• for every � ∈ B , �0 < �� , and
• r′ �Pα“B ∈ Σ̇(f�1∩N � k,Au0(α) ∩N0) ”.

Since {N} × (α ∩N ) ⊆ Rq+ ⊆ Rr′ , by (p)α , r′ is (N,Pα)-generic. Since N is an
elementary substructure of the expanded relational structure by Pα+1, there exists
u1 ∈ Pα+1 ∩N which witnesses r′ �Pα“B ∈ Σ̇(f�1∩N � k,Au0(α) ∩N0) ”. Then r′ is
a common extension of u1 and q � α in Pα . Define s ∈ Uα+1 such that

• Ns := Nr′ ,
• Rs := Ru1 ∪Rq
∪
{ 〈(

ΨM ′–1 ◦ ΨN
)

(K), α
〉
:M ′ ∈ Rq–1[{α}] with �1 ∩M ′ = �1 ∩N,
K ∈ Ru1

–1[{α}]
}
,

• As � α := Ar′ , and
• As (α) := Au1 (α) ∪ Aq(α).

Now s � α = r′ ∈ Pα . Since u1 ∈ N and

Rq
–1[{α}] ∩N ⊆ Ru1

–1[{α}] ∈ N ∈ Rq–1[{α}],

Rs
–1[{α}] satisfies (el), (ho), (up), and (down).As (α) satisfies (g-ob), (g-ob-2), (g-cl),

and (g-m). We will check that As(α) satisfies (g-w). Since u1 ≤Pα+1 q
′,

Aq(α) ∩N = Aq′(α) ∩N0 ⊆ Au1(α) ∩N0.

By the choice of u1,

Au1(α) =
(
Au0(α) ∩N0

)
∪ B ⊆ N0 ⊆ N.

Let � ∈ Au1(α) and 	 ∈ Aq(α) \ (N ∪ {	N}). Then there exists 	′ ∈ Aq′(α) \N0

such that

〈ε	, C�	 ∩N0, f�	 � |C�	 ∩N0|〉 =
〈
ε	′ , C�	′ ∩N,f�	′ �

∣∣∣C�	′ ∩N
∣∣∣
〉
.

So if ε	 < �� , then, since u1 ≤Pα+1 q
′,

u1 � α �Pα “f�	 (|C�	 ∩ �� |) = f�	′ (
∣∣∣C�	′ ∩ ��

∣∣∣) ⊆ ṙα and

f�	 (|C�	 ∩ (�� + 1)|) = f�	′ (
∣∣∣C�	′ ∩ (�� + 1)

∣∣∣) ⊆ ṙα”.

Let �′ ∈ Au1(α) ∩N0. By the choice of u1, if ε	N < �� , then

u1 � α �Pα “f�	N (
∣∣C�1∩N ∩ ��

∣∣) ⊆ ṙα and f�	N (
∣∣C�1∩N ∩ (�� + 1)

∣∣) ⊆ ṙα”.

Let �′′ ∈ Au1(α) \N0. Then �0 < ��′′ , and hence C�1∩N ∩ ��′′ = C�1∩N ∩
(��′′ + 1) = C�1∩N ∩N0. Since r′ ≤Pα q

+ � α,

r′ �Pα “f�	N (
∣∣C�1∩N ∩ ��′′

∣∣) = f�	N (
∣∣C�1∩N ∩ (��′′ + 1)

∣∣)
= f�	N (

∣∣C�1∩N ∩N0
∣∣) ⊆ ṙα”.
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Thus As(α) satisfies (g-w). Therefore s is a condition of Pα+1. It follows that s is a
common extension of u1 and q. However, then

s �Pα+1 “Ḟn ∩ [f�1∩N � k] = ∅ and f�1∩N ∈ Ḟn”,

which is a contradiction, and finishes the proof of (C)α+1. 


We will use Proposition 5.5 in the proof of (p)α and (C)α for a limit ordinal α.

Proposition 5.4. Suppose that α ∈ �2 + 1, (p)� and (C)� hold for every � < α,
p ∈ Pα , � ∈ dom(Ap),M ∈ Rp–1[{�}] ∩MP

�+1, and N ∈ MP
� ∩M contains the set

{Np ∩M, 〈Ap(�) ∩M : � ∈ dom(Ap) ∩ (� + 1) ∩M 〉} and is such that, for every
� ∈ dom(Ap) ∩ (� + 1) ∩N and every 	 ∈ Ap(�) with ε	 < �1 ∩N < �	 ,

p � � �P�
“f�	 (|C�	 ∩ �1 ∩N |) ⊆ ṙ�”.

Then there is some q ≤P�+1 p � (� + 1) such that 〈N, �〉 ∈ Rq and Aq = Ap ∪ {	} for
some 	 with �	 = �1 ∩N .

Proof of Proposition 5.4. We will prove this by induction on �. Let �0 :=
max

(
dom(Ap) ∩ � ∩M

)
. Note that �0 ∈ N , and hence N ∈ MP

�0
∩M . By the

induction hypothesis, there exists p0 ≤P�0+1 p � (�0 + 1) such thatN ∈ Rp0
–1[{�0}].

Let p′0 =
〈
Np0 , Rp0 ∪Rp,Ap0 ∪

(
Ap � [�0 + 1, �))

〉
, which is a canonical common

extension of p0 and p in P� . Since p′0 is (M,P�+1)-generic, by Proposition 5.3, we
can take an extension p1 ≤P�+1 p

′
0 and N1 ∈ Rp1

–1[{�}] ∩M which contains N as
a member. Then, by (g-ob-2) and (g-w), for every � ∈ dom(Ap1) ∩N and every
	 ∈ Ap1(�) with ε	 < �1 ∩N1 < �	 ,

p1 � � �P�
“f�	 (|C�	 ∩ �1 ∩N1|) ⊆ ṙ�”.

Recall that, for each limit ordinal �, C� ∩ �1 ∩N1 = C� ∩ (�1 ∩N1 + 1). Take ε ∈
�1 ∩N such that

max {�	 : 	 ∈ Ap(�) ∩M} < ε.

Define q ∈ U�+1 such that Nq := Np1 ,

Rq := Rp1�� ∪
{ 〈(

ΨK
–1 ◦ ΨM

)
(N ), �

〉
: K ∈ Rp–1[{�}]

with �1 ∩K = �1 ∩M
}
,

Aq � � := Ap1 � �, and

Aq(�) := Ap(�) ∪ {〈ε, �1 ∩N,�1 ∩N1〉} .

By Propositions 3.10 and 3.11,Rq satisfies (el), (ho), (up), and (down) in Definition
4.1. By (C)� and the fact that {N1} × (� ∩N1) ⊆ Rp1�� ⊆ Rq ,

q � � �P�
“f�1∩N1 is Cohen over N1[ĠP�

] and ṙ� ∈ N1, hence{
n ∈ � : f�1∩N1(n) ⊆ ṙ�

}
is infinite”.

Moreover, by the roles of ε andN1,Aq(�) satisfies (g-ob), (g-ob-2) (g-cl), and (g-w).
By the role of the set N1, Aq(�) satisfies (g-m) for Rq . Therefore, q is a condition of
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P�+1. This q is what we want. (We notice that q � � is an extension of p1 � � in P� ;
however, q may not be an extension of p1 in P�+1.) 


Proposition 5.5. Suppose that α ∈ �2 + 1, (p)� and (C)� hold for every � < α,
q, r ∈ Pα , and � < α is such that

• q � � and r � � are compatible in P� ,
• � �∈ dom(Aq) and � ∈ dom(Ar),
• there exists N ∈ Rq–1[{�}] such that r ∈ N and, for anyM ∈ Rq–1[{�}], �1 ∩
M ≥ �1 ∩N andM ∈ MP�+1.

Then there exists a common extension q′ ∈ P�+1 of q � (� + 1) and r � (� + 1) in
P�+1 such that

{
�	 : 	 ∈ Aq′(�) \ Ar(�)

}
=

{
�1 ∩M :M ∈ Rq–1[{�}]

}
.

Proof of Proposition 5.5. Let p–1 ∈ P�+1 be such that

• p–1 � � is a common extension of q � � and r � � in P� ,
• p–1 is an extension of r in P�+1,
• Rp–1

–1[{�}] = Rr–1[{�}], and
• Ap–1 (�) = Ar(�).

Take a maximal ∈-chain {Mi : i ≤ n} of Rq
–1[{�}] such thatM0 = N . For each

i ≤ n, since {Mi} × (� ∩Mi) ⊆ Rp–1 , for every � ∈ dom(Ap–1) ∩ � ∩Mi and every
	 ∈ Ap–1(�) with ε	 < �1 ∩Mi < �	 ,

p � � �P�
“f�	 (|C�	 ∩ �1 ∩Mi |) ⊆ ṙ�”.

By using Proposition 5.4 (n + 1) times repeatedly, for each i ≤ n, we can construct
an extension pi ∈ P�+1 such that

• pi � � is an extension of pi–1,
• 〈Mi, �〉 ∈ Rpi , and
• Api (�) = Api–1 (�) ∪ {	i} for some 	i such that �	i = �1 ∩Mi .
Then pn is what we want. 


Proof of (p)α for a limit ordinalα. Suppose thatα ∈ �2 + 1 is a limit ordinal,
p ∈ Pα , N ∈ Np ∩MP

α satisfies that {N} × (α ∩N ) ⊆ Rp, D ∈ N is a predense
subset of Pα , and q ≤Pα p is an extension of some member of D. By extending q
if necessary, we may assume that there exists u ∈ D such that q ≤Pα u. It suffices
to find u′ ∈ D ∩N which is compatible with q in Pα . We have the case when α
has uncountable cofinality and the case when it has countable cofinality. In the
latter case, α ∩N is cofinal in α and hence we can take � ∈ α ∩N such that
max(dom(Aq)) < � . But we may not be able to take such a � in the former case,
that is, it may happen that dom(Aq) is not bounded by sup(α ∩N ). So we need
more argument for the former case than for the latter case.

Suppose that α is of uncountable cofinality and dom(Aq) �⊆ sup(α ∩N ). (If
dom(Aq) ⊆ sup(α ∩N ), then the proof will be simpler, same to the proof of the
case that α is of countable cofinality.) Since Nq forms a symmetric system, for each
M ′ ∈ Nq with�1 ∩M ′ < �1 ∩N , there existsM ∈ Nq such that�1 ∩M = �1 ∩N
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andM ′ ∈M , and then, by the requirement (id) in Definition 3.4,

sup(M ′ ∩N ∩ α) = sup(
(

ΨN∩Hκ
–1 ◦ ΨM

)
(M ′) ∩M ∩ α)

≤ sup(
(

ΨN∩Hκ
–1 ◦ ΨM

)
(M ′) ∩ α).

Since N thinks that the set
(

ΨN∩Hκ
–1 ◦ ΨM

)
(M ′) is countable and α is of

uncountable cofinality,

sup(
(

ΨN∩Hκ
–1 ◦ ΨM

)
(M ′) ∩ α) ∈ N ∩ α.

So there are large enough � ∈ α ∩N and � ∈ �1 ∩N , which means that

• max(dom(Aq) ∩ sup(α ∩N )) < � ,
• max(

{
sup(Rq(M )) :M ∈ dom(Rq)

}
∩N ) < � ,

• for everyM ′ ∈ Nq with �1 ∩M ′ < �1 ∩N ,

sup(M ′ ∩N ∩ α) < �,

•
{
�1 ∩M :M ∈ Nq ∩N

}
⊆ �,

• for any � ∈ dom(Aq) ∩N and any 	 ∈ Aq(�) ∩N , �	 < �.

By the second and the third requirements on � , we observe that

〈1〉 for every � ∈ [�, α) ∩N and every K ∈ Nq with �1 ∩K < �1 ∩N , K �∈ MP
�

(because if K was in MP
� , � would be in K).

Define

E :=
{
r � � : r ∈ Pα such that

• there exists u ∈ D so that r ≤Pα u, and

• {�1 ∩K : K ∈ Nr} ∩ � = {�1 ∩K : K ∈ Nq} ∩N
}
.

We notice that q � � ∈ E andE is a definable class in the expanded relational structure
by Pα with parameters in N. By Proposition 3.9, since � ∈ N ∈ MP

α , N ∈ MP
� .

Moreover, it follows that

{N} × (� ∩N ) ⊆ Rp�� ⊆ Rq�� .

So, by the induction hypothesis (p)� , q � � is (N,P�)-generic. Hence there exists p1

in the set E ∩N which is compatible with the condition q � � in P� . Let r ∈ Pα ∩N
and u ∈ D ∩N witness that p1 ∈ E .

Let us show that q and r are compatible in Pα , which finishes the proof of this
case. Let p2 ∈ P� be a common extension of q � � and p1 (= r � �). We note that
dom(Ap2) ⊆ � and

〈2〉 dom(Aq) ∩ dom(Ar) ∩ [�, α) = ∅, more precisely,

� < min
(
dom(Ar) \ �) ≤ max

(
dom(Ar))

< sup(α ∩N ) < min
(
dom(Aq) \ �) ,

because dom(Ar) ⊆ N and max(dom(Aq) ∩ sup(α ∩N )) < � . Since r ∈ N ,
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〈3〉 Nr ⊆ N ,
〈4〉 for each � ∈ [�, α) ∩N ,

– if � ∈ dom(Ar), then Ar(�) ⊆ N ,
–

{
K ∈ Rq–1[ [�, α)

]
∩MP� : �1 ∩K < �1 ∩N

}
= ∅ (which follows from

〈1〉), and
– ifM ∈ Rq–1[{�}], then�1 ∩M ≥ �1 ∩N and sup(Rq(M )) ≥ sup(α ∩N )

(by the role of �), and henceM ∈ Rq–1[{� + 1}] ⊆ MP�+1,
and

〈5〉 for each � ∈ [�, α) \N , Nr ∩MP
� = ∅, in fact, no element of Nr contains �

as a member.

Let �0 := min
(

dom(Ar) \ �
)
. Define p′2 ∈ U�0 such that

• Rp′2 := Rp2 ∪Rq��0

∪
{ 〈(

ΨM –1 ◦ ΨN
)

(K), �
〉

: 〈K, �〉 ∈ Rr��0 , M ∈ Rq–1[{�}]

with �1 ∩M = �1 ∩N
}
,

• Np′2 := dom(Rp′2), and
• Ap′2 := Ap2 .

Now dom(Ar) ∩ �0 = dom(Ar) ∩ � and dom(Aq) ∩ �0 = dom(Aq) ∩ � . By
Propositions 3.10 and 3.11 and the fact that α ∈ �2, Rp′2 satisfies (el), (ho),
(up), and (down) in Definition 4.1, and so p′2 is a condition of P�0 . Hence p′2 is a
common extension of r � �0 and q � �0.

By 〈4〉, we can apply Proposition 5.5 to find a common extension q′�0 of p′2, r �
(�0 + 1), and q � (�0 + 1) in P�0+1. Let {�i : i ≤ m} be the increasing enumeration
of the set dom(Ar) \ � . By 〈4〉 again, for each i ≤ m with i �= 0, we can apply
Proposition 5.5 to find a common extension q′�i of q′�i–1

, r � (�i + 1), and q � (�i + 1)
in P�i+1.

Define q′α ∈ Uα such that

• Rq′α := Rq′�m
∪Rq

∪
⋃ {{(

ΨM –1 ◦ ΨN
)

(K)
}
×

(
(� + 1) ∩

(
ΨM –1 ◦ ΨN

)
(K)

)
:

� ≥ �, 〈K, �〉 ∈ Rr, 〈M, �〉 ∈ Rq with �1 ∩M = �1 ∩N
}
,

• Nq′α := dom(Rq′α ), and
• Aq′α := Aq′�m

∪
(
Aq � [�, α)

)
.

By Propositions 3.10 and 3.11 and the fact that α ∈ �2 again, Rq′α satisfies (el),
(ho), (up), and (down) in Definition 4.1. By 〈5〉, for each � ∈ dom(Aq) ∩ [�, α),
Ap′α (�) satisfies (g) for Rq′α . Therefore, q′α is a condition of Pα , and so is a common
extension of r and q in Pα . This finishes the proof of this case.

Suppose that α is of countable cofinality. Take a large enough ordinal � ∈ α ∩N ,
which means that

• max(dom(Aq)) < � , and
• for eachM ∈ dom(Rq), either Rq(M ) ⊆ � or Rq(M ) is cofinal in α,
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and define

E :=
{
r � � : r ∈ Pα such that

• there exists u′ ∈ D so that r ≤Pα u
′,

• dom(Ar) ⊆ �, and

• for eachM ∈ Nr , either Rr(M ) ⊆ � or Rr(M ) is cofinal in α
}
.

We note that q ∈ E and E is a definable class in the expanded relational structure
by Pα with parameters in N. By the induction hypothesis (p)� and the fact that � ∈
N ∈ MP

α , q � � is (N,P�)-generic. So there exists p1 ∈ E ∩N which is compatible
with the condition q � � in P� . Let r ∈ Pα ∩N and u′ ∈ D ∩N witness that p1 ∈ E ,
and let p2 ∈ P� be a common extension of q � � and p1 (= r � �).

Define q′ ∈ Uα such that

• Rq′ := Rp2 ∪Rr ∪Rq
∪

⋃{{(
ΨM –1 ◦ ΨN

)
(K)

}
×

(
α ∩

(
ΨM –1 ◦ ΨN

)
(K)

)
:

� ≥ �, 〈K, �〉 ∈ Rr, 〈M,�〉 ∈ Rq with �1 ∩M = �1 ∩N
}
,

• Nq′ := dom(Rq′), and
• Aq′ := Ap2 .

Then q′ is a condition of Pα , and is a common extension of q, r, and u′ in Pα . 


The following proof is similar to one of Lemma 2.10.

Proof of (C)α for a limit ordinalα. Suppose thatα ∈ �2 + 1 is a limit ordinal,
p ∈ Pα ,N ∈ Np ∩MP

α satisfies that {N} × (α ∩N ) ⊆ Rp, and
{
Ḟn : n ∈ �

}
is a set

of Pα-names for nowhere dense subsets of (2<�)� such that
{
Ḟn : n ∈ �

}
∈ N . Let

us show that p �Pα“f�1∩N �∈
⋃
n∈� Ḟn ”.

Suppose not, and let q ≤Pα p and n ∈ � be such that

q �Pα “f�1∩N ∈ Ḟn”.

As in the proof of (p)α when α is a limit ordinal, we need to separate two cases.
Suppose that α is of uncountable cofinality and dom(Aq) �⊆ sup(α ∩N ). Let

� ∈ α ∩N and � ∈ �1 ∩N be large enough ordinals for the condition q as in the
proof of (p)α . By the induction hypothesis (p)� and the fact that � ∈ N ∈ MP

α ,
q � � is (N,P�)-generic. For each � ∈ (2<�)<� , each � ′ ∈ α \ � , each � ∈ �1 and
each u ∈ Pα , define ϕα(�, � ′, �, u) to be the assertion that

• dom(Au) ∩ � ′ = dom(Ap) ∩ � ,
• {�1 ∩K : K ∈ Nu} ∩ � =

{
�1 ∩K : K ∈ Nq

}
∩N , and

• u �Pα“Ḟn ∩ [�] �= ∅ ”.

Define a P� -name Ẏ such that

�P�
“Ẏ =

{
g ∈ (2<�)� : for any k ∈ �, any � ′ ∈ α \ �, and any � ∈ �1 \ �,

there exists u ∈ Pα such that u � � ∈ ĠP�
and

ϕα(g � k, � ′, �, u)
}

”.
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Then Ẏ is a definable class in the expanded relational structure byPα with parameters
in N. Ẏ is forced to be a closed subset of (2<�)� . So by Proposition 5.1, Ẏ can be
considered as an element of N.

We claim that

q � � �P�
“Ẏ is nowhere dense”.

Let r ≤P�
q � � and � ∈ (2<�)<� , and let q′ be a common extension of both r and

q in Pα . Then there are q′′ ≤Pα q
′ and an end-extension � ′ of � in (2<�)<� such that

q′′ �Pα “Ḟn ∩ [� ′] = ∅”.

q′′ � � is an extension of r in P� . Let us show that

q′′ � � ��P�
“Ẏ ∩ [� ′] �= ∅”.

Assume not. Let ġ a P� -name such that

q′′ � � �P�
“ġ ∈ Ẏ ∩ [� ′]”.

Take s ≤P�
q′′ � � , k ∈ �, and � ′′ ∈ (2<�)<� such that

s �P�
“� ′ ⊆ ġ � k = � ′′”.

Let � ′ ∈ (α ∩N ) \ � and let � ∈ (�1 ∩N ) \ � be large enough ordinals for q′′ as in
the proof of (p)α . By the definition of Ẏ ,

{
Ẏ , � ′, �, � ′′

}
∈ N , and the fact that q′′ � �

is also (N,P�)-generic and that N is an elementary substructure of the expanded
relational structure by Pα , there exists an extension s ′ of s in P� and u ∈ Pα ∩N
such that s ′ ≤P�

u � � and ϕα(� ′′, � ′, �, u). As in the proof of (p)α , by the roles of
� ′ and �, we can build a common extension t of s ′, q′′, and u in Pα . (To build t,
for each coordinate � in

(
dom(Aq′′) ∪ dom(Au)

)
∩ [�, sup(α ∩N )), we construct a

preparatory condition t� ∈ P�+1 like q′�i as in the proof of (p)α .) Then

t �Pα “Ḟn ∩ [� ′] = ∅ and Ḟn ∩ [� ′′] �= ∅”,

which is a contradiction.
We claim that

q � � �P�
“f�1∩N ∈ Ẏ”.

This contradicts the induction hypothesis (C)� , and finishes the proof of this case.
Assume not. Then there exists r ≤P�

q � � such that

r �P�
“f�1∩N �∈ Ẏ”.

By extending r if necessary, we may assume that there are k ∈ �, � ′ ∈ α \ � , and
� ∈ �1 \ � such that

r �P�
“there are no u ∈ Pα such that u � � ∈ ĠP�

and ϕα(f�1∩N � k, � ′, �, u)”.

By the induction hypothesis (p)� , r is (N,P�)-generic. So by extending r again if
necessary, we may assume that � ′ ∈ (α ∩N ) \ � and � ∈ (�1 ∩N ) \ � . However,

https://doi.org/10.1017/jsl.2022.37 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.37


1416 TERUYUKI YORIOKA

then

r �P�
“q � � ∈ ĠP�

and ϕα(f�1∩N � k, � ′, �, q)”,

which is a contradiction.
Suppose that α is of countable cofinality. The proof below is similar to the one

in the case of uncountable cofinality. The differences are the necessary property of
� and the definition of Ẏ . Let � ∈ α ∩N be a large enough ordinal as in the proof
of (p)α . Let � ∈ �1 ∩N be such that

{�1 ∩K : K ∈ Nq} ∩ � = {�1 ∩K : K ∈ Nq} ∩N.

For each � ∈ (2<�)<� , each � ∈ �1, and each u ∈ Pα , define ϕα(�, �, u) to be the
assertion that

• dom(Au) ⊆ � ,
• for eachM ∈ Nu , either Ru(M ) ⊆ � or Ru(M ) is cofinal in α,
• {�1 ∩K : K ∈ Nu} ∩ � =

{
�1 ∩K : K ∈ Nq

}
∩N , and

• u �Pα“Ḟn ∩ [�] �= ∅ ”,

and define Ẏ to be a P� -name such that

�P�
“Ẏ =

{
g ∈ (2<�)� : for any k ∈ � and any � ∈ �1 \ �, there exists u ∈ Pα

such that u � � ∈ ĠP�
and ϕα(g � k, �, u)

}
”.

Then Ẏ is a definable class in the expanded relational structure byPα with parameters
in N, and is forced to be a closed subset of (2<�)� . So by Proposition 5.1, Ẏ can be
considered as an element of N.

We claim that

q � � �P�
“Ẏ is nowhere dense”.

Let r ≤P�
q � � and � ∈ (2<�)<� , and let q′ be a common extension of both r and q

in Pα . Then there are q′′ ≤Pα q
′ and an end-extension � ′ of � in (2<�)<� such that

q′′ �Pα “Ḟn ∩ [� ′] = ∅”.

q′′ � � is an extension of r in P� . Let us show that

q′′ � � ��P�
“Ẏ ∩ [� ′] �= ∅”.

Assume not, and let ġ be a P� -name such that

q′′ � � �P�
“ġ ∈ Ẏ ∩ [� ′]”.

Take s ≤P�
q′′ � � , k ∈ � and � ′′ ∈ (2<�)<� such that

s �P�
“� ′ ⊆ ġ � k = � ′′”.

Take � ∈ �1 ∩N such that � ≥ � and, for any � ∈ dom(Aq′′) ∩ [�, α) ∩N (then
N ∈ Rq′′ [{�}]) and any 	 ∈ Aq′′(�) ∩N , �	 < �. As in the previous case, we take
an extension s of q′′ � � inP� and u ∈ Pα ∩N such that s ≤P�

u � � andϕα(� ′′, �, u).
For any � ∈ dom(Aq′′) ∩ [�, α),
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• if � ∈ N , then
– N ∈ Rq′′–1[{�}] ∩MP�+1,

– Ru–1[{�}] = Ru–1[{� + 1}] ⊆ MP�+1 (because u satisfies ϕα(� ′′, �, u)),

–
{
�1 ∩M :M ∈ Ru–1[{�}]

}
∩ � ⊆

{
�	 : 	 ∈ Aq′′(�)

}
,

– for any 	 ∈ Aq(�) ∩N , �	 < �, and
– max

{
�1 ∩M :M ∈ Ru–1[{�}]

}
< �1 ∩N ,

• if � �∈ N , by Proposition 3.11 and the fact that u ∈ N , Ru–1[{�}] = ∅.

Hence, as the construction of q′�m in the proof of (p)α before, we can find a
common extension t of s, u, and q′′. But then t forces a contradiction.

We claim that

q � � �P�
“f�1∩N ∈ Ẏ”.

This contradicts the induction hypothesis (C)� , and finishes the proof of this case.
Assume not, then there exists r ≤P�

q � � such that

r �P�
“f�1∩N �∈ Ẏ”.

By extending r if necessary, we may assume that there are k ∈ � and � ∈ �1 \ � such
that

r �P�
“there are no u ∈ Pα such that u � � ∈ ĠP�

and ϕα(f�1∩N � k, �, u)”.

By the induction hypothesis (p)� , r is (N,P�)-generic. So by extending r again if
necessary, we may assume that � ∈ (�1 \ �) ∩N . However then

r �P�
“q � � ∈ ĠP�

and ϕα(f�1∩N � k, �, q)”,

which is a contradiction. 


Lemma 5.6. For any P�2 -name ṙ for a member of 2� ,

�P�2
“there is α ∈ � such that Ėα captures ṙ relative to the set X”.

Proof. Ė� is defined in Definition 4.3. By Proposition 5.1, we may assume that
ṙ belongs to H (κ). Let p ∈ P�2 . Take α ∈ �2 such that Φ(α) = {ṙα} = {ṙ}, and
ran(Rp) ⊆ α. Then dom(Ap) ⊆ α.

Let � be a large enough regular cardinal for the forcing notion Pα+1. Take
any ε ∈ �1, and take countable elementary submodels N ∗

0 and N ∗
1 of H� such

that
{�R, �X,Hκ,Pα, p, α, ε

}
∈ N ∗

0 ∈ N ∗
1 . Then both N ∗

0 ∩Hκ and N ∗
1 ∩Hκ are in

MP
α ∩MP

α+1. By Proposition 5.4, there exists an extension q of p in Pα+1 such that
Rq

–1[{α}] =
{
N ∗

0 ∩Hκ
}

and Aq(α) =
{〈
ε, �1 ∩N ∗

0 , �1 ∩N ∗
1

〉}
. Then, by Lemma

5.2, Pα+1 is proper and q is (N ∗
0 ∩Hκ,Pα+1)-generic. So as seen in Observation 4.4,

q �P�2
“Ėα is a club subset of �1 and captures ṙ (= ṙα) relative to X”. 


Since P�2 forces that 2ℵ0 = ℵ2, we conclude the following.

Theorem 5.7. P�2 forces the assertion (c).
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§6. Properness and the length of the iteration. For each � ∈ κ, define the P�+1-
name Ṡ� by

�P�+1 “Ṡ� :=
{
�1 ∩N : p ∈ ĠP�+1 , N ∈ Rp–1[{�}]

}
”.

Let p ∈ P�2 and � ∈ dom(Ap) (then � ∈ �2). If M belongs to Rp
–1[{�}], that is,

{M} ×
(
(� + 1) ∩M

)
⊆ Rp, then

p � (� + 1) �P�+1 “�1 ∩M ∈ Ṡ�”.

Moreover, if M also belongs to MP
�+1, then p is (M,P�+1)-generic by Lemma 5.2,

and therefore

p � (� + 1) �P�+1 “�1 ∩M is a limit point of Ṡ�”.

We notice that

p � (� + 1) �P�+1 “Ṡ� is a stationary subset of �1”.

If Φ(�) = {ṙ�} and ṙ� is a P�-name for a function from � into 2, then

�P�+1 “ the set Ṡ� is a stationary subset of �1, and captures r relative to X,
that is, for any limit point � of Ṡ� (which means that � ∈ Ṡ� and
Ṡ� ∩ � is cofinal in �), there exists f ∈ X and ε ∈ � such that, for any
� ∈ (Ṡ� ∩ �) \ ε, f(|C� ∩ �|) ⊆ r”.

Suppose that p ∈ P�2 , �, � ∈ dom(Ap) with � < � , and M ∈ Rp–1[{�}] (then p
forces �1 ∩M to be in Ṡ�). If � ∈M , then

p �P�
“�1 ∩M ∈ Ṡ�”.

Therefore, by Proposition 3.10 and the requirements (ho) and (up) in the definition
of Pα ,

p �P�
“Ṡ� \M ⊆ Ṡ�”.

Therefore, P�2 forces that there are R ∈ [2�]ℵ2 and a sequence 〈S� : � ∈ �2〉 of
stationary subsets of �1 such that

• for each r ∈ R, there exists � ∈ �2 such that S� captures r relative to X.
• for each �, � ∈ �2, if � < �, then S� \ S� is bounded in �1.

As in the proof of Proposition 2.3, the set {S� : � ∈ �2} cannot be diagonalized
by any stationary subset of �1 without collapsing ℵ2. This observation leads to the
following conclusion.

Lemma 6.1. If κ > �2, then (p)�2+1 in Lemma 5.2 fails.

This suggests that P�2+1 should not be proper.

Proof. Suppose that (p)�2+1 in Lemma 5.2 holds. Then, as we have already
proved, Ṡ�2 is a P�2+1-name for a stationary subset of �1. For each � ∈ �2, the
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set of conditions p of P�2+1 such that there are M ∈ Np and � ∈ �2 \ � such that
{�,�2} ∈M , {M} ×

(
(�2 + 1) ∩M

)
⊆ Rp, and {�,�2} ⊆ dom(Ap) is dense in

P�2+1. Therefore

�P�2+1 “
{
� : ∃p ∈ ĠP�2+1

(
� ∈ dom(Ap) ∩ �2)

}
is of size ℵ2,

Ṡ�2 is a stationary subset of �1 and diagonalizes the set{
Ṡ� : ∃p ∈ ĠP�2+1

(
� ∈ dom(Ap) ∩ �2)

}
”.

However, this is a contradiction. 


Remark 6.2. There are reasons to suspect that Pα , for α > �2, may fail to
be proper, even disregarding the working parts of the forcing. Suppose that the
length of the iteration is �2 + 1, q ∈ P�2+1, {M,N} ⊆ Rq–1[{�2}], r ∈ P�2+1 ∩N
which is a nice copy of q inside N as in the proof of (p)α for a limit ordinal α,
{M0,M1,M2,M3} ⊆ Rr–1[{�2}] \M such that M2 ∈M0, M3 ∈M1, M0 ∩ �1 =

M1 ∩ �1, M2 ∩ �1 =M3 ∩ �1, and M ′
i :=

(
ΨM

–1 ◦ ΨN
)

(Mi) ∈ Nq′ \ (Nq ∪Nr)
for each i ∈ {0, 1, 2, 3}, as in the following figure.

N
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��
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���
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∈
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�
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�
�
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�
�
�
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�
�

Then
{
M ′

0,M
′
1,M

′
2,M

′
3

}
⊆ Rq′–1[{�2}], and Rq′

–1[{�2}] forms a symmetric
system. Let � ∈ α. It should be satisfied thatRq′

–1[{�}] ⊆ MP
� andRq′

–1[{�}] forms

a symmetric system. Now we have no guarantees that the assertionRq′
–1[{�}] ⊆ MP

�

is true. And even if this is true, since Proposition 3.11 may fail forα = �2,Rq′
–1[{�}]

may fail to form a symmetric system. For example, it may happen that � ∈M ′
1,

� ∈M ′
2 (hence � ∈M ′

0), and � �∈M ′
3. Then Rq′

–1[{�}] does not satisfy (down).
Therefore, in this case, q and r may fail to be compatible in P�2+1.

§7. Acknowledgments. In the workshop “Set theory of the Reals” at Casa
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[12] S. Todorčević, Directed sets and cofinal types. Transactions of the American Mathematical
Society, vol. 290 (1985), no. 2, pp. 711–723.

[13] T. Yorioka, Some consequences from Proper Forcing Axiom together with large continuum and
the negation of Martin’s Axiom. Journal of the Mathematical Society of Japan, vol. 69 (2017), no. 3, pp.
913–943.

DEPARTMENT OF MATHEMATICS
SHIZUOKA UNIVERSITY

OHYA 836, SHIZUOKA 422-8529, JAPAN
E-mail: yorioka@shizuoka.ac.jp

https://doi.org/10.1017/jsl.2022.37 Published online by Cambridge University Press

mailto:yorioka@shizuoka.ac.jp
https://doi.org/10.1017/jsl.2022.37

	1 Introduction
	2 The assertion (c) and forcing (c) by finite approximations
	2.1 The assertion (c)
	2.2 Forcing (c) by finite approximations

	3 Symmetric systems of relational structures
	4 Definition of Asperó–Mota iteration to force (c)
	5 Forcing (c) by Pω2
	6 Properness and the length of the iteration
	7 Acknowledgments

