On the “Flat” Regions of Integral Functions of
Finite Order.

By J. M. WHITTAKER, Pembroke College, Cambridge.
(Received lst March 1930. Read 2nd May 1930.)

1. The term ‘“flat” is used to indicate that the minimum modulus
of a function in a region is (in some sense) of the same order as the
maximum modulus. Some properties conecerned with this notion are
described below. They came to light during an attempt to answer a.
question put to me by Professor Littlewood.

Can an integral function of order less than two be bounded at the
lattice points,® unless it is a constant ?

The problem is apparently one of interpolation and was at first
attacked by expressing the function in terms of its values at the
lattice points. The method proved inadequate but yielded a result
of independent interest; that a function must be identically zero if,

within a sector of angle —;T , it is regular, vanishes at the lattice

points, and satisfies a condition

™

S <4, (k< 7).

This theorem is of the same type as one of Carlson® concerning
functions with zeros at the points 1, 2, 3, ....

The next result is related to Wiman’s theorem?® that an integral
function of order p <4 cannot have a finite asymptotic value. It is
shewn that there are annuli r <{|z|<(r + 77, (6 <1 —p), for large
values of 7, in which the function is ““flat.”> Thus the function must
be a constant if it is bounded at the points 12, 22, 32, . ...

The final theorem is of the same general nature. It states that
in the case of a function of genus 0 or 1 there are circles of fixed
radius, arbitrarily distant from the origin, in which the function is
“flat.”” This enables us to answer Professor Littlewood’s question.

1 i.e. the points + m + ni for integral values of m, n.

2 Given in his dissertation ‘‘Sur une classe de séries de Taylor.” See a paper of
Hardy (Hardy, 7) in which two proofs of Carlson’s theorem are given. The proof of
Theorem 2 was suggested by the second of these. See also Riesz, 12, Hardy, 5.

3 Wiman, 17. Lindel6f, 8.
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An integral function of genus 0 or 1 is a constant if it is bounded at
the lattice points.

The principal results are enunciated at the end. It should be
added that § 2 is independent of the subsequent work.

2. Interpolation at the lattice points.

The first formula corresponds to the cardinal series!
2 (=an

sinmz X

n=-u 2N

for interpolation over the set of points z=n. Define a function
with zeros at the lattice points
{2.1) ¢ (z) = €2 § (w2 |1).
By the properties of the J-funection,?
(2.2) ¢(z+mtni) =(—)min+tmnexp {§ 7 (m2+n?) + 7 (m—ni) 2} b (2)

and

Cnn = lim 9{) (2) .

i & M — N
(2 . 3) — (_)m+n+m71 exp {7 (mz + 722) ! 2} (;5/ (0)
THEOREM Y. Let f(2) be an integral function for which

- log M (r) m
{(2.4) rlz;an < 5
Then3

: £ (m + ni)

{2. = UL, LA S € A
( 5) f(Z) 96 (z)m, HE —» Cun (2 —m — 7”)

M (r) denotes as usual the maximum of |f(z)| for |z|=

Let K, denote the square whose corners are (+1-7)(p -+ 3).
Then if { is a point inside K, , other than one of the points m -+ ni,

(2.6) (§)+I§pcrnrz(m+ni—c 2777,J-K z ’7_C)

1 For references to the literature connected with this formula see Ferrar, 3,
J. M. Whittaker, 16.
2 Whittaker and Watson, 15, 464.

Umn

T e, + has been discussed by

3 The convergence of series of the form =

Ferrar, 4.
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It follows from (2.2) and (2. 4) that

M, = maximum of fﬁ) on K,,
¢ (2)
-0, as p—

and thus the integral on the right of (2.6)—=0, as p— .
Moreover, by (2.3) and (2. 4),

f(m + ni) ‘

Cian |

@®n

pX

m, n=—o

converges. These results contain a proof of the theorem.

It follows that an integral function must be identically zero if
it vanishes at the lattice points and satisfies (2.4). In this it is
enough to suppose that the conditions are satisfied in a quadrant of
the plane. Thus,

THEOREM 2. If

(1) f(z) is regular at all points tnside the angle — Z < 0 < % ;

(il) |f(z)| < det, (k < %), throughout the angle ;

(iii) f(m + nt) = 0 at all points m + ni inside the angle ;
then f (z) is identically zero.

The theorem is not true for an angle — a <8 <a, <a < %) .
For if
17 sin®a
cos 2a
the function e—%* ¢, (72| ¢) tends to zero throughout the angle; more-
over the example of ¢ (z) shows that the second condition cannot be

replaced by ‘
|f(z) | < Aem2,

The first step is to find an interpolation formula giving a function
in terms of its values at the lattice points inside the angle.

Let f(2) satisfy conditions (i), (ii), of Theorem 2. Then it will
be shown that if 0 <z <1,

@.7) 16 = —$) | w1 Fwydu,

E
0
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where
(2.8) Fu =3 f(m + ni) umn
Cmn
the summation being taken over all values of m, n for which m + ni
lies inside the angle, i.e. for
n=—m-=+1,—m+2, ....,m—1;, m=1, 2 3,

Consider the triangle 7, whose vertices are the points 4, B, C
whose affixes are respectively «, x+ p— pt, « + p -+ pt where p is
a positive integer and 0 < « < 1.

It follows from (2 . 2) that on 4B, C4

(2.9) 1 (2) | > Kem*2, (K independent of p),
while at a point z =« -+ p + yi on BC,
(2.10) |4 (:) | > Ker e

Now, by Cauchy’s theorem,

F(u_zf(m+n7/ o+ ng
T,

1 jx+p~pi K+ +pi K \ f(z) u:
S [T
27”{ k+p-pt + k+p+pt J 93 (z) ‘

and by (2. 10) and the condition (ii)

cmn

jwmf(— KJ KeXPlkP+K +hyr— 3 (p2+y?) ) |ulrdy

K+p—pi ¢

-0, as p—> o,
In the same way it can be shown that the other two integrals
tend to limits as p — o, so that

F(u)= lim Fp(u)
p—>

1 (j»:c+(1—i):c+ jx } f_(i)ﬁi
= 2mi | K+ (i) ® | 4@
If 0<s<1, A, ucan be found so that 0 <X <s < pu <1, and then
1 1 wt(l—d)e pu f(z) u
—s-1F d =_—-\. u—s-1d fj j /A dz
jou (ve) du 2m Jo “ (S + /J-+(l+z')x} ¢ (2)

1 pr(l-d)w o \ f(2)
= 2—77’0 {J;L +~[M+(1+1’)ao } (z — 8)9{)('7’) @z,

provided that the integrals are absolutely convergent, and tnis
is readily proved to be the case.
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In the same way
© 1 A4+(1-7)c  pA f(z
w1 F (w)du = —— j J ]
J-l () 2 { N + A1+ e (2_8)¢(z)

so that

{vo}

J w1 F(u)du

1 A (V7)o A A+(1-2)eo 1
{.[ J .[ J b
— = + R —
2mi ], + A (1o In + p(l—i)e | (2 —8) ¢ (2) *

=—f(s)/$(s)
If the condit’on (iii) of Theorem 2 is satisfied, F (u) is identically zero
and the same is therefore true of f(z)

3. A theorem on integral functions of order less than 1.

TBEOREM 3. Let f(2) be an integral function of order p <1. Let
o be a fixed number <1 —p, and let ms(r), Ms(r) be the bounds of
z) | in the annulus r <|z| < r+7r7. Then

T logms (r)
3.1 lim
( ) re—>x IOgM (
This is an extension of a well known theorem, first stated by
Littlewood,! to the effect that

) —> cos mp.

log m (r)

(3.2) /I.L—my logxM > cos 7p
where m (r), M (r) are the bounds of |f(z) | on the circle [z| = 7.

In its original form the proof given below applied only to
functions of order zero. For other values of p the proof was of
a different character and except in the case of functions of regular
growth it was found necessary to suppose that o<1 —2p. Dr
Besicovitch, who read the work in manuscript, kindly pointed out
to me that the complete result could be established with the aid of
a theorem of his memoir,? which I had overlooked.

A function may be expected to be “ flat ’ in the regions which lie
farthest from its zeros, aud the first step is to pick out these regions.

1 Littlewood, 10. Littlewood proved (3.2) with cos 2wp in place of cosmp. (3.2)
was afterwards proved by Wiman, 18, and Valiron, 14, at about the same time. Proofs
have also been given by Pélya, 11, and Besicovitch, 1.

2 Besicovitch, 1.
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This can be effected by the shading process described in the following

lemma.?

LeMMA 1. Let vy, 1y, 75, .. .. be an increasing sequence of positive
numbers. Divide the real positive axis into segments of given length X
and mark the points ry, 7y 73 .... On it. Now shade every segment

containing an rs and its two neighbours. Of the remaining segments
shade every one whose two neighbours on the right contain two or more r’s.
Then every segment whose three neighbours on the right contain three
or more ¥’s, and so on. Perform the same process for neighbouring
segments on the left. Let n(r) denote the number of points ry, 1y, ... in
0, 7). Then if

n(r)

(3.3) —7—-90, as 7 —>

almost every segment s unshaded.
By the last statement we mean that
(3.4) %90, as N—= o
where N; = number of shaded segments among the first N.

Suppose that this is false. Then there is a number &,
(0 <h < 1), such that
N
" >h
N~
for arbitrarily large values of A.
Find r, so that

(3.5)

n (r) h
(3.6) ‘—T——<65'\a (7>TO)

and let N, be a number > 2\ r, for which (3. 5) is satisfied.

Let ry, 7y, .. .., rp be the r’s in the first N, segments. Suppose
now that the shading process is carried out in two stages. First mark
in 7y, 79, ...., rp only and perform the process for these points, and
then mark in the other r’s and complete the process. It is easy to
see, by considering simple cases, that at most 3m segments will be
shaded in the first stage. Let k additional segments among the first
N, be shaded in the second stage. In the most unfavourable case

1 Suggested by Boutroux’s proof of his theorem on the minimum modulus of a
polynomial. Boutroux, 2.
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(¢.e. the case implying the least number of 7’s) these will be the last k.
Suppose that this is so. Then, for some p, the p segments immedi-
ately suceeeding the N,*h must contain at least k& + p of the points r;.

By (3.5)
3m + k > hN,.
But
n{(Ny+p+ 1O >m+k+p
ho..
> EAI—TLP
ko ..
>§(Al+p))
so that
. h
n{(N, + p) 2} > —3—(N1+p)
or
_h
n(r)>6_)‘r,

for r = (N, + p) 2A, which contradicts (3. 6), since r > r,.

LEMmA 2. Let

(3.7) Er(r—r)-eo, (r> 0).
Then if the axis is divided into segments by the points (A7, (2A)V/7,
(BM)L7, ... and the shading is carried out as before, almost every
segment will be unshaded.

For, let

nr (r) = number of points r,7, r,", .. in (0, r)
= n(rt )s a=r7"1

so that
(3.8) m) o () —0, as r->m.
r r
Again, if r;, 7p4y ...., 74 are the 7’s in the segment
{(mX)e, ((m +1)A)*} then r,7, ...., 7,7 lie in {mA, (m + 1)A}. Thus
the shading with points r;, r,, .. .. and segments {(mA)*, ((m + 1) A)¢}

corresponds to the shading with points r,7, r,7, .... and segments
{mA, (m + 1) A}; and by (3. 8) and Lemma 1, almost every segment of
the latter set is unshaded.

Now consider an integral function! of order p < 1,

1 There is no loss of generality in taking the function to be of this form rather than
Azt 1 + zus ~1).
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(3.9) f) = 51:11(1 + a:>
and write |a,|=rs.

Given o<1 —p, take 7 so that p<7<1—0. Then (3.7) is

satisfied. Perform the shading process as in Lemma 2. Then,

Lemma 3. Let I, {p*, (p + 1)*} be an unshaded segment. Then
there is a positive constant A, depending only on o, 7, such that

(s
(3. 10) PR RACE R
provided that
pr|a| <@+ D, |z — 2| <(p+ 1=

Let I, lie between 7,7, ,, and write , = |7, |, , =|2,j. Then
under the conditions just stated,

Hlog ;Zlg H
l{ ‘Zjlog}l-{- " }
<z — 2 Ei * ot log 2 pa_)(;ipl;l)a +ZZI~22IS:§+1 vl‘s
where v, is the smaller of |x, — r,|, |@, —r,|. Since [, is unshaded,
Ty — Taot > pt—(p—1)° | (t=1,2,3,....)

Tagt — X >(p+t+l)a—(p—{—])aj

and the same inequalities hold with x, in place of x;. Thus

(oo ) } va {" o ! ! JL
18 |7 <@+ 1) St TE T e T
Jaf (] du * du 1
<+ QJ e — (p—u)e +L (p+ w)* — p* ) T2

< 3p-a a{l-~7- a-,]ogp_)r_‘)
- 2(1—o0)

l—7—o¢

and this is the result stated.
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A theorem of Besicovitch! states that if p’ > p, the inequality
(3.11) log m () > cos mp’ log M (r)
is satisfied for a set of values of » whose upper density is at least
1 —p/p’, i.e. that given e, arbitrarily large values of R can be found
such that the measure of set of » in (0, R) for which (3.11) is
satisfied is greater than (1 — p/p’ — ¢) R.

Since almost every segment is unshaded, it is easy to show that
there are unshaded segments, arbitrarily distant from the origin,
which contain values of r for which (3.11) is satisfied. Let I, be
such a segment and ' a value of r in I, for which (3.11) is satisfied.
Let 2, 2, be points at which | f(z)| attains its bounds in the annulus

rlE < ()

so that [f(z)] = mo (v"), |f(ze) | = M (r').
Since pe <7 < (p + 1)*, so that (+')e < (p + 1)7%, there exist
points 24, z, on the circle z' =7’ for which

lzl_zsl <(p+ 1)oa, }Zz‘—zd < (p + 1)o2,
Finally, by Lemma 3 and (3. 11),

log f(z)| > log!f(z)|— |log 4|
> cosmp’ log|f(z)] —|log4
> cosmp’ log f(z,)| — 2|log 4
and this is equivalent to (3. 1).

4. The average value of « function in a circle.
Let f(z) be analytic in the circle |z < R. If r < R, it is natural
to define the average value of [f'? in the circle of radius r as
1
(4.1) a(|fo;7)=o045(r)= —j

Tr?

r (2r
j f(uet®) |8 ududf, (5> 0).
0Jo

The properties of o5 (r) are as follows.

THEOREM 4. o5 (r) @S @ continuous increasing differentiable function
of r, and, unless f(z) is a polynomial it increases more rapidly than any
power of r. Moreover log o5 (r) is a convex function of logr.

It is known? that

ps( = o |71 o) 2 0

1 Besicovitch, 1. Theorem 1.

2 Hardy, 6.
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possesses all these properties, except that there may be isolated
points at which it is not differentiable. Now

7

2
o5 (1) = ;;LV«S(“)U«du

= jl we (v \/t—) dt.
0

The first four properties of o (r) are elementary deductions from
this result. The convexity property is expressed by

7y \ 71 05 () ra\ "1 o5 (rs)
log -2 log =% log =3 3/
< o8 1 > °8 (o4 (7'1) << °8 7”1> log as (7‘1) ’ (7‘] =T2< 1'3).

Lemma 4. Letag, bs, ¢, >0, 0<PB<a, and
bs \ cs \B
Os “Y ., s=1,2 ....,n).
<. e )

Then
n a w ﬁ
2 b, PR
s=1 s=1
n < T
2 a, > ay
s=1 s=1

For, by Holder’s inequality,
(B )e < (BegBle a,1-8/a)e < { (T ey )Bfa (Zay )l -Alaja
= (Z¢,)F (Zas)a-8.
The corresponding result for integrals is as follows.
Let f (x), g (), h(z) >0, (02 <a), 0O <B<a, and
(g o (2O <e<a

J (=) f (@)
Then

a a a ) ¢ [ a B f a -8
{jog(x)dx} {jof(x)dxj <1j0k(x)dx} Jof(x)dx}
The convexity property follows from this, on taking

f(x) = ps (ryva), g(x) =ps (T24/2), h(x)=ps(rs4/2),
7y \ 71 _ ra\ 1 .
a=(1ogr—1> ,B-(log;;> ,a=1

For the purpose which we have in view a more informative measure

of the ““surface density ” is the average value of log | f(z)|. Define
1 r (2T .

(4.2) o(ry=oalog|f]; r)= —Zj j log f(uei)| ududs.
mrtlg )y
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Now if a is real and positive,

r (27 i 1620 |
jo—[o logrl—}- \udud@-w”log——%(ﬂ—a’), O<a<r)
= 0, (a >1)

since
2
jo log |a + ue? |df = 2w logu, (u > a) ]L
=27 loga, (u<a) J

Moreover if & (z) is analytic,

2
J log | ek (=
0

Thus for the most general integral function?

f(2) = Aest za HE(a p,_l)

§=1
the average value of log | f(z) | is

j J q logu.ududf

o(r) =logld|+—;

772

E 1 » (2 76
+ 3 MJJ‘ logll—{—ue ’ududf)
0J0 ag

(4.3)=1log|A |+ q (logr — }) +2{10g——§ ""3 }

where r, is the largest »; not greater than r. Now

S tog £ [ 0 =0
Z log ;— = du, n (r) = number of r; (7,
s=1

1 X (o, )=j {n(u) —qtudu
=1 7y

so that
r — 2
(4.4) a(r):]og|A’+q]og_r_.+j M)__q_<1_u_>du_
\/e 7

It follows that
(4.5) Tm logo(”)
r—>» logr

= P1
= exponent of convergence of zeros of f(z).

There is a more precise result of the same nature.

1 Valiron, 13, 13.
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THEOREM 5. If f(z) is an integral function of finite non-integral
order, ' '
Tm 20 .
,,in,c log M (r) ~
If f(2) is of finile integral order this property holds for the function
J(2) + d, for every value of d except, possibly, one value.
If f(z) is of order zero,
fm 20
r =« log M (r)
Take the first case, that of a function of order p, genus p, where
p is not an integer. As usual we can suppose that f(0) =1, so that
(4 . 4) becomes

(4.6) o (r) = j 00 (1 Y,

u

Let p (r) be a proximate order B of f(z), that is to say, a function
with the properties!

lim p(r)=np, lim p(r) > p,
r=>w -
Hm  {rp’(r) logr} =0
r=>x
iim log M (r) 1.
> o 7P ()

Then? there exist constants «, K and an indefinitely increasing
sequencz of values of r, say R,, R,, R,, ...., for which

4.7)  m(aRy)> K log M (By) = KR, " P,

Thus if » has one of these values

o (2ar) > Szarn—(u—)<l _ ) du

ar U 40.2—7‘2
2ar 1 / 2
>n (ar)j — 11— —u—4> du
ar U 402 r?

= n (ar) (log2 — &)
(4.8) > K,relr),

1 Valiron, 13, 64.
2 Valiron, 13, 69.
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Moreover
4.9) log M (2ar) < (2ar)e(20r) < K, rp(r)
by the properties of p(r). K,, K, are the same for all members of
the sequence R,, R,, ...., and
o (2ar) - K,
log M (2ar) = K,’
The second case is proved in much the same way, on making
use of a result concerning integral functions of integral order!; and

the last part of the theorem can be established by means of
Littlewood’s method for treating functions of order zero.2

(4.10) (r =Ry, Ry, ....).

5. Properties of functions of genus 0 and 1.
The shading principle can be extended to two dimensions as
follows.

LeEmMMA 5. Divide the z-plane into squares of side A by drawing
lines parallel to the axes, and mark the points ay, a, .... on 1t. Shade
every square containing an a and its eight neighbours. Of the remaining
squares shade everyone whose twenty-four neighbours contain eight or
more a’s and generally every square whose 4q (q -+ 1) neighbours contain
4q(q— 1) or more a’s. Then if

737(;-) -0
almost every square is unshaded,

n (r) denotes the number of a’s for which r, =|a,' <r. The
proof is similar to that of Lemma 1 and the details may be omitted.
From this there follows

LemMMA 6. Let f(z) be of genus 1 and let A, ¢ be given positive
numbers. Then for almost every square of side A, drawn as above,

(5.1)  e-ologn < i;”%

where 2, z, are any points of the square, and r is the distance of the

< eer o/ {logr)

centre of the square from the origin.
We may take

(5.2) f(z):ékz 1 {<1+i)e—z/a,}

s=1 Ay

1 Valiron, 13, 86.
¢ Littlewood, 9.
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since, as before, there is no loss of generality in taking f(0)=1.
Divide the plane into squares of side A, = NA, where N is an integer,
and shade them. Then almost every square is unshaded, and in an
unshaded square we have, if 7, is the smaller of 'a; + 2,; and  a, + z,

and if |2, — 2, | < V22,

f(z) H
lo
{ g!f 22’
. < ( — 2y) 2, 322‘"21%2 ]1
k|12 — R {1 m +of. }
Slklla =l 2 [l 14 G S+ o San )
<K]z1—z.‘,]+jzl—z2“z2] z rors
(5.3) < 2K+ 20 %
s=1 TsTs
®  pNE 2 1N
< v/2 KX + 2 (8 1 r_s> <s§1 732>
® 1.3
< K, M ( z ;2>

where K is independent of A, Ay, 2,, 2,.

Consider a large square P of side (2p + 1)A, (r<p<2r),
symmetrically disposed about the square of side A; containing z,, z,.
We have
® 1 1
2 e

1
2
s Ty

72 Z'T Z
P cP
1 5

{

since there are not more than seven zeros in the second ring of
A;-squares surrounding that containing z,, z,, nor more than twenty-
three in the third ring, and so on. Again, in CP, the region
outside P,

2 __ —1)2 1
ERE € il 2(210 )}+z L
P CP T

>/

las + 21|, |@s+ 22| > p > 2], 2]

so that
jas + 21|, @+ 25| > % |ay | =47
Thus
> 1 1 » (2¢+4 1) — (2¢ — 1) © 1
2 — < Z 43 =
s=1 7'32<)\12q=1 q2 ™ s=1 Ts?
8 » 1
K2
<)\—12 logp + K < 7\Tzlogr
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and
(z1)| )
(g [F2) }| = K Kot v/ logn)
= F1 o, (logn)

< ery/ (logr)
by choice of &N. This is true for points z,, 2, in every square of side:
A contained in an unshaded square of side A}, and so for almost every
square of side A.

A sharper inequality holds in the case of functions of order 1.

Lemma 7. If f(z) @s of order 1 there is a constant | independent
of A, 2y, %5 such that

(5.4) e [f 21 i
€2y

for almost every square of side A.
In this case we surround the square containing z,, z, with a.
large square @ of side /7.

. oL .
Since 7 >71r — 4/r > 5 inside @,

1 NG 2T
s <_22i<£ "J' udu df
Q Ts7Ts roQ Ts u
< Kr-12
while
34 1/4

i << 7 43) ( b T —4>

CQ TsTs cQ

3/ Jw >1/4
-43 -4
<K<21]rs > < o v .udu
< Kr-14,
The result follows on combining these inequalities with (5. 3).
The main theorem may now be stated.

THEOREM 6. Let f(z) be an integral function of genus 0 or 1, ard
let d be a given positive number. Then there is a positive constant b and

a sequence §y, (s, . ... such that
|Ls|—=> oo
and
(5.5) log |f(2)|> h log M (| Ls])
in the circle Jz— &1 < d.
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There are four cases to consider. If p, p are respectively the
order and genus of f(z) these cases are
(i) p=0, ({)p=1,1<p<2, (i) p=1,p=2, (iv) p=1, p=1.

Case (i) is very simple. Reasoning similar to that in the proof
of Lemma 3 shows that there are annuli » —d <]z |<(r + d, for

arbitrarily large values of r, in which

1 i fo( |
G.6) L < ;g;r < me—nl <A

Let { be a point on the cirele |z | = r such that

()= M (r).
Then by (5. 6)
6.7 fei> 20 <a

r -

Next take case (ii). Divide the z-plane into squares of side
A> 2d. Let a fraction 1 — 6, of a square consist of points distant at
least d from the boundary of the square. It is possible to find a
positive number ¢ and to choose A so that (with the notation of

(4.8), (4.9))
(1= 6)(1— 057 + 16, (1 —6) + 6} Ky < K,.

Shade the squares for which (5. 1) is satisfied with e = 1. Then
almost every square will be shaded, and if s is chosen sufficiently
large the fraction of the circle C, of radius 2a R, (in the notation of
(4.10) ), covered by unshaded squares will be less than 6.

Then there is at least one point {; in C, in a shaded square and
distant at least d from the boundary of the square for which

(5.8) myﬂgn>%wm,r=&.

For if this is not the case

o (2ar) < (1 —8)) (1 — 0) l?rp(f) +{6,(1—6) + 6y K,re(n)

< K relr)
and this contradicts (4.8). Thus if |z — {1 <d,
"
log f(2)] > %7‘/) ") — ry/ (logr)
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using (5.1); and since
limp (r) > 1
if s is sufficiently large

log if(2)| > %‘W’(” > 3£K12 log M (r)

the result stated.

In case (iii) the argument just given applies either to f(z) or to
f(2)+1; and case (iv) is similar to case (iii), except that Lemma 7 is
used instead of Lemma 6,

If p=0, g(z) =f(2? is of genus 0 or 1. On applying Theorem
6 to this function ¢ (z) another result follows.

THEOREM 7. If f(z) is of genus 0, (5.5) is satisfied in a sequence

of circles |z — | < d+/ |

6. Summary.

The principal results are as follows.

TueEoOREM 2. If

(i)  f(2) is regular at all points inside the angle — % <oKL % ;

(i) |f(2)| < Aekr® <k < %) , throughout the angle;

(iii) f (m + ni) = 0 at all points m + ne inside the angle;

then f(z) is identically zero.

TaEOREM 3. Let f(z) be an integral function of order p < 1. Let

o be a fixred number <1 — p, and let ms (r), M, (r) be the bounds of
If(2)] in the annulus v < | <r+r7. Then

log me (7)

Jm e M (T) —» cos 7p.

THEOREM 6. Let f(z) be an integral function of genus 0 or 1, and
let d be a given positive number. Then there is a positive constant b and

a sequence {y, {,, .... such that

| Lo > o
and

log | f(2)| > hlog M (| &s])
an the circle |z — (| < d.
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