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Abstract. This paper addresses the following long-standing open question: If a
stationary transformation on a probability space obeys the property

lim M

for all measurable sets A{, A2, does it follow that

lim P(T-(M+~>(A,) n T~M(A2) n (A3)) = P(A1)P(A2)P(A3)
M-»oo
JV-.OO

for all measurable sets A,, Az, A3? Here we answer the question affirmatively for
a certain class of transformations.

1. Introduction
Let T be a stationary transformation on (H, s&, P) where O is a probability space
endowed with cr- algebra si and probability measure P on M. T is called mixing
(or twofold mixing) if

lim P(T-M(Al)nA2)
M-.00

for all Ax, A2e M. T is called threefold mixing if

lim P(T-lM+N\Al)nT-M(A2)nA3) = P(A1)P(A2)P(A3), (1.1)
M-.00
iV->co

for all A,, A2, A3es4.
The problem, originally posed by Rohlin [2] and reproduced in the very last

sentence of Paul Halmos' book [1], is whether or not twofold mixing implies threefold
mixing. J. P. Thouvenot demonstrated that if it is true that twofold mixing implies
threefold mixing for transformations of zero entropy, then it is true in general, (the
reader need not know the meaning of zero entropy in order to read this paper).

This paper discusses a certain subclass of the zero entropy transformations known
as trie rank 1 transformations, to be denned in the next section, and proves that
twofold mixing implies threefold mixing for rank 1 transformations. The way Halmos
introduces the problem, I suspect he and Rohlin were expecting that twofold and
threefold mixing were not equivalent and indeed, at first glance, it does not seem
that there is any reason why they should be. If this was truly their expectation, then
I think they would find our partial result unexpected.
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238 S. A. Kalikow

2. Definition of rank one transformation
Let {qt}T=\ be a sequence of positive integers and let {ajj},-eNje{i,2,....<j,} be a doubly
indexed sequence of non-negative integers. We define an increasing sequence of
words, called n-blocks, n = 0, 1,2,... by induction on n. A 0-block is just the word
'a'. For n>0 , an n-block is defined as follows. List an n-1-block. Then list the
letter 'ft' an, times. Then list another n-1-block. Then list 'ft' an2 times etc.,
concluding with a listing of 'ft' an ,n times. The resulting word is an n-block.

Let F be a finite word, i.e. a finite sequence of a's and ft's. The frequency of
occurrence of the word F in an n-block (e.g. the frequency of occurrence of 'aa'
in aaab is § because 2 of the 3 two letter subwords of 'aaab' are 'aa') approaches
a limit as n approaches oo. Let P(F) be that limit.

Let il = {a, b}z be the space of doubly infinite sequences of a's and ft's and let
si be the cr-algebra generated by finite cylinder sets (i.e. finite words.) It can easily
be seen that we can induce a consistent stationary measure on si by assigning to
each finite word F the probability P(F) defined above. For each weil, ieZ let w,
be the /'th letter of w. Now define the transformation T by (T(w))i = wi+l.
(O., si, P, T) is called a rank one transformation. Ergodic theorists could simply
define a rank one transformation to be any transformation in which every finite
collection of sets can be arbitrarily well approximated by a union of rungs of a
Rohlin tower, but the definition given above is equivalent and is the one used in
this paper.

The values of {q,} and {au} determine exactly which rank one transformation T
we obtain. However, the terms {q,} and {a,j} will never again occur in this paper.
The remainder of § 2 is devoted to developing the language to be used in this paper
for discussing rank 1 transformations.

From here on, presume the measure to be non-atomic (otherwise it cannot be
mixing). The support of the measure is on words consisting of 0-blocks within
1-blocks within 2-blocks etc. The non-atomic presumption forces these words to be
aperiodic. If the word is aperiodic, given the entire word it is possible to determine
where a given letter is in an n-block. This is not obvious. Suppose the 2-block, to
be denoted by B, is aabaab, (i.e. B is an abbreviation for the finite word aabaab).
Suppose the 3-block is BBbB. Suppose you see aabaab, where the arrow indicates
the origin. You might suspect that the 'a' on the origin is the first 'a' of its 2-block
but with more of the word, aabaabaabaabb you would realize that it is the fourth
letter of its 2-block. It is an exercise to show that if the entire word is aperiodic,
the entire word always resolves the question uniquely. This will be set forth and
proved in the appendix.

The significance of this result is that it enables us to consider an M-block as a
Rohlin tower as follows; (do not panic if you do not know what a Rohlin tower is,
we are about to define it).

Every n-block is a finite word of a's and ft's. Define hn to be the length of that word.
Define /„ :Cl-> {'error', 1,2,..., hn} by fn(a>) = i if co0 (recall that w0 is the zero

letter of a>) is the fth letter of its n-block and fn{u>) = error if <o0 is one of the ft's
which are not in any n-block.
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Define Rni = {&>: /„(&>) = i}. The finite sequence (Rnj, Rna, • • •, ^n>hn) is called the
n-tower. Rni is called the Vth rung of the n-tower, {a>:fn(u>) = error} is called the
error set for the n-tower or merely the n-error set.

Cl is the disjoint union of the rungs and error set of the n-tower and T(Rni) = /?„_,-+i
for all i<hn. This is precisely the definition of a Rohlin tower.

For each w e il, we will now define a quantity Kn(w). Heuristically, Kn(u)) can be
defined to be the amount of time w will spend in the n-error set after leaving the
n-tower, before re-entering the n-tower. We now define Kn(a>) rigorously.

If/„(«>)terror, we define Kn(w) to be the number of fc's between the n-block
containing <w0 and the following n-block, i.e. if fn(co) = i, Kn(co) is the least j such
that/B(r+l+'I»"''(<u))= 1. If/B(w) = error we leave Kn(to) undefined.

Fix (x) and a positive integer L. Let

6> = { i : 0 s i < L - l and / n ( r (w) ) terror}.

where # means 'number of elements in'. Thus if /„(&>) =/n(TL«)= 1, the average
value of Kn(T'cj) over all ie 0 is

Fix a) with fn(to) = 1 and one can choose arbitrarily large L with fn(T
Lto) = 1. By

the Birkhoff ergodic theorem (all rank one transformations are ergodic), as L
approaches oo, {L-#6)/#0 approaches P(n-error set) and #0/L approaches
1 -P(n-error set) so {L-#6)/L approaches P(n-error set)/(1 - P(n-error set)) and
the average value of Kn{T'(to)) over all ie 6 approaches E(Kn(to)\fn(to) terror).

We have

E(Kn{(o)\fn(to) * error) = nnP(n-error set)/(l-P(n-error set)) (2.1)

Our non-atomic presumption implies that the word 'a' has positive probability.
(Otherwise the all 'b' word would have probability 1). In order for 'a' to have
positive probability, it can easily be seen that

lim P( n-error set) = 0 (2.2)

n-*co

(2.1) and (2.2) give

lim (l/hn)E(Kn(<o)\M<o)*error) = 0 (2.3)
n-*oc

Since the n-towers generate the entire cr-algebra, and each rung of an n-tower is a
union of rungs of an n +1 -tower, it follows that every measurable set can be
approximated arbitrarily well in measure by a union of rungs of some n-tower. By
'in measure' we mean that the distance between two sets is the measure of their
symmetric difference. For any m, any union of rungs of the m-tower is a union of
rungs of the n-tower for all n > m.

https://doi.org/10.1017/S014338570000242X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000242X


240 5. A. Kalikow

Throughout the remainder of this paper, presume A,, A2, A3 are three fixed unions
of rungs of i?me fixed m0-tower. By the previous paragraph it follows that if we
can prove that rank one mixing implies (1.1) for AUA2,A3 then we are done.
During this paper, whenever we request that n be chosen sufficiently large so that
some conditions are obeyed, or merely request that n be chosen sufficiently large,
it should also be presumed that n is being chosen larger than m0. For any such n,
each RnJ is either contained in A, (respectively A2,A3) or disjoint from A,
(respectively A2, A3).

3. Overview of proof
Fix weil and associate each integer i with the point T'(a>). Fix a large M, N and
for a set S of integers, we will say that S is good if the fraction of elements of 5
whose associated points are in T~(M+N)Alr\T~MA2nA3 is approximately
P(Al)P(A2)P{A3). Our goal is to prove that some pre-chosen interval of integers
[0, L]nZ, ('interval of integers' will always mean an interval intersected with Z),
is usually good. This will be accomplished by expressing most of [0, L] n Z as a
disjoint union of good intervals of integers.

In § 5, we will develop certain intervals of integers which will be referred to as
n-generations. For fixed n, the w-generations are disjoint and cover most of the
integers. Each n-generation is a subset of an n +1 -generation. The main result of
§ 5 is that for fixed n, two successive n-generations are unlikely to both fail to be good.

In § 6, the result of § 5 is used to cover most of [0, L] n Z with good generations.
Let Mi« n2« • • •« nk. By the result of § 5 nearly half the nk-generations are good.
Of these wfc-generations which are bad (not good) nearly half of the nk_\ -generations
within them are good. This nesting procedure is continued and this covers most of
[0,L]nZ.

4. Implications of mixing
In this section we assume only that T is a mixing transformation, we do not assume
it to be rank 1.

LEMMA 4.1. Let A be a measurable set. For all e > 0, there exists K such that for all
k>K, for any sequence nx, n2,..., nk with k terms,

- c
Proof. For every m, let Xm(co) be defined by

10 otherwise.

Let S > 0. By mixing, select / so that if |m - n\ > I,

\E(XmXn)-(P(A))2\<5.

Fix a K and select integers n, < «2 < • • • < nk. Since, for all i, ni+i- nt > 1 it follows
that for | / -j\ > I, | n, - «,| > /. Let

o),...,T^(a>)}) = (-) lXn.
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E(T) = P(A) and

(Variance of T) = E(T2)-(Er)2 = E(J^) .1 .1 *«,*»,) -(P(A))2

) k k / 1 \

•-1 -l \fcv

(2/ + l)fc o 2/ + 1

It follows by Chebychevs inequality that (P((T-PA) > e)) < (Vs +(2/ + \)/K)/e
which can be made less than e by first choosing 8 small, finding / in terms of S,
then choosing K large. •

LEMMA 4.2. For any measurable sets Bu B2 and any e > 0, there exists N such that
for any M > TV and n> TV,

E(\(l/n)#(T-M(Bl)nB2n{<o,T(a>),...,Tn-\<o)})-P(Bt)P(B2)\)<e.

Proof. For mixing transformations T, it is known that T x T is ergodic. By the
Birkhoff ergodic theorem, this implies that if a>,, a>2 are independently chosen from
ft, (i.e. (a>i, o>2) is chosen from ft xft in accordance with measure PxP) then we
can select JV, so that

£(1(1/JV,) # {i: 0< i< TV, - 1 and T'(»,) e B,and T1 («2) € B2}-P(B,)P(B2)|) < e/2.
Since T is mixing, for 7V2 sufficiently large, the joint distribution of the events
{T'(w,) e Bu T'(w2) e B2}0S,SN,-I is very close to the joint distribution of the events
{Tl+Ni(a>) e Bu V{(o) € B2}0s,sN,-i, so we can choose 7V2 such that for all M > JV2,

E(\(l/Nl)#(T-M(Bl)nB2n{<o,T(a>),...,TN<-\a>)})-P(Bl)P(B2)\)<e/2.

Select an integer N3>2/e. Let TV = max {TV, TV3, TV2}. Suppose M> N and n> N.
Then there exist integers K and /? such that, 0<R<Nu K>N3>2/e and
« = TV, K+R.

E(\^#{T-M{Bl)nB2n{co,T(w),...,Tn-\a>)})-P(Bl)P(B2)\j

K. i=, /V,

/ / e . D

5. Proof that at least one of almost every two successive n-generations are good.
For the remainder of this paper, T is mixing and rank 1. AUA2,A3 are unions of
rungs of an m0-tower and from here on in, whenever we refer to an n-tower it is
presumed that n> m0.
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242 S. A. Kalikow

Define /,(«, M, TV, a>), I2{n, M, TV, o>), I3(n, M, N, <o) to be fn(T
M+"a>),fn(T

Ma>),
/„ («) respectively. We will merely write /i(o>), /2(w), /3(w) when n, M, N are
understood or just /,, l2, l3 when 10 is also understood. Note that

Rn,,^AuRn^A2,Rn,h<zA3 iff weT-{M+N)AlnT-M(A2)nA3. (5.1)

We now define an n-generation for TV, M, w. Some or all of n, N, M, w will be
dropped when they are understood, (e.g. we can just refer to an n-generation, or
merely a generation). Fix n, N, M. i is said to be the beginning of a generation if
the set {/,(r'(w)), l2(T'{a>)), l3(T'(a>))} contains 1 but does not contain error, i is
said to be the end of a generation if the set {lt(T'((o)), 12(T'(OJ)), l3(T'(a)))} contains
hn but does not contain error. For c, deZ, [c, d] is said to be a generation if c is
the beginning of a generation and d is the least integer such that d > c and d is the
end of a generation. Here [c, d] is short for [c, d] n Z.

Remark (5.2). Fixing «, M, 7V, to, the generations are all disjoint and their union is
the collection of all integers i such that error g{/,(r'(w)), /2(T'(«)), Z3(r'(w))}.
For any such integer i, i is in generation [c, d] where c = i + 1 -min {/,(T'(w)),
/2(TV)),/3(r(a>))} and d = i + ^ - m a x {/,(TV)), / 2 ( r ( w ) ) , / 3 ( r » ) } . For
any j in that generation lk(T

J(<o)) = lk(T'(a))) +j — i for fce{l,2,3}. Thus, by
(5.1), l,(T'((o)), l2(T'((o)), l3(T'(o))) not only determine the generation
containing i, but also determine which values of j in that generation have
the property TJ{w)e r ( M + " U ) n r M ( / l , ) n / l , .

When n, M, N, u> are all understood we will refer to the generation containing 0
as the current generation. The generation following the current generation will be
referred to as the successor generation. If we replace i with 0 in remark 5.2, we see
that knowledge of the values of /,, l2, l3 provides sufficient information for studying
completely the current generation. We will now develop additional notation for
studying the successor generation.

Let Kn((o) be denned as in § 2. Let KnJ(w), Kn,2(a>), Kn,3((o) be Kn(T
lM+N)(co)),

KnT
M{a), Kn(co) respectively. Either or both of the terms w, n can be dropped

when understood (e.g. we can just refer to Ku K2, K3 when co and n are both held
fixed). Suppose /,, l2, l3 have a unique maximum and that a is a permutation of
{1,2,3} such that l<T(\)^lcr(2)<l<T(3v

 W e define K to be K^^ (or we can write Kn(<o)
to indicate n and w). Note that K is well defined if lul2, l3 have a unique maximum.
{lul2,l3,K) is said to be acceptable if /,, l2, l3 have a unique maximum and
K < J.r(3) - k(2) where a is a permutation of {1,2, 3} with /o-(i)^/<T(2)<'<r(3).
Remark (5.3). Suppose {lx,l2,l3,K) is acceptable and that a is a permutation of
{1,2,3} with /o-(i)S /o.(2)</o-(3)• Then the successor generation is [c, d~\ where c =
hn +1 + K -1^ and d = hn- /o.(2). For any integer j e [c, d], /,(TJw) = /,(w) +_/ for
ie{cr(l), cr(2)} and lt,m(TJ(u>)) = lvi3)(a>)+j-hn-K. Thus, by (5.1), knowledge of
(lul2,l3, K) gives sufficient information not only to determine the successor gener-
ation, but also to determine which values of j in the successor generation satisfy

V((o)e T~(M+N\Al)nT-M(A2)nA3.
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Twofold mixing implies threefold mixing 243

A generation [c, d] is said to be e-good if

d — C+ 1 " . ! ' V •

-P{A,)P{A2)P{A3)

By remarks (5.2) and (5.3), (/,, l2, l3, K), if acceptable, determines whether or not
the current generation, and whether or not the successor generation is e-good. e-bad
means not e-good.

Remark. (5.4). We now give an overview of the program for the remainder of § 5.
First we define a small bad set off which {lul2,l3, K) is acceptable and pairs of
the three 7", TM+>, T I ' V + M + 1

) m j x w e n a s / r u n s o v e r either the current or the successor
generation. Then comes the heart of the proof, lemmas 5.18 and 5.26, where we use
lemma 4.1 to exhibit a number Q dependent only on e and not on /,, l2, l3 or n
such that off the bad set, conditioned on knowledge of /„.(]) and l^3) there are at
most 2Q choices of l^2) which make the current generation e-bad, and conditioned
on knowledge of lu l2, l3 there are at most 2Q small values of K which make the
successor generation e-bad. Next we show that for n large, K does not take on any
fixed value with high probability. We conclude by arguing that for given /„.<,), /CT(3)

there are only 2Q values of l^^ for each of which there are only 2Q values of K
so that altogether there are only {2Q){2Q) = 4Q2 values of K for which any value
of /CT(3) makes both the current and successor generation bad. Since each of those
4Q2 values has small probability it is unlikely for both generations to be bad.

The crux of the proof is as follows. To analyze /i, l2, l3 directly we would need
threefold mixing, which we are not given. However we can study /CT(i), ko), K with
just twofold mixing and the previous paragraph reduces the study of / ] , l2, l3 to

'o-(l)' 'o-(3)> A ~

We will abbreviate the vector {lul2,l3) to just Fand abbreviate (/,, l2, l3, Kt, K2, K3)
to (I, K). Let 8 > 0. We will call F 8-reasonable if

er rors{/ , , / 2 , /,}

and

(1 -Jd)hn >max {|/, - 1 2 \ , |7, - / 3 | , | / 2- /3 |}

and

and call {I, K) S-reasonable if F is S-reasonable and 8hn>max{Ku K2, K3}. If
(I, K) (respectively F) is not 5-reasonable we will call it 8-unreasonable. Notice
that if (/, K) is 5-reasonable, for any 5 < 1, then (lu l2, l3, K) is acceptable.

LEMMA (5.5). Let 0 < 8 < l . Then if n is chosen so that {probability of n-error
set) < S 2 /0 +S2), there exists Nn so that ifM,N> Nn, then

P((I, K) is 8-unreasonable)<382+38

{recall that {I, K) depends on n, M, N).
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Proof.
P(errore {/,, /2, /3})<3P(n-error) <352. (5.6)

Conditioning on the event {error g {/,, l2, /3}}, each /; takes on values 1 through hn

with uniform distribution. If the /,'s were pairwise independent P(|/,-/j|<v5/in)
and P(\l,-lj\>(\-j8)hn) would both be less than lJ~8, i,je{l,2,3}, i*j. When

M and N are sufficiently large the /,'s become close to pairwise independent.
Therefore, there exists Nn such that for M>Nn, N>Nn, P(|/,-^|<Vs/in) and
P(\h-lj\>(l-yf8)hn) are both less than 3^5. Thus, for M> Nn, N> Nn,

P(( lWs)* B <max{ | / I -y , | / 1 - / 3 | , | / 2 - / 3 | } or

V5/In>min{|/1-/2|)|Z1-/3|,|/2-/3|}|error^{/1,/2,/3})<1875. (5.7)

In the statement of the lemma we are given P(/i-error)<52/0 +S2). By (2.1), for
ie{\, 2, 3}, E(K,\l, * error) = hn8

2. Thus

P(*T, > Ml',?* error) <S for /e {1,2,3}. (5.8)

The lemma follows from 5.6, 5.7 and 5.8. •

Our next lemma essentially says that if (T, K) is 5-reasonable for small 8, then a
certain pair of V, TM+\ j M + N + l mixes well as i runs over the current generation,
and another pair mixes well as i runs over the successor generation. Let <r be a
permutation of {1,2, 3} such that /o-(i)^ hm— k<3)- Let

Y, = {i: 1 < / < f t n - k o , + /,,(,), K^-cA^,) and V i K , ) t u c ^

(5.9)

LEMMA (5.10). Let 8>0. If n is chosen sufficiently large and I is 8-reasonable, then
if we define a to be the permutation of {1,2,3} such that laW< /tr(2) < Lm, (8-reasonable
implies the lt's unequal) and define Yu Y2 as in (5.9) then:

and

l(#( y2)/(k(3) - '.(2))) - P(A<rW)P(A<r(2))\ < 8. (5.12)
Proof. Select 8 > 0 so that 8<82/4. By lemma 4.2, select «, so that for any n2, n3 > nu

j ) ) | ) < & (5-13)

Now choose n sufficiently large that

P(n-error)<5 and hn> nj8. (5.14)

For all / such that 1 < i < An - k ^ + /„.(,> - «, +1, let

A simple counting argument indicates that if we sum (1/M)X^7'" < 3 > + ' "" > " 1 + '# QH
each element of y, gets counted exactly once except for those j e Yt where 1 <y < M,
or hn -/<r(3)+ /„•(!) —«i <j^hn - l a ( 3 ) + /O-(D each of which is counted less than once.
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It follows that

# y.-f1) -""V1 #Qi<2n,. (5.15)

For each w e d , (we use w instead of <o because w is used to define the vector (T, K)
and a> will be allowed to vary after (f, K) is selected and held fixed) let

Since f is 5-reasonable, l ( j ) - l ( n > v S /in > 8hn > «,, the last inequality by (5.14).
Applying (5.13), with n2, n3 replaced by n,, h^-lao) respectively, we get

£(|(l//i,) W ) - P(AvU))P(Aam)\) < 8. (5.16)

Furthermore, for i leJ i , , , 1 < i</»„ —/^(3) + /o.(n —M,+1, it is immediate from the
definitions of N(a>) and of Qt that N(w) = #Qf. By (5.14), each rung has probability
more than (1 -8)/hn. Applying (5.16),

= ((!-«)/*-)
'o-(3)+'o-(D^"r

|(l/«,)#(?,.-P(ACT(1))P(At,(3))|

" ""'l'" ' (#Q,)]
- (*» - tr(3) + tr(l) - »1 + l)P(i4or(3))P( A

| \

#(Vi) j
>((i-8)//in)(|#y,-(/in-i

The last inequality follows from (5.15) and the fact that P(AO.(1))P(AO.(3)) < 1. Solving
for |#y,-(/in-/,,(3)-/(,(1))P(^(3))P(^<r(i))| and then dividing through by hn-
L(3)-l*u) gives

1 , . .

"n '<T(3) + 'o-(l)

Because fis 5-reasonable hn -

3fl,
(5.17)

•Vi/in. Thus

5 5

and applying (5.14),

Thus the right-hand side of (5.17) is less than 48/yfs<8 and (5.11) is proved. (5.12)
is proved similarly. •
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Remark. We are about to prove the heart of the proof, lemmas (5.18) and (5.26).
This remark is unnecessary in reading this paper, but it should be noted that these
lemmas and their proofs are modifications of a more generalized, easier to state,
and easier to prove result: for every two-fold mixing transformation T, and set A,,
and any e > 0, there exists an integer Q such that for any set A2 with P(A2) > e,

#{i:\P(T-'(Al)nA2)-P(A[)P(A2)\>e}<Q.

This result follows easily from lemma 4.1 and is much simpler to prove than lemmas
(5.18) and (5.26). Here is a corollary of that result:

Let T be a mixing transformation and A,, A2, A3 be any three sets. Then for any
e > 0, #{i: |P(A, n T"j(A2) n T~"(A3) - P(Al)P(A2)P(A3)\ > e} is bounded above
with a bound that does not depend on n except that n be sufficiently large.

LEMMA (5.18). Let e > 0 be given. Select 5 > 0 with S + (Vs/1 - 5) < e. Then there is
a positive integer Q so that ifn is chosen large enough so that P(n-error set) <S and
so that lemma (5.10) holds, if a is defined by h(\)< ha) < ko), if a; h(l) and /CT(3) are
known, and it is known that I is S-reasonable, then there are less than 2Q possible
values for /o.(2) (between hw and la(3)) such that the current generation is forced to be
e-bad.

Proof. For simplicity, presume a is the identity map. By (4.1), select Q so that for
any Q integers nu n2,..., nQ,

/I 1 \
£ [ — #(A2n{T">((o), T"i(a),..., T"v(<o)}) - P(A2) ) < 8. (5.19)

Now suppose we can make 2Q choices, n,, n2,..., n2Q, of values for l2, between
/, and l3, such that (/,, l2, l3) force the current generation to be e-bad. For any
particular choice of l2, let

The current generation is e-good iff

\(l/(hn-l3+l]))#(0luh,h)-P(Al)P(A2)P(A3)\<e.

Thus, for l<i<2Q,

\(l/(hn-l3+lt))# 0iunhh-P(A,)P(A2)P(A3)\> e.

Hence, either there are Q values for i such that

(\/K-l3 + U))#6luniM-P(A,)P(A2)P(A3)>e (5.20)

or there are Q values for i such that

( \ /(hn -13 + / , ) )# 0 W 3 - P(AX)P(A2)P(A3) < - e .

In either case the remainder of our proof by contradiction is essentially the same,
so assume without loss of generality that (5.20) holds for 1 < i < Q.

Let Yi be as in (5.9) (keep in mind that here we presume o- to be the identity
transformation). Notice that for any choice of Z2, Oi^j,^ Yt. For ye Y,, let

Then by (5.20),

I Cj=Z #6h,nhh>Q(hn-l3+h)(P(Al)P(A2)P{A3)+e). (5.21)

https://doi.org/10.1017/S014338570000242X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000242X


Twofold mixing implies threefold mixing 247

For .ye y , , i £»,„„„,, iff RnJ_,,+n(c A2 iff for all weR^j, Tn>-'<(a)e A2. Thus for
j £ Y, and w e /?n>J-

# { / : l < i < Q and P"'>((3)eA2} = cr (5.22)

Since P(n-error)<5, each rung has probability more than ( l / / i n ) ( l -5) . Since
T~'<(w) has the same distribution as co, by (5.19) and (5.22)
8>E(\(l/Q)#(A2n{Tn>(T-l>u),...,T"v(T-'>ui)})-P(A2)\)

jsY, J

By (5.21),

(1/Q) I c, -P(A,)P(A2)P(/l3)(/ ln-/3

By (5.11)

/,). (5.24)

_-h + h). (5.25)
Since I is assumed to be 5-reasonable, (hn-l3+ll)/hn>\/s. Plugging (5.24) and
(5.25) into the right hand side of (5.23) gives

hn-l3 + ll)-(#Yl)P(A2)\<SP(A2)(hn-l3

_
and hence e <Js/(\ - 8) + 8 which contradicts the choice of 5 in the statement of
lemma (5.18). •
LEMMA (5.26). Let e > 0 be given. Select 8, 0< 8 < 1 such that

Then there is a positive integer Q so that ifn is chosen large enough so that P(n-error
set) < 8 and so that lemma 5.10 holds, then iflu l2, l3 are known and it is known that
(T, K) is 8-reasonable, then there are less than 2Q possible values for K (since we
presume (I, K) 8-reasonable only values K with K<8 hn are considered) such that
/,, l2, /3, K force the successor generation to be e-bad.

Proof. Without loss of generality presume /, < /2 < l3 so that K = K3. By lemma (4.1)
select Q so that for any Q integers nu n2,..., nQ.

E(\(\/Q)#{i:l<i<Q and Tn^a>)eA3}-P(A3)\)<8. (5.27)

Now suppose we can make 2Q choices for K3, nu n2,..., n2Q, all less than 8hn,
and each of which force the successor generation to be e-bad. For any particular
choice of K3, let

0/,.72.;,,K3 = {«: K, + l < i < / 3 - / 2 , Rn,i+hn+ll-h^ Au

Rn.i+hn+h-h<= A2 and /?„,,•_*,<= A3}.
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To say that K3 makes the successor generation is e-bad is precisely the statement

1

so arguing as we did in the proof of lemma (5.18) we can assume without loss of
generality that for all i, 1 < i < Q

1
(5.28),_,_„# 0,,,,2,,3,ni - P{AX)P{A2)P(A3) > e.

Let Y2 be as in (5.9), where a is the identity transformation. Then:

(5.29) For any i, ie 0,,,,2,,3,K3 iff ie Y2, is K3 +1 and /?„,,_*, <= A3.

Let £,,,2,,3,K3 = 0,,,,2,,3,K3\{i: 1 s «< S/.J and Y2 = Y2\{i: 1 < «< 8hn}. Then by (5.29),

(5.30) i e 0,,,,2,,3,K3 iff i e y2 and RM,,_K3 c A3.

For each i e f 2 , let c, = #{7: 1 <j < Q and i e <?/,,i2,;3,n.}. Then by (5.28),

8hn)Q; (5.31)
the last inequality follows from (5.28), noting that nj<8hn for each j , 1 < J < ( ? .

Suppose 16 Y2. For <oeRnJ, l<j<Q, T'"'{(a)eRni_n. and thus for such w, by
(5.30), n ( < 3 ) e A 3 iff iee,uh<h<n.. Hence, for «e / ? n i , /e y2,

# { J " : 1 < J < Q and T~"'(a>)€ A3} = c,. (5.32)

Each rung has probability more than (l/hn)(l -8) so by (5.27) and (5.32),

:1<7<<? and T-">(w)eA3}-P{A3)\)

I |(l/<?)c,.-P(A3)|

(!/<?)( I c)-P(A3)#Y2
\ ie y2 /

I c,)-/3-/2-5/in)p(A,)P(A2)P(A3)
ie Y2 I I

-8ftn(P(A,)P(A2)P(A3)

-1( / 3 - h)P{Ax)P{A2)P(A3) - P(A3) # (y2)| - |P(A3)(#( y2) - # Y2)\). (5.33)

By (5.31), (l/Q) (Ziet2ci)-(l3-l2-8hn)P(Al)P(A2)P(A3)>e(l3~l2-8hn)-8hn.
Thus

/ \
,) >e(l3-l2-8hn)-8hn. (5.34)

Applying (5.12), <r is here the identity transformation, gives

|(/3 - /2)P(A,)P(A2)P(A3) - P(A3) # (y2)| < 8(l3 - 12)P{A3). (5.35)

The definition of y2 gives

\#Y2-#Y2\^8hn. (5.36)
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Plugging (5.34), (5.35) and (5.36) into the right hand side of (5.33) and using
K>l3-l2>Jshn gives

8>(l/hn)(\-8)(e(l3-l2-8hn)-8hn-8hnP(Al)P(A2)P(A3)

-8(l3-l2)P(A3)-P(A3)8hn)

> (1 -8)(e(-Js-8)-8-8P(Ai)P(A2)P(A3)-8P(A3)-8P(A3)

thus (8/(JH-8))(l/(l - 5 ) + 4 ) > e, contradicting the choice of 8 in the statement
of lemma (5.26). •

Remark In the last paragraph of remark (5.4), we indicated that we only need
twofold mixing to study /„.(,), ho), K. The next lemma makes this statement precise.

L E M M A (5.37). Let a, j8 be two distinct elements of {1,2,3} then:

(5.38) conditioned on la # error, la is independent of Ka ; and

(5.39) for any 8>0, if M, N are chosen large enough, then

\P(h = i\L, Ka) - P(fe = i)| < 8 for all i.
(Recall that la, lp, Kp are functions of M and N and n. Note that you can choose n
before 8, i.e. you can let 8 depend on n.)

Proof: Assume without loss of generality that a = 1 and /3 = 2. Kx is the size of the
n-error set above TM + N(«). This is clearly independent of what rung of the tower
TM+N(w) is in and hence (5.38) holds. (5.39) follows immediately from twofold
mixing once one observes that l2 is information about TM(w), and llt X, are
information about TM+N(co). O

LEMMA (5.40). Let 8 > 0. Then for n sufficiently large, P{Kt =j) < 8 for allj and all
'£{1,2,3}.

Proof. First select m so that l/hm < 8/2 and let S be the first rung of the m-tower.
Then P{S) < 8/2. By mixing, select L so that P(TL((o) € S|w e S) < 8. Suppose n > m
is chosen large enough so that hn > L. We will show for any such n that P(X, =j) < 8
for all j and all i €{1,2,3}.

Assume without loss of generality that i = 1. Kx is independent of what rung of
the n-tower io is on and S, being a rung of the m-tower, is a union of rungs of the
M-tower. Thus

P(K, =j\Ki is defined) = P(X, =j\o e S).

If *:, =7, then Th»+J(<o) is on the same rung as to and thus if at e S, Th"+i(o)) e S. Hence

P(KX = ) ) s p(Kt =j\Kt is defined) = P(X, =j\a> eS )< P{Th»+j(<o) e S\u eS)<8.
•

Theorem la and theorem lb are called theorems, rather than lemmas, because all
the previous lemmas are used to prove theorem 1 and once theorem 1 is proved,
none of those lemmas are used again.
THEOREM la. Let e>0 be given. Then there exists n so that ifn>n, there exists Mn

so that if M, N> Mn, the probability that to is between n-generations, or that both
this n-generation and the successor n-generation are s-bad is less than e.
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Proof. Basically, the proof will consist of indicating certain 'bad sets' such that if
<o avoids these bad sets either the generation containing w or the successor generation
is e-good, and then proving that once n, M, N are properly chosen, the probability
of the union of these bad sets is less than e. Select 8 > 0 to be small enough to obey
all the conditions of lemmas (5.18) and (5.26) and so that

352 + 1475 + 18^5 < e. (5.41)

Letcr(l), o-(2), cr(3) be any permutation of the numbers {1,2, 3}. Let (/CT(i), h(3), K^(3))
be called double bad if /cr(i)</cr(3) and there exists a value for la(2) such that
L(\)<la-(2)<L(3) and (/„.(,), 1^2), Lo), KT(3)) is reasonable, (this means that there
exists /Crd) such that (I, K) is reasonable), but both the current generation and the
successor generation for that four-tuple are e-bad.

The bad sets are as follows:
A, ={(/*, K) is unreasonable};
A2 = {W: (/,, l2, K2) is double bad};
A3 = {(o: (l2, /|, Ki) is double bad};
A4 = {a>: (/,, /3, K3} is double bad};
As = {(o: (/3, /,, K,) is double bad};
A6 = {co: (/2, h, K3) is double bad};
A7 = {to: (/3, l2, K2) is double bad}.

It is immediate from the definitions of these sets that if w is in none of them, then
to is in a generation and either that generation or the successor is e-good. All that
remains is to choose n, and then for n > n choose Mn so that if M, N > Mn, then
M, JV and n force all the bad sets to be small.

Choose Q so that if n is chosen large enough, the conclusion of lemmas (5.18)
and (5.26) hold for that Q. Choose n so that if n > n, n is large enough for the
previous sentence to hold, P(w-error set) < 82/l +82, and lemma (5.40) holds where
8 is replaced by 8/Q2. Next choose Mn so that if M, N> Mn lemma (5.5) holds
and lemma (5.37) holds with 8 replaced by (1 - 8)/2hn, (recall that it is acceptable
for 8 to depend on n in lemma 5.37).

Now fix « > n and M, N> Mn. By lemma (5.5),

P (A, )<3S 2 +3S + 18VS. (5.42)

We now estimate P(A2). By lemma (5.18) there are less than 2Q ways to choose /3
so that / i < / 3 < / 2 and (/i,/2,/3^ are 5-reasonable and e-bad. Once such an /3 is
chosen, it follows by lemma (5.26) that there are less than 2Q ways to choose K
(which in this case is K2) with (/,, l2, l3, K2) reasonable, and for which the successor
generation is e-bad. Thus, if U < h there are at most (2Q)(2Q) = 4Q2 values of K2

so that (/,, l2, K2) is double bad. Suppose /,, l2 are known, say l{ = a, 12 = b. Let du

d2,..., d4{?2 be 4Q2 values including all values of K2 where {l\,l2, K2) is double
bad. Recall that we chose « so that n > n implies lemma (5.40) holds with 8 replaced
by 8/Q2. For such n,

P(K2 = di)<8/Q2 forall /, 1 < I < 4 Q 2 ; (5.43)

P(K2 = d,\U = a,l2 = b) = P(K2 = d,, /, = a,l2 = b)/P(U = a,l2= b)
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a\K2 = dh l2 = b)P(k2 = di, I2 = b)/P(l{ = a, I2 = b); (5.44)

the events K2 = dh 12= b are independent conditional on the event l2^error.

P(K2 = dt, l2 = b\l2 * error) = P(k2 = dt\l2 # error)P(/2 = b\l2 * error). (5.45)

Both (K2 = dj)c (l2^error) and (I2 = b)^(l2^error) so (5.45) becomes

P(K2 = dlt l2 = b)/P(l2 * error) = (P(K2 = d,)/P(/2 * error))

x(P(l2 = b)/P(l2 terror)).

P(/2 ^ error) > \ so we have

Plugging this into the right hand side of equation (5.44) we get

(5.46)
Recall that we chose Mn so that M, N>Mn implies lemma (5.37) holds with S
replaced by (1 -8)/2hn. Plugging this and (5.43) into (5.46) gives

The second inequality holds because (1 - 8)/ hn < (1 - P(n-error set))/ hn = P(/, = a).
For (U, l2, K2) to be double bad, where /, = a, 12 = b, it is necessary that K2 = d, for
some i, 1 < i < 4Q2. Thus by (5.46),

P((h, k, K2) double bad |/, = a, l2 = b) < (68/Q2)4Q2 = 248.

Since a and b are arbitrary, P(A2)<248. By similar reasoning, P(At)<248 for
2==i<7. By (5.41) and (5.42),

= 382+38+ lSs/8+(6x24)8 = 382+ 1478+ \SyJ8<e. D

Just as the successor generation refers to the generation following the current
generation so we refer to the generation preceding the current generation as the
preceeding generation.

THEOREM lb. Let e > 0 be given. Then there exists n so that ifn>n, there exists Mn

so that if M, N> Mn, the probability that w is between n-generations, or that both
this n-generation and the preceeding n-generation are e-bad is less than e.

Proof. The proof is exactly analogous to the proof of theorem la (e.g. instead of
Kn(<o) define Kn(w) to be the number of b's between the n-block containing w0

and the previous «-block and then define Kn\<o, Kn2a>, Kn3co to be KnT
M+N(<o),

KnT
M(a>), Kn((o) respectively). •

6. Conclusion: the nesting argument
THEOREM 2. Rank 1 twofold mixing implies threefold mixing.
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Proof. Our goal is to select TV so that for M, N> N,

\P(T(M+N)(Al)n T~M{A2)n A,)-P(/4,)P(^2)P(A3) |

is small. We begin this proof by selecting a sequence of terms, the last of which
is TV. First, fix e > 0. Choose g to be an even integer with

(-j-V <s. (6.1)
\1 +£/

Let

. - ^ . (6.2)

We now define an increasing sequence of integers of length g +1 ; n0, n,, n2>..., ng.
To begin with, choose n0 bigger than the n of theorem la and theorem lb with e
replaced by 8. By 'e replaced by 8\ we mean the following. Theorem la and b say
that for any e > 0 something is true. In particular it's true for the 8 of (6.2). For
that 8 there exists n and we choose n0 bigger than that n. For i<g choose n1+1

sufficiently larger than n, so that

82hni+>hnr (6.3)

Recall that hn is the height of an M-tower. Note that all n, are bigger than n0 and
hence are bigger than the n of theorems la and b with e replaced by 8. We now
choose TV For i ̂ j, i, j e {1,2,3}, and any fixed n, /,(«, M, TV), l}{n, M, TV) become
close to independent as M and TV grow large. In particular, if /, and /, were
completely independently valued from 1 to hn, then P( | / , - / , |< ehn)<2e, because
for every value /, might take, there are at most 2ehn values /, can have where
\lj-lj\<ehn and the probability of taking on one of 2ehn values is 2e. Therefore,
for TV chosen large enough, for any M, TV > TV

P{\lt{nk, M, N)-lj(nk, M, N)\<ehnk)<2e, (6.4)

for all i, je{l, 2, 3} and all ke{0, 1 , . . . , g).
For i e {0, 1 , . . . , g}, let G,(w) be the event that w is between nit M, TV-generations

or that both this «,, M, TV-generation and next one is S-bad or this n,-generation
and the previous one is 5-bad then by theorem la and b with s replaced by 8, if
TV is chosen large enough, then for all M, TV > TV

P(G,(«))<2S forie{0, l , . . . , g } . (6.5)

We choose TV large enough so that (6.4) and (6.5) hold. From here on in M, TV are
two fixed values larger than TV

Definition. A finite set S c | will be called (o-good if

'-{i e S: Ti+M+N(o>) e A,,T'+M(co) e A2,T"(w) e A3} -

We will just say 'good' if w is understood. Note that the disjoint union of good sets

is good. Note also that a 5-good n-generation for a> is an w-good interval of integers.
Let L = hng. We will show that P(T"(M+iV)Al n T'M(A2)nA3) is close to

P(A,)P(/42)P(A3) by exhibiting, for most w, a large subset of 0, 1 , . . . , L which is
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good, (by 'large' we mean most of 0, 1 , . . . , L). We now construct for each w a
sequence of three set partitions of {0, 1 , . . . , L], each used to construct the next,
such that for most a> one set in the last partition is the large good set desired.

( / , . » , J2.,(«), hjoj)), (/,.,_,(«), h,g-,(o>), 73,g_,(a>)),

. . . , (7, 0(w), 72o(«), J3,o(&>))

is our sequence of three set partitions of 0 , 1 , . . . , L to be constructed in that order
by induction, o) will be omitted from expressions 7u(o>) when understood. 71>g =
{0, 1 , . . . , L}, I2>g = 0 , 73 g = 0 . Now suppose 7,1+1, 72>1+1, 73 j+1 have been construc-
ted. We define 73 ,(w) to be the union of 73 /+I(a>) with all 5-good «,-generations
for w contained in 7, ,+,(w). We define 72,(co) to be the union of /2l+1(w) and all
integers in /,,+,(«) not in an n,-generation for a> and all n,-generations for o> which
are subsets of 7M+,(w) which are not 5-good and which are smaller than 8hn. in
size. 7, ,,i = {0, . . . , L } \ ( / 2 , u 73il). In the special case where i = g-l we will alter this
definition slightly. We define I2,g-\ and /3,g-i just as we did above except that we
also include, in 72g_,, the intersection with {0, 1,2,..., L} of the ng_i-generations
(of which there are at most two) which intersect but are not contained in {0, 1 , . . . , L}.
As above, we define Ii,g_i to be {0, . . . , L}\(72-g_i u 73 K_,).

We now discuss what 7,, looks like for each i. /2>g-i u 73?g-i is a union of
ng_, -generations with the integers between «g_i-generations and the incomplete
«g_!-generations on the edge of {0, . . . , L). That leaves a union of complete «g_i-
generations for /i,g-i. Each of these is a union of «g_2-generations with integers
between ng_2-generations. Continuing by induction we see that each 7,, is a union
of n,-generations.

We can see by induction that each 73, is a disjoint union of 5-good generations
and hence is a good set. In particular, 73 0 is good. Our goal is to establish that for
most (o, 73O(w) is the desired large good set mentioned earlier. Thus we must only
establish that for most &>, 730(«) is large.

We now proceed to establish the set of w for which 73O(w) is large. For each a>
and each i, let C,(o>) be the event that the previous «,-generation, this n,-generation
or next nrgeneration is less than ehn in size. In order for C,-(fi>) to occur, it is
necessary that |lj-lk\ <ehn_ for some,/, fce{l,2,3} or for lj<ehn. for some./e {1,2,3}.
For every fixed j , P(lj < ehn.) is approximately e so P((, < ehn. for some j) = 3e. By
(6.4), P(\lj -lk\< ehn_ for somey and k) < 6e. Thus P(Ci(a>)) < 9e. Since the probabil-
ity law on w is the same as the probability law on TJ(«),forany7, P(Q(TJ(a))))<9e.
Thus, letting

CiM = #{j: 1 < J < L and Q(TJ(w))}

we have

<9e.
\ i=0 /

Thus

(6.6)
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For a) to be in an n,-generation that is smaller than 8hn., it is necessary that /,, l2

or l3 be less than Shn.. The probability of this is not much more than 35 and
is definitely less than 45. Let A(&>) be the event that w is in an n,-generation
that is smaller than 8hn.. Let D,(w) = #{ / : 1 < ; < L and D,(TJ(w))}. Then
£(( ! /*) ZfTo' (l/L)D,-(»))'<4a and thus

«)]>V«)<4>/s. (6.7)

Repeating the reasoning of the past two paragraphs on G,(w), by (6.5), if we let
G,(«) = #0": l s j s L and G,(TJ(<a))} then

) (6.8)
i=0 /

will be called special if

7 5 ; and
V5.

It is for special w that we will prove /3>0(w) is large. By (6.6), (6.7) and (6.8) we have

P(w is not special) <9^e+&/s<\5s/e. (6.9)

From here on in, until stated otherwise, w is presumed to be a fixed special point.
We will prove that / 3 0 is large by proving that /2,0 is small and /] 0 is small. First

we prove that 72O is small. We will say that an integer / e { 0 , 1 , . . . , L} is added to
72l if it is in 72 j \72 ,+, . Thus 720 is precisely the integers added to 72>, for some i.

The number of integers added to 72>g_, (because they are among the at most two
ng_!-generations which intersect, but are not contained in {0 , . . . , L}) is less than
2hng_i which by (6.3) is less than 282hng = 2S2L.

For any j e { 0 , 1 , . . . , L}, if/ is added to I2i because it is in an «,-generation of
size less than Shn. then we have Dt(T

J{(o)). Thus the number of integers added to
J2j, for any i" for this reason is no more than £fJ,J Dj(w) < >/ 8gL= eL. The inequality
follows because o> is special; the equality follows from (6.2).

For each / € { 0 , 1 , . . . , L}, if P(a») is added to J2, for some i because it is in
between M.-generations, then we have Gi(7

v'(ft>)). Thus the total number of such
integers is less than or equal to ZfJo G,(w)<V5gL= eL.

Combining the results of the previous three paragraphs we get that

# / 2 , 0 < ( 2 5 2 + 2 E ) L < 4 E L . (6.10)

Now we show that /i>0 is small. As already mentioned 7M+, consists of «j+1-
generations. All of these ni+l-generations are more than 5/in+l in size because the
definitions of J2,+, and /3 ,+1 force all generations smaller than 5/iH|+1 to be in one
of those two sets.

Now we focus on a fixed n,+1-generation in / M + i , call it r, and see how much of
it is in /j | . Let H0,r be the total number of integers in r. Then

HOir>8hni+l. (6.11)
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A certain amount of r, which we will call H, r, lies outside of n,-generations. The
remaining HOr-Hir integers lie in n,-generations which we will list in order in
pairs, £ M , EU2, E2l, £2,2, EiX, E32 . . . . If the number of «,-generations in r is odd
we will call the last one E. Let H2r = #E, H2r = 0 if the number of n,-generations
in r is even.

W2,r^n, (6.12)

Let H3r be the number of integers in pairs £,,, £,2 such that both Etl and Ei2 are
S-bad. Let H4r be the number of integers in pairs Eu, EU2 in which either EiA or
Ei2 is less than ehn. in size.

If we start with r, remove the integers between n,-generations, remove E if it
exists, and remove the pairs of generations in which both are 5-bad or at least one
is smaller than ehn., you get at least HOr - //, r - H2r — H3r - H4r integers remaining.
We say 'at least' not 'exactly' because H3r and H4r may count some of the
same pairs of generations. These remaining integers form pairs EiU Ei2 of which
at least one is 8-good and that one is at least ehn. in size. Since the other one
is at most hn. in size, the fraction of integers in the pair which go into /,?3 is at
least e / ( l+e) (i.e. the 5-good generation goes into Ju). Since this is true for
each of these remaining pairs, the amount of r going into I3i is at least

Now, instead of considering r to be a fixed «,-+, -generation in / M + i , consider r
to be a variable ni+l-generation in / M + i . Altogether,

(6.13) the amount of /,,,-+, in /3,, is at least (e/(\ +e))Yir(HOr-Hlr-H2r-
H3<r~ H4r) where the sum runs over all ni+l-generations in /, ,+ 1;

(6.14) Ertf0-r = #/,,, + ,.

Integers counted by Hlr + H3r are all integers in r either between «,-generations
or integers where this generation and next one are 5-bad, or integers where this
generation and the previous one are 5-bad. All are integers j where we have
G,(r(o))). Hence

Y.HKr + H3r<Gj{a)). (6.15)
r

By (6.3), (6.11) and (6.12), H2r<SH0r. Hence by (6.14)

**2,r "^ O * *e-'l,i + l — OIA ^O.lOj

r

Every integer counted by H4r is an integer j where we have Ci(TJ(u>)). Thus

lH4 ) r<C,(w). (6.17)
r

By (6.13), (6.14), (6.15), (6.16) and (6.17):

(6.18) The amount of /M+, in J3>, is at least (e/1 +e ) (#J M + 1 -G i (w) -

Since o> is special

(1/g) I
i=l
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Thus there are at least g / 2 (recall that g is an even integer) values of i;iui2,..., ig/2,
such that for each j , 1 < j < g /2 , 0 < i, < g - 1 and

V7 (6.19),.)

Choose them so that i, > i2> • • • > ig/2. By (6.18) and (6.19),

/,,i|+1-6VIL) < L--J-(L-6V7L)

(6.20)

Since #/M 2 + 1 <#/ , , , , , we have, by (6.18), (6.19), and (6.20),

# / M 2 < #iUh+l - - ^
1

+ 6 J S ) ( L ( +

+e 1+e / l + e \ \ l + e 1+e

+ 6 V 7 +
+ e / 1+e 1+e 1+e

Continuing this reasoning by induction we have that

j +6VIj<L(e+6Ve)<7VeL.

The second to last inequality follows from (6.1). Thus # / , 0^#/i , ,K / 2

Combining this with (6.10) we get that

#I3fi=L-#IUo-#I2,o^L-7JeL-4eL>L(l-lly/l), (6.21)

and we have proved that J3j0 is a large good set. All that remains is to show that
the existence of a large good subset of {0 , . . . , L} for most <o implies that

\P(T-iM+N\At) n T~M(A2) n A3) - P(A,)P(A2)P(A3)\

is small. Since /3j0 is good

j e J3i0: V{(o) e T-(M+N)(A,) n T"M(A2) n A3} - PiAJPiAJPiAJ '

L-#I

(6.22)

Tj(a>)e ( M N ) M

3,0

-P(A{)P(A2)P(A3) < 1 (6.23)
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because it is the absolute value of the difference between two values in [0,1]. By
(6.21), (6.22), and (6.23),

\(\/L)#{j: 1 < J < L and F(«)e T-(M+N)(A{)n T~M(A2)nA3}

-P(A,)P(A2)P(A3)|

#1 3,0 1

L

-P(Al)P(A2)P(A3)

L-#L 3,0 1 #{j: 1 <j < L and 7 i. I3y0 and
L-#/3 > 0

(o))ei (A[)ni (/i2) n.

( 6 - 2 4 )

We now remove the assumption that w is special. We just showed that if w is special
(6.24) holds. For any j ,

P(T-(M+N)(A,) n T-M(A2) n A3) = P(r^(T- ( M + N ) (A,) n T"M(A2) n A3))

= E ( 1 T ; ( ( u ) e r - ( M + ~ U , o T"M(A2)r. A3)-

Here lT'(»)6T-(M*N1/t,nrM/i2n^ is the indicator function of the event TJ(a>)e
T-(M+N\Al)nT-MA2r^A3. Let

/ ( « ) = # 0 ' : 1 S J S I and r ( w ) e T-<M+JV)(A,)n T-M(A2)n A3}.

By (6.25),

Thus by (6.24), the fact that 0<( l /L) / (w)< 1 and 0<P(A,)P(A2)P(A3)< I, and
(6.9) we get

<M+N)A, n T"M(A2) n A3)-P(A,)P(A2)P(A3)|

= |£((l/L)/(6>)-P(A,)P(A2)P(A3))|

<£(|(l/L)7(w)-P(A1)P(A2)P(A3)|)l<uisspecial)

+ £((|(l/L)J(a>)-P(Al)P(A2)P(A3)|)la,isnotspecial)

< 1277 + P(w is not special) < 12V7 +15V7 = 2777. •

The purpose of the appendix is to resolve the seeming ambiguity in the block
structure used to define w-towers in a rank one transformation. We prove here that
if (o is any non periodic word of 'a's' and 'fcY chosen as in our construction of a
rank one transformation, then for every n the word uniquely determines which rung
of the n-tower the word is in.
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First, note that we can assume without loss of generality that each w-block starts
and ends with an 'a ' . Otherwise, simply remove the starting and ending 'fcY in each
n-block and make them intermediate 'ftY in the construction of the n + 1-block.
The words will remain the same and if it is now possible uniquely to resolve the
question of which rung of the n-tower the word is in, do so and then when the
starting and ending 'ftY are returned to the n-blocks we removed them from, it is
easy to see that the non-ambiguity of which rung of the n-tower the word is in is
preserved.

We now prove the result by contradiction. We prove that if the block structure
of a word is ambiguous, then the word is periodic. Suppose that by looking at the
word a) it is possible for the word to be in either the fth or the fth rung of its
n-tower, i<j (i.e. we are supposing that the block structure of w is ambiguous).
Let B be an n-block. Then there must be two doubly infinite expansions of 'BY
and 'ftY which we will call forms 1 and 2, such that when we expand each B into
its component 'a ' s ' and 'ftY both forms reduce to the same word w, whose zero'th
component is the fth term of its 'B ' in form 1, and the j'th term of its 'B ' in form
2, i<j. Let B 1 0 be the 'B ' in form 1 containing the origin, and B, ,, B, 2 , . . . , be
the 'BY following B, 0 in form 1, listed in order, and B, _,, B, _ 2 , . . . , be the 'BY
preceding B, 0 in form 1 in reverse order. Similarly, list the 'BY of form 2 , . . . ,
#2,-3, #2,-2, #2,-1. #2,o, B 2 , , . . . , where B2>0 contains the origin. Let «„ be the height
of the n-tower, i.e. the length of 'B ' . Let r be the number of 'ftY between B, 0 and
B, , and let r be the number of 'ftY between B2 0 and B 2 , .

Since a>0 is the fth entry of B, 0, w,_, is the first entry of B, 0 and is thus an 'a ' .
W]_, is the j + l — fth entry of B2 0 so since w,_, is 'a ' , the j + l — fth entry of 'B ' is
'a ' , (o^i+hn+r is the j + l — fth entry of B2i, and is thus an 'a ' . However, Whn_, is
the last entry of B 1 0 so that w^ri_j+1, w h n _ i + 2 , . . . , whn_I+rareall 'foY so 1 -i+hn + r >
hn-i + r; 1 +?> r;

r>r. (6.26)

o}2hn+f-j is the last entry of B 2 , and is thus an 'a ' . We will now show that w2/.n+f->
is in B, ,. Since it is an 'a ' , it must be in B, fc for some fc. It cannot be in B, k for
fc<0 because 2hn+f-j>hn-i and w,,n_j is the last entry of B, O. Suppose it is in
B, k for some fe>2. Because we are assuming that (o2hn+t-j is in B, k for some /c>2
and because whn_j+r+1 is the first entry of B M it follows that

hn+r-j>hn-i + r + l. (6.27)

We also have

hn - i + r +1 > hn - i +1 > hn -j' +1. (6.28)

ti)hn-j is the last entry of B 2 0 so (ohn_J+u <ohn-j+2, • • •, ̂ hn-j+?are all 'ft's'. In particular,
by (6.27) and (6.28) <ohn_i+r+x is a 'ft'. This is impossible because whi_i+r+l is the
first entry of B, , and is thus an 'a ' .

Now that we've proved that w2hn+?_J is in B, , it can readily be verified that (o2hn+f-j
is the hn +r — r + i-j'th entry of B, ,. Thus, since u)2hn+t-j is an 'a ' and a)hn+?-r-j is
the hn +r—r + i—j'th entry of B, 0 , it follows that &>hri+?_r__j is an 'a ' . «,,„_, is the
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last entry of B20 so by definition of r, whn_j+u whn_j+2, • • •, <Ohn-j+? are all 'fe's'. It
follows from the last two sentences that hn+f-r-j<hn-j + l; r<r +1;

r<r. (6.29)

From (6.26) and (6.29) we have that r=r. We have shown that the distance between
B20 and B2, is the same as the distance from B, 0 and Bltl namely r. By translating
«, we could use the same argument to prove that the distance between B10 and BM

is the same as the distance between B2,i and B22, namely r. Continue the argument
proving successively that r is the distance between BM and B, 2, B22 and B2 3, B, 2
and B, 3, B23 and B2-4 etc. Going backwards, we can prove successively that r is
the distance between B, _, and B, 0, B2_, and B20, B, _2 and B, _, etc. Therefore
(o is periodic. •
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