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WEIGHTED CONVOLUTIONS OF CERTAIN POLYNOMIALS

MASSOUD JAHANGIRI

For a > 0 and f) ^ 0, let K(a, /J) consist of those functions f(z), analytic and non-zero
in |r| < 1, such that for 0i < 02 < 0i I- 2w and 0 < r < 1, -air < a rg / ( r e ' 6 ' ) -
arg/( re ' 9 1 ) + l/2(a - P)(9X - 02) < /3n. It is conjectured that for 1 < a < /? and a
an integer, the weighted convolution of polynomials having their zeros on |z| = 1 and
belonging to K(a, /3), also belong to K(a, /3). This conjecture is known to be true for
the case a = I, which leads to an alternative proof for the generalised Polya-Schoenberg
conjecture. The case a = 2 is also known to be true for cubic polynomials. We prove the
conjecture for certain quartic polynomials when 2 ^ a ^ 4.

1. INTRODUCTION

1.1. For a S? 0 and 0 > 0, let the Kaplan class K(a, /3), be the class of functions
f(z), analytic and non-zero in \z\ < 1 such that for 0i < 92 < #i + 2n, and 0 < r < 1,

-air < arg/(reiffj) - arg/(rei01) + - ( a -/0)(0i - 92) < 0w.

For a ^ 1 and /? ^ 1 where a is an integer, define

n+l-a
Qn(z; 9) = (1 + z)a~l ff

where 8 = ir/{n + /? — a) and 1 < a < n.
Recall that the Hadamard product or convolution of two power series

f(z) = f; anz
n and g{z) = f ] 6n^ is (/ * g){z) = f ] anbnz

n.
n=0 n=0 n=0

Define CjL"1^*; 5) so that Q L " 1 ^ ; 9)«Qn(z;0) = 1/(1 - z). The following is a. special
case of a conjecture given in [l].
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1.2. Conjec tu re . Let 1 ^ a < n and a < /? where a and n are integers. Assume
that the polynomials

Pn{z) =

belong to K(a, /?). Then the polynomial

also belongs to i f (a , /?).

This conjecture is proved for the case a = n — 1 = 2 in ([1, Theorem 4]) and for
the case 1 = a < /? by Suffridge ([10, Theorem 5]).

Since starlike functions of order 7; 7 ^ 1, can be characterised as the class of
limits of sequences of polynomials in K(a, a + 2 — 27); a > 1 (see [1, Theorem 2] and
[10, Theorem 1]), the above conjecture for a = 1, leads to an alternative proof for
the generalised Polya-Schoenberg conjecture [3]. The special cases 7 = 0 and 1/2
were first proved by Ruscheweyh and Sheil-Small [6] while the general case 7 ^ 1 was
obtained by Suffridge [10], and later by Lewis [2] and Ruscheweyh [4]. The truth of
our conjecture for other values of a , that is a ^ 1, may throw new light on a variety
of old problems, because K(a, /?) is closely related to several well-knnown classes of
analytic and univalent functions. (For more details see [5—9]). In this note we prove
the following

THEOREM 1.3. Let 2 ^ a < 4 and a < (3 where a is an integer. Assume that
the polynomials

4=n
belong to K(a, 0) where <j>k = —^5-* aid V"t = —^s-*- Then Rt(z) = (p4 * g4)(z) *

Qi'^iziB) also belongs to K(a, /?).

Note that Theorem 1.3 is true for a — 1 by SufFridge ([10, Theorem 5]).

2. SOME KEY LEMMAS

To prove our theorem we shall need the following lemmas, the first of which is a
special case of Theorem 1 in [1].
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LEMMA 2.1. Let 0 ^ 4>i ^ fa ^ TT. Then for 2 < a ^ 4 and a ^ /?, the

polynomial

Pi(z) = (1 + « * i ) ( l + ze

belongs to K(a, 0) if and only if 0 < 4>i < (/3TT)/(4+ /? - a ) and

n.

LEMMA 2.2. Let 0 < c < 1, - c «S x ^ 1, - c ^ u ^ 1, - 1 < y ^ c, - 1 ^ v < c,

y ^ x and v < u . I'/ieii

f (,,„,., ,) = 2 + ( * + y ^ u tvf - 2 ( 1 + 2 x y ) { l + 2 t t T ; ) > o-
(1 +c) 1 + 2c

PROOF : The mininuiin of JF occurs either at a critical point or on the boundary. By
setting dF/dx = dF/dy = 0 we obtain either 1 + 2uv = 0 or
((l + c)2(l +2uu )W( l + 2c)(u+t;)2) = 1. By setting 9JF/9U = dF/dv = 0 we
obtain either 1 + 2xy = 0 or

2) = 1. If l+2uw = 0, then F{x,y,u,v) =

If f(l + c)2(l + 2ut;)Vf(l +2c){u + vf) = 1, then x = y and so F(x,y,u,v) =

2{l-{u + v)2/{l + c)2}>0.

Similarly, F{x,y,u,v) ^ 0 when l+2a;y = 0 or (1 + c)2(l + 2xy) = (1 + 2c){x +yf .
Now we check the values of F(x,y,u,v) on the boundary. Since F(x,y,u,v) is

symmetric in (x,y) and (u,v), it would be enough to show that F(x,y,u,v) ^ 0 on
the boundary involving x and y. Let y = —1. Then

. (u + v)2 , .2(1 +2uv) (u + v)2.

+ (1 + c)2 " 1 + 2c "

Setting dF(x,-l,u,v)/dx = 0 we obtain x0 = 1-2(1 + c)2{l + 2uv)/(l+ 2c)[u + v)2.
But F(xo,-l,u,v) = 2{1 + (1 +2uv)/(l +2c)x0} ^ 0 because we must have - c ^
xo < 1. Also observe that F(-c,-l,u,v) = {u - v)2 ^ 0 and F ( l , - l , u ,v ) = 2{1 +
(1 + 2««)/(l + 2c)} > 0. Then F(x,y,u,v) > 0 when y = - 1 . If x = 1. then
F(l,y,u,v) = F{-y,-l,u,v) ^ 0. Let y=c. Then

c)2 (1 + c) ' l + 2 c
2(u + v)2 2(l + 2ut;)
(1 + c ) 2 1 + 2c
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Letting dF(x,c,u,v)/dx - 0 we obtain i j = c{(2(l + c)2(l + 2uv)\ / Ul + 2c)(u + v)2}

Observe that F(xi,c,u,v) ^ 0 because we must have y = c ̂  Xi < 1. If a; = —c,
then by setting dF(—c,y,u,v)/dy = 0 we obtain yx = - * i , and so F(—c,ylyu,v) =
F(xi,c,u,v) ^ 0. If x — y, then it is easy to see that

Therefore F(x,y,u,v) is never negative for the given x, y, u, v and c. U

The following Lemma can also be proved using a similar argument and so we omit
its proof.

LEMMA 2.3. Let 0 < c < 1, - c < a; < 1, - c < w < l , - 1 < y < c, - l < v < c ,

y ^ x and v ^ u. Then

F(x,y,u,v) = 1 + v ' y A ' ' - y ' y A ' ; S> 0.V y ' l + 2c 1 + c

LEMMA 2.4. Let 0 < c < 1, - c < x < 1, - c < u < 1, - 1 ^ y < c, 1 ^ v s$ c,

?/ < x and v ^ u. Furthermore, let

(2.4.1) - ( i + c) ^ (g + yXm-") _ 2
K ' K ' 1 + c

and

, (1 +2ry)(l + 2tiu)
(2.4.2) l + 2c2 < V , o ^ ^ l + 2 c .

1 + 2c
Tiieii

2c2 - 1 < 0.- i - , » , - , - / 1 + 2 c . 1 + c

PROOF: Since (d2F/dx2)(02F/dy2) - (d2F/dxdy)2 = -(d2F/dxdy)2 < 0, the
maximum of F(x,y,u,t)) occurs on the boundary. Note that d2F/dxdy cannot be
equal to zero, because that contradicts (2.4.2). Observe that F(x,y,u,v) is symmetric
in (x,y) and (u,v). Therefore it woidd be enough to show that F(x,y,u,v) <: 0 for
the boundary values involving x and y. Since (x + ?/)(« + v) < 0, without, loss of
generality we assume that x + y < 0 and u + v > 0.

(i) If x = —c, then

here, by (2.4.1), - 1 ̂  y < - c .
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Now we check F(—c,y,u,v) for y = — c and y = — 1.

Let y = - c . Then

. -4c2{u + v) (l + 2c2)(l + 2uv) -
c W ) / ' + * ^ + 2 o ' U 0

because 1 + 2uv ^ 1 -f- 2c and for x = y = — c, -2c(u + u) < —2c(l + c),
by (2.4.1).

(i)(2) Let y = - 1 . Then

F ( - C l - l , u ) V ) = -2c(u +«) + 2 < < 1 + ^ p ) + 2c2 - 1.

For x = —c and y = — 1 we obtain from (2.4.1) and (2.4.2) that 2c < u + v and
1 + 2uv ^ 1 + 2c. Substituting these in F(—c,—l,u,v), it follows that

F{-c,-l,u,v) ^ -2c2+2c-l <0.

(ii) If x = 1, then (by (2.4.1)), y = - 1 and c = 0. Therefore

F{l,-l,u,v) = -2-2ur < 0.

(Hi) If y = - 1 , then

F ( a , 1 , ^ ) = 2 { } g + + 2 c 1 .
v ; X l + c l + 2 c J l + 2c 1 + c

We check F(x,-l,u,v) for x - -c and x = 1. By (i)(2), F( -c , -l,u,w) ^ 0 and by
(ii), F ( l , - l , u , v ) ^ 0 .

(iv) If y = +c, then (by (2.4.1)), x = - c = 0 and u = v = 0. Therefore

F(—c, c,u,v) ^ 0 when c = 0.

Thus F{x,y,u,v) is never positive.

D
LEMMA 2.5. If we change x to —y and y to —x or change u to —v and v to -u

in Lemma 2.4, we obtain

2xy)(l + 2m>) _ 2c{x + y){u + v) _ <

l + 2c 1 + c "• '
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LEMMA 2.6. The polynomial Rn{z) in Theorem 1.3, has all its zeros on \z\ = 1.

PROOF: Using trigonometric identities we can write

Q4(z; 0) = 1 + 2(1 + cos <j>)z +2(1 + 2 cos <j>)z2 + 2(1 + cos <j>)z3 + z4

where <j> = (4 - a)0 = [(4 - Q)TT]/(4 + / ? - « ) . Now

(2.6.1) Ri{z) = l + 2Az + Bz2 +2Az3 + z*

where A = (x + y)(u + v)/(l + c), 5 = 2(1 + 2xy)(l + 2uv)/(l + 2c), 0 < c = cos<j> <
1 , —C ^ S = COS (^i ^ 1 , —C ^ U = COS^l < 1 , —1 ^ J/ = COS 0 2 ^ C) — 1 ^ v —

cosV"2 ^ c, j / < a; and v < u.

If i?4(z) has zero in \z\ < 1, it must have a zero in \z\ > 1, and vice-versa.

Therefore, to prove that Ri(z) has all its zeros on \z\ — 1, it is sufficient to show that

Ri(z) ^ 0 in |,z| < 1. Write Ri{z) - (z2 + axz + l ) ( z 2 + Q 2 Z + l ) = p(z)g(z) where

<*i = A - VA2 +2-B and a 2 = A + VA2 +2-B. By Lemma 2.2., A2 + 2 - B > 0,

so c*i and ct2 are real. Now we need to show that p(z) ^ 0 and q(z) ^ 0 in |z| < 1.

For this, it is sufficient to show tha t —2 < a x and ct2 ^ 2 since a ! ^ a 2 .

For the first case, we observe that - 2 ^ a i because —2 ^ A — vM 2 + 2 — B if and

only if 2 + 5 + 4.A ^ 0, which is true by Lemma 2.3. For the second case, we observe

that a 2 ^ 2 because 2 + B — AA ^ 0 by Lemma 2.3. This completes the proof. D

3. P R O O F OF T H E O R E M 1.3

3 . 1 . By Lemma 2.6, Rt(z) has all its zeros on \z\ = 1 and can be written as _R4(z) =

1 + 2>lz + Bz2 + 2 4 z 3 + z 4 where A and B are as in (2.6.1). Then there exist 0i and
02 with 0 ^ 0! < 02 < 7T such that

i l i ( z ) = 1 +2(cos9i + c o s 0 2 ) z + 2( l + 2cos0 icos0 2 )z 2 + 2(cos0! + c o s 0 2 ) z 3 + z4

where

(3.1.1) A = cos 0i + cos 02 and B = 2(1 + 2cos0! cos02) .

Because pt{z) and q±{z) are in K(a,./3), then (by Lemma 2.1),

(3.1.2) - ( 1 + c ) ^ x + y, u + u ^ l + c and - 1 S-i 1 + 2xy, 1 + 2WT; S, I + 2c.

So, by (2.6.1) and (3.1.1),

(3.1.3) - ( 1 + c) < c o s 0 ! + c o s 0 2 < l + c and - 1 «S 1 + 2 cos 0j cos02 ^ 1 + 2c.

To show that R±{z) belongs to K(a, /?), it is sufficient (by Lemma 2.1.), to show
that 0i is never greater than /?7r/(4 + / ? - a ) and 02 is never less than [(4 — a)7r]/(4 +/? - a ) .
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3.2. First we show that 6\ is always between 0 and /3TT/(4 + /? — a ) . Assume that
Oi = {/?TT/(4 + /? - a)} + e where e > 0. Then

(3.2.1) - 1 ^ cos02 ^ cos<?! < - c .

From (3.1.3) and (3.2.1) it follows that

- ( 1 + c) ^ cos 6i + cos 02 < - 2 c and 1 + 2c2 < 1 + 2 cos 0i cos 02 < 1 4- 2c.

Therefore, by (2.6.1) and (3.1.2),

- ( 1 -I- cf ^ (x + y){u + v)< - 2 c ( l + c),

and

(1 + 2c)(l + 2c2) < (1+ 2:cy)(l + 2uu) < (1 + 2c)2.

Note that the above two inequalities are the conditions (2.4.1) and (2.4.2).

Solving the first equation of (3.1.1) for cos 02 and substituting this into the second
equation, we obtain cos2 8X - jlcosfli + 1/45 - 1 / 2 = 0. Then

(3.2.2) cos 9i = \{A ±

Now from (3.2.1) and (3.2.2) it follows that

(3.2.3) - 2 s S 2 c o s 0 i = A ± y/A2 + 2 - B < - 2 c .

We will show that (3.2.3) is never true. If A + VA2 + 2-B < - 2 c , then AAc + B-

2+4c2 > 0 wliich is not true (by Lemma 2.4.). If cos 6X = \/2(A - y/A2 +2-B) < - c ,

then by (3.1.1), cos02 = A - costfi = 1/2(4 + VA2 + 2 - B) . Since cos02 < - c (by

(3.2.1)), A + VA2 +2-B < - 2 c . But by Lemma 2.4, this cannot be true. Therefore

we conclude that 0\ is never greater than /?TT/(4 + /? — et).

3.3. Finally, we show that 02 is never less than [(4 - a)n]/(A +/? — a ) . Suppose that

62 = {(4 - a)7r/(4 + P - a )} - 6 where 6 > 0. Then

(3.3.1) c < cos 02 ^ cos 0i ^ 1.

From (3.1.1)-(3.1.3) and (3.3.1) we obtain

2c(l + c) < (x + y)(u + v) < (1 + c)2 and

(1 + 2c)(l 4- 2c2) < (1 4- 2xy){l + 2uv) < (1 4- 2c)2.
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These are the conditions (2.4.1) and (2.4.2) if we change x to — y and y to —x, or
change u to — v and v to — u.

Solving the first equation of (3.1.1) for cosflj and substituting in the second one
we obtain

(3.3.2) cos 02 = -{A ± \/A2 +2-B}.
z

From (3.3.1) and (3.3.2) it follows that

(3.3.3) 2c < 2 cos 02 = A ± V' A2 + 2-B < 2.

We will show that (3.3.3) is never true. If 2c < A - VA2 + 2-B, then B-4Ac +
Ac2 — 2 > 0. But this is impossible by Lemma 2.5.

If 2c < 2cos02 = A + y/A2 + 2-B, then by (3.1.1) and (3.3.1),

c < cos0! = A - cos02 = -{A - VA2 + 2 - B).

By Lemma 2.5, this is not possible. Therefore we conclude that 02 is never less than
(4 - a)7r/(4 + (3 - a). This completes the proof of Theorem 1.3. D

4. CONCLUSION

Our intuition is that if n is a sufficiently small positive integer, then for given
polynomials pn(z) and qn(z) of the form

2m

fc=l

where Ok = — #2m+i-fc) an argument similar to that used to prove Theorem 1.3 can
be used to show that if pn(z) and qn(z) belong to K(a, 0) where 1 ^ a ^ n and
a ^ j3, then Rn{z) = (pn * qn)(z) * Qn (z\6) also belong to K(a, 0). For example,
when n = 5, we obtain (from Theorem 1 of [1]) that p$(z) is in K(2, /?) if and only
if T T / ( 3 + / 3 ) < 6i ^ ( l + ^ ) / ( 3 + /?) and 3?r/(3+/?) < 02 < n. Now (analogous to
Lemma 2.6) we may show that #5(2) has all its zeros on \z\ — 1. This means that
7^5(2) can be written in the form P2m+i{z) • Next (analogous to the proof of Theorem
1-3), we show that the zeros of Rs(z) are located so that Rs(z) belongs to A"(2, /3) •

For polynomials of large degree, the above method turns out to be lengthy and
rather involved. Perhaps one can come up with a better technique which works for
polynomials of any degree. A reader interested in pursuing this problem may find the
studies in [5—10] and specially [1] (Section 4, p.56) of some use.
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