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Circling the Square

It’s my bad friend Kent . . . Kent works at the Central Statistics Bureau. He

knows how many litres of milk Norwegians drink per annum and how often

people have sex. On average that is.

Erlend Loe, Naive. Super

The Charisma Casualty: A Scientist in Need of an Apology
and the Question He Dreads

Look at that miserable student in the corner at the party. He could be my
younger self. He was doing well until she asked the dreaded question:
‘What are you studying?’ At such a moment what would one not give for
the right to a romantic answer: ‘Russian’, perhaps, or ‘drama’. Or a coldly
cerebral one: ‘philosophy’ or ‘mathematics’ or even ‘physics’. Or to pass
oneself as amodern Victor Frankenstein, a genetic engineer or a biochemist.
That is where the action will be in this millennium. But statistics?

The 1990 French film Tatie Danielle, a dark comedy about a misan-
thropic, manipulative and downright nasty old lady, was advertised by
posters stating ‘you don’t know her, but she loathes you already’. Of most
people one might just as well say, ‘you’ve never studied statistics but you
loathe it already’. Youknowalreadywhat itwill involve (somany tonnes of
coal mined in Silesia in 1963, so many deaths from TB in China in 1978).
Well, you are wrong. It has nothing, or hardly anything, to do with that.
And if you have encountered it as part of some degree course, for no
scientist or social scientist escapes, then you know that it consists of
a number of algorithms for carrying out tests of significance using data.
Well, you are also wrong. Statistics, like Bill Shankly’s football, is not just
a matter of life and death: ‘Son, it’s much more important than that.’

[1]
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Statistics Are and Statistics Is

Statistics singular, contrary to the popular perception, is not really about
facts; it is about how we know, or suspect, or believe, that something is
a fact. Because knowing about things involves counting and measuring
them, then it is true that statistics plural are part of the concern of
statistics singular, which is the science of quantitative reasoning. This
science has much more in common with philosophy (in particular epis-
temology) than it does with accounting. Statisticians are applied philo-
sophers. Philosophers argue how many angels can dance on the head of
a pin; statisticians count them.

Or rather, count how many can probably dance. Probability is the
heart of the matter, the heart of all matter if the quantum physicists
can be believed. As far as the statistician is concerned this is true
whether the world is strictly deterministic as Einstein believed or
whether there is a residual ineluctable indeterminacy. We can predict
nothing with certainty but we can predict how uncertain our predic-
tions will be – on average, that is. Statistics is the science that tells
us how.

Quacks and Squares

I want to explain how important statistics is. For example, take my own
particular field of interest, pharmaceutical clinical trials: experiments on
human beings to establish the effects of drugs. Why, as a statistician, do
I do research in this area? I don’t treat patients. I don’t design drugs.
I scarcely know a stethoscope from a thermometer. I have forgottenmost
of the chemistry I ever knew and I never studied biology. But I have
successfully designed and analysed clinical trials for a living.Why should
it be that the International Conference on Harmonisation’s guidelines for
Good Clinical Practice, the framework for the conduct of pharmaceutical
trials in Europe, America and Japan, should state ‘The sponsor should
utilize qualified individuals (e.g. biostatisticians, clinical pharmacologists
and physicians) as appropriate, throughout all stages of the trial process,
from designing the protocol and CRFs and planning the analyses to
analyzing and preparing interim and final clinical trial reports’?1 We
know why we need quacks but these ‘squares’ who go around counting
things, what use are they? We don’t treat patients with statistics, do we?
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High Anxiety

Of course not. Suppose that you have just suffered a collapsed lung at
35 000 ft and, the cabin crew having appealed for help, a ‘doctor’ turns
up. A PhD in statistics would be as much use as a spare statistician at
a party. You damn well want the doctor to be a medic. In fact, this is
precisely what happened to a lady travelling from Hong Kong to Britain
inMay 1995. She had fallen off amotorcycle on her way to the airport and
had not realized the gravity of her injuries until airborne. Luckily for her,
two resourceful physicians, Professor Angus Wallace and Dr TomWang,
were on board.2

Initially distracted by the pain she was experiencing in her arm, they
eventually realized that she had amore serious problem. She had, in fact,
a ‘tension pneumothorax’ – a life-threatening condition that required
immediate attention.With the help of the limitedmedical equipment on
board plus a coat hanger and a bottle of Evian water, the two doctors
performed an emergency operation to release air from her pleural cavity
and restore her ability to breathe normally. The operationwas a complete
success and the woman recovered rapidly.

This story illustrates the very best aspects of the medical profession
and why we value its members so highly. The two doctors concerned had
to react quickly to a rapidly developing emergency, undertake a technical
manoeuvre in which they were probably not specialized and call not only
on their medical knowledge but on that of physics as well: the bottle of
water was used to create a water seal. There is another evidential lesson
for us here, however. We are convinced by the story that the intervention
was necessary and successful. This is a very reasonable conclusion.
Amongst factors that make it reasonable are that the woman’s condition
was worsening rapidly and that within a few minutes of the operation
her condition was reversed.

A Chronic Problem

However, much of medicine is not like that. General practitioners, for
example, busy and harassed as they are, typically have little chance of
learning the effect of the treatments they employ. This is because most of
what is done is either for chronically ill patients for whom no rapid
reversal can be expected or for patients who are temporarily ill, looking
for some relief or a speedier recovery and who will not report back.

A Chronic Problem 3
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Furthermore, so short is the half-life of relevance of medicine that if (s)he
is middle-aged, half of what (s)he learned at university will now be
regarded as outmoded, if not downright wrong.

The trouble withmedical education is that it prepares doctors to learn
facts, whereas really what the physician needs is a strategy for learning.
The joke (not mine) is that three students are asked to memorize the
telephone directory. The mathematician asks ‘why?’, the lawyer asks
‘how long have I got?’ and the medical student asks ‘will the Yellow
Pages also be in the exam?’This is changing, however. There is a vigorous
movement for evidence-basedmedicine that stresses the need for doctors
to remain continually in touch with developments in treatment and also
to assess the evidence for such new treatment critically. Such evidence
will be quantitative. Thus, doctors are going to have to learn more about
statistics.

It would be wrong, however, to give the impression that there is an
essential antagonism between medicine and statistics. In fact, the med-
ical profession has made important contributions to the theory of statis-
tics. As we shall see when we come to consider John Arbuthnot, Daniel
Bernoulli and several other key figures in the history of statistics, many
who contributed had had a medical education, and in the medical spe-
cialty of epidemiology many practitioners can be found who have made
important contributions to statistical theory. However, on the whole it
can be claimed that these contributions have arisen because the physician
has come to think like a statistician: with scepticism. ‘This is plausible,
how might it be wrong?’ could be the statistician’s catchphrase. In the
sections that follow, we consider some illustrative paradoxes.

A Familiar Familial Fallacy?

‘Mr Brown has exactly two children. At least one of them is a boy.What is
the probability that the other is a girl?’What could be simpler than that?
After all, the other child either is or is not a girl. I regularly use this
example on the statistics courses I give to life scientists working in the
pharmaceutical industry. They all agree that the probability is one-half.

One could argue they are wrong. I haven’t said that the older child is
a boy. The child I mentioned, the boy, could be the older or the younger
child. This means that Mr Brown can have one of three possible combin-
ations of two children: both boys, elder boy and younger girl, or elder girl
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and younger boy, the fourth combination of two girls being excluded by
what I have stated.

But of the three combinations, in two cases the other child is a girl so
that the requisite probability is 2=3. This is illustrated as follows.

Possible Possible Possible Excluded

Elder

Younger

This example is typical of many simple paradoxes in probability: the
answer is easy to explain but nobody believes the explanation. However,
the solution I have given is correct.

Or is it? That was spoken like a probabilist. A probabilist is a sort of
mathematician. He or she deals with artificial examples and logical
connections but feels no obligation to say anything about the real
world. My demonstration, however, relied on the assumption that the
three combinations boy–boy, boy–girl and girl–boy are equally likely and
this may not be true. In particular, we may have to think carefully about
what I refer to as data filtering. How did we get to see what we saw? The
difference between a statistician and a probabilist is that the latter will
define the problem so that this is true, whereas the former will consider
whether it is true and obtain data to test its truth.

Suppose we make the following assumptions: (1) the sex ratio at birth
is 50:50; (2) there is no tendency for boys or girls to run in a given family;
(3) the death rates in early years of life are similar for both sexes; (4)
parents do not make decisions to stop or continue having children based
on the mix of sexes they already have; (5) we can ignore the problem of
twins. Then the solution is reasonable. (Provided there is nothing else
I have overlooked!) However, the first assumption is known to be false, as
we shall see in the next chapter. The second assumption is believed to be
(approximately) true but this belief is based on observation and analysis;
there is nothing logically inevitable about it. The third assumption is
false, although in economically developed societies the disparity in the
death rates between sexes, although considerable in later life, is not great
before adulthood. There is good evidence that the fourth assumption is
false. The fifth is not completely ignorable, since some children are
twins, some twins are identical and all identical twins are of the same
sex. We now consider a data set that will help us to check our answer.
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In an article in the magazine Chance, in 2001, Joseph Lee Rogers and
Debby Doughty attempted to answer the question ‘Does having boys or
girls run in the family?’3 The conclusion that they came to is that it does
not, or, at least, if it does that the tendency is at best very weak. To
establish this conclusion they used data from an American study: the
National Longitudinal Survey of Youth (NLSY). This originally obtained
a sample of more than 12 000 respondents aged 14–21 years in 1979. The
NLSY sample has been followed up from time to time since. Rogers and
Doughty used data obtained in 1994, bywhich time the respondents were
aged 29–36 years and had had 15 000 children between them. The same
data that they used to investigate the sex distribution of families can be
used to answer our question.

Of the 6089NLSYrespondentswhohad had at least one child, 2444had
had exactly two children. In these 2444 families the distribution of chil-
dren was: boy–boy, 582; girl–girl, 530; boy–girl, 666; and girl–boy, 666. If
we exclude girl–girl, the combination that is excluded by the question,
then we are left with 1914 families. Of these families, 666 + 666 = 1332 had
one boy and one girl, so the proportion of families with at least one boy in
which the other child is a girl is 1332/1914 ’ 0.70. Thus, in fact, our
requisite probability is not 2=3 as we previously suggested, but 7=10
(approximately).

Or is it? We have moved from a view of probability that tries to
identify equally probable cases –what is sometimes called classical prob-
ability – to one that uses relative frequencies. There are, however, several
objections to using this ratio as a probability, of which two are particu-
larly important. The first is that a little reflection shows that it is obvious
that such a ratio is itself subject to chance variation. To take a simple
example, even if we believe a die to be fair we would not expect that
whenever we rolled the die six times we would obtain exactly one 1, 2, 3,
4, 5 & 6. The second objection is that even if this ratio is an adequate
approximation to some probability, why should we accept that it is the
probability that applies to Mr Brown? After all, I have not said that he is
either an American citizen who was aged 14–21 in 1971 or has had
children with such a person, yet this is the group from which the ratio
was obtained.

The first objection might lead me to prefer a theoretical value such as
the 2=3 obtained by our first argument to the value of approximately 7=10
(which is, of course, very close to it) obtained by the second. In fact,
statisticians have developed a number of techniques for deciding how
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reasonable such a theoretical value is. We shall consider one of these in
due course, but first draw attention to one further twist in the paradox.

Child’s Play

I am grateful to Ged Dean for pointing out that there is another twist to
this paradox. Suppose I argue like this. Let us consider Mr Brown’s son
and consider the other child relative to him. This is either an older
brother or a younger brother or an older sister or a younger sister. In
two out of the four cases it is a boy. So the probability is one-half
after all.

This disagrees, of course, with the empirical evidence I presented
previously but that evidence depends on the way I select the data:
essentially sampling by fathers rather than by children. The former is
implicit in the way the question was posed, implying sampling by father,
but as no sampling process has been defined you are entitled to think
differently.

To illustrate the difference, let us take an island with four two-child
families, one of each of the four possible combinations: boy–boy, boy–
girl, girl–boy and girl–girl. On this island it so happens that the oldest
child has the name that begins with a letter earlier in the alphabet. The
families are:

Fred and Pete (father Bob);

Andrew and Susan (father Charles);

Anthea and Zack (father Dave);

Beatrice and Charlotte (father Ed).

Let us choose a father at random. There are three chances out of four that
it is either Bob, Charles or Dave, who each have at least one son. Given
that the father chosen has at least one boy there are two chances out of
three that the father is either Charles or Dave and therefore that the other
child is a girl. So, there is a probability of two-thirds that the other child
is a girl. This agrees with the previous solution.

Now, however, let us choose a child at random. There are four chances
out of eight that it is a boy. If it is a boy, it is either Fred or Pete or Andrew
or Zack. In two out of the four cases the other child is a boy.

To put it another way: given that the child we have chosen is a boy,
what is the probability that the father is Bob? The answer is ‘one-half ’.

Child’s Play 7
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A Likely Tale∗

We now consider the general problem of estimating a probability from
data. One method is due to the great British statistician and geneticist
R. A. Fisher (1890–1962) whom we shall encounter again in various chap-
ters in this book. This is based on his idea of likelihood. What you can do
in a circumstance like this, he points out, is to investigate each and every
possible value for the probability from 0 to 1. You can then try each of
these values in turn and see how likely the data are given the value of the
probability you currently assume. The data for this purpose are that of the
1914 relevant families: in 1332 the other child was a girl and in 582 it was
a boy. Let the probability in a given two-child family that the other child is
a girl, where at least one child ismale, be P, where, for example, Pmight be
2=3 or

7=10 or indeed any value we wish to investigate. Suppose that we go
through the 1914 family records one by one. The probability of any given
record corresponding to a mixed-sex family is P and the probability of it
corresponding to a boys-only family is (1 − P). Suppose that we observe
that the first 1332 families are mixed sex and the next 582 are boys
only. The likelihood, to use Fisher’s term, of this occurring is P × P ×

P ··· P, where there are 1332 such terms P, multiplied by
(1 − P ) × (1 − P ) × (1 − P ) ··· (1 − P ), where there are 582 such terms. Using
the symbol L for likelihood, we may write this as

L ¼ P1332ð1� PÞ582:

Now, of course, we have not seen the data in this particular order; in fact,
we know nothing about the order at all. However, the likelihood we have
calculated is the same for any given order, so all we need to do is multiply
it by the number of orders (sequences) inwhich the data could occur. This
turns out to be quite unnecessary, however, since whatever the value of P,
whether 2=3,

7=10 or some other value, the number of possible sequences is
the same so that in each of such cases the number wewouldmultiply L by
would be the same. This number is thus irrelevant to our inferences
about P and, indeed, for any two values of P the ratio of the two corres-
ponding values of L does not depend on the number of ways in which we
can obtain 1332 mixed-sex and 582 two-boy families.

It turns out that the value of P that maximizes L is that which is given
by our empirical proportion, so we may write Pmax = 1332/1914. We can
now express the likelihood, L, of any value of P as a ratio of the likelihood
L max corresponding to Pmax. This has been done and plotted against all
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possible values of P in Figure 1.1. One can see that this ratio reaches
a maximum one at the observed proportion, indicated by a solid line,
and tails off rapidly either side. In fact, for our theoretical answer of 2=3,
indicated by the dashed line, the ratio is less than 1=42. Thus, the observed
proportion is 42 timesmore likely to occur if the true probability is Pmax =
1332/1914 than if it is the theoretical value of 2=3 suggested.

An Unlikely Tail?

This is all very well, but the reader will justifiably protest that the best
fitting pattern will always fit the data better than some theory that issues
a genuine prediction. For example, nobody would seriously maintain
that the next time somebody obtains a sample of exactly 1914 persons
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Figure 1.1 Likelihood ratio for various values of the probability of the other child being
a girl given the NLSY sample data.
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having exactly two children, at least one of which is male, they will also
observe that in 1332 cases the other is female. Another, perhaps not very
different proportion would obtain and this other proportion would of
course not only fit the data better than the theoretical probability of 2=3, it
would also fit the data better than the proportion 1332/1914 previously
observed.

In fact, we have another data set with which we can check this
proportion. This comes from the US Census Bureau National Interview
Survey, a yearly random sample of families. Amongst the 342 018 house-
holds on which data were obtained from 1987 to 1993, there were 42 888
families with exactly two children, and 33 365 with at least one boy. The
split amongst the 33 365 was boy–girl, 11 118; girl–boy, 10 913; and boy–
boy, 11 334. Thus, 22 031 of the families had one boy and one girl and the
proportion we require is 22 031/33 365 ’ 0.66, which is closer to the
theoretical value than our previous empirical answer. This suggests that
we should not be too hasty in rejecting a plausible theoretical value in
favour of some apparently better-fitting alternative. How can we decide
when to reject such a theoretical value?

This statistical problem of deciding when data should lead to rejec-
tion of a theory has a very long history and we shall look at attempts to
solve it in the next chapter. Without entering into details, here we
consider briefly the approach of significance testing which, again, is
particularly associated with Fisher, although it did not originate with
him. This is to imagine for the moment that the theoretical value is
correct and then pose the question ‘if the value is correct, how unusual
are the data?’

Defining exactly what is meant by ‘unusual’ turns out to be extremely
controversial. One line of argument suggests, however, that if we were to
reject the so-called null hypothesis that the true probability is 2=3, thenwe
have done so where the observed ratio is 1332/1914, which is higher than
2=3, and would be honour-bound to do so had the ratio been even higher.
We thus calculate the probability of observing 1 332 or more mixed-sex
families when the true probability is 2=3. This sort of probability is
referred to as a ‘tail area’ probability and, sparing the reader the
details,4 in this case it turns out to be 0.00337. However, we could
argue that we would have been just as impressed by an observed propor-
tion that was lower than the hypothesized value 2=3 as by finding one that
was higher, so we ought to double this probability. If we do, we obtain
a value of 0.0067. This sort of probability is referred to as a ‘P-value’ and is
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very commonly (many would say far too commonly) found in scientific,
in particular medical, literature.

Should we reject or accept our hypothesized value? A conventional
‘level of significance’ often used is 5% or 0.05. If the P-value is lower than
this the hypothesis in question is ‘rejected’, although it is generally
admitted that this is a very weak standard of significance. If we reject
2=3, however, what are we going to put in its place? As we have already
argued, it will be most unlikely for the true probability to be exactly
equal to the observed proportion. That being so, might 2=3 not be a better
bet after all? We shall not pursue this here, however. Instead, we now
consider a more serious problem.

Right but Irrelevant?

Why should we consider the probability we have been trying to estimate
as being relevant toMr Brown? There are all sorts of objections one could
raise. Mr Brown might be British, for example, but our data come from
an American cohort. Why should such data be relevant to the question?
Also, since Mr Brown’s other child either is or is not a girl, what on Earth
can it mean to speak of the probability of its being a girl?

This seemingly trivial difficulty turns out to be at the heart of
a disagreement between two major schools of statistical inference: the
frequentist and the Bayesian school, the latter being named after Thomas
Bayes (1701–61), an English non-conformist minister whose famous the-
orem we shall meet in the next chapter.

The frequentist solution is to say that probabilities of single events are
meaningless. We have to consider (potentially) infinite classes of events.
Thus, my original question is ill-posed and should perhaps have been ‘if
we choose an individual at random and find that this individual is male
and has two children, at least one of which is male, what is the probabil-
ity that the other is female?’We then can consider this event as one that is
capable of repetition, and the probability then becomes the long-run
relative frequency with which the event occurs.

The Bayesian solution is radically different. This is to suggest that the
probability in question is what you believe it to be since it represents
your willingness to bet on the relevant event. You are thus free to declare
it to be anything at all. For example, if you are still unconvinced by the
theoretical arguments I have given and the data that have been presented
that, whatever the probability is, it is much closer to 2=3 than

1=2, you are
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perfectly free to call the probability 1=2 instead. However, be careful!
Betting has consequences. If you believe that the probability is 1=2 and
are not persuaded by any evidence to the contrary, youmight be prepared
to offer odds of evens on the child being a boy. Suppose I offered to pay
you £5 if the other child is a boy provided you paid me £4 if the child is
a girl. You ought to accept the bet since the odds are more attractive than
evens, which you regard as appropriate. If, however, we had played this
game for each family you would have lost 1332 × 4 for only 582 × 5 gained
and Iwould be £2418 better off at your expense!5 (All this, of course, as we
discussed earlier, is assuming that the sampling process involves choos-
ing fathers at random.)

We shall not pursue these discussions further now. However, some of
these issues will reappear in later chapters and from time to time
throughout the book. Instead, we now present another paradox.

The Will Rogers Phenomenon

A medical officer of public health keeps a track year by year of the
perinatal mortality rate in his district for all births delivered at home
and also for all those delivered at hospital using health service figures.
(The perinatal mortality rate is the sum of stillbirths and deaths under
one week of age divided by the total number of births, live and still, and
is often used in public health as a measure of the outcome of pregnancy.)
He notices, with satisfaction, a steady improvement year by year in both
the hospital and the home rates.

However, as part of the general national vital registration system,
corresponding figures are being obtained district by district, although
not separately for home and hospital deliveries. By chance, a statistician
involved in compiling the national figures and the medical officer meet
at a function and start discussing perinatal mortality. The statistician is
rather surprised to hear of the continual improvement in the local
district since she knows that over the past decade there has been very
little change nationally. Later, she checks the figures for the medical
officer’s district and these confirm the general national picture. Over
the last decade there has been little change.

In fact, themedical officer is not wrong about the rates. He is wrong to
be satisfied with his district’s performance. He has fallen victim to
what is sometimes called ‘the stage migration phenomenon’. This was
extensively described by the Yale-based epidemiologist Alvan Feinstein
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(1925–2001) and colleagues in some papers in themid-1980s.6 They found
improved survival stage by stage in groups of cancer patients but no
improvement over all.

How can such phenomena be explained? Quite simply. By way of
explanation, Feinstein et al. quote the American humorist Will Rogers
who said that when the Okies left Oklahoma for California, the average
intelligence was improved in two states. Imagine that the situation in the
district in question is that most births deemed low risk take place at
home and have done so throughout the period in question, and thatmost
births deemed high risk take place in hospital and have done so through-
out the period in question. There has been a gradual shift over the years
of moderate-risk births from home to hospital. The result is a dilution of
the high-risk births in hospital with moderate-risk cases. On the other
hand, the home-based deliveries are becoming more and more tilted
towards low risk. Consequently, there is an improvement in both with-
out any improvement over all.

The situation is illustrated in Figure 1.2. We have a mixture of O and
X symbols on the sheet. The former predominate on the left and the
latter on the right. A vertical line divides the sheet into two unequal
regions. Bymoving the line to the right we will extend the domain of the
left-hand region, adding more points. Since we will be adding regions in
which there are relatively more and more Xs than Os, we will be increas-
ing the proportion of the former. However, simultaneously we will be
subtracting regions from the right-hand portion in which, relative to
those that remain, there will be fewer Xs than Os, hence we are also
increasing the proportion of the former here.

Simpson’s Paradox7

The Will Rogers phenomenon is closely related to ‘Simpson’s paradox’,
named from a paper of 1951 by E. H. Simpson,8 although described at
least as early as 1899 by the British statistician Karl Pearson.9 This is best
explained by example, and we consider one presented by Julious and
Mullee.10 They give data for the Poole diabetic cohort in which patients
are cross-classified by type of diabetes and as either dead or ‘censored’,
which is to say, alive. The reason that the term ‘censored’ is used is that,
in the pessimistic vocabulary of survival analysis, life is a temporary
phenomenon and someone who is alive is simply not yet dead. What
the statistician would like to know is how long he or she lived but this
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information is not (yet) available and so is censored. We shall look at
survival analysis in more detail in Chapter 7.

The data are given in Table 1.1 in terms of frequencies (percentages)
and show subjects dead or censored by type of diabetes. When age is not
taken into account it turns out that a higher proportion of non-insulin-
dependent are dead (40%) than is the case for insulin-dependent diabetes
(29%). However, when the subjects are stratified by age (40 and younger
or over 40) then in both of the age groups the proportion dead is higher
in the insulin-dependent group. Thus, the paradox consists of observing
that an association between two factors is reversed when a third is taken
into account.

But is this really paradoxical? After all, we are used to the fact that
when making judgements about the influence of factors we must com-
pare like with like. We all know that further evidence can overturn

Figure 1.2 Illustration of the stage migration phenomenon.
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previous judgement. In the Welsh legend, the returning Llewelyn is met
by his hound Gelert at the castle door. Its muzzle is flecked with blood.
In the nursery the scene is one of savage disorder, and the infant son is
missing. Only once the hound has been put to the sword is the child
heard to cry and discovered safe and sound by the body of a dead wolf.
The additional evidence reverses everything: Llewelyn, and not his
hound, is revealed as a faithless killer.

In our example the two groups are quite unlike, and most commen-
tators would agree that themore accurate message as regards the relative
seriousness of insulin and non-insulin diabetes is given by the stratified
approach, which is to say the approach that also takes account of the age
of the patient. The fact that non-insulin diabetes develops on average at
a much later age is muddying the waters.

Suppose that the numbers in the table remain the same but refer now
to a clinical trial in some life-threatening condition and we replace ‘Type
of diabetes’ by ‘Treatment’, ‘Non-insulin dependent’ by ‘A’, ‘Insulin
dependent’ by ‘B’ and ‘Subjects’ by ‘Patients’. An incautious interpret-
ation of the table would then lead us to a truly paradoxical conclusion.
Treating young patients with A rather than B is beneficial (or at least not
harmful – the numbers of deaths, 0 in the one case and 1 in the other, are
very small). Treating older patients with A rather than B is beneficial.

Table 1.1 Frequencies (percentages) of patients in the Poole diabetic cohort,
cross-classified by type of diabetes and whether ‘ dead’ or ‘ censored’, i.e. alive.

Type of diabetes

Non-insulin
dependent

Insulin
dependent

All Patients
Censored 326(60) 253(71) 579
Dead 218(40) 105(29) 323

544(100) 358(100) 902
Subjects aged ≤ 40

Censored 15(100) 129(99) 144
Dead 0(0) 1(1) 1

15(100) 130(100) 145
Subjects aged > 40

Censored 311(59) 124(54) 435
Dead 218(41) 104(46) 322

529(100) 228(100) 757

Simpson’s Paradox 15
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However, the overall effect of switching patients from B to A would be to
increase deaths overall.

In his brilliant book Causality, Judea Pearl gives Simpson’s paradox
pride of place.11 Many statisticians have taken Simpson’s paradox to
mean that judgements of causality based on observational studies are
ultimately doomed. We could never guarantee that further refined
observation would not lead to a change in opinion. Pearl points out,
however, that we are capable of distinguishing causality from associ-
ation because there is a difference between seeing and doing. In the
case of the trial above we may have seen that the trial is badly
imbalanced but we know that the treatment given cannot affect the
age of the patient at baseline, that is to say before the trial starts.
However, age very plausibly will affect outcome and so it is a factor
that should be accounted for when judging the effect of treatment. If
in future we change a patient’s treatment we will not (at the moment
we change it) change their age. So there is no paradox. We can
improve the survival of both the young and the old and will not, in
acting in this way, adversely affect the survival of the population as
a whole.

O. J. Simpson’ s Paradox

The statistics demonstrate that only one-tenth of one percent of men who abuse

their wives go on to murder them. And therefore it’s very important for that fact

to be put into empirical perspective, and for the jury not to be led to believe that

a single instance, or two instances of alleged abuse necessarily means that the

person then killed.

This statement was made on the Larry King show by a member of
O. J. Simpson’s defence team.12 No doubt he thought it was a relevant
fact for the jury to consider. However, the one thing that was not in
dispute in this case was thatNicole Simpson had beenmurdered. Shewas
murdered by somebody: if not by the man who had allegedly abused her
then by someone else. Suppose now that we are looking at the case of
a murdered woman who was in an abusive relationship and are consid-
ering the possibility that she was murdered by someone who was not her
abusive partner. What is sauce for the goose is sauce for the gander: if the
first probability was relevant so is this one. What is the probability that
a woman who has been in an abusive relationship is murdered by
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someone other than her abuser? This might plausibly be less than one-
tenth of one percent. After all, most women are not murdered.

And this, of course, is the point. The reason that the probability of an
abusive man murdering his wife is so low is that the vast majority of
women are not murdered and this applies also to women in an abusive
relationship. But this aspect of the event’s rarity, since the event has
occurred, is not relevant. An unusual event has happened, whatever the
explanation. The point is, rather, which of two explanations is more
probable: murder by the alleged abuser or murder by someone else.

Two separate attempts were made to answer this question. We have
not yet gone far enough into our investigation of probability to be able to
explain how the figures were arrived at butmerely quote the results. The
famous Bayesian statistician Jack Good, writing inNature, comes up with
a probability of 0.5 that a previously abused murdered wife was mur-
dered by her husband.13 Merz and Caulkins,14 writing in Chance, come up
with a figure of 0.8. These figures are in far from perfect agreement but
serve, at least, to illustrate the irrelevance of 1 in 1000.

Tricky Traffic15

Figure 1.3 shows road accidents in Lothian region, Scotland, by site. It
represents data from four years (1979–82) for 3112 sites on a road network.
For each site, the number of accidents recorded is available on a yearly
basis. The graph plots the mean accidents per site in the second two-year
period as a function of the number of accidents in the first two-year
period. For example, for all those sites that by definition had exactly two
accidents over the first two-year period, the average number of accidents
has been calculated over the second two-year period. This has also been
done for those sites that had no accidents, as well as for those that had
exactly one accident, and, continuing on the other end of the scale, for
those that had three accidents, four accidents, etc.

The figure also includes a line of exact equality going through the
points 1,1 and 2,2 and so forth. It is noticeable that most of the points lie
to the right of the line of equality. It appears that road accidents are
improving.

However, we should be careful. We have not treated the two periods
identically. The first period is used to define the points (all sites that had
exactly three accidents and so forth) whereas the second is simply used to
observe them. Perhaps we should reverse the way that we look at accidents

Tricky Traffic 17
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just to check and use the second-period values to define our sites and the
first-period ones to observe them. This has been done in Figure 1.4. There
is now a surprising result. Most of the points are still to the right of the
line, which is to say below the line of exact equality, but since the axes
have changed this now means that the first-period values are lower than
the second-period one. The accident rate is getting worse.

The Height of Improbability

The data are correct. The explanation is due to a powerful statistical
phenomenon called regression to the mean discovered by the Victorian
scientist Francis Galton, whom we shall encounter again in Chapter 6.
Obviously Galton did not have the Lothian road accident data! What he

accidents 1979–80

ac
ci

de
nt

s 
19

81
–1

98
2

15

10

5

0

0 5 10 15

Figure 1.3 Accidents by road site, Lothian Region 1979–82. Second two-year period
plotted against first.
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had were data on heights of parents and their adult offspring. Observing
that men are on average 8% taller than women, he converted female
heights to amale equivalent bymultiplying by 1.08. Then, by calculating
a ‘mid-parent’ height – the average of father’s height and mother’s
adjusted height – he was able to relate the height of adult children to
that of parents. He made a surprising discovery. If your parents were
taller than average, although, unsurprisingly, you were likely to be taller
than average, you were also likely to be shorter than your parents.
Similarly, if your parents were shorter than average you were likely to
be shorter than average but taller than your parents. Figure 1.5 is a more
modern representation of Galton’s data, albeit very similar to the formhe
used himself.
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Figure 1.4 Accidents by road site, Lothian Region 1979–82. First two-year period
plotted against second.
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The scatterplot in the middle plots children’s heights against par-
ents’. The lumpy appearance of the data is due to the fact that Galton
records them to the nearest inch; thus, several points would appear on
top of each other but for the fact that they have been ‘jittered’ here to
separate them. The margins of the square have the plots for parents’
heights irrespective of the height of children, and vice versa, represented
in the form of a ‘histogram’. The areas of the bars of the histograms are
proportional to the number of individuals in the given height group.

How can these phenomena be explained? We shall return to road
accidents in a minute; let us look at Galton’s heights first of all.
Suppose that it is the case that the distribution of height from generation
to generation is stable. The mean is not changing and the spread of
values is also not changing. Suppose also that there is not a perfect

Figure 1.5 Galton’s data. Heights of children in inches plotted against the adjusted
average height of their parents.
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correlation between heights. This is itself a concept strongly associated
with Galton. For our purposes we simply take this tomean that height of
offspring cannot be perfectly predicted from height of parents – there is
some variability in the result. Of course, we know this to be true since, for
example, brothers do not necessarily have identical heights. Now con-
sider the shortest parents in a generation. If their children were, on
average, of the same height, some would be taller but some would be
shorter. Also consider the very tallest parents in a generation. If their
offspring were, on average, as tall as them, some would be smaller but
some would be taller. But this means that the spread of heights in the
next generation would have to be greater than before, because the short-
est members would now be shorter than the shortest before and the
tallest would now be taller than the tallest before. But this violates
what we have said about the distribution – that the spread is not increas-
ing. In fact, the only way that we can avoid the spread increasing is if on
average the children of the shortest are taller than their parents and if on
average the children of the tallest are shorter than their parents.

In actual fact, the prior discussion is somewhat of a simplification.
Even if variability of heights is not changing from generation to gener-
ation, whereas the heights of the children that are plotted are heights of
individuals, the heights of the parents are (adjusted) averages of two
individuals and this makes them less variable, as can be seen by studying
Figure 1.5. However, it turns out that in this case the regression effect
still applies.

Figure 1.6 is a mathematical fit to these data similar to the one that
Galton found himself. It produces idealized curves representing our
marginal plots as well as some concentric contours representing greater
and greater frequency of points in the scatterplot as one moves to the
centre. The reader need not worry. We have no intention of explaining
how to calculate this. It does, however, illustrate one part of the statist-
ician’s task – fitting mathematical (statistical) models to data. Also
shown are the two lines, the so-called regression lines, that would give
us the ‘best’ prediction of height of children from parents (dashed) and
parents’ height from children (dotted), as well as the line of exact equal-
ity (solid) that lies roughly between them both. Note that since the
regression line for children’s heights as a function of parents’ heights is
less steep than the line of exact equality, it will lead to predictions for the
height of children that are closer to the mean than that of their parents.
A corresponding effect is found with the other regression line. (If you
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want to predict parents’ height from children’s it is more natural to
rotate the graph to make children’s height the X axis.) It is one of the
extraordinary mysteries of statistics that the best prediction of parents’
height from children’s height is not given by using the line which pro-
vides the best prediction of children’s heights from parents’ heights.

Don’t It Make my Brown Eyes Blue16

If this seems an illogical fact, it is nonetheless a fact of life. Let us give
another example from genetics. Blue eye colour is a so-called recessive
characteristic. It thus follows that if any individual has blue eyes he or she
must have two blue genes since, brown eye colour being dominant, if the
individual had one brown gene his or her eyes would be brown. Thus, if we

Figure 1.6 A bivariate normal distribution fitted to Galton’s data showing also the line
of equality and the two regression lines.
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know that a child’s biological parents both have blue eyes we can guess that
the child must have blue eyes with a probability of almost one (barring
mutations). On the other hand, a child with blue eyes could have one or
even two parents with brown eyes since a brown-eyed parent can have
a blue gene. Thus, the probability of both parents having blue eyes is not
one. The prediction in one direction is not the same as the prediction in the
other.

Regression to the Mean and the Meaning of Regression

Now to return to the road accident data. The data are correct, but one
aspect of them is rather misleading. The points represent vastly different
numbers of sites. In fact, themost common number of accidents over any
two-year period is zero. For example, in 1979–80, out of 3112 sites in total,
1779 had no accidents at all. Furthermore, the mean numbers of acci-
dents for both two-year periods were very close to 1, being 0.98 in the first
two-year period and 0.96 in the second. Now look at Figure 1.3 and the
point corresponding to zero accidents in the first two-year period. That
point is above the line and it is obvious that it has to be. The sites
represented are those with a perfect record and, since perfection cannot
be guaranteed for ever, the mean for these sites was bound to increase.
Some of the sites were bound to lose their perfect record and they would
bring the mean up from zero, which is what it was previously by defin-
ition, sites having been selected on this basis.

But if the best sites will deteriorate on average, then the worst will have
to get better to maintain the average, and this is exactly what we are
observing. It just so happens that the mean value is roughly one accident
per two years. The whole distribution is pivoting about this point. If we
look at thehigher endof thedistribution, the reason for this phenomenon–

which is nowadays termed ‘regression to themean’, a term thatGalton used
interchangeably with ‘reversion to mediocrity’ – is that, although some of
the sites included as bad have a true and genuine long-term bad record,
some have simply been associated with a run of bad luck. On average, the
bad luck does not persist; hence, the record regresses to the mean.

Systolic Magic

Regression to the mean is a powerful and widespread cause of spontan-
eous change where items or individuals have been selected for inclusion
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in a study because they are extreme. Since the phenomenon is puzzling,
bewildering and hard to grasp, we attempt one last demonstration: this
time, with a simulated set of blood pressure readings.

Figure 1.7 gives systolic blood pressure reading in mmHg for
a population of 1000 individuals. The data have been simulated so that the
mean value at outcome and baseline is expected to be 125 mmHg. Those
readers who have encountered the statistician’s commonmeasure of spread,
the standard deviation, may like to note that this is 12 mmHg at outcome
and baseline. Such readers will also have encountered the correlation coeffi-
cient. This is 0.7 for this example. Other readers shouldnotworry about this
but concentrate on the figure. The data are represented by the scatterplot
and this is meant to show (1) that there is no real change between outcome
andbaseline, (2) that in general higher values at baseline are accompanied by
higher values at outcome, but that (3) this relationship is far from perfect.
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Figure 1.7 Systolic BP (mmHg) at baseline and outcome for 1000 individuals.
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Suppose that we accept that a systolic BP of more than 140 mmHg
indicates hypertension. The vertical line on the graph indicates
a boundary at baseline for this definition and the horizontal line
a boundary at outcome. Making due allowances for random variation,
there appears to be very little difference between the situation at baseline
and outcome.

Suppose, however, we had decided not to follow thewhole population
but instead had merely followed up those whose baseline blood pressure
was in excess of 140 mmHg. The picture, as regards patients with read-
ings at both baseline and outcome, would then be the one in Figure 1.8.
But here we have a quite misleading situation. Some of the patients who
had a reading in excess of 140mmHgnowhave readings that are below. If
we had the whole picture there would be a compensating set of readings
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Figure 1.8 Systolic BP (mmHg) at baseline and outcome for a group of individuals
selected because their baseline BP is in excess of 140 mmHg.
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for patients who were previously below the cut-off but are now above.
But these are missing.

We thus see that regression to themean is a powerful potential source
of bias, which is particularly dangerous if we neglect to have a control
group. Suppose, for example, that in testing the effect of a new drug we
had decided to screen a group of patients by only selecting those for
treatment whose systolic blood pressure was in excess of 140 mmHg. We
would see a spontaneous improvement whether or not the treatment was
effective.

Paradoxical Lessons?

The previous examples serve to make this point: statistics can be decep-
tively easy. Everybody believes they can understand and interpret them.
In practice, making sense of data can be difficult and one must take care
in organizing the circumstances for their collection if one wishes to come
to a reasonable conclusion. For example, the puzzling, pervasive and
apparently perverse phenomenon of regression to the mean is one
amongst many reasons why the randomized clinical trial (RCT) has
gained such popularity as a means to test the effects of medical innov-
ation. If regression to the mean applies it will also affect the control
group and this permits its biasing influence to be removed by compari-
son. There is no doubt that many were deceived by regression to the
mean. Some continue to be so.

We hope that the point has been made in this chapter. Our ‘square’
has a justification for existence. Probability is subtle and data can
deceive, but how else are we to learn about the world except by observing
it, and what are observations when marshalled together but data? And
who will take the time and care necessary to learn the craft of interpret-
ing the data if not the statistician?

Wrapping Up: The Plan and the Purpose

Medicine showed a remarkable development in the last century, not just
in terms of the techniques that were developed for treating patients but
also in the techniques that were developed for judging techniques. In the
history of medicine, the initial conflict between the physician as profes-
sional and the physician as scientist meant that the science suffered. The
variability of patients and disease and the complexity of the human body
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made the development of scientific approaches difficult. Far more care
had to be taken in evaluating evidence to allow reliable conclusions than
was the case in other disciplines. But the struggle with these difficulties
has had a remarkable consequence. As the science becamemore andmore
important it began to have a greater and greater effect on the profession
itself, so that medicine as a profession has become scientific to an extent
that exceeds many others. The influential physician Archie Cochrane,
whom we shall encounter again in Chapter 8, had this to say about the
medical profession: ‘What other profession encourages publications
about its error, and experimental investigations into the effect of their
actions? Which magistrate, judge or headmaster has encouraged RCTs
[randomized clinical trials] into their “therapeutic” and “deterrent”
actions?’,17

In this book we shall look at the role that medical statistics has come
to play in scientific medicine. We shall do this by looking not only at
current evidential challenges but also at the history of the subject. This
has two advantages. It leavens the statistical with the historical but it also
gives a much fairer impression of the difficulties. The physicians and
statisticians we shall encounter were explorers. In the famous story of
Columbus’s egg, the explorer, irritated at being told that his exploits
were easy, challenged the guests at a banquet to balance an egg on its end.
When all had failed, he succeeded by flattening one end by tapping it
against the table, a trick that any would then have been able to repeat.
Repetition is easier than innovation.

We shall not delay our quest any further, and who better to start with
than one who was not only a mathematician but also a physician.
However, he was also much more than that: a notable translator, a man
of letters and a wit. A Scot who gave the English one of their most
enduring symbols, he was something of a paradox, but although this
has been a chapter of paradoxes, we must proceed to the next one if we
wish to understand his significance.
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