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Let B = {(zu z2)eC2:|z1|2+|z2|2<l} denote the unit ball in C2 and let S denote its
boundary, the unit sphere. For zeB and 8>0, the following non isotropic balls are
defined, where (z, w) = z1wi + z^w2.

B(z, 8) = {w eB :\l-(z, w)\<82}, S(z,8) = B(z,8)DS.

A finite positive Borel measure JU, on B is called a Carleson measure if there exists a
constant C for which

n(B(£,8))«Gr(S(£S)), £eS, 5>0 .

Here a denotes normalized surface area measure on S. The following theorem was
obtained by Hormander [6] as a special case of more general variants for strictly
pseudoconvex domains in C". Recently Cima and Wogen [3] derived it from a Carleson
measure theorem for Bergman spaces of the ball. A different direct approach to the
Bergman context, and related settings, is given in Leucking [7].

THEOREM. Let ^ be a finite Borel measure on B. In order that there exist a constant C
such that

f f (1)
for all f in H2(<x), it is necessary and sufficient that n be a Carleson measure.

We give a natural proof of this theorem and point out connections with Fejer-Riesz
type theorems and Hankel operators.

The proof is natural in the sense that it is modelled on Stein's simple proof (see [12])
of Carleson's original theorem [1]. The nontangential maximal function is replaced by the
Koranyi maximal function with respect to the approach regions

D(T,) = { Z 6 C 2 : | 1 - < Z , T , > | < 1 - | Z | 2 } , veS.

Note that these regions admit tangential approach. Nevertheless the associated maximal
function,

(M/)(£) = sup{|/(w)|:weD(|)}, £eS,

is bounded as an operator from H2(cr) to L2(cr). (See Rudin [11, Chapter 5 and Theorem
5.4.10].) To transplant the argument we need the following covering lemma.

LEMMA. Let g be a continuous function on B and let a > 0 . Then either |g(w)|<a in
B\iB or there exist points wu w2, . . . in B \ j B , possibly finite in number, such that

(0 |g(w,) |^a, i = l , 2 , . . . ,
(ii) {w:\g(w)\5*a}nB\jB is contained in the union of the balls B(wh 2(l-|wil2)1/2)>
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i = 1,2,
(iii) the balls S(wh (1- |WJ| 2 ) 1 / 2 ) , i = 1, 2 , . . . are disjoint.

Proof. The function d(z, w) = | l - ( z , w>|1/2 on B*B satisfies the triangle inequality
[11, p. 66]. From this it follows that if z£B{w, 2(1-|w|2)1/2) and |z|*£|w| then
S{w, (l-|w|2)1/2) and S(z, (l-|z|2)1/2) are disjoint. Indeed, if w1 is in the intersection then
d{z, w)^d(w, w^ + diw1, z)<(l- |w|2)1 / 2 + (l- |z |2)1 / 2<2(l- |w|2)1 / 2 , a contradiction.
Suppose that w1; w 2 , . . . , wn have been chosen so that for i£j, Wi^B(w,, 2(l-|w,|2)1/2) =
Bh say. Pick wn+1 in B\^B with wn+i£Bj, j = 1 , . . . , n, so that |g(wn+1)|s=a and |wn+1| is
minimum. If this is impossible then (ii) holds with a finite union. If such a choice is always
possible then (ii) will automatically hold for the sequence wu w2,... so denned. Also (iii)
follows from our opening observations.

Proof of the theorem. Throughout the paper various constants which depend only on
(x will be denoted by the universal constant C.

We first show sufficiency, which is the harder direction. It can be assumed, without
loss, that fx is supported on B\^B. (Consider the Cauchy integral formula for the ball
[11, p. 38] to reduce to this case.) The basic idea is to obtain a distribution function
inequality ((7) below) which shows that for f in H2(cr)

*r. (2)

The boundedness of the Koranyi maximal function than gives (1). Fix / in H2 and a >0
and use the covering lemma to obtain wlt w2, . . . in B\%B having the properties (i)-(iii)
for g = |/|. Observe that

{r, e S : w; £ D ( T , ) } = S(wi; (1-|w^2)1'2),

so that (Mf)(T])3=a throughout S(wh (1- |WJ| 2 ) 1 / 2 ) . Thus

-|wf|
2)1/2) (3)

and
X cr(S, wh (1 -k|2)1/2))^<r({Mf**a}). (4)

To make the link between (3) and (4) we need to use the Carleson condition and a little
geometry. Using the triangle inequality we have

B(w,2(l-|w|2)1/2)cB(w/|w|,r) (5)

as long as d{w, w/|w|) + 2(l-|w|2)1 /2<r. So this holds for r = (l + 2V2)(l-|w|)1/2. But
there is an absolute constant C, such that

a(S(w/|w|, (1 + 2>/2)(l -1w|)1/2))^ CMS(w, (1 -1w|2)1/2)). (6)

Combining (5) and (6) with the Carleson condition gives, for all i,
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and so, from (3) and (4), ^ ^ & f l } ) ^ C ( r ( { M / > a } ) ( 7 )

Now (2) follows, completing this part of the proof.
The necessity of the Carleson condition can be shown with natural estimates

involving the test functions (l- |A|2)(l-(z, A»~2, for A in B. Details are left to the reader.

A Fejer-Riesz inequality. For functions / in the Hardy space of the circle we have
the Fejer-Riesz inequality [5, p. 46]

\f(x)\2dx^ir\

To obtain an analogue for H2(cr) it is natural to replace the interval (—1,1) by the unit
disc U = BC\U2 and to replace Lebesgue measure by some natural Carleson measure
supported on U (U2 = {(z1; z2): zt, z2 are real}). For such measures the Carleson condition
simplifies. If I is a subarc of the boundary of U then let U(I) denote the region in U
enclosed by I and the chord determined by /. Then a positive Borel measure v, supported
by U, is a Carleson measure if and only if

C|I|4 (8)

for all subarcs I, where \I\ denotes the arclength of I. To see this note first that for
8>0, we have B(£, 8)DU = U(IiS) where I t 8 is the arc centered at £ whose chord has
midpoint (l-82)£. (Sketch the goemetry for £ = (1,0) and this becomes clear.) Now
I4sl 8"1 -» 272 as 8 -»• 0. Also G(S(i, S))8~4 converges to a nonzero limit as 8 -» 0 [11, p.
67, with different notation]. Consequently condition (8) is equivalent to

for points £edU, and this is equivalent to v being a Carleson measure.

COROLLARY. Let dU denote area measure on the disc U = Br\U2. Then there is a
constant C such that for all f in tPia).

(9)f |/(z)|2(l-|z|2)1/2d[/^C||/||2.

To see this just check that the measure dv = ( l - |z | 2 )" dU satisfies (8) if and only if
a ^ j . This approach gives no insight into the best possible constant C for which (9) is
valid. What is this constant?

REMARK. Shields has obtained a version of the Fejer-Riesz inequality for the
Dirichlet space [13].

Hankel operators. The Fejer-Riesz inequality is closely allied to the boundedness of
the Hilbert matrix (i + y' + l)"1 as an operator on the classical Hardy space H2. This
operator plays a distinguished role in the class of Hankel operators on the circle (see [2],
[9] for example), and so it is natural to seek analogues on H2{&).
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It is convenient to introduce Hankel operators on H2(o~) via Hankel forms on the
ring C[z1? z2] of complex polynomials in z = (z1; z2). We define a Hankel form [p, q] as a
sesquilinear form such that [p, q] = [pq+, 1] for all polynomials p, q, where q+(z) = q(z)
and z =(f1, z2). Such a form is determined by the coefficient multisequence, a,, =[za, 1],
where z" is the monomial z^z"2. (The finite rank Hankel forms are characterized in [10].)
We are interested in Hankel forms which are bounded with respect to H2(cr). Indeed it is
an immediate consequence of Hormander's theorem that if /J, is a Carleson measure on B
then [p, q] = J pq+ dy. defines a bounded Hankel form. The most general way to generate a
bounded Hankel form is by means of a symbol function <p in L°°(S). In fact the Coifman-
Rochberg-Weiss weak factorisation of H1(a) functions [4, Theorem III] leads to an
analogue of Nehari's theorem for Hankel matrices. Namely, [•, •] is a bounded Hankel
form if and only if there exists a function <p in L°(a) such that

j q+<pda. (10)

To identity the operator on H2(cr) which implements the form, let J be the unitary
operator on L2(cr) such that (J/)(£) = /(f), and let P be the Hardy space projection. Then
[p» q] = (<PP, Jq) = UpP, o) = (S,,p, q) where S^PJiV^ as an operator on H2(a), and M^
denotes multiplication by <p.

The following proposition gives an alternative proof of the boundedness of the
measures (1 — Izl2)™dC7, for a>\. (Observe that J|/|2 d/x = J//+ djx when fi is supported
on U.) Since the associated symbol functions are continuous it follows that the associated
Hankel operators are compact operators (see [4], or use the elementary [10, Lemma 5]
and some uniform approximation). However, the operator, H say, associated with the
measure ( l- |z | 2)1 / 2 dU, is not compact. H seems to be reminiscent of a Hilbert matrix
and it is natural to enquire,

(a) is there a natural symbol function for H,
(b) what is ||H|| (cf. inequality (9)),
(c) what is the spectrum of H (cf. [8], [9])?

PROPOSITION. Let U be the unit disc B C\U2 with area measure dU and let a > j . Then
for h in H2(a)

f h(W)(i-\w\2rdu=\ m<p(t) daw (ID

where <p is the continuous coanalytic function on the sphere S such that for ££ S C\U2

m o f1 (1-P2)"P J

Proof. Fix / in H\o) and let Cw(|) = ( l -(w, ^))~2 be the Cauchy kernel so that
f(w) = (/, Cw) for w in B. Parametrise points w in U by w = (p cos 6, p sin 0). Then, for
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f /(w)(l-|w|2rdl/=f f

where

<Pr(£) = f (1 - liP cos 0 - | 2 p sin 0)-2(l - p2)«p dp dd.
JrU

Using contour integration for the 0 integral [11, p. 244] this becomes

r (l-p2)"
7 Wt—= p'

Let r —* 1 and (11) and (12) follow. For a >\ the function (p is continuous when defined to
vanish on SPUR2.
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