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Abstract

We provide explicit bounds for the Riemann zeta-function on the line Re s = 1, assuming that the Riemann
hypothesis holds up to height T. In particular, we improve some bounds in finite regions for the logarithmic
derivative and the reciprocal of the Riemann zeta-function.
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1. Introduction

A classical problem in analytic number theory is to find explicit bounds for the
Riemann zeta-function. In particular, bounds on the line Re s = 1 are of great
interest, owing to their usefulness in estimations for the Möbius function and the von
Mangoldt function. The main purpose of this paper is to obtain new bounds for the
Riemann zeta-function in ranges where currently it is challenging to get computational
verification.

1.1. Background. Let ζ(s) be the Riemann zeta-function. Unconditionally, it is
known that, as t → ∞,

1
ζ(1 + it)

= O(log t) and
ζ′(1 + it)
ζ(1 + it)

= O(log t). (1.1)

Currently, the best explicit bounds for 1/ζ(1 + it) and ζ′(1 + it)/ζ(1 + it) are given by∣∣∣∣∣ 1
ζ(1 + it)

∣∣∣∣∣ ≤ 42.9 log t and
∣∣∣∣∣ζ
′(1 + it)
ζ(1 + it)

∣∣∣∣∣ ≤ 40.14 log t, (1.2)

for t ≥ 133. The first bound in (1.2) was established by Carneiro et al. in [2,
Proposition A.2], and the second bound was established by Trudgian in [15]. There are
improvements in the orders of magnitude of the mentioned estimates (see, for example,
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[14, page 135]), but it appears that those bounds are better when t is astronomically
large and then they will not be useful for computational purposes.

On the other hand, assuming the Riemann hypothesis (RH), Littlewood proved in
[7] that, as t → ∞, ∣∣∣∣∣ 1

ζ(1 + it)

∣∣∣∣∣ ≤
(12eγ

π2 + o(1)
)

log log t,

where γ is the Euler–Mascheroni constant. An explicit version of this result has been
given by Lamzouri et al. [6, page 2394], establishing that∣∣∣∣∣ 1

ζ(1 + it)

∣∣∣∣∣ ≤ 12eγ

π2

(
log log t − log 2 +

1
2
+

1
log log t

+
14 log log t

log t

)
,

for t ≥ 1010. Moreover, recently, Chirre et al. [3, Theorem 5] proved under RH that∣∣∣∣∣ζ
′(1 + it)
ζ(1 + it)

∣∣∣∣∣ ≤ 2 log log t − 0.4989 + 5.35
(log log t)2

log t
,

for t ≥ 1030. Some generalisations of these estimates for families of L-functions can be
found in [8, 10].

1.2. Bounds for zeta under partial RH. We are interested in obtaining bounds for
the Riemann zeta-function, but assuming only a partial verification of RH. For T > 0,
we say that RH is true up to height T if all nontrivial zeros ρ = β + iγ of ζ(s) such
that |γ| ≤ T satisfy β = 1/2. The best current result of this type is given by Platt and
Trudgian [12] who verified numerically, in a rigorous way using interval arithmetic,
that RH is true up to height T = 3 · 1012.

THEOREM 1.1. For a fixed δ with 0 < δ < 1, define

Eδ(T) =
( 1
δ2
+ 1

) log T
2πT

. (1.3)

Assume RH up to height T ≥ 109. Then, for 106 ≤ t ≤ (1 − δ)T,∣∣∣∣∣ζ
′(1 + it)
ζ(1 + it)

∣∣∣∣∣ ≤ 2 log log t + 1.219 +
16.108

(log log t)2 + 1.057Eδ(T) (1.4)

and ∣∣∣∣∣ 1
ζ(1 + it)

∣∣∣∣∣ ≤ 2eγ
(

log log t + 3.404 +
9.378

log log t

)
· exp(0.793Eδ(T)). (1.5)

From Theorem 1.1, we can also derive explicit versions of (1.1) in a finite but large
range where computational verification is difficult. In fact, by Platt and Trudgian’s
result, we can take T = 3 · 1012 and, letting δ = 10−5, it follows unconditionally that∣∣∣∣∣ζ

′(1 + it)
ζ(1 + it)

∣∣∣∣∣ ≤ 0.639 · log t and
1

|ζ(1 + it)| ≤ 2.506 · log t,

for 106 ≤ t ≤ 2.99997 · 1012. This improves (1.2) in the range 106 ≤ t ≤ 2.99997 · 1012.
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We mention that (1.5) is derived from an upper bound for |log ζ(1 + it)| (see (3.4)),
which allows us to deduce that

|ζ(1 + it)| ≤ 2eγ
(

log log t + 3.404 +
9.378

log log t

)
· exp(0.793Eδ(T)). (1.6)

Currently, the best unconditional explicit bound for ζ(1 + it) is given by Patel, who
proved in [11, Theorem 1.1] that, for t ≥ 3,

|ζ(1 + it)| ≤ min
{

log t,
log t

2
+ 1.93,

log t
5
+ 44.02

}
. (1.7)

So, (1.6) improves (1.7) if RH is verified up to height T for T sufficiently large.
The proof of Theorem 1.1 is carried out in Section 3 and partly follows the

conditional proofs of [9, Section 13.2]. Here, an explicit formula is used that relates
the zeros of ζ(s) and the prime numbers. This formula is unconditional and contains a
certain sum involving the nontrivial zeros. Assuming RH, this sum is bounded without
much effort. In our case, the novelty is in bounding the contribution of the nontrivial
zeros, since we only assume RH up to height T. We split this sum into two parts, the
zeros with ordinates |γ| ≤ T and |γ| > T , and analyse them separately. These sums are
studied in Section 2. The proof of Theorem 1.1 is short, and the constants involved can
be improved slightly.

Throughout the paper, we use the notation α = O∗(β), which means that |α| ≤ β.

2. The sum over the nontrivial zeros

To bound the sum related to the nontrivial zeros of ζ(s) with ordinates |γ| ≤ T , we
use the following lemma.

LEMMA 2.1. Assume RH up to height T > 0. Then, for t ≥ 106 and 1 ≤ α ≤ 3/2,

∑
|γ|≤T

α − 1
2

(α − 1
2 )2 + (t − γ)2

≤ Re
ζ′(α + it)
ζ(α + it)

+
log t

2
.

PROOF. Letting s = α + it and using the fractional decomposition of ζ(s) (see [9,
Corollary 10.14]), we get

∑
γ

α − Re ρ
(α − Re ρ)2 + (t − γ)2 = Re

ζ′(s)
ζ(s)

+
1
2

Re
Γ′

Γ

( s
2
+ 1

)
− log π

2
+

α − 1
(α − 1)2 + t2 .

From the bound
Γ′

Γ
(z) = log z − 1

2z
+ O∗

( 1
4|z|2

)
for Re z ≥ 0

(see [4, Lemma 3.11, page 67]), it follows that
∑
γ

α − Re ρ
(α − Re ρ)2 + (t − γ)2 ≤ Re

ζ′(s)
ζ(s)

+
log t

2
. (2.1)
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On the other hand, splitting the sum over the zeros and using the fact that Re ρ < 1,
we get

∑
γ

α − Re ρ
(α − Re ρ)2 + (t − γ)2 =

∑
|γ|≤T

α − 1
2

(α − 1
2 )2 + (t − γ)2

+
∑
|γ|>T

α − Re ρ
(α − Re ρ)2 + (t − γ)2

≥
∑
|γ|≤T

α − 1
2

(α − 1
2 )2 + (t − γ)2

. (2.2)

By combining (2.1) and (2.2), we arrive at the desired result. �

To bound the sum related to the nontrivial zeros of ζ(s) with ordinates |γ| > T , we
use the auxiliary function

E(t, T) :=
∑
|γ|>T

1
(γ − t)2 ,

where t does not coincide with an ordinate of a zero of ζ(s). This function measures,
in a certain sense, the difference between the bounds under RH up to height T and the
bounds under RH. In fact, for a fixed t ≥ 0, we see that

lim
T→∞

E(t, T) = 0.

To estimate E(t, T), the parameter t must not be close to the ordinates of the zeros, and
we need to take T sufficiently large to reduce the contribution. Here, we bound this
term using a sum studied by Brent, Platt and Trudgian in [1].

LEMMA 2.2. Fix 0 < δ < 1 and T ≥ 109. Then, for 0 ≤ t ≤ (1 − δ)T,

0 < E(t, T) ≤ Eδ(T),

where Eδ(T) was defined in (1.3).

PROOF. Since t ≤ (1 − δ)T , we find that

E(t, T) =
∑
|γ|>T

1
(γ − t)2 =

∑
γ>T

1
(γ − t)2 +

∑
γ>T

1
(γ + t)2 ≤

( 1
δ2
+ 1

)∑
γ>T

1
γ2 .

By [1, Theorem 1 and Example 1],∣∣∣∣∣
∑
γ≥T

′ 1
γ2 −

1
2π

∫ ∞

T

log(t/2π)
t2 dt

∣∣∣∣∣ ≤ 0.14 + 0.56 log T
T2 ,

where the prime symbol ′ indicates that if γ = T , then it is counted with weight 1/2.
Thus, ∑

γ>T

1
γ2 ≤

1
2πT

log
( T
2π

)
+

1
2πT
+

0.14 + 0.56 log T
T2 .

Hence, using T ≥ 109 concludes the proof. �
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3. Proof of Theorem 1.1

3.1. Bounding ζ′(s)/ζ(s). Assume that RH is true up to height T ≥ 109. Let t ≥ 106

and 1 ≤ α ≤ 3/2. Given x, y ≥ 2 and s = α + it, the unconditional formula [9, Equation
13.35] states that ζ′(s)/ζ(s) is equal to

−
∑
ρ

(xy)ρ−s − xρ−s

(ρ − s)2 log y
−
∞∑

k=1

(xy)−2k−s − x−2k−s

(2k + s)2 log y
+

(xy)1−s − x1−s

(1 − s)2 log y
−

∑
n≤xy

Λ(n)
ns w(n), (3.1)

where w(n) is the function defined in [9, page 433] satisfying |w(n)| ≤ 1. We bound
each term of (3.1). Since |(xy)ρ−s − xρ−s| ≤ xRe ρ−α(yRe ρ−α + 1) and Re ρ < 1,

∣∣∣∣∣
∑
ρ

(xy)ρ−s − xρ−s

(ρ − s)2 log y

∣∣∣∣∣ =
∣∣∣∣∣
∑
|γ|≤T

(xy)
1
2+iγ−s − x

1
2+iγ−s

( 1
2 + iγ − s)2 log y

+
∑
|γ|>T

(xy)ρ−s − xρ−s

(ρ − s)2 log y

∣∣∣∣∣

≤ x
1
2−α(y

1
2−α + 1)

log y

∑
|γ|≤T

1
(α − 1

2 )2 + (t − γ)2
+

x1−α(y1−α + 1)
log y

E(t, T).

≤ x
1
2−α(y

1
2−α + 1)

(α − 1
2 ) log y

· Re
ζ′(s)
ζ(s)

+
x

1
2−α(y

1
2−α + 1) log t

2(α − 1
2 ) log y

+
x1−α(y1−α + 1)

log y
Eδ(T),

from the assumption that 106 ≤ t ≤ (1 − δ)T and Lemmas 2.1 and 2.2. We estimate the
next terms in (3.1) trivially as

∣∣∣∣∣
∞∑

k=1

(xy)−2k−s − x−2k−s

(2k + s)2 log y

∣∣∣∣∣ ≤ 0.3
t2 ,

∣∣∣∣∣ (xy)1−s − x1−s

(1 − s)2 log y

∣∣∣∣∣ ≤ 2.9
t2

and ∣∣∣∣∣
∑
n≤xy

Λ(n)
ns w(n)

∣∣∣∣∣ ≤
∑
n≤xy

Λ(n)
nα

.

Inserting these bounds in (3.1), we arrive at
∣∣∣∣∣ζ
′(s)
ζ(s)

∣∣∣∣∣ ≤ x
1
2−α(y

1
2−α + 1)

(α − 1
2 ) log y

∣∣∣∣∣ζ
′(s)
ζ(s)

∣∣∣∣∣
+

x
1
2−α(y

1
2−α + 1) log t

2(α − 1
2 ) log y

+
∑
n≤xy

Λ(n)
nα
+

x1−α(y1−α + 1)
log y

Eδ(T) +
3.2
t2 .

Now, let λ0 = 1.2784 . . . be the point where the function λ �→ (1 + eλ)/λ reaches its
minimum valueA0 = 3.5911 . . . in (0,∞). Take

y = exp
(
λ0

α − 1
2

)
≥ 2 and x =

log2 t
y
≥ 2.
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Note that

x
1
2−α(y

1
2−α + 1)

(α − 1
2 ) log y

= A0(log t)1−2α < 1 and
x1−α(y1−α + 1)

log y
≤ 2

log y
=

2α − 1
λ0

.

Therefore, we get∣∣∣∣∣ζ
′(α + it)
ζ(α + it)

∣∣∣∣∣ ≤ (1 + ε(α, t))
[A0

2
(log t)2−2α +

∑
n≤log2 t

Λ(n)
nα
+

(2α − 1)
λ0

Eδ(T) +
3.2
t2

]
,

(3.2)

where ε(α, t) is defined as

ε(α, t) :=
1

A−1
0 (log t)2α−1 − 1

.

3.2. Bounding ζ′(1 + it)/ζ(1 + it). Letting α = 1 in (3.2), it follows that∣∣∣∣∣ζ
′(1 + it)
ζ(1 + it)

∣∣∣∣∣ ≤ (1 + ε(1, t))
[A0

2
+

∑
n≤log2 t

Λ(n)
n
+

Eδ(T)
λ0
+

3.2
t2

]
.

To bound the sum over the primes in the above expression, we use the estimate (see [5,
Lemma 10])

∑
n≤X

Λ(n)
n
≤ log X − γ + 1.3

log2 X
for all X > 1.

Finally, using t ≥ 106, we arrive at (1.4).

3.3. Bounding logζ(1 + it). By the fundamental calculus theorem,

log ζ(1 + it) = log ζ
(
3
2
+ it

)
−

∫ 3/2

1

ζ′(α + it)
ζ(α + it)

dα.

Since |log ζ( 3
2 + it)| ≤ log ζ( 3

2 ), we obtain

|log ζ(1 + it)| ≤
∫ 3/2

1

∣∣∣∣∣ζ
′(α + it)
ζ(α + it)

∣∣∣∣∣ dα + log ζ
(
3
2

)
.

To bound the right-hand side of this inequality, we use ε(α, t) ≤ ε(1, t) in 1 ≤ α ≤ 3/2
and integrate (3.2) from 1 to 3/2 to obtain

|log ζ(1 + it)| ≤ (1 + ε(1, t))
[ A0

4 log log t
+

∑
n≤log2 t

Λ(n)
n log n

−
∑

n≤log2 t

Λ(n)

n
3
2 log n

+
3Eδ(T)

4λ0

]

+ log ζ
(
3
2

)
,
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where we have used −A0/(4 log t log log t) + 1.6/t2 < 0. Furthermore, since

log ζ
(
3
2

)
=

∑
n≥1

Λ(n)

n
3
2 log n

= 0.960 . . . ,

we have

(1 + ε(1, t))
∑

n>log2 t

Λ(n)

n
3
2 log n

≤ ε(1, t)
∑
n≥1

Λ(n)

n
3
2 log n

,

for t ≥ 106. This implies that

|log ζ(1 + it)| ≤ (1 + ε(1, t))
[ A0

4 log log t
+

∑
n≤log2 t

Λ(n)
n log n

+
3Eδ(T)

4λ0

]
. (3.3)

To bound the sum over the primes, we use [13, Equation (3.30)] to see that, for x > 1,
∑
n≤x

Λ(n)
n log n

≤
∑
p≤x

∞∑
k=1

1
kpk = log

∏
p≤x

(
1 − 1

p

)−1
≤ log log x + γ +

1
log2 x

.

Inserting this in (3.3), we arrive at

|log ζ(1 + it)|

≤ (1 + ε(1, t))
[

log log log t + log(2eγ) +
A0

4 log log t
+

1
4(log log t)2 +

3Eδ(T)
4λ0

]
.

Thus,

|log ζ(1 + it)| ≤ log log log t + log(2eγ) +
3.404

log log t
+ 0.793Eδ(T). (3.4)

Taking exponentials in this inequality and using the estimate ex ≤ 1 + x + 0.8093x2 for
0 ≤ x ≤ 1.297, we obtain

exp(|log ζ(1 + it)|) ≤ 2eγ
(

log log t + 3.404 +
9.378

log log t

)
· exp(0.793Eδ(T)).

Since log |ζ(1 + it)|−1 ≤ |log ζ(1 + it)| and log |ζ(1 + it)| ≤ |log ζ(1 + it)|, we deduce
(1.5) and (1.6), respectively.
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