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1. Introduction 

Does science justify any part of mathematics and, if so, what part? These ques
tions are related to the so-called indispensability arguments propounded, among oth
ers, by Quine and Putnam. The general idea of the arguments has been fonnulated 
(for critical assessment) by Penelope Maddy in a recent article as follows: 

We have good reason to believe our best scientific theories, and mathematical 
entities are indispensable to those theories, so we have good reason to believe 
in mathematical entities . Mathematics is thus on an ontological par with natu
ral science. Furthennore, the evidence that continns scientific theories also 
confirms the required mathematics, so mathematics and science are on an epis
temological par as weil. (Maddy 1992, p. 78) 

If one accepts the indispensability arguments, there still remain two critical questions: 

and 

Ql. Just which mathematical entities are indispensable to current scientific 
theories?, 

Q2. Just what principles concerning those entities are needed for the required 
mathemahcs? 

Here we consider answers of an underlying character to these questions, i.e. from the 
point of view of the foundations of mathematics. 2 In this respect, both Quine and 
Putnam were led to accept set-theoretical notions and P.rinciples to some significant ex
tent or other. However, neither one relied on any detailed exarnination of just what is 
needed for scientifically applicable mathematics in arriving at their positions. Nor did 
they seem to consider whether any of the alternative foundational schemes actively de
veloped during this century-namely those of predicativism, constructivism, and 
finit:Ism-ought tobe preferred on philosophical grounds, particularly when natural sci
ence is given such primacy. On the face of it, scientific realism is at odds with the 
strong form of Platonic realism required to justify set theory through its assumption of 
the independent existence of abstract entities (such as sets of sets of sets ... of unbound
ed infirute cardinality). 
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Tue failure to consider other foundational approaches no doubt stems from the com
mon impression that-whatever their philosophical merits-these schemes are simply 
inadequate to meet the needs of everyday mathematics by being too restrictive and too 
foreign to practice. This irnpression needs tobe corrected: there has been considerable 
logical work in recent years which has established in some detail the unexpected mathe
matical reach of each of these prograrns. Moreover, one result of the work in question 
is that surprisingly meager (in the proof-theoretical sense) predicatively justified sys
tems suffice for the direct formalization of almost all, if not all, scientifically applicable 
mathematics. lt is my main purpose here to describe this result (with the background 
leading to it) and, in its light, to re-exarnine the indispensability arguments. 

In considering what mathematics is actually used in science it suffices to restrict 
attention to physics since, arnong all the sciences, that subject makes the heaviest use 
of mathematics and there is hardly any branch of mathematics that has some scientific 
application and which is not applied there. lt would be foolish to claim detailed 
knowledge of the vast body of mathematics that has been employed in mathematical 
physics. However, in general terms one can say that it makes primary use of mathe
matical analysis on Euclidean, complex, and Riemannian spaces, and of functional 
analysis on various Hilbert and Banach spaces. Any logical foundation for scientifi
cally applicable mathematics should, at a minimum, cover all of 19th century mathe
matical analysis of (piece-wise) continuous functions on the former kind of spaces 
and should then go on to cover the theory of (Lebesgue) measurable functions and 
basic parts of 20th century functional analysis on the latter spaces. 

We begin in the next section with a briefreview of the set-theoretical foundations 
of analysis, followed in Section 3 by a discussion of the reasons for rejecting that 
framework on philosophical grounds. Section 4 then traces the historical develop
ment of predicative foundations of analysis. This leads in Section 5 to the description 
of a formal theory W ofvariable finite types with the following properties: (i) W is 
proof-theoretically reducible to the system PA of Peano Arithmetic (the starting sys
tem for predicativity), and (ü) almost all, if not all, of scientifically applicable mathe
matics, as described above, can be formalized directly in W. By way of comparison, 
Section 6 is devoted to a brief description of results concerning the mathematical 
reach of constructivist and finitist foundations . We retum in Section 7 to a discussion 
of the significance of these results for the indispensability arguments, and conclude in 
Section 8 with some more speculative philosophical remarks. 

2. Set-theoretical foundations of analysis. 

Tue real number system or continuum R is the basic system for analysis; from it we 
define directly the complex numbers C and various Euclidean and non-Euclidean 
(Riemannian) spaces which figure in the applications. Then in functional analysis one 
makes use of certain spaces of functions satisfying continuity, measurability or integrabil
ity conditions (e.g. the lJ' spaces). Concretely, in the case of functions of one variable, 
these are subspaces of the set R->> R of all partial functions from R to R. Abstractly, 
given any spaces X and Y of a certain kind, one will form subspaces of the set X->> Y 
of all partial functions from X to Y; functionals then act on one such space to another. 

Tue reals are characterized set-theoretically as the unique ordered field satisfying the 
l.u.b. axiom or Dedekind's continuity axiom. A specific realization of these axioms may 
be constructed set-theoretically as the set 0 of all lower Dedekind sections in the ratio
nals Q. Let P(X) be the set of all subsets of X; then CX;P(Q). Moreover, 0-P(Q)-P(N) 
where X-Y is the relation of equinumerosity (or set-theoretic equivalence) and 
N={0,1,2, ... } is the set of natural numbers. Hence the cardinality of the reals is 2NQ. 
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Alternatively, following Cantor, the reals may be represented as Cauchy sequences of ra
tionals, which are members of N~Q. under a suitable equivalence relation. 

In set theory, functions are defined as sets of ordered pairs satisfying the many-one 
condition and pairs are in turn defined by a set consrruction. With the preceding, this 
leads to a representation of the real numbers in the cumulative hierarchy (Vn(N))ne ro 
over N, where 

(1) Vo(N) = N, Vn+1(N) = Vn(N)uP(Vn(N)) and V ro(N) = U Vn(N). 
nero 

By the above, R is located in fAl(N) essentially at the level V1_(N)~ -» R at level 
y2CN)1 etc.; for any X, YE V 00(r'lJ, X->> Y is a subset of P(X ©1 J and hence is also 
m V00lN). 

An alternative to the representation in the cumulative hierarchy over N is that in 
the pure cumulative hierarchy defmed by 

(2) Vo = 0, V ex+l = Va u P(V ex) and VA.= U V ex (for /.. a limit ordinal). 
a<A 

Using the von Neumann representation of ordinals, C0={0,1,2, ... ) E V ro+l and thus 
V ro+ro includes V 00(N) when we identify N with eo. V ro+ro is the "standard" model of 
the system ZC of Zermelo set theory with the Axiom of Choice. Set theorists now 
commonly accept the much stronger system ZFC of Zermelo-Fraenkel with Choice, 
whose standard model is V x: for the first strongly inaccessible ordinal K. Indeed, most 
working set theorists go far beyond ZFC in accepting various axioms of "!arge" trans
finite cardinals beyond K. One of the first to urge the plausibility of such extensions 
of ZFC was Gödel (1947/1964). In contrast, Quine's acceptance of some part of set 
theory is moderated by his version of the indispensability argument. 

So much of mathematics as is wanted for use in empirical science is for me on 
a par with the rest of science. Transfmite ramifications are on the same foot
ing insofar as they come of a simplificatory rounding out, but anything further 
is on a par with uninterpreted systems. (Quine 1984, p. 788) 

And, further: 

I recognize indenumerable infinities only because they are forced on me by the 
simplest known systematizations of more welcome matters. Magnitudes in ex
cess of such demands, e.g. Bethro [the cardinal number of V 00(N) and of V ro+rol 
or inaccessible numbers, I look upon only as mathematical recreation and with
out ontological rights. (Quine 1986, p. 400) 

lt seems from these quotations that Quine would readily accept Zermelo set theory 
because the power set operation P applied to N leads to R, and then its application 
once more to R~R etc.; "simplificatory rounding out" thus suggests acceptance of 
the Power Set Axiom in general. 

3. What's wrong with set-theoretical foundations? 

Philosophically, set theory-even in its "moderate" form given by Zennelo's ax
ioms-requires for its justification a strong form of Platonic realism. This is not without 
its defenders, most notably Gödel (1944 and 1947/1964) (cf. also (Maddy 1990)). For 
its critics, however, the following are highly problematic features of this philosophy: 
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(ii) classical reasoning (leading to non-constructive existence results) is admitted, 
since the statements of set theory are supposed to be about such an indepen
dently existing reality and thus have a determinate truth value (true or false); 

(iii) completed infinite totalities and, in particular, the totality of all subsets of any 
infinite set are assumed to exist; 

(iv) in consequence of (iii) and the Axiom of Separation, impredicative definitions 
of sets are routinely admitted; 

(v) the Axiom of Choice is assumed in order to carry through the Cantorian theo-
ry of transfinite cardinals. 

The question of admissibility of impredicative definitions will be discussed in the 
next section. The Axiom of Choice has been the focus of much specific criticism, 
since choice sets are not in general definable; however, it is entirely in keeping with 
the other assumptions (and it would not be coherent to accept (i)-(iv) and reject the 
Axiom ofChoice). 

Quite surprisingly, Gödel at one time sided with the critics: in an unpublished lec
ture he delivered to a meeting of the Mathematical Association of America in 1933, 
after explaining the use of systems like ZFC for the axiomatic foundation of "all of 
mathematics", Gödel raised pointed objections to its features (ii), (iv) and (v) and 
went on to say 

The result of the preceding discussion is that our axioms [of set theory] , if in
terpreted as meaningful Statements, necessarily presuppose a kind of Platonism, 
which cannot satisfy any critical mind and which does not even produce the 
conviction that they are consistent. (Gödel 1933, p. 19)3 

ln the present context for assessing the indispensability argument(s), one should also 
note the ontological and epistemological anomalies in accepting set-theoretical foun
dations for mathematics, first of all because highly infinitary abstract objects are put 
on an ontological par with physical objects, and secondly because there is no observa
tional knowledge of abstract objects (either directly or indirectly).4 

4. The development of predicative foundations for analysis5 

4(a). Poincare and Russell 

ln seeking ways to avoid the set-theoretical paradoxes while pursuing the logicist 
program, Russell introduced the term predicative for properties which determine legiti
mate classes, but he had no settled criterion for telling which those are. Poincare saw 
the root of the paradoxes in the existence of a vicious circle, namely in the use of defi
nitions which purport to single out a member of a totality by reference to that totality. 
Such apparent definitions are called impredicative. There can be no objection to im
predicative definitions when the totality in question is regarded as having a clear and 
determinate extenl For example, if one accepts the totality N={ 0,1,2, ... } as definite, 
there can be no objection to definitions singling out some natural number as the least 
n satisfying a property <p(n) when q> refers, by quantification, to the totality of objects 
in N. Poincare regarded the natural number sequence and the principle of induction on 
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it as an irreducible basis of our mathematical intuition, and he argued that the attempts 
of the logicists such as Frege and Russell to derive these from purely logical principles 
are fundamentally misguided and question-begging.6 On the other hand, Poincare 
thought all other mathematical notions should be introduced by proper definitions; in 
particular sets are tobe defined only by reference to prior defined sets and notions, not 
by reference to any presumed totality of sets. The Iatter would thus constitute impred
icative definitions; Poincare banned their use under his vicious-circle principle. (Fora 
useful recent analysis of Poincare's philosophy of mathematics, see (Folina 1992).) 

Russell adopted Poincare's proscription of impredicative definitions in setting up 
the Ramified Theory ofTypes (RTT) for the Principia Mathematica (1910-1913). 
However, he did not follow Poincare in tak.ing the natural number system for granted, 
but airned to construct that "logically" within RTT. Each set variable of RTT is 
ranked, and the Comprehension Axiom schema for existence of sets {x:q>(x)} of a 
given rank is restricted to q> with all bound variables of a smaller rank; membership is 
restricted to successive ranks (the basic syntactic feature of typed theories of sets). 
But Russell then found that he was faced with a multiplicity of notions of natural 
number and could not even derive the simplest closure principles by induction using 
ranked formulas. Similarly, he was faced with an unworkable theory of the continu
um, since one could only deal with real numbers of different ranks, for which the 
l.u.b. axiom would not hold in any one rank. For purely pragmatic reasons then, 
Russell introduced the so-called Axiom of Reducibility which asserts that every set is 
eo-extensive with a set of lowest rank. This, in effect, completely compromised the 
predicative{impredicative distinction; Russell recognized the objections to this 
"axiom", but thought it could somehow be justified andin any case saw no alterna
tive. Later Ramsey pointed out that if one dropped rankings but maintained the re
striction of membership to successive types, thus yielding the Simple Theory of Types 
(STT), no obvious set-theoretical paradoxes would arise and some of the above prob
lems would be avoided. STT allows impredicative definitions {x:q>(x)} of sets of ob
jects x in any given typen, with {x:q>(x)} in the next typen+ 1. Contrary to Poincare's 
view, impredicativity is thus not an essential ingredient of the paradoxes. 

As with set theory, STT requires a Platonistic philosophy for its justification. lts 
"standard" model is given by 

(1) Sn+l =P(Sn) for n<ro, 

where S0 is a basic set of individuals. In order to derive arithmetic in STT one must 
assume that So is infinite; hence it is taken for granted that one accepts completed infi
nite totalities, and that for any totality S one also has the totality P(S) of all subsets of 
S. lmpredicativity already appears at type 1, since in forming the type 1 set {x:q>(x)} 
for x of type 0, with bound variables in q> of type 1, one is implicitly assuming the ex
istence of the totality of sets of type 1. 

4(b). Weyl's approach 

Tue fust steps, after Russell's aborted attempt, to see what part of analysis could be 
developed in strictly predicative terms were made by Weyl in his monograph Das 
Kontinuum (1918). Li.ke Poincare, Weyl accepted the natural numbers and the associat
ed principles of proof by induction and definition by recursion as basic. This simplified 
his task in comparison with Russell's (modified) logicist program. The main question 
was how to develop a workable theory of real numbers, via an unramified yet predica
tively acceptable theory of sets of natural numbers. His answer in essence was to re-
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strict to arithmetical definitions { n: A(n)} of such sets, i.e. where A contains no bound 
set variables but may contain free set variables and free or bound numerical variables. 
Relative arithmetic definitions deterrnine functions F(X)={n: A(n.X)} under which the 
arithmetically definable sets are closed. Weyl's further principles have been analyzed 
in modern terms in (Feferman 1988) and a certain ambiguity was revealed, leading to 
two possible formal systems for his work. The first of these tums out to be a conserva
tive extension of Peano Arithmetic, PA, and it suffices for all his applications. 

Using a standard representation of the rational numbers in terms of the natural 
numbers, Weyl defined the reals as lower Dedekind sections in Q. And, though he was 
blocked from inferring the l.u.b. axiom for sets of reals because that requires (irnpred
icative) quantification over "all" reals, he could obtain the l.u.b. for sequences of reals, 
since this only requires quantification over N: for a sequence oflower sections 
(XJne N in Q, we have Une ~n = {x:(3ne N)(xeXn)} as the l.u.b. With continuous 
functions from reals to reals treated via approximating functions from Q to Q, Weyl 
was then able to sketch in his system a straightforward reconstruction of the whole of 
19th c. analysis of (piece-wise) continuous functions of a real variable. He also sug
gested the possibility of extension to more general classes of functions, including the 
Lebesgue measurable functions, but gave no indications how this would be carried out. 

4(c). Modem developments 

Weyl did no more work with his system after 19187, and his program lay dormant 
until the l 950s when the logical study of predicativity was taken up in a variety of 
ways by Lorenzen, Kleene, Kreisel, Grzegorczyck, Wang, Spector and others (the de
velopment is traced in (Feferman 1964) Part 1). In particular, Kreisel proposed a char
acterization of predicativity in terms of a certain "autonomous" transfinite progression 
of ramified second-order systems whose exact extent was determined independently 
by Schütte and myself in 1964 tobe given by a certain recursively described ordinal 
ro (cf.op.cit. for references). Peano Arithmetic PA is contained in the base system for 
this sequence of theories. 

In order to develop analysis in a workable but still predicatively acceptable way, it 
was necessary to follow Weyl 's lead in setting up suitable unramified systems which 
would be justified (at least indirectly) by reduction to the autonomous progression of 
ramified theories. This was achieved in my 1964 paper in a second-order unramified 
system, followed by some improved versions in later papers. However, higher types 
are called for in order to have greater ease of development of analysis. For this, 
(Feferman 1977) and, independently (fakeuti 1978) introduced certain systems of fi
nite type which are conservative over PA by proof-theoretic arguments and, a fortiori, 
certainly predicatively justifiable. These permitted a direct development of 19th c. 
analysis and the beginnings of 20th c. analysis; but the Iatter called for an even more 
flexible and expressive formalism. 

5. A flexible system W ofvariable finite types for the modern development of Weyl's 
pro gram 

5(a). The formal system 

As indicated in Section 2 above, in order to represent the notions of modern analysis 
directly and develop analysis flexibly it is necessary to have not only the set R of real 
numbers but also for any set S, its definable subsets X={xe S:q>(x)}, and for any sets X 
and Y also the sets X X Y and X->> Y, where the Iatter is understood tobe the set of 
all partial functions from X to Y. Now if functions were defined as many-one relations 
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as in set theory, X->> Y would simply be the set of all many-one Z~X x Y, and this 
would call on P(X X Y) for its definition; that route would, in effect, take us back to 
Zermelo's set theory. Tue crucial first step toward a flexible, predicatively justifiable 
system is to treat functions and classes as conceptually independent basic notions, i.e. 
with neither explained in tenns of the other. A system taking this lead was worked out 
successively in (Feferman 1975, 1985, and 1988). We follow the last of these papers in 
describing the system W (so designated in honor of Weyl) presented there in detail. 

The language of W is two-sorted, with individual variables a, b, c, .. . , x, y, z rang
ing over a universe containing numbers, sets, functions, functionals, etc., and closed 
under pairing, while the variables A, B, C, .. X, Y, Z range over classes or (variable) 
types. Note the temrinological shift here: sets will be reserved for subclasses of a 
given class S which have a characteristic function. There are constants for specific in
dividuals and functions (indicated below); there are also binary operations (x,y) and 
x(y), where the latter is interpreted as the value of x at y when x is a partial function 
and y is in its domain, otherwise undefined. Individualterms s,t, ... are built up from 
individual variables by use of the given constants and operations by closure under the 
general process of explicit definition , including function definition (AxE S).t(x) . 
Class terms S, T, ... are built up from dass variables and the dass constant N by clo
sure under the operations: S XT, S->> Tand {xES:cp(x)}where cp is a bounded pred
icativeformula (explained below). Fonnulas ofW in general are built up from atom
ic fonnulas s=t, t! and tE S by the propositional operations and quantification with re
spect to both individual and dass variables; t! is used to express that t is defined. 
The bounded predicative formulas admit no quantification over class variables, and 
individual quantifiers are restricted as: (VxE S)cp and (3xE S)cp. By definition, 
(S -> T) = { zE (S -» T )l(\f XE S)zxJ.}. 

The individual and function constants are 0 and Sc (for successor on N), andµ (for 
the non-constructive least number or search operator), P1and P2 (for projections of 
pairing), D (for definition by cases), and RcN (for definition by recursion on N). The 
function axioms of W follow these intended meanings together with usual axioms for 
explicit definition. Taking l=Sc(O), we write P(S)=(S~{0, 1}) for the class of sub
sets of S regarded as the class of characteristic functions on S. Then for aE P(S) we 
writexEa for a(x)=O. In particular, the axiom for µ is simply 

(µ) µ e P(N) ~NA Va e P(N)[(3n)(n e a) ~ µ(a) e a] 

The class axioms of Ware the evident ones for SxT, S ->> T and {xE S.lcp(x)}. 

Induction on N is taken as so-called set induction: 

(Indsed Va E P(N)[o E a "'Vn(n E a ~ Sc(n) E a) ~ Vn E N(n e a)]. 

A stronger natural principle to consider is class induction: 

(IndClass) VX ~ N[O e X/\ Vn(n e X~ Sc(n) e X)~ N ~X); 

this is still predicative , but it leads us beyond PA, so is not induded in W. 

Using the µ operator one shows in W that sets are dosed under numerical quantifi
cation, since 3n(nE a)(::>µ(a)E a~a(µ(a))=O lt follows that every arithmetical formu
la defines a subset of N; then by lndset• we obtain the induction scheme for arithmeti
cal formulas. Tue logic of W is assumed to be that of dassical two-sorted predicate 
calculus . Hence the system PA of dassical first-order arithmetic is contained in W. 
The main meta-theoretical result about W is the following: 
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Main Theorem W is proof-theoretically reducib/e to PA and is a conservative 
extension of PA. 

The proof of this will appear in (Fefennan and Jäger, forthcoming); for the proof of 
the corresponding result for a precursor of W see (Fefennan 1985). lt follows from 
this theorem that W rests on entirely predicative grounds, though it has much of the 
conceptual richness and flexibility of systems Iike Zermelo set theory. 

5(b). Analysis in W 

Space does not begin to pennit the demonstration that all (or practically all) of the 
necessary l 9th and 20th c. analysis needed for scientific applications can be carried 
out directly in W; indications are given in (Feferman 1985 and 1988). To begin with, 
the class R of real numbers may be introduced as the class of Dedekind sections in 
P(Q) or alternatively as the class of Cauchy sequences in (N~Q). By closure under 
numerical quantification, we obtain closure under l.u.b. of bounded sequences, just as 
in Weyl 's system. Now instead of dealing with (partial) functions of a real variable 
by some reduction or other to second-order functions, we treat them directly as mem
bers of R ->> R. Then the classes of continuous functions, measurable functions, 
etc. are obtained as suitable subclasses of R ->> R8. Given a function space S, 
functionals on that space are simply members of S ->> R. In this way, basic con
cepts and examples from functional analysis are readily represented in W. In that sub
ject I have verified (in unpublished notes) that such results as the Riesz Representa
tion Theorem, Hahn-Banach Theorem, Uniform Boundedness Theorem and Open 
Mapping Theorem for separable Banach and Hilbert spaces are derivable in W-and 
that, finally, one can obtain the principal results of the spectral theory of bounded self
adjoint linear operators on a separable Hilbert space. Extension of this work to the 
case of unbounded self-adjoint operators has been carried out in a preliminary way, 
using an approach to their spectral theory via limits of bounded operators. 

While there are clearly parts of theoretical analysis that cannot be carried out in W 
because they make essential use of the l.u .b. axiom applied to sets rather than se
quences, or because they make essential use of transfinite ordinals or cardinals, or be
cause they deal with non-separable spaces, the working hypothesis that all of scientif
ically app/icable analysis can be developed in W has been verified in its core parts. 
What remains to be done is to examine results closer to the margin to see whether this 
hypothesis indeed holds in füll generality. 

6. Comparisons with the Reverse Mathematics program and constructivist and finitist 
foundations of analysis. 

Tue Reverse Mathematics (R.M.) program was originated and initially developed by 
H. Friedman (1975) and subsequently pursued in detail mainly by Simpson and his stu
dents (cf. Simpson 1987 and 1988). Tue main question addressed in that program is: 
which set-existence principles are necessary to establish the (Icnown) propositions of or
dinary non-set-theoretical mathematics? To fix matters, though, only results which can 
be formulated (or refonnulated) in the language of second-order arithmetic have been 
considered. The pattern of the work is to find for each mathematical theorem t (which 
can thus be expressed) a set-existence principle er such that er~t is provable in a sys
tem based on principles weaker than er; the "reverse" part comes in showing that t~cr 
is derivable (in the same system), so that er is exactly necessary for t . A great number 
of results from analysis (as weil as in algebra and Jogic) have been exarnined success
fully in the R.M. program.9 Moreover, it has been found that five principles er of in
creasing strength come up repeatedly in this process: RCAo (Recursive Comprehension 
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Axiom), WKLo (Weak König's Lemma), ACAo (Arithmetical Comprehension Axiom), 
A'fRo (Arithmetical Transfinite Recursion), and f1l-CAo Cf1l-Comprehension Axiom); 
the subscript 'o' indicates that Indset is the only form of induction on N used with each 
set-existence principle. ATRo is proof-theoretically equivalent to the full progression of 
predicative systems referred to at the end of Section 4, while f1l-CAo is the first patent
ly impredicative system beyond that; we have the full l.u.b. principle for sets of reals 
provable in f1l-CAo. Going back down, ACAo is contained in our system Wand is also 
conservative over PA. On the other hand, both RCAo and WKLo are conservative over 
the much weaker system PRA of Primitive Recursive Arithmetic. All of the results 
shown to be equivalent to RCA0, WKLo or ACAo are thus provable in W. 

There are two main differences of the R.M. pro gram from that described in Sec. 5 
with W. The first is the R.M. restriction to statements in the language of second-order 
arithmetic: this requires considerable coding once one moves beyond the 19th c. anal
ysis of continuous functions (and even the representation of the latter in second-order 
terms is less than natural). On the other hand, the equivalences established in R.M. of 
results from ordinary mathematics with one of RCAo,WKLo or ACAo, are evidently 
sharper than the fact that such are consequence of the principles of W. In any case, 
the work done on RCAo.WKLo or ACAo in analysis corroborates fully the develop
ment of all of 19th c. analysis and substantial tracts of 20th c. functional analysis 
within W as described in the preceding section. 

Further evidence comes from the development of constructive analysis in the hands 
of the Bishop school (cf. Bishop and Bridges 1985). Bishop and his followers found 
constructive substitutes for considerable portions of classical analysis. In general, with 
each classical theorem 't for whic~this is successful is associated a constructive theorem 
't* such that LPO implies 't*~'t wtlere LPO is the "Lirnited Principle of Omniscience" 
Vn(j(n)=O)v3n(j(n)i:()) for all f:N~N. Evidently LPO is a special consequence of the 
Law of Excluded Middle (LEM). lt was shown in (Feferman 1979) how all of Bishop's 
development of constructive analysis (except for his theory of Bore! sets which Bishop 
had shown tobe dispensable) could be formalized in a constructive theory of variable fi
nite types which is proof-theoretically reducible to HA (Heyting Arithmetic). Indirectly, 
then, all of the classical analysis for which constructive substitutes were found in the 
Bishop school are accounted for by principles reducible to PA(=HA + LEM). This again 
acts to corroborate the work described in Sec. 5 above.10 

A word, finally, about finitist foundations of analysis. Initial efforts in this direc
tion were made by Goodstein (1961), by considering which results of analysis can be 
accounted for on the basis of PRA. That is a quantifier-free system generally ac
knowledged to represent part (if not all) of finitist constructions and arguments in 
number theory. One of the impressive results of the R.M. program is to show how 
much of 19th c. and 20th c. analysis can be established in WKLcJ; since that is proof
theoretically reducible to PRA (cf. Sieg 1985), an exceptional amount of analysis is 
already accounted for on finitistically justifiable grounds. In view of this it would be 
worthwhile setting up a subsystem of W conservative over PRA in which that same 
part of analysis can be formalized more directly. 

7. Significance for the indispensability arguments 

The questions Ql and Q2 raised in Section l take the indispensability arguments 
for granted. Answers given in the past to these questions have been extremely broad, 
on the order of: mathematical analysis is indispensable to science, the real numbers 
and functions and sets of reals are the basic objects of analysis, set theory provides 
our best account of the real number continuum and of functions and sets in general, so 
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the entities and principles of set theory are justified by science. This sweeping pas
sage leaves undetennined just which of those entities and principles are thereby justi
fied, except perhaps to say that the farther reaches of set theory are evidently unneces
sary for science and so may be disregarded. 

The work described in the preceding two sections allows one to teil quite different 
and much more specific stories in response to these questions. In all of the indicated 
formal systems one can speak within the Janguage of these systems about arbitrary 
real numbers, functions of real numbers, sets of real numbers, etc. Only the existence 
principles (closure conditions) conceming these objects are much more restricted than 
in the case of systems of set theory Iike Zermelo's. To be specific, Jet us concentrate 
on the system W. Acceptance ofW and the entities with which one can deal in its 
Ianguage does not commit one to a Platonistic ontology of those entities, though the 
Platonist is free to understand W in those terms. B y the fact of the proof-theoretical 
reduction of W to PA, the only ontology it commits one to is that which justifies ac
ceptance of PA. But even there, the answer to Ql and thence to Q2, is underdeter
mined. One view of PA is that it is about the natural numbers as independently exist
ing abstract objects; that is again a Platonistic view, albeit an extremely moderate 
one. Another view is that PA is about the mental conception of the structure of natu
ral numbers, which is of such clarity that statements conceming these numbers have a 
determinable truth value and their properties can be established in an indisputable in
tersubjective way; this is more or less the predicativistic view. Or one can make use 
of the fact that PA is reducible to HA to justify it on the basis of a more constructive 
ontology. In all these cases except the fully Platonistic point of view conceming W, it 
is treated in an instrumental way, its entities outside the natural numbers are regarded 
as "theoretical" entities, and the justification for its use lies in whatever justification 
we give to the use of PA; but even there we do not arrive at a unique ontology. 

My conclusion from all this is that even if one accepts the indispensability argu
ments, practically nothing philosophically definitive can be said of the entities which 
are then supposed to have the same status--0ntologically and epistemologically-as 
the entities of natural science. That being the case, what do the indispensability argu
ments amount to? As far as I'm concemed, they are completely vitiated. This does 
not mean, however, that questions Ql and Q2 lose their interest. Rather that is re
tained if one regards them instead from a phenomenological point of view, and here 
the kind of logical work described in Sections 5 and 6 above already has much to tell 
us. This work needs, of course, tobe continued in order to make it fully conclusive, 
and here it will be necessary to investigate questions at the margin, e.g. the possible 
essential use in physical applications of such objects as non-measurable sets or non
separable spaces, which are not accounted for in systems like W. 

8. Final remarks 

As a complement to the preceding discussion one should mention Maddy's critical 
examination (1992) of the indispensability arguments, whose conclusion (op.cit p. 289) 
is that they "do not provide a satisfactory approach to the ontology or the epistemology 
of mathematics'', for two reasons, quite different from those given here. The first is that 
"fundamental mathematized science is 'idealized' (i.e. literally false)", e.g. "the analy
sis of water waves by assuming the water tobe infinitely deep or the treatrnent of mat
ter as continuous in fluid dynarnics or the treatment of energy as a continuously varying 
quantity" (op.cit. p. 281), and hence that the mathematics involved cannot be regarded 
as true, other than "true in the model" (my quote marks). The second is that "[scientif
ic] indispensability cannot account for mathematics as it is actually done." 
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The first of these objections puts mein mind of the oft referred to article by 
Wigner on "The unreasonable effectiveness of mathematics in natural science" 
(1960). I agree with Maddy completely about the extent to which mathematized sci
ence depends on highly idealized models. What is remarkable, then, is not the unrea
sonable effectiveness of mathematics so much as the unreasonable ejfectiveness of 
(mathematized) natural science. 

In her second objection, Maddy has particularly in mind the mathematics carried 
on by current set-theorists, but it is not unjustly applied to the bulk of pure mathemat
ics as it is actually practiced. Here one meets a different kind of indispensability ar
gument, stemming from Gödel, for the need of "higher" set theory to account for that 
body of mathematical work. But, again, appearances are deceiving, and logical re
sults from recent years have much to teil us about just what is needed to carry on all 
but the patently set-theoretical reaches of modern mathematics. It is not claimed that 
predicative systems account for that, but it has been established that systems far 
weaker than Zerrnelo set theory and even than second-order arithmetic suffice for the 
bulk of mathematical practice. 

Lik:e most scientists, philosophers of science could simply take mathematics for 
granted and not concem themselves with its foundations, as being irrelevant to their 
main concems. But, as Hellman has emphasized in his introduction to his article in this 
volume, debates like those discussed here as to realism vs. (e.g.) instrumentalism, and as 
to the indispensability of highly theoretical concepts and principles, are equally central 
to the philosophy of science. Whether the kind of logical results described here will be 
more directly relevant to those debates remains tobe seen. But as long as science takes 
the real number system for granted, its philosophers must eventually engage the basic 
foundational question of modern mathematics: "What are the real numbers, really?" 

Notes 

lJnvited lecture in the Symposium, "Is foundational work in mathematics relevant 
to the philosophy of science?" at the meeting of the Philosophy of Science 
Association, Chicago, Nov. l, 1992. 

2Geoffrey Hellman's contribution to this symposium (this volume) is closely relat
ed to our discussion of these questions at a number of points. 

3The complete text for Gödel's 1933 lecture was found in his Nachlass; it will be 
reproduced in the forthcoming Vol. III of Kurt Gödel's Col/ected Works. 

4Maddy (1990) does attempt to advance a modified form ofrealism which would 
root our knowledge of sets in everyday physical experience. In my view, this is con
vincing only for the most elementary parts of set theory, if at all. 

5for a more extensive survey of the development of predicativity see Part 1 of 
(Feferman 1964 ). 

6Parsons (1983) has argued for the impredicativity ofthe induction principle on N. 
Nelson (1986) (in evident agreement with this view) has developed an axiom system 
for what he calls predicative arithmetic which drastically restricts the use of the in
duction principle. (The computational content of Nelson 's system is related to the 
feasibly computable functions in the sense of computer science.) In contrast, 
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(Fefennan and Hellman forthcoming) provide predicative foundations of full arith
metic on the basis of rather weak and intuitively evident axioms for finite sets. So 
one sees that it is reasonable to consider notions of predicativity relative to various 
basic conceptions; the one dealt with in the present text has come to be called pred
icativity given the natural numbers. 

7for reasons explained in (Fefennan 1988). 

8The notion ofLebesgue outer measure cannot be defined in W since it makes es
sential use of the g. 1. b. applied to sets, not sequences. However, the measure of 
measurable sets can be defined as the g.l.b. of measures of a sequence of approximat
ing open covers. Incidentally, W does not prove the existence of non-measurable sets 
of reals in the sense of Lebesgue, i.e. it is consistent with W to assume that all sets of 
reals are measurable. 

9Simpson is currently preparing a book on subsystems of second order arithmetic 
in which many of these results will be presented in full. 

IONaturally, one may expect that many results 't of classical analysis are not con
structively provable as given; cf. e.g. (Pour-El and Richards 1989) and (Hellman 1993). 
That doesn't imply that t has no constructive substitute in Bishop's sense. 

11 Cf., e.g., (Fefennan 1977 and (forthcoming)) for surveys of work in this direc
tion, as weil as (Simpson 1987). 
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