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ABSTRACT 

In many technical and geomechanics applications, for example tire and ski design or avalanche prediction, the capability to 

model the mechanical behaviour of snow is of high importance. To this end, we propose in the present study to extend the 3D 

H-model, a multiscale constitutive law originally developed for granular materials, to densely packed snow. In the model, 

single ice grains are described by spherical particles bonded by brittle elasto-viscoplastic bridges. Snow is thus described 

explicitly through its ice skeleton microstructure. As a validation, confined compression test results from Abele and Gow 

(1976) are used to assess the suitability of the model to correctly describe snow behaviour. Multiple parameter studies were 

conducted to demonstrate the capability of the model to capture the behaviour of different snow types over a significant range 

of temperatures and loading rates at small deformations. Notably, the initial bond radius emerges as an effective proxy for 

snow aging under isothermal conditions, with stress levels increasing directly with the initial bond radius. Additionally, low 

strain rates and elevated temperatures are shown to influence the viscous response of ice bonds, their failure rates, and the 

overall stress within the snow material. 
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1. INTRODUCTION 

As a granular material constituted of an interconnected network of ice grains, snow has a complex mechanical behaviour 

influenced both by the material properties of ice and by its intrinsic microstructure. As a homogeneous material, ice can show 

both brittle and ductile behaviour, depending on the external conditions as strain rate for instance (Schulson, 1990). It also 

exhibits temperature-dependant creep behaviour (Barnes and others, 1971). From a microscopic perspective, snow exhibits 

diverse microstructures initially dictated by the meteorological conditions at snowfall but evolving over time under the 

influence of the environmental constraints. This so-called snow metamorphism is mostly driven by the temperature and its 

gradient within the snow layer. Under specific climatic conditions, snow metamorphism leads to the transformation of 

snowflakes into bonded spherical ice grains  (Fierz and others, 2009; Calonne and others, 2014) which normally goes along 

with a snow densification (Kojima, 1967).  

 

Modelling the mechanical behaviour of snow is of great interest in various fields, from avalanche prediction and mitigation 

(Nicot, 2004; Gaume and others, 2014), winter sports equipment (Fauve and others, 2008), to snow tire design (Shoop and 

others, 2006; Lee, 2013; Hjort and others, 2017). Two kinds of approaches are widely adopted for snow modelling, namely 

continuum-based and particle-based methods. Particle-based methods have the advantage of explicitly accounting for the 

characteristics of snow microstructure. They are based on an individual representation of grains, mostly through the discrete 

element method (DEM) (Cundall and Strack, 1979; Radjai and others, 1998; Luding, 2008; Smilauer, 2010). DEM has 

already been used for snow by modelling the ice grains as discrete particles connected by ice bonds (Johnson and Hopkins, 

2005; Mede and others, 2018; Mulak and Gaume, 2019; Willibald and others, 2019; Kabore and others, 2021; Peters and 

others, 2021; Bobillier and others, 2021), or to represent snow elements (Gaume and others, 2015). In return for taking 

effective account of the effect of the microstructure, DEM is computationally costly, which limits its ability to model large 

scale systems. As an alternative to discrete numerical methods, continuum-based approaches of snow include the finite 

element method (FEM) (Meschke and others, 1996; Podolskiy and others, 2013; Fourteau and others, 2024), the finite 

difference method (Dent and Lang, 1980), the material point method (Gaume and others, 2018, 2019; Trottet and others, 

2022), and the smooth particles hydrodynamics (El-Sayegh and El-Gindy, 2019) among others. In these methods, snow is 

modelled as a continuous medium and its material behaviour is accounted for by a constitutive relation. For example, a 

Drucker-Prager (Haehnel and Shoop, 2004; Lee, 2009; Gaume and others, 2011; Blatny and others, 2023) or a modified 

Cam-Clay (Gaume and others, 2018; Guillet and others, 2023) constitutive material laws are widely used in the field of snow 

avalanche modelling. Such approaches are usually significantly less time consuming than DEM, meaning that they can 

address large scale systems . However, the constitutive relations implemented are generally phenomenological and therefore 

do not explicitly account for the snow microstructure, which makes them harder to calibrate.  However, recent works have 

highlighted the importance of incorporating snow microstructure into constitutive models to more accurately capture its 

mechanical behaviour (Blatny and others, 2021, 2023).   

 

In this paper, we propose a continuum approach based on a constitutive material model that incorporates explicitly the 

discrete microstructure of snow, thus combining the advantages of both modelling strategies. To this end, the 3D H-model 

(Nicot and Darve, 2011; Xiong and others, 2017) is extended to snow, considered as an assembly of spherical ice particles 

connected by ice bonds. This model was originally introduced for soil modelling in dry (Wautier and others, 2021) and 

partially saturated conditions (Xiong and others, 2021). The ability of the H-model to be used at large scale has been 

demonstrated by Xiong and others (2019), where the 3D H-model is used to model geotechnical problems. In this approach, a 

granular material is described as a distribution of mesostructures formed by a few grains. The collection of these 

mesostructures (denoted H-cells in the following) in various configurations provides a statistical description of the 

microstructure. From the individual mechanical response of each mesostructure, the material constitutive relation can be 

formulated in a continuum framework by statistical homogenization. In the here-after presented extension of the 3D H-model, 

the particles forming the H-cells represent ice grains with an interparticle contact law specifically suited to ice. The latter was 

developed to capture the ice bond evolution as well as the ice grain contact and is partly based on a previous work (Kabore 

and others, 2021). As many engineering applications (vehicles moving on snow, winter sports, …) imply short-term time 

scales and fast loading, only the brittle behaviour of ice will be considered in the following. Since density is one of the most 

important parameters in snow behaviour, special attention is brought to the relationship between the geometry of the 
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mesostructures in the H-model and the macroscopic density. The influence of the aging of snow before the mechanical 

loading and its impact on the calibration of the numerical parameter are also investigated. Finally, the capacity of the model 

to account for varying conditions, such as the temperature and the loading rate is demonstrated. 

2. MULTI-SCALE MODEL FOR SNOW 

The H-model was initially developed for granular soils, first in two dimensions (Nicot and Darve, 2011; Veylon and others, 

2018) before being extended to three dimensions (Xiong and others, 2017). It has been progressively extended to capture 

additional physical phenomena, such as the existence of capillary forces in unsaturated soils (Wautier and others, 2021; 

Xiong and others, 2021), or erosion by suffusion (Ma and others, 2022). Here, further extension of the 3D H-model to snow 

modelling relies on implementing a specific customized contact law for ice bonds, restricting the scope of the study to fast 

loading conditions (strain rate above         ), so that the ice behaviour can be assumed to be exclusively brittle (Schulson, 

1990). 

2.1 A multiscale constitutive model for granular materials: the 3D H-model 

Contrary to phenomenological approaches, multi-scale models introduce a statistical homogenization process, which 

consists in inferring the mechanical behaviour of a given material from the constitutive properties taking place at a smaller 

microscopic scale (Wautier and others, 2021). More precisely, the material constitutive law is obtained from the weighted 

averaged behaviours of several mesostructures, which are each constituted by a set of grains. First conceptualized by Satake 

(1992) and later explored by Kruyt and Rothenburg (1996), grain loops are an example of such mesostructures in a 2D 

granular assembly. In principle, these loops enable a geometrical description through a particle graph paving the space and 

have been shown to be a powerful tool to explain the behaviour of granular materials based on local physics. Namely, it has 

been observed that grain loops containing more than six grains within a granular material can serve as a meaningful 

descriptor for the material scale behaviour (Zhu, Nicot, and others, 2016b; a; Zhu, Veylon, and others, 2016; Liu and others, 

2018). These results support the physical suitability of the H-model in which the microstructure is described as a collection of 

either hexagonal grain assemblies in the 2D H-model (Nicot and Darve, 2011), or bi-hexagonal grain assemblies in the 3D H-

model (Xiong and others, 2017).     

 

The tridimensional bi-hexagonal mesostructure is formed of two perpendicular hexagons as represented in Error! Reference 

source not found.. Each H-cell has an orientation in space, characterized by the three Euler angles  ,   and   with respect to 

the global reference frame. The distribution of this orientation  (     ) describes the initial anisotropy of the 

microstructure.  The two hexagons of the mesostructure are supposed to remain in orthogonal planes over any loading. The 

planar geometry of the two hexagons is shown in Error! Reference source not found.. By adopting symmetry assumptions 

in the cell geometry, each hexagon can be parameterized by only two intergranular distances (   and    in hexagon A, and    

and    in hexagon B) and an opening angle (   in hexagon A and    in hexagon B). The symmetries in the cell allow to 

consider only four different contact points, between grains 1-2, 2-3, 1-7 and 7-8. To maintain the overall symmetry 

assumption in the cell geometry, equality is also imposed between the various forces within the cell:    and   , representing 

the normal and tangential external forces in the three directions of the space, and    and   , representing the normal and 

tangential contact forces at the four different contact points between the grains, as described in Error! Reference source not 

found.. The external vertical force on grain 1 can be decomposed into two terms   
  and   

 , which respectively insure the 

equilibrium of hexagons A and B. 

 

Figure 1 near here 

 

Figure 2 near here 

 

Depending on the loading of the cells, some contacts between grains can appear or be lost. Appendices C and D describe 

these potential cases in detail. 

 

The overall homogenization scheme used for the H-model, as summarized in Error! Reference source not found., allows 

connecting continuum/macroscale and particle/microscale descriptions of the material. An incremental constitutive relation 

linking the global incremental strain tensor    to the global incremental stress    is thus implicitly derived. In the following, 

we briefly review the main steps of this homogenization scheme. 
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The model assumes strain homogeneity such that the same macroscopic strain is applied in all H-cells. Consequently, the 

local incremental strain tensor   ̃ in each H-cell is expressed in the local frame as 

  ̃           (1) 

  

with   being the rotation matrix between the global and local frames: 

  (

   
          
         

)(

          
   

         
)(
   
          
         

) . (2)   

 

The changes in the H-cell lengths     can be deduced from the diagonal coefficients of the local incremental strain tensor 

and the external length of the H-cell   , as defined in Error! Reference source not found.: 

       ̃    (3) 

 

The evolution of the H-cell geometry depends directly on the variations of the H-cell lengths and on the force balance 

applied to the mesostructure. The geometrical compatibility equations read:  

{

                                         
                                                                               

                                                                               

 (4) 

with    the lengths of the smallest peripheral parallelepiped volume,    the lengths of the hexagons defined by the centers 

of the grains, and    the grain radius. 

Differential variation of Eq. (4) provides three equations relating the variations of the H-cell lengths      to the variations 

of both the intergranular distances     and the opening angles      

{

                                                       
                                                                                                              
                                                                                                              

 (5) 

 

Considering the balance of forces and momentum for the grains 2 and 7 provides: 

{

                                                                                                          
                                                                                                          

                                (       )

                                (       )

 (6)  

 

Differentiating these last two equilibrium equations yields: 

{
                       (       )                   

                       (       )                  
 (7)  

 

The contact forces are related to the H-cell geometrical parameters through a contact law. In the general case of a visco-

elastic contact, a generic form of the contact law at a given contact   reads: 

{
       (      )      (      )                                 

       (      )      (         )       (      )
 (8)  

 

with     ,           ,      and      being independent of the geometry. The      and the      coefficients are stiffness terms 

expressing the evolution of the intergranular distance in terms of the incremental contact forces (normal and tangential 

respectively). The coefficients      link the tangential contact force to the evolution of the opening angle. The coefficients      
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and      are viscosity terms, which depend on the contact loading. Note that        denotes the opening angle at the beginning 

of the loading at time     . The contact law specifically developed for snow will be detailed in the next section. 

 

  Differentiation of Eq. (8) provides a generic incremental form of the contact law:   

{
                                  

                          
 (9)  

 

Combining Eq. (5), (7) and (9) results in two sets of equations that provide the changes in the intergranular distances and 

in the opening angles as a function of the changes in the H-cell lengths:  

(

                
               
      

)(

   
   
   

)  (

   
   
  

) (10) 

 

and 

(

                
               
      

)(

   
   
   

)  (

   
   
  

) (11) 

 

with  

{
 
 

 
              (       )    

        
                    (       )    

                             

 (12)  

 

and 

{
 
 

 
               (       )    

        
                    (       )    

                             

 (13)  

 

The incremental contact forces can be obtained from the incremental intergranular distances and opening angles according 

to the incremental contact law (9).   

 

Continuing with  the continuum formulation, the Love-Weber formula (Love, 1892) expresses the local stresses  ̃ at the 

scale of the H-cell from the updated contact forces   ( )    (    )      and   ( )    (    )      

{
 
 
 
 

 
 
 
  ̃   

 

     
(        

                         

                                        
                         )

 ̃   
 

     
(        

                   )               

 ̃   
 

     
(        

                   )                

 ̃                                                                                               

 (14)  
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where       is the external volume of the mesostructure (Wautier and others, 2021). Finally, a statistical homogenization 

of the stresses over the complete H-cell collection provides the stress tensor   in the global frame: 

  
 

      
∭ (     )     (     )  

    (     )              (15)  

 

where  (     ) is the probability density function of the H-cell distribution, which satisfies: 

∭ (     )               (16)  

 

and        is the total volume of the distribution of H-cells given by: 

       ∭ (     )     (     )             (17)  

 

Eventually, we obtain a multiscale constitutive model, that relates the total stress to the global strain under an incremental 

formalism (Fig. 3). The hypothesis of non-correlated mesostructures inferred by the statistical homogenisation, and the 

hypothesis on the geometry of the mesostructure could lead to an error, but previous work on the H-model (Nicot and Darve, 

2011; Xiong and others, 2017, 2021; Veylon and others, 2018; Wautier and others, 2021; Deng, 2022; Liu and others, 2024) 

have proven that this error is not significant.   

 

Figure 3 near here 

 

2.2 Contact law between ice grains 

In the extended version of the 3D H-model proposed hereafter, the snow constitutive features are accounted for by 

introducing a specific contact law between the ice grains of each hexagon of a H-cell. In the context of the snow-H-model, 

the history of a contact is supposed to be the following:  

(i) The ice grains have undergone metamorphism processes which progressively round their shape (Fierz and others, 

2009). Ice grains are thus assumed to be spherical.  

(ii) Thermodynamic sintering has created viscous ice bonds at all contacts between ice grains (Kabore and others, 

2021) (Peters and others, 2021). Each ice bond is assumed to be incompressible (Lipovsky, 2022), meaning that 

its volume originates only from the prior sintering conditions, such as temperature and sintering time (Szabo and 

Schneebeli, 2007).  

(iii) Bond creation processes are supposed to be slow compared to the loading rates considered in the targeted 

applications ( ̇           ). Consequently, if an ice bond fails during the stress loading, it has no time to reform, 

and the contact becomes cohesionless until the end of the loading.   

  

Based on these assumptions, the contact law to be developed in the snow-H-model must account for both bonded and 

unbonded contacts between spherical ice grains.  

 

Grains in contact are assumed to be initially bonded by a cylindrical ice bridge resulting from prior snow metamorphism 

(Error! Reference source not found.). The bridge is characterized by its radius    and its length   , with      and      their 

respective values at the initial time step. Note that the initial bond geometry before loading created by prior thermodynamic 

sintering can be changed through its initial radius, enabling the modelling of different snow types (Szabo and Schneebeli, 

2007). During mechanical loading, the strain is assumed to be localized into the cylindrical ice bonds while the spherical ice 

grains are assumed perfectly rigid so that the strain is fully concentrated within the bond. 

 

Figure 4 near here 

 

The deformable bond between two ice grains is modelled by a Maxwell elasto-viscoplastic beam on the basis of the work 

of  Kabore and others, 2021 and Peters and others, 2021. The main discrepancy with this model lies in the absence of grain 

rotation in the H-model which leads to the lack of torsion and bending in the ice beam. The creep behaviour of ice, which can 

be dominant during loading, is accounted for by introducing viscoplasticity in the bond.  
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The total normal bond strain     
    can be split into an elastic part     

  and a viscoplastic part     
  

: 

    
        

  
     

  (18)  

 

The viscoplastic deformation accounts for the well-known creep behaviour of ice since the creep rate   ̇  
  

 in the bond 

direction is related to the normal stress      by Glen’s law (Barnes and others, 1971): 

 ̇   
  
 
     
  

  
  (    )    

  (19)  

 

where  (    ) is a temperature dependent coefficient, and   is an exponent generally close to 3 (Barnes and others, 

1971).  

 

Finally, the elastic normal deformation is simply proportional to the normal stress. Due to the adhesion of the bond on the 

ice grains (which prevents the bond from expanding laterally around the contact points), using Young’s modulus   would 

underestimate the stiffness of the bond/grains assembly. Thus, the oedometer coefficient of ice       is used instead to better 

reflect the lateral geometrical constraints:  

     
 (   )

(   )(    )
    
           

  (20)  

with   the Poisson’s ratio of ice. 

The normal strain in the bond can be expressed as a function of the bond length, thanks to the strain localization 

assumption: 

    
     

       
    

 (21)  

 

with    and      being the bond length, respectively at the current time and at the beginning of the loading. It should be 

noted that compression and contraction are counted positive.  

The normal stress can be related to the normal contact force    as follows: 

     
  

  
 
  

   
  (22)  

 

where    is the radius of the cylindrical bond and    its section. 

 

As the bond is the only deformable element in the bonded ice grain model, the incremental bond length     is directly 

equal to the incremental intergranular distance   : 

       (23)  

 

Eventually, the incompressibility condition, together with the volume conservation of the ice bond, read: 

   
         

      (24)  

 

By combining Eqs. (18)-(24), the contact law relating the incremental normal contact force     to the incremental 

intergranular distance    can be obtained: 

        
 (
    
  

 
     
    

)      
       (    )    

    (25)  

 

Likewise, the incremental tangential contact force can be expressed as a function of the incremental intergranular distance 

and of the variation of the bond direction, characterized by   : 
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   (    )    
    (26)  

 

with   
 

 (   )
 the shear modulus of ice. The way to obtain this expression using Glen’s law is detailed in Appendix A.  

 

During the loading, stresses increase in the bond, which can lead to its failure. In our approach, only brittle failure is 

accounted for as the strain rate in the targeted engineering applications is supposed to be high enough ( ̇         ). Brittle 

bond failure occurs as soon as one of the following conditions is met: 

{

         
         

|    |     

 (27)  

 

where      is the normal stress in the bond, which is positive in compression,      is the shear stress in the bond.     ,     

and     are respectively the compression, tensile and shear strength of ice. The expression of the brittle strengths of the ice 

bonds is given by Michael (2014) and Kabore and others (2021):   

{
 
 

 
             

 

 
    (

  )

                                     

    
 

 
                                   

 (28)  

 

 

Figure 5 near here 

 

When bond failure occurs, the contact law between the ice grains is reduced to a simple elasto-plastic law: 

{
 
 

 
     {

                
                              

                                                    

    {
           |          |  |      |       

    (          )(      )              

 (29)  

 

In the absence of ice bond, the normal stiffness      between ice grains at contact   evolves with grain interpenetration (see 

justification in Appendix B): 

         
 

 
(   

  
 

   
) (30)  

 

2.3 Extension of the 3D H-model to snow 

The relationship between the incremental contact forces and the changes in the local kinematics (including the 

intergranular distances between two ice grains and the contact direction) has been previously established in section 2.2, both 

for a bonded contact (Eqs. (25) and (26)) and after failure of the ice bond (Eq. (29)).  The incremental normal contact force 

in Eq. (25) and (29) and the incremental tangential force in Eq. (26) and (29) can be written generically as in Eq. (9), with 

the corresponding coefficients: 
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         (          )    
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) (      )(      )                             

                                      

        
  
  
    

         
 

 
(   

  
 

   
)  (      )                                                                   

         
   (    )    

         (    (          )          )(      )(      )

 (31)  

 

where   stands for the number of the considered contact, as defined in Error! Reference source not found..      is a bond 

indicator equal to one when the ice bond at contact   exists, and zero otherwise.      is a similar indicator which is equal to one 

in a non-bonded elastic contact, and zero otherwise. The ice contact law defined by these coefficients can be implemented 

readily within the standard computation scheme of the H-model. Some additional improvements of the model in relation with 

the creation and the loss of contacts in the H-cell are described in Appendix C and D. 

3. HOMOGENEOUS COMPRESSION TEST SIMULATIONS  

In this section, the snow-H-model is validated at the representative elementary volume (REV) scale against experimental 

tests by (Abele and Gow, 1976) conducted for different snow types. The numerical parameters are tuned to match the 

experimental stress/strain curves as closely as possible. This calibration procedure enables to identify the snow density range 

over which the model can capture the mechanical response of snow. 

 

3.1 Confined compression test 

In (Abele and Gow, 1976), several confined compression tests were performed on different snow samples. In practice, 

natural snow was collected in cylindrical containers and compacted at temperatures ranging between      and     . The 

snow samples were then stored for 0.1 to 7 days before being tested under oedometer conditions at a constant temperature 

between       and     . The storage duration prior to testing is referred to as the snow age in the following. During the 

compression test, a vertical velocity of         was applied to the top of the sample, while lateral deformations were kept 

constant. The experimental parameters are summarized in the first two columns of Table 1 near here. The initial snow density 

of each sample was determined from the original volume and after measurement of the final sample weight. 

 

Table 1 near here 

 

3.2 Calibration against experimental results   

The extension of the 3D H-model to snow is implemented in a stand-alone Python code which is used to run REV scale 

tests under strain-controlled conditions. The compression tests under lateral confining from (Abele and Gow, 1976) are 

reproduced with this code.  

 

Some of the experimental parameters of the experiments, such as the snow temperature and the strain rate can be directly 

used in the simulations. However, the initial snow density and the snow age are not explicit input parameters for the 3D H-

model. The experimental snow age is only indirectly related to the initial bond radius      (Szabo and Schneebeli, 2007) and 

the initial density derives from the initial geometry of the H-cells. The latter is determined by the initial opening angle 

             which can be varied to modify the initial density. Unlike the original H-model for sand, some grains may 

not necessarily be in contact in the snow-H-model (see Error! Reference source not found.), to account for large porosity 

values in snow. A new parameter is then introduced: the initial inter-granular distance      (see Error! Reference source not 

found. where               and Appendix D). In the case where              , the connectivity of forces within the 

cell is maintained through contact with neighbouring cells. This is reflected by the external force   
  being balanced by the 

tangential external force    (see Error! Reference source not found.), resulting in the equilibrium of the two half cells (see 

Appendix D). As a result, the initial density in the experiments can be accounted for by calibrating the two numerical 
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parameters      and   . The sintering time before loading is included in the snow-H-model from the initial bond radius     , 

which is capped by the grain radius. The numerical parameters and their range of variation are summarized in the last two 

columns of Table 1 near here. 

 

Figure 6 near here 

  

The first objective of the calibration step is to determine the initial value of the three numerical parameters describing both 

the geometry and the sintering state of the H-cell, namely the opening angle   , the intergranular distance      and the bond 

radius     . To this end, stress-strain curves for different initial parameters are systematically compared to the experimental 

curves by (Abele and Gow, 1976). The best fitting triplet (                       ) in the parameter set   given in Table 1 

near here corresponds to the triplet (            )   which verifies:  

   (            )       
(   (            )) (32) 

 

with     being a relative error gap function defined by:  

 

    
∑ |    (  )      (  )|(       )
    
   

∑ |    (  )|(       )
    
   

  
(33) 

 

In Eq. (33), the numerator corresponds to the cumulated area between the numerical and experimental curves in the axial 

stress-strain space (   ), whereas the denominator corresponds to the area below the experimental curve.      is the number 

of points taken from the experimental stress-strain curve,    is the strain at the i
th

 point of the experimental curve,      is the 

stress obtained with the 3D H-model, and      is the experimental one. 

 

The parameter set in   {(           )  [  
     ]  [            ]  [              ]} has been explored for 

experimental curves corresponding to a density between           and          . The stress-strain curves of the 

experimental data and the corresponding best fitting numerical curves in   are reported in Error! Reference source not 

found..  
 

Figure 7 near here 

 

Table 2 near here 

 

Error! Reference source not found. reports the best fit parameters with the initial density of the experimental specimens 

increasing from           to          . The relative error gap, as defined in Eq. (33), ranges between     % and       .  

 

When plotted as a function of the initial snow density in Fig. 7, the error is found smaller in the middle of the density 

range. In any case, the value of the relative error between experimental and numerical curves remains relatively small, which 

confirms the ability of the 3D H-model to be used as a constitutive model for snow, at least within the density range 

[        ]      . Higher densities are impossible to reach with the 3D H-model, as the condition      
  and         

  corresponds to the limit case where a contact between the two hexagons within a cell is created. For lower densities, the 

mismatch between experimental and numerical curves becomes too large to include these densities in the range of validity of 

the snow-H-model. 

 

Figure 8 near here 
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This first calibration was carried out blindly, in the sense that only the minimization of the gap between measured and 

predicted data was targeted, without considering the agreement between experimental density and model density, the latter 

being controlled by the two geometric parameters of the H-cell. This is the purpose of the next section, to achieve a much 

more versatile model.    

4. DISCUSSION ON THE MODEL VERSATILITY 

As the snow-H-model has demonstrated its ability to reproduce experimental results through parameter adjustment, the 

next step is to assess its predictive capability for snow behaviour under varying conditions of density, temperature, and strain 

rate. 

4.1 Relation between mesoscopic geometry and macroscopic density 

Calculating the density in multi-scale models is challenging as its mesostructure only includes those elements which are 

actively participating in the force transmission. For instance, in the present model, the bi-hexagonal pattern is designed as the 

minimal structure to depict only snow grains which are part of force chains. The surrounding space include both void and 

snow grains not participating to force transmission.  This is the reason why we cannot and should not calibrate the H-cell 

geometry to match directly the macroscopic density. Therefore, we have chosen first to calibrate the initial geometrical 

parameters of the cells to match the experimental stress-strain curves from Abele and Gow (1976). The objective of this 

section is to provide an estimation of the proportion of ice grains participating to force transmission by comparing the 

macroscopic snow density       and the mesoscopic density      .  

 

In the snow-H-model, we selected the smallest peripheral parallelepiped volume as the H-cell volume       (see Fig. 9). 

Under this assumption, the mesoscopic density can be expressed as follows: 

 

     (       )  
    

     (      )
     

     
 

       
     (34) 

 

where      is the volume of solid ice, which corresponds to the volume of the ten spherical grains (we neglect the ice bond 

volumes), and      is the density of ice, equal to          . 

 

Figure 9 near here 

 

The best fitting parameters obtained in section 3.2 provide an initial density       lower than 250      , while the initial 

densities measured in the experiments are larger than          .  

The density based on the bounding box shown in Fig. 8 systematically underestimates the real snow density for several 

reasons:  

1- As already mentioned, the H-cell accounts only for grains participating in stress transmission (the force chains) 

whereas, in real granular materials, many grains do not transmit significant stresses. Therefore, many ice grains are 

not accounted for by the bi-hexagonal mesostructure, thus underestimating the solid volume. 

2- The arbitrary choice for the mesoscopic volume includes much empty space and probably overestimate the void 

volume.  

3- To a lower extent, the ideal spherical shape of the ice grain in the H-model approximates the shape of the real ice 

grains. In real snow, ice grains are neither spherical and nor monodisperse (see for instance Gay and others (2002), 

Kaempfer and Schneebeli (2007) and Calonne and others (2014)).  

 

To account for the additional ice in the pore space, a coefficient γ can be introduced in the relationship between 

macroscopic and mesoscopic densities, as:  

               (35) 
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This coefficient is set to        from the harmonic average
1
 of the ratios 

    

     
 based on the calibration tests shown in 

section 3 (see Error! Reference source not found.):  

  (
 

     
∑

        

      

     

   

)

  

    (36) 

 

Error! Reference source not found. displays the analytical expression of the macroscopic density with       , as a 

function of the opening angle for different intergranular distances, with each test used in previous section 3.2 corresponding 

to a marker. The relative error is less than 2% for each test. 

 

The high value of   (with respect to 1) confirms that a considerable percentage of ice material is not accounted for in the 

density calculation. Specifically,        implies that the H-cells account for     of the mass of the material. This order of 

magnitude almost aligns with the observations by Wautier and others (2017) that the fraction of grains contributing to force 

chains ranges between     and     in sand. 

 

Figure 10 near here 

 

In contrast to section 3.2, the fitting procedure can be optimized by adding the additional constraint that the model density 

matches the experimental one. Thus, for each test  , the best fitting triplet of initial geometrical parameters that satisfies  

      (       )         can be searched in   ( ) defined by: 

  ( )  {(            )   |      (       )   } (37) 

 

The best fitting parameters accounting for the density relationship for each test are summarized in Error! Reference 

source not found. and the corresponding stress-strain curves are plotted in Error! Reference source not found.. The 

maximum relative error observed is of      , which is only slightly larger than without the constraint (39) (see Fig. 7). In 

general, the largest errors correspond to the extremal values of densities, while low gap errors are found for      close to 

         . The discrepancy between experimental and numerical curves is maximal for small and large deformations. At 

small deformation, an obvious inflexion point is observed in numerical curves at the transition between elastic and plastic 

regimes, due to the breakage of ice bonds. Indeed, as all bridges share the same radius, ice bridges all break at the same time 

for a given direction of mesostructure. In a real snow sample, the radius of ice bridges varies, which means they do not break 

at the same deformation level. Consequently, a smoother transition between elastic and plastic regime is observed 

experimentally. For large deformation, the H-model does not account for the reorganisation of the mesostructure, as the cells 

are deformed independently. This limitation of the model has been discussed by Deng (2022), who introduced a way to 

reinitialise mesostructure geometries to increase the domain of application. 

 

Table 3 near here 

 

Figure 11 near here 

 

4.2 Relative influence of the three microstructure parameters on the mechanical response 

 

Among the three parameters of the snow-H-model, two of them control the initial density (namely the initial intergranular 

distance      and the initial opening angle   ). The remaining parameter is the initial bond radius     . It accounts for the 

impact of temperature and age of the snow sample. In this subsection, we characterize the relative influence of the three 

initial parameters of the 3D H-model on the stress-strain curve in oedometer conditions. 

 

Impact of the initial density: 
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The initial density of a numerical snow sample is primarily determined by the geometry of the H-cells, characterized by 

the parameters    and     . There is a direct relationship between    and density, as the void within an H-cell increases 

proportionally with   . The stress-strain curves for a confined compression test with different initial intergranular distances 

     are plotted in Error! Reference source not found. (up) while the two other parameters are kept constant. Increasing the 

intergranular distance reduces the mesoscopic density and results in smaller axial stresses (as shown in Error! Reference 

source not found. (up)), as it was observed when reducing the density of a snow sample (Landauer, 1955; Radke and Hobbs, 

1967; Abele and Gow, 1975; Scapozza and Bartelt, 2003; Wautier and others, 2015). 

 

Figure 12 near here 

 

On the other hand, the relationship between the opening angle   and the density is not bijective. For small values of  , 

density increases with decreasing α; for larger values of  , density increases with   (see Fig. 10). In Error! Reference 

source not found. (down), a compression test with           and              was run with different initial opening 

angles   . The evolution of axial stress with opening angle follows the same pattern as for density. For opening angles lower 

than    , axial stress decreases when the opening angle is increased while the opposite trend is observed for opening angles 

larger than    . However, the mesoscopic density increases with the opening angle for opening angles significantly larger 

than     (between    and    , depending on the initial intergranular distance     ). Thus, the non-monotonic influence of the 

opening angle on the stress-strain curves probably reflects the complex influence of density and other microstructural 

parameters (e.g. anisotropy of the contact distribution). 

 

 

Impact of the sintering time 

Another key geometrical parameter to calibrate is the initial bond radius     . While the sintering process that occurs prior 

to mechanical loading is not directly modeled, the initial bond radius serves as a proxy for this process since it has been 

shown that bond radius grows over sintering time (Kuroiwa, 1961; Herwijnen and Miller, 2013), leading to stronger bonds 

(Szabo and Schneebeli, 2007). In Error! Reference source not found., the same compression test is now considered with 

different initial bond radii. It can be observed that, at the beginning of the loading, the initial bond radius has a positive effect 

on the axial stress. Then, as ice bonds are broken under compression, this influence of the initial bond radius is progressively 

reduced. It should be emphasized that the observation of enhanced stresses with the initial bond radius is somehow 

reminiscent to snow stiffness evolution during isothermal metamorphism (Wautier and others, 2015).    

 

Figure 13 near here 

Note that the growth in bond radius with sintering time cannot be readily observed from the data reported in Error! 

Reference source not found., where the values of      for 3-days and 7-days samples are not significantly different. This can 

be attributed to the fact that in the experimental work of Abele and Gow (1976), the snow samples were not collected 

immediately after a snowfall and sintering occurred prior to the sample collection. Consequently, it is difficult to link the 

degree of sintering solely to the storage duration. 

 

4.3 Influence of loading conditions on the mechanical response 

In this subsection, we analyse the ability of the snow-H-model to account for loading conditions that differ from those of 

Abele and Gow (1976). We focus on the strain rate and temperature influence on the mechanical response in oedometer 

conditions. 

 

Impact of the strain rate:  

As the ice bonds are described by a visco-elastoplastic model, it is relevant to investigate the effect of the loading rate on 

the material response. As already specified, the analysis considers exclusively loading rates above          to remain within 

the brittle regime (Schulson, 2001). We can define the characteristic time          at which the orders of magnitude of the 

viscoplastic and elastic deformations coincide:  

         
    
 

 (    )    
 
 

    

      (    )    
 

 (38)  
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where      is the brittle compression strength of ice. At      , Eq. (38) gives               with               the 

calibrated value of oedometer coefficient, and                from Eq.  (27) 

 

In the experiment by (Abele and Gow, 1976), the strain rates ranged between       and       , resulting in a total loading 

time less than       , thus much smaller than         . Consequently, for such high strain rates, the effects of viscosity can be 

considered negligible. 

 

The stress-strain curves of confined compression tests performed with different strain rates on similar numerical snow 

samples (     
 ,           ,            ) are given in Error! Reference source not found.. To measure the direct 

influence of viscosity, these curves are compared with a snow model with non-viscous bonds. The evolution of the 

percentage of broken bonds during the loading for the different strain rates is reported in Error! Reference source not 

found.. The axial stress increases with the strain rate up to  ̇           . For higher values, the strain rate has no significant 

influence on the stress-strain response which is the same as the response of the non-viscous model. This is consistent with the 

fact that the characteristic time of the viscous deformation          is larger than the time needed to break the bonds at high 

strain rates: for example, with  ̇          , more than 70% of the bonds are broken after only   , as shown in Error! 

Reference source not found.. The proportion of broken bonds increases with the strain rate (Schulson, 2001), as the loading 

rate controls the stress evolution within the bond through Glen’s law (Eq. (19)). As the contact between unbonded grains is 

assumed to be rate-independent in the proposed model, the strain rate effect decreases as the number of bond breakage rises, 

bringing the curves to converge at high strain rates. It is worth noting that at the lowest strain rates considered, the test 

duration could allow for the formation of additional bonds at the new contact points (see Appendix C). While the current 

model does not account for the formation of these new bonds, their inclusion would probably result in a more significant 

impact of viscosity at low strain rates. 

 

Figure 14 near here 

 

Impact of the temperature: 

The second loading parameter to studied is the temperature. McClung (1996), Schweizer (1998) and Takei and Maeno 

(2004) all observed that an increase in temperature leads to a decrease in snow strength and stiffness. The temperature affects 

the snow mechanical behaviour independently during the sintering phase and the loading phase.  

During the sintering phase, it was shown that a higher temperature leads to a higher bond growth rate (Blackford, 2007; 

Herwijnen and Miller, 2013) resulting in a greater sintering force and to an increase in the bond radius (Szabo and 

Schneebeli, 2007; Bahaloo and others, 2022). As the snow-H-model does not model the sintering phase, the effect of the 

temperature during sintering cannot be assessed. However, the initial bond radius can be used as a proxy. We deduce from 

Error! Reference source not found. that we have an increase of the stress with the temperature during the sintering time. 

 

During the mechanical loading, the temperature influences both the brittle compression strength of ice defined by Eq. (28)  

(Schulson, 2001) and the viscous behaviour of the ice bonds through Glen’s law (Eq. (19). 

 

To measure the influence of the temperature in the model, isotropic compression tests were simulated from the same 

numerical snow sample (     
 ,           ,            ) with a strain rate of  ̇           at different temperatures 

(Error! Reference source not found.). It can be consistently observed that, for a given axial strain, the axial stresses are 

larger for lower temperatures, as bond failure occurs earlier in warmer conditions, as illustrated in Error! Reference source 

not found. and described in (Schulson, 1990). 

 

Figure 15 near here 

 

Finally, Error! Reference source not found. shows the stress-strain curves for different temperatures with a strain rate of 

        ,           and           . The strain rate has no significant effect for temperatures strictly below      . At 

higher temperatures, namely        
   and          

  , the effect of the strain rate becomes apparent. This stems 

from the temperature dependent coefficient  (    ) in Glen’s law (Eq. (19)). As this coefficient increases with temperature, 
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the characteristic time of the viscous deformation evolves inversely with temperature. As previously mentioned, the 

discrepancy between the curves at        
   and         

   is larger at the lowest strain rate, as the effect of loading 

rate on ice behaviour is more marked. 

 

Figure 16 near here 

 

From Error! Reference source not found. and Error! Reference source not found., we can conclude that, for a given 

axial strain, the axial stress increases with decreasing temperature, whereas the snow stiffness is not affected by temperature. 

However, the expected influence of temperature on snow stiffness could be reproduced by considering in the model the 

known temperature-dependency of ice stiffness (Parameswaran, 1987). 

5. CONCLUSIONS AND PERSPECTIVES 

The 3D H-model has been extended to snow by adding an ice bond component to the usual frictional contact law. A series 

of confined compression tests have been performed from numerical snow samples. The axial stress results have been 

compared against the experimental curves of Abele and Gow (1976). The ability of the snow-H-model to reproduce the 

mechanical behaviour of snow has been demonstrated for the intermediate range of snow density [        ]      , at 

different temperature and strain rates. For snow of lower or larger density, the calibration of the model is no longer adequate 

as, constitutively, the snow H-model is only able to represent the snow microstructure of intermediate density. To describe 

both loose and dense snow specimens, the H-cell geometry would need further adaptations. For example, changing the 

number of grains in the H-cell could allow to reach higher or lower density. It is worth noting that within the considered 

density range, the assumption of no rotation of the ice grains is reasonable, as increasing the material density enhances the 

connectivity between grains. 

 

Within the domain of validity of the snow-H-model, the relationship between the geometrical parameters of the H-cell and 

the macroscopic density has been studied closely. Indeed, the statistical nature of the 3D H-model prevents the pore space 

between the different H-cells from being accounted for. Consequently, the relationship between the mesoscopic and the 

macroscopic densities was derived using a proportionality coefficient. This coefficient accounts for the ice fraction that does 

not contribute to the loadbearing capacity of snow (i.e. the ice grains not participating to the force chains) and the void in 

between the H-cells.  

 

After calibration of the model against the experimental work of Abele and Gow (1976), the effect of the initial bond radius 

has been investigated, revealing that a change in the initial bond radius produces a phenomenological response similar to 

what would be observed with a change in the aging time of a sample under isothermal conditions.  

 

Finally, the impact of the loading conditions (strain rate and temperature) on the response of the snow-H-model has been 

highlighted.  It has been shown that the strain rate (when sufficiently low) directs a substantial effect on both the viscous 

response of the bonds and the bond failure rate. Increasing temperature also leads to faster bond failure and smaller stresses in 

the material. It should be noted that the influence of strain rate on the stress-strain response is greater at higher temperatures. 

 

As the capacity of the snow-H-model to reproduce experimental oedometer test has been proven, the next step will consist 

in studying the predictive ability of the model. This would require additional experiments using snow sample with a better 

control of the initial microstructure, and a larger range of loading condition, with lower strain rates. An implementation of the 

extended version of the 3D H-model in a computational software suitable for dealing with practical engineering concerns is 

also considered. Using such a multi-scale approach ranging from the particle to the continuum scale is thought to bridge the 

gap between engineering-scale systems and the microscopic features of snow. Comparing the H-model with DEM 

simulations at a smaller intermediate scale would help assess computational efficiency and accuracy for snow model, as has 

been already demonstrated for sand on large geotechnical systems involving scales beyond the reach of DEM simulations  

(Xiong and others, 2019).  

 

The multiscale approach of the model can allow to study the effect of snow microstructure in more detail. Here, the effects 

of the microparameters related to the snow density has been widely study, but it would be also possible to study the effect of 

anisotropy. All the simulations in this paper have been realised with an isotropic distribution of direction, but it would be 

possible to include anisotropy by modifying the probability distribution function  (     ). 
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New extensions of the snow-H-model can also be considered in the future. Ice bond creation and ductile failure could be 

added in the model, to extend the range of applicability of the model to lower strain rate. Such an improvement would made it 

possible to consider, for example, avalanche problems and to cover more domains application of snow mechanics.  
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APPENDIX 

A-Expression of the tangential force in a bonded contact between ice grain 

The total shear strain     
    in the bond can be split into an elastic part     

  and a viscoplastic part     
  

: 

    
        

  
     

  (39)  

 

The viscoplastic deformation accounts for the creep behaviour of ice. Then, we assume that the superposition principle is 

applicable in Glen’s law, as it has been done in (Kabore and others, 2021). This assumption enables us to express the normal 

and shear viscous strain independently. The normal creep rate is given as a function of the normal stress with the standard 

expression of eq. (19)  (Barnes and others, 1971).  Then, for the viscous shear strain   ̇  
  

 we can write: 

 ̇   
  
  (    )    

  (40)  

 

where  (    ) and   are the same constant as in Eq (19) and      is the shear stress in the bond.  

 

In addition, the elastic shear deformation is linearly related to the shear stress.  

          
  (41)  

with   the shear modulus of ice. 

 

This gives the total viscous strain as a function of the shear stress: 

    
    

 

 
      (    )    

  

 
(42)  

 

Going back to the beam representation of the ice bond in the H-cell, we can express the shear strain in the bond as: 

 

    
    

(    )  
    

 (43)  

 

with (    ) and (       ) being the bond length and the H-cell opening angle, respectively at the current time and at the 

beginning of the loading (Kabore and others, 2021) (Peters and others, 2021).   

 

And the shear stress can be related to the tangential contact force    as follows: 

     
  

  
 
  

   
  (44)  

 

where    is the cylindrical bond radius at time  . 
 

Eventually, due to ice incompressibility in the bonds, the volume of an ice bond is supposed to be constant, so we get: 

   
         

      (45)  

 

By combining Eq (39)-(45) the contact law relating the incremental normal contact force     and the incremental 

intergranular distance    reads: 

 

     
   

  
    

  
    

  (  )
    

   (    )    
    (46)  
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B-Contact stiffness after bond failure 

After bond failure, we consider that the contact force is controlled by the overlapping of the two grains at contact. As the 

ice grains remained deformable, the contact stiffness is strongly dependent on the contact area between the two grains, The 

normal contact force      is linked to the normal stiffness    by the relationship: 

 

       (      ) (47) 

 

with    being the grain radius and    the intergranular distance. 

 

The contact force can also be written as a function of the normal contact stress     : 

          (   
 )  

(48) 

 

with    √  
    

    being the radius of the contact between the grain. The normal stress can be expressed in terms of 

normal strain   : 

                
      

   
 

(49) 

 

So, we finally get the following expression for the normal stiffness: 

   
    
   

    
  

     

 
(   

  
 

   
) 

(50) 

 

C-Creation of new contacts in the 3D-H model H-cell 

In the general case, the coordination number in a H-cell of the 3D H-model is      . However, depending on the loading 

path, the geometry of the H-cell can be deformed to a point where additional contacts are created. We can distinguish 2 cases: 

the new contact is between extremal grains 1 and 4 (     ) or between the two hexagons of the H-cell (contact between 

grains 2 and 7,    ). 

C-1 Creation of contact between grains 1 and 4 

The contact created between grains 1 and 4 generates an additional normal contact force    to be added in the system and 

that contributes to the stresses in the H-cell. The value of the contact force depends on the intergranular distance    between 

grains 1 and 4, as defined in Error! Reference source not found. and reads: 

       (  (      )  ) (51) 

 

with    depending on the contact law used in the model. Adding this force does not impact the equilibrium on grain 2 and 

consequently does not change the way to obtain the variations of the parameters of the H-cell geometry. Only the expression 

of the local axial stress must be modified as follows:  

 ̃      
               

    
     

 
(52) 
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with  ̃  
               the contribution of the other contact forces on the first component of the local stress tensor. 

 

Figure 17 near here 

 

At some point, the opening angle may reach    , which means that its value will not be able to increase anymore. 

Additional external forces must be added on grain 2 to prevent any further variation of the opening angle (see Error! 

Reference source not found.). In this case, the evolution of the geometry of the H-cell is directly given by    ,     and    : 

{
                  
           
                        

 
(53) 

 

Figure 18 near here 

 

C-2 Creation of contact between the two hexagons of the same H-cell 

When the lateral strains become high enough, new contacts between the two hexagons of the 3D H-cell can appear. 

Considering the possibility that   ( )    ( ), the direction of the contact can be characterized by two Eulerian angles    

and    as defined in Error! Reference source not found..    is the angle between the x-axis and the branch vector   ⃗⃗⃗⃗  

between the centers of grains 2 and 7 while    is the angle between the z-axis and the orthogonal projection of the branch 

vector   ⃗⃗⃗⃗  on the (Oyz) plane. These angles can be written: 

{
 
 

 
 
         

√  
    

 

     

         
  
  

 
(54) 

 

with    the y-coordinate of grain 2 and    the z-coordinate of grain 7.  

 

Figure 19 near here 

 

This new contact induces the addition of two new contact forces    and    between grains 2 and 7 (see Error! Reference 

source not found.). The value of these forces depends on the length of the branch vector   ⃗⃗⃗⃗  given by the following 

expression: 

  ⃗⃗⃗⃗  (

          
       
       

) 
(55) 

 

From this it follows that: 

   ((          )
  (       )

  (       )
 )    (56) 

 

The contact force   ⃗⃗ ⃗⃗   and the vector   ⃗⃗⃗⃗  being collinear, we can write:  

  ( )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗    (      ( ))
  ( )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

  ( )
 
  (      ( ))

  ( )
(

          
       
       

) 
(57) 

 

with    depending on the contact law used in the model. In the case of a frictional law, the magnitude of the tangential 

contact force   ⃗⃗  ⃗ reads:  

|  ( )|     |  (    )         | |  ( )      | (58) 
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Where    ( ) is the angle between   ⃗⃗⃗⃗ (    ) and   ⃗⃗⃗⃗ ( ), defined by: 

          
⟨  ⃗⃗⃗⃗ ( )|  ⃗⃗⃗⃗ (    )⟩

||  ⃗⃗⃗⃗ ( )||  ||  ⃗⃗⃗⃗ (    )|| 
 

(59) 

 

The tangential contact force   ⃗⃗  ⃗( ) is orthogonal to the normal contact force   ⃗⃗ ⃗⃗  ( ) and coplanar with   ⃗⃗ ⃗⃗  ( ) and   ⃗⃗ ⃗⃗  (  

  ), which means that it verifies: 

 

{
⟨  ⃗⃗  ⃗( )|  ⃗⃗ ⃗⃗  ( )⟩                           

   (  ⃗⃗  ⃗   ⃗⃗⃗⃗ ( )   ⃗⃗⃗⃗ (    ))   
 

(60) 

 

So   ⃗⃗  ⃗ can be written: 

  ⃗⃗  ⃗  (

   
   
   

) 
(61) 

 

with 

{
  
 

  
 
                                       

    
|  ⃗⃗  ⃗( )|

√     
     

     
  

    
   

   
                               

 
(62) 

 

and 

{
 
 
 

 
 
      

   ( )

   ( )
 
   ( )

   ( )

   

   
   ( )

    
(   ( )   (    )     ( )   (    ))

   ( )
 (   ( )   (    )     ( ) (    ))

    (   ( )   (    )     ( )   (    ))  
   ( )

   ( )
(   ( )   (    )     ( )   (    ))

 
(63) 

 

Figure 20 near here 

 

For the sake of simplicity and to keep the scheme of the H-model explicit, we do not account for the influence of   ⃗⃗ ⃗⃗   and 

  ⃗⃗  ⃗ on the force equilibrium on grain 2, which means that the new forces only contribute to the expression of the stresses in 

the H-cell as follows: 

{
  
 

  
  ̃      

               
               

     

 ̃      
               

               
     

 ̃      
               

               
     

 
(64) 
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D-Contact loss in the 3D-H-cell 

Depending on the load path of a mesostructure, some contacts between grains in a H-cell can be lost.  In the case of an 

unbonded contact, it means that       . In the case of a bonded contact, it occurs when the bond fails. We can distinguish 

two situations, depending on which contact is lost (Error! Reference source not found.). For the sake of simplicity, we 

consider in the following only one hexagon independently of the second one.  

 

If the inclined contact (namely the one between grains 1 and 2) is lost (see Error! Reference source not found. (a)), the 

contact forces    and   are null, so the force equilibrium of grains 1 and 2 imposes that the external forces    and    are null 

too. The momentum equilibrium on grain 2 also imposes        , which means that no force can equilibrate the normal 

contact force    between grains 2 and 3. In that case, no force transmission is possible in the hexagon, so all the stresses are 

null. In this work, we have chosen to let the deformation of the cell continue until the contact is restored. We fix       , 

and the geometrical compatibility equations (4) and (5) enables to determine the variation of    and  .  

 

If the axial contact between grains 2 and 3 is lost, the normal contact force    is null. In this case, one hexagon is 

separated into two triangles (see Error! Reference source not found. (b) and (c)). The equilibrium equation of forces and 

momentum on grain 2 leads to: 

      

         (      )    

 

(65) 

 

where    and    are of opposite signs. This means that the system to solve in this case becomes:  

(

                
               
     

)(

   
   
   

)  (

   
   
  

) (66) 

 

with   ,    and    as defined in Eq. (12), depending on the contact law. 

 

We can calculate   
  from the equilibrium on the forces on grain 1 projected on the axis of the cell:  

  
                  (67) 

 

From 

(65) we deduce that:  

  
      (68) 

 

which proves that the two half-cells are in equilibrium. 

 

Figure 21 near here 

 

This external tangential force    represents the action of the grains outside the cell on the grain within the cell, 

indicating that connectivity is established through contact with neighboring cells. As illustrated in Error! 

Reference source not found. below, the connectivity of grains 1 and 4 in the grey cell is ensured by their contact 

with the blue and orange cells. 

 

Figure 22 near here 
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Fig. 1: 3D bi-hexagonal mesostructure in the global reference frame with the definition of the Euler angles. 

 

 

 

 

 

Fig. 2: Schematic representation of the two hexagonal grain configurations constituting the 3D H-cell showing: (a, d) geometry of the 

hexagons, (b, e) external forces on the hexagons and (c, f) equilibrium of forces on the grains. The dashed-dotted green lines represent the 

symmetry axis in the considered plane. 
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Fig. 3: Schematic representation of overall sequence of the 3D H-model methodology. 

 

Fig. 4: Schematic representation of a bonded contact: a) initially after snow metamorphism and before loading; (b) during the loading. The 

yellow hatched zones represent the deformable ice bond, and the blue dotted zones represent the non-deformable parts of the ice grains. 

 

Fig. 5: Different modes of bond failure (tensile, compression and shear). Note that potential additional failure modes by bending and torsion 

are not accounted for as rotation of the grains is not possible in the H-model. 
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Fig. 6: Initial configurations of a hexagonal mesostructure: a) 2D representation of a ten-grain H-cell with               and initial ice 

bonds       and      ; b) 2D representation of two separated five-grain mesostructure with         ,          and initial bonds 

     . 

 

Fig. 7: Stress-strain curves for confined compression test: experimental results from (Abele and Gow, 1976) and best fitting numerical 

curves obtained with the 3D H-model. 

 

Fig. 8: Gap error between experimental curves and best fitting numerical curves with initial parameters not respecting the density condition 

(blue crosses) and respecting the density condition presented in section 4.1 (orange circles) as a function of the initial experimental density. 
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Fig. 9: Definition of the peripheral volume of the H-cell      . 

 

 

Fig. 10: Density as a function of the opening angle for different initial intergranular distance   . Lines represent the analytical expression of 

the macroscopic density with       . Each symbol represents a simulation, where the y-coordinate is the snow density of the 

corresponding experimental tests. 

 

Fig. 11: Stress-strain curves for confined compression tests: experimental results from (Abele and Gow, 1976) and best fitting numerical 

curves obtained with the 3D H-model for initial parameters verifying       (       )      . 
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Fig. 12: Stress-strain curves for confined compression test with different initial intergranular distances,      
  and              (up), 

and with different initial opening angles,             and              (down). 

 

Fig. 13: Stress-strain curves for confined compression test with different initial bond radius,      
  and            . 

 

Fig. 14: Stress-strain curves (left) and evolution of the proportion of broken bonds (right)  for confined compression tests at different strain 

rates, compared with a snow material with non-viscous bonds. 
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Fig. 15: Stress-strain curves (left) and evolution of the proportion of broken bonds (right) for confined compression tests at different 

temperatures and for  ̇          . 

 

Fig. 16: Stress-strain curves for confined compression tests at different temperatures and strain rates. 

 

Fig. 17: Description of the creation of contact between grains 1 and 4, with      : (a) scheme of one hexagon of the H-cell; (b) force 

equilibrium on grain 1.     

 

Fig. 18: Description of the creation of contact between grains 1 and 4, with      : (a) scheme of one hexagon of the H-cell; (b) force 

equilibrium on grain 2.   
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Fig. 19: Description of the creation of contact between grains 2 and 7, with      : (a) scheme of the H-cell and definition of the    

angle; (b) projection of the new contact in the plan (Oyz) and definition of the angle   .   

 

Fig. 20: Force equilibrium on grain 2: (a) in the plan (Oxy); (b) in the plan (Ozy).  

 

Fig. 21: Description of the loss of contacts: (a) loss of the inclined contact between grains 1 and 2; (b) and (c) loss of the axial contact 

between grains 2 and 3 with (b) the description of the equilibrium on the two half cells and (c) the description of equilibrium on grains 1 

and 2.   
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Fig. 22: Description of the connectivity the grain in a cell with a loss of contact between grains 2 and 3 (grey cell), throughout the 

neighbouring cells.    

 

 

     

  

 

LIST OF TABLES 

Experimental parameters Numerical parameters 

Temperature (   )             Temperature (   )        

Strain rate (   )                 Strain rate (   )                

Initial snow density  

(      ) 

[         ] Initial opening angle (  ) [      ] 

Initial intergranular distance      

Snow age (days)         Initial bond radius [    ] 

Sample volume (   ) [        ] Number of H-cell directions     

Table 1: Experimental (left) and numerical parameters (right) for confined compression tests on snow (Abele and Gow, 1976). 

 

Data from (Abele, et al., 1976) Best fit parameters for     

Exp 

Nb* 

Density 

(     )* 

Storage 

temperature 

(  )* 

Strain rate 

(   )* 

Snow age 

(    )* 

Initial opening 

angle ( ) 

Intergranular 

distance (   ) 

Initial bond 

radius (   ) 

Gap 

error ( ) 

50                                  

48                                    

52                                  

51                                4 

35                  .5               

41                                1 

36                                    

Table 2: Parameters giving the best fit for each experimental curve in   [       ]  [            ]  [              ] *Data from (Abele 

and Gow, 1976) experiments.  

 

Data from (Abele and Gow, 1976) Best fit parameters with density constraint 

Exp 

Nb 

Density 

(     ) 

Temperature 

(  ) 

Strain rate 

(   ) 

Snow age 

(    ) 

Initial opening 

angle ( ) 

Intergranular 

distance (   ) 

Initial bond 

radius (   ) 

Gap error 

( ) 

50                                  
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48                                   

52                                 

51                                 

35                                   

41                                 

36                                  

Table 3: Best fitting parameters over       with the additional density constraint for the same experiment from (Abele and Gow, 1976) 

used in section 3. 
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