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We consider inverse nodal problems for the Sturm–Liouville operators on the tree
graphs. Can only dense nodes distinguish the tree graphs? In this paper it is shown
that the data of dense-nodes uniquely determines the potential (up to a constant) on
the tree graphs. This provides interesting results for an open question implied in the
paper.
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1. Introduction

In these years there is a lot of interest in the study of Sturm–Liouville operators
on graphs. On the one hand, the problem is a natural extension of the classical
Sturm–Liouville operators on an interval; on the other hand, it has a number of
applications in networks, spider webs and interlocking springs. Quantum graphs
was introduced by Kottos and Smilansky [14]. Later, Kuchment studied [16] the
eigenvalue properties of the periodic boundary value problem for the carbon atom
in graphite.

In this work, we consider the inverse nodal problems on the tree graphs with
Neumann boundary conditions by using dense nodal data, which amounts to nodes
(zeros) of eigenfunctions. The inverse nodal problem was posed and solved for
Sturm–Liouville problems by McLaughlin [20], who showed that the knowledge
of a dense subset of nodal points of eigenfunctions on the whole interval alone can
determine the potential function of the Sturm–Liouville problem up to a constant.
This is the so-called inverse nodal problem.

From the physical point of view this corresponds to finding, e.g., the density of a
string or a beam from the zero-amplitude positions of their eigenvibrations. These
problems are related to some questions in mechanics and mathematical physics (see,
e.g., [20]). Inverse nodal problems for Sturm–Liouville operators on an interval have
been studied fairly completely in [3, 11, 18–20] and other papers.

Differential operators on graphs (networks, trees) often appear in natural sciences
and engineering (see [15, 21, 22] and the references therein). The single spectrum
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does not determine the graph (topology) in general, especially if all edges have the
same length (see e.g. [12, 17]). In [9] the author considered an inverse spectral
problem for a star graph of Krein strings, where the known spectral data including
the spectrum associated with the whole graph, the spectra associated with the
individual edges are used to show that these spectral quantities uniquely determine
the weight within the class of Borel measures on the graph. In [1, 2, 25] the authors
solved inverse spectral problems for Sturm–Liouville operators on graphs, where the
recovery of the differential operators on the edges of an a priori known graph, was
done using the so-called Weyl functions.

On inverse nodal problems for differential operators on graphs there are only a
few findings. The works [6, 23, 24] prove that the set of nodal points uniquely
determines the boundary conditions and the potential on a star graph. As well as
in the work [8] the authors give a construction of the potential on a tree as a limit
of a sequence of functions dependent on the eigenvalues and its associated nodal
data.

Inspired by the inverse node problems on the star graph we assert that the
eigenvalue data in the inverse nodal uniqueness problem on a tree graph can be
removed. We are interested in the inverse nodal problem on the tree graphs. In this
paper we study more complicated tree graphs and show that the data of dense-
nodes can uniquely determine the potential on the tree graphs. However, for the
general trees with possibly different edge lengths the inverse problems only using
nodal data are still open.

The results in this paper are the first in determining the edge potential of the tree
with the same edge length from only the nodal data, it is possible due to finding
a subsequences of eigenvalues and its relatively precise estimates in [13]. However,
for more general graphs, especiallygraphs with different edge length, the inverse
nodal problems are open. If one obtains relative precise asymptotic expression of
infinitely many sub-eigenvalues then one can recover the potential on the graphs
from only the nodal data.

This paper is organized as follows. Section 2 deals with some caterpillar graph,
its eigenvalues, the oscillation of eigenfunctions and inverse nodal problems on a
caterpillar graph. In §3 we investigate the corresponding results on the connected
equilateral tree graphs.

2. Caterpillar graph

A graph like figure 1 is called a caterpillar graph, we consider a compact cater-
pillar graph G(V,E) with the set of vertices V = {vj}6

j=1 and the set of edges
E = {ej}5

j=1, where v3 and v4 are two internal vertices, and v1, v2, v5, v6 are
boundary vertices.

We suppose that the length of each edge is equal to 1. Each edge ej ∈ E is
parameterized by the parameter x ∈ [0, 1]; below we identify the value x of the
parameter with the corresponding point on the edge. It is convenient for us to
choose the following orientations. By choosing an interior vertex v4 as the root then
the graph G(V,E) possesses a fixed orientation (see figure 1). Local coordinates for
the edges identify each edge with [0, 1] so that the local coordinate increases as the
distance to the root decreases.
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Figure 1. Oriented caterpillar graph.

An integrable function Y (x, λ) on G(V,E) may be represented as Y (x, λ) =
{yj(x)}j=1,5, where the function yj(x), x ∈ [0, 1], is defined on the edge ej . Let
q = {qj}j=1,5 be a square integrable real-valued function on G(V,E). Consider the
following differential equations on G(V,E):

− y′′
j (x) + qj(x)yj(x) = λyj(x), j = 1, 5, (2.1)

where λ is the spectral parameter, the functions yj(x), y′
j(x), j = 1, 5, are absolutely

continuous on [0, 1] and satisfy the matching conditions in the internal vertices v3

and v4: solutions are required to be continuous at the vertices v3 and v4, and in the
local coordinate pointing outward, the sum of derivatives is zero at the vertices v3

and v4, respectively. That is, in the internal vertex v3:

y1(1) = y2(1) = y3(0) (continuity condition),
y′
1(1) + y′

2(1) = y′
3(0) (Kirchhoff’s condition)

}
(2.2)

and in the internal vertex v4:

y3(1) = y4(1) = y5(1) (continuity condition),
y′
3(1) + y′

4(1) + y′
5(1) = 0 (Kirchhoff’s condition),

}
(2.3)

as well as Neumann conditions y′
j(0) = 0 (i = 1, 2, 4, 5), which are assumed to hold

at the pendant vertices.

2.1. Eigenvalues on a caterpillar graph

Let us consider the problem B := B(q) on G(V,E) for equation (2.1) with match-
ing conditions (2.2) and (2.3) in the internal vertices, as well as Neumann conditions
at the pendant vertices v1, v2, v5, v6.

Denote by Sj(x, λ) and Cj(x, λ), j = 1, 5, the solutions of the equation (2.1) on
the edge ej satisfying the initial conditions

Sj(0, λ) = C ′
j(0, λ) = 0, S′

j(0, λ) = Cj(0, λ) = 1.

For each fixed x ∈ [0, 1], the functions S
(v)
j (x, λ) and C

(v)
j (x, λ), j = 1, 5, v = 0, 1,

are entire in λ of the order 1
2 . Moreover, one gets (see, e.g., [10, Chap. 1] for
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details) the following asymptotical formulae as |λ| → ∞, uniformly in x ∈ [0, 1]:

Sj(x, λ) =
sin ρx

ρ
− cos ρx

ρ2
[qj ]x +

κ1(ρ)
ρ2

, (2.4)

S′
j(x, λ) = cos ρx +

sin ρx

ρ
[qj ]x +

κ2(ρ)
ρ

, (2.5)

Cj(x, λ) = cos ρx +
sin ρx

ρ
[qj ]x +

κ3(ρ)
ρ

, (2.6)

C ′
j(x, λ) = −ρ sin ρx + [qj ]x cos ρx + κ4(ρ), (2.7)

where λ = ρ2, [qj ]x = 1
2

∫ x

0
qj(t)dt and τ = Imρ, κi(ρ) = o(1) (i = 1, 2, 3, 4) for large

real ρ, and κi ∈ Lx (Lx is the class of entire functions of exponential potential type
less than x, belonging to L2(R) for real ρ).

Put

Y (x, λ) = {yi(x)}i=1,5, yi(x) =

{
Ai(λ)Ci(x, λ), i = 1, 2, 4, 5,

A3(λ)C3(x, λ) + B3(λ)S3(x, λ).

Then the function Y (x, λ) satisfies equations and the boundary conditions. If λ∗

is an eigenvalue of the problem then the function Y (x, λ∗) is an eigenfunction.
Submitting Y (x, λ) into the matching conditions (2.2) and (2.3) we obtain a linear
systems about the variables Ai(λ) with i = 1, 2, 4, 5 and A3(λ) and B3(λ) appearing
in Y (x, λ). λ is an eigenvalue of the problem if and only if the determinant Δ(λ)
of the coefficients of this linear systems about the variables Ai(λ) with i = 1, 2, 4, 5
and A3(λ) and B3(λ) vanishes.

Moreover, a direct calculation yields the determinant

Δ(λ) = C1(1, λ)C2(1, λ)[C ′
3(1, λ)C4(1, λ)C5(1, λ) + C3(1, λ)

C ′
4(1, λ)C5(1, λ) + C3(1, λ)C4(1, λ)C ′

5(1, λ)] + [C ′
1(1, λ)

C2(1, λ) + C1(1, λ)C ′
2(1, λ)][S′

3(1, λ)C4(1, λ)C5(1, λ)

+ S3(1, λ)C ′
4(1, λ)C5(1, λ) + S3(1, λ)C4(1, λ)C ′

5(1, λ)]. (2.8)

Substituting (2.4)–(2.7) into (2.8) we get

Δ(λ) = Δ0(λ) + o
(
ρ2 exp(5|τ |)) , |λ| → ∞, (2.9)

where

Δ0(λ) = −ρ2 sin ρ cos2 ρ(9 cos2 ρ − 4). (2.10)

Notice that Δ0(λ) is the characteristic function for the problem B0 := B(0) with
the zero potential. It follows from (2.10) that the problem B0 has a countable set of
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eigenvalues σ(B0) = {λ0
ns}n�0,s=1,5 (counting multiplicities), where λ0

ns = (ρ0
ns)

2,

ρ0
n1 = nπ; ρ0

n2 = nπ − θ; ρ0
n3 = nπ + θ, (2.11)

where θ = arccos 2
3 and

ρ0
ns =

(
n +

1
2

)
π (multiplicities two), s = 4, 5. (2.12)

Here we used the fact that for the second-order self-adjoint differential operators
on graphs the algebraic and geometric multiplicities of an eigenvalue are equal (see
definition 3.3 and theorem 3.5 in [7]), so the order of a zero of the function in (2.10)
coincides with the multiplicity as an eigenvalue of the problem B0.

Note that the function Δ(λ) is entire in λ of the order 1
2 , and from the above anal-

ysis we know that its zeros coincide with the eigenvalues of the problem B. Applying
the standard argument, based on Rouche’s theorem (see, e.g., theorem 1.1.3 in [10]),
we see that the function Δ(λ) has a countable set of eigenvalues {λns}n�0,s=1,5

(counting multiplicities), where λns = ρ2
ns. Combining the arguments in [4, 23] we

arrive at the following asymptotic formulas.

Lemma 2.1. The problem B has a countable set of eigenvalues σ(B) =
{λns}n�0, s = 1, 5 := {1, · · · , 5}. The eigenvalues counting with their multiplici-
ties as {λns}n�0,s=1,5 in the nondecreasing order are numbered: λn1,s1 � λn2,s2 , if
(n1, s1) < (n2, s2)(this means that n1 < n2 or n1 = n2, s1 < s2). All eigenvalues are
real and have the asymptotics

ρn1 = nπ +
ω

nπ
+ o

(
1
n

)
; ρn2 = nπ − θ +

ω

nπ
+ o

(
1
n

)
;

ρn3 = nπ + θ +
ω

nπ
+ o

(
1
n

)
,

(2.13)

where ω = 1
5

∑5
j=1[qj ]1, and

ρns =
(

n +
1
2

)
π +

κs(
n + 1

2

)
π

+ o

(
1
n

)
, s = 4, 5, (2.14)

where κs are the roots of the function f(x) :

f(x) =
∑

j=4,5

(x − [q1]1)(x − [qj ]1) +
∑

j=4,5

(x − [q2]1)(x − [qj ]1).

2.2. Nodes on a caterpillar graph

At the beginning of this section, we give a lemma.

Lemma 2.2. The components of the eigenfunction Y (x, λn1) with

||Y (·, λn1)||⊕ 5
i=1 L2(0,1) = 1,

corresponding to the eigenvalues λn1, are not identically zero on different edges.
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Proof. In fact, from the matching conditions (2.2) and (2.3), we have

(−1)nA1(λn1) + o(1) = (−1)nA2(λn1) + o(1) = A3(λn1),

(−1)nA4(λn1) + o(1) = (−1)nA5(λn1) + o(1)

= (−1)nA3(λn1) + o(B3(λn1)) (2.15)

and

A1(λn1)([q1]1 − ω) + A2(λn1)([q2]1 − ω) + o(1) = B3(λn1). (2.16)

If A1(λn1) = 0 then from (2.15) we get Ai(λn1) = o(1) for i = 2, 3. Again, from
(2.16), we obtain B3(λn1) = o(1), which implies from (2.15), that Ai(λn1) = o(1)
for i = 4, 5. This leads to a contraction to that Y (x, λn1) is an eigenfunction
corresponding to the eigenvalue λn1, which is notrival. Similarly, if A3(λn1) = 0
then from (2.15) we get Ai(λn1) = o(1) for i = 1, 2. Again, from (2.16), we obtain
B3(λn1) = o(1), which implies from (2.15), that Ai(λn1) = o(1) for i = 4, 5. This
also leads to a contraction. Therefore, for i = 1, 5 the quantities Ai(λn1) can’t be
zero. Lemma 2.2 is complete. �

Moreover, combining lemma 2.2, (2.15) with (2.16), it yields

B3(λn1)
A3(λn1)

= [q1 + q2]1 − 2ω + o(1). (2.17)

Using the asymptotic expressions (2.13), (2.4) and (2.6), when n → ∞, we
obtain the asymptotics for the components (modulus Ai(λn1)) of the eigenfunction
Y (x, λn1), uniformly in x ∈ [0, 1]:

Ci(x, λn1) = cos ρ0
n1x + ([qi]x − ωx)

sin ρ0
n1x

ρ0
n1

+ o

(
1
n

)
, i = 1, 2, 4, 5

and

C3(x, λn1) +
B3(λn1)
A3(λn1)

S3(x, λn1)

= cos ρ0
n1x + ([q1 + q2]1 − 2ω + [qi]x − ωx)

sin ρ0
n1x

ρ0
n1

+ o

(
1
n

)
.

Fix i = 1, 2, 4, 5. There exists N0 such that for n � N0 the function Ci(x, λn1) (or
C3(x, λn1) + B3(λn1)

A3(λn1)
S3(x, λn1)) has exactly n simple zeros inside the interval (0, 1),

that is, 0 < x1
ni < · · · < xn

ni < 1. The sets Xi := {xj
ni}n�N0 (i = 1, 5, j = 1, n) are

called the nodes on the edge ei with respect to the eigenvalues λn1.
Taking asymptotic formulae (2.4) and (2.6) into account, we obtain the asymp-

totic expressions of nodes as follows.
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Lemma 2.3. For large n, the following asymptotic formulae for the nodes hold
uniformly in j :

xj
ni =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

j − 1
2

n
+

[qi]x − ωx

n2π2
+ o

(
1
n2

)
, i = 1, 2, 4, 5,

j − 1
2

n
+

[q1 + q2]1 + [qi]x − 2ω − ωx

n2π2
+ o

(
1
n2

)
, i = 3.

(2.18)

Proof. Fixing i = 1, 2, 4, 5, there exists N0 such that for n � N0 the function
Ci(x, λn1) has exactly n simple zeros inside the interval (0, 1). Other cases are
similar and omitted.

Combining the asymptotics ρn1 =
√

λn1 = nπ + o
(

1
n

)
, n → ∞, with (2.6) and

(2.7), we obtain that

Ci(x, λn1) = cos ρn1x + fn,i,1(x), C ′
i(x, λn1) = −ρn1 sin ρn1x + fn,i,2(x), (2.19)

where

fn,i,1(x) = O

(
1
n

)
, fn,i,2(x) = O (1) for n → ∞,

uniformly on [0, 1]. Therefore we conclude that

f ′
n,i,1(x) = O (1) , n → ∞,

uniformly for x ∈ R.
Consider the equation Ci(x, λn1) = 0 on (0, 1), which is equivalent to the

equations

x = xj
ni(x), xj

ni(x) :=

(
j − 1

2

)
π

ρn1
+ f j

n,i,1(x), j ∈ N, (2.20)

where f j
n,i,1(x) = (−1)j arcsin fn,i,1(x)

ρn1
, and

(f j
n,i,1)

′
(x) = O

(
1
n

)
, n → ∞, (2.21)

uniformly for j ∈ N and x ∈ [0, 1]. One can continue f j
n,i,1(x) on (−∞, 0) ∪ (1,∞)

by differentiability in any way to satisfy (2.21) uniformly for j ∈ N and x ∈ [0, 1].
Consider the equation (2.20) in R. According to (2.21) and the formula

xj
ni(x1) − xj

ni(x2) = (f j
n,i,1)

′(θ)(x1 − x2), θ ∈ (x1, x2),

there exists N0 such that for n � N0 the function xj
ni(x) is a contracting mapping

in R for all j ∈ N. Thus, for each j ∈ N the equation (2.20) has a unique solution
in R, which is denoted by xj

ni.
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Again, taking into account (2.20), we arrive at the formula

xj
ni =

(
j − 1

2

)
π

ρn1
+ O

(
1
n2

)
, n → ∞, j ∈ N. (2.22)

Note that, for sufficiently large n, we have x1
ni ∈

(
0, π

ρn1

)
. Introduce the nodal

length ljni := xj+1
ni − xj

ni. Then from (2.22), we have

ljni =
π

ρn1
+ O

(
1
n2

)
,

uniformly with respect to j. Hence, we obtain for sufficiently large n, that xj
ni ∈(

(j−1)π
ρn1

, jπ
ρn1

)
for j = 1, n. Thus, we have proved that the function Ci(x, ρn1) has

exactly n nodes for large positive values of n.
In order to obtain more precise asymptotic expression, we substitute (2.22) into

the equation Ci(x, λn1) = 0. In view of (2.22), we have

| sin ρn1x| � c0 > 0

for sufficiently large n and x = xj
ni, where the constant c0 does not depend on n

and j. Therefore we derive the relation

cot ρn1x = − [qi]x − ωx

ρn1
+ o

(
1

ρn1

)
,

which is equivalent to

tan
(
ρn1x +

π

2

)
=

[qi]x − ωx

ρn1
+ o

(
1

ρn1

)
.

Using Taylor’s expansion for the arctangent, we obtain the following asymptotic
formulae for the nodal points as n → ∞:

xj
ni =

(
j − 1

2

)
π

ρn1
+

[qi]x − ωx

ρ2
n1

+ o

(
1

ρ2
n1

)
. (2.23)

From the asymptotics of ρn1, we have 1
ρn1

= 1
nπ + o

(
1

n3

)
and 1

ρ2
n1

= 1
n2π2 +

o
(

1
n4

)
. Combining the latter formulae with (2.23), we arrive at the expected results

(2.18). �

2.3. Inverse nodal problems on a caterpillar graph

Note that for the fixed i = 1, 5 the nodal sets Xi is dense in (0, 1). Analyzing the
asymptotic expressions xj

ni we have the following statements.
Fixed i = 1, 5 and x ∈ [0, 1]. Suppose that X0

i ⊂ Xi is dense on (0, 1) and choose
{xjni

ni } ⊂ X0
i such that limn→∞ xjni

ni = x. Then the following finite limits hold:

lim
n→∞n2π2

(
xjni

ni − j − 1
2

n

)
exists= fi(x), i = 1, 5, (2.24)

where fi(x) = [qi]x − ωx for i = 1, 2, 4, 5, and f3(x) = [q1 + q2]1 + [q3]x − 2ω − ωx.
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Now we can provide a uniqueness theorem and constructive algorithm for the
inverse nodal problem on the whole interval (0, 1). For stating the theorem, together
with B := B(q) we consider a boundary value problem B̃ := B(q̃) of the same form
but with a different potential q. We agree that if a certain symbol α denotes an
object related to B, then α̃ will denote an analogous object related to B̃.

Note that the zero sets Xi (i = 1, 5) are defined as shown before lemma 2.3.

Theorem 2.4. Fix i = 1, 5. Suppose that X0
i ⊂ Xi is dense on (0, 1) and X0

i = X̃0
i ,

then qi(x) = q̃i(x) a.e. on (0, 1). Therefore, the data X0
i uniquely determines the

qi(x) − 2ω on the edge ei.
The constructive algorithm is as follows. For i = 1, 5, given X0

i .

(1) X0
i determining fi(x) from (2.24);

(2)

qi(x) − 2ω
a.e.= 2f ′

i(x). (2.25)

In fact, (2.25) follows from (2.24). If X0
i = X̃0

i then (2.24) implies that fi(x) =
f̃i(x) for x ∈ [0, 1], and consequently qi(x) − ω = q̃i(x) − ω̃ a.e. on (0, 1). More-
over, theorem 2.1 demonstrates that the nodal data on one edge can determine the
potential on the edge up to a constant.

3. Finite tree

In this section we consider a connected tree G(V,E) with edges of the equal length.
We parametrize each edge with x ∈ (0, 1). This gives an orientation on G(V,E).
We consider a Schrödinger operator with potential qj ∈ L2(0, 1) on the edge ej and
with Neumann (or Kirchhoff) boundary conditions (some times called standard
matching conditions), i.e., solutions are required to be continuous at the vertices
and, in the local coordinate pointing outward, the sum of derivatives is zero. More
formally, one considers the eigenvalue problem (figure 2)

− y′′(x) + qj(x)y(x) = λy(x) (3.1)

on ej for all j with the conditions

yj(κj) = yk(κk) (3.2)

if ej and ek are incident edges attached to a vertex v where κ = 0 for outgoing
edges, κ = 1 for incoming edges; and in every vertex v

y′
j(0) =

∑
ej enters v

y′
j(1). (3.3)

3.1. Eigenvalue and eigenfunction

Section 2 is a special tree graph (called caterpillar graph), however, §3 deals with
a general tree graph. All eigenvalues in §2 can be estimated, while in §3 this is not
possible, we only obtain a subsequences {λn} of eigenvalues.
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Figure 2. Quantum tree graph.

A connected graph G(V,E) with edges of the equal length is considered in
[13]. The spectral determinant of Schrödinger operators on G(V,E) with standard
matching conditions has a sequence of roots which asymptotically differ by the
mean value of the potential from the corresponding sequence of roots of the spec-
tral determinant of the free Schrödinger operator. Precisely, the problem (3.1)–(3.3)
has a sequence of eigenvalues

λn = (2nπ)2 + 〈q〉 + o(1) (3.4)

for large integer n, and 〈q〉 = 1
|E|
∑

j

∫ 1

0
qj(t) dt, |E| denotes the number of edges on

the tree graphs. Moreover, if G(V,E) is a bipartite graph, the problem (3.1)–(3.3)
has a sequence of eigenvalues

λn = (nπ)2 + 〈q〉 + o(1). (3.5)

Denote by Sj(x, λ) and Cj(x, λ) the solutions of the equation (3.1) on the edge
ej satisfying the initial conditions

Sj(0, λ) = C ′
j(0, λ) = 0, S′

j(0, λ) = Cj(0, λ) = 1.

For each fixed x ∈ [0, 1], the functions S
(v)
j (x, λ) and C

(v)
j (x, λ), v = 0, 1, are entire

in λ of the order 1
2 , and these solutions possess the asymptotic expressions

(2.4)–(2.7).
Before proving the main result we recall some preliminaries. From (2.4)–(2.7) we

know that for λ > 0 the following estimates hold

Cj(x, λ) = cos(
√

λx) + O

(
1√
λ

)
, Sj(x, λ) =

sin(
√

λx)√
λ

+ O

(
1
λ

)
. (3.6)

Suppose that Y (x, λ) is a vector function whose components yj(x, λ) satisfy (3.1),
and which is given the graph L2 norm:

‖Y (x, λ)‖2 =
∑

j:ej∈E

∫ 1

0

|yj(x, λ)|2 dx.
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Each yj(x, λ) may be written as a linear combination

yj(x, λ) = Aj(λ)Cj(x, λ) + Bj(λ)Sj(x, λ).

Suppose ‖Y (x, λ)‖ = 1. Then there is a λ0 > 0 and a constant C such that (see
[5, lemma 2.1])

|Aj(λ)| � C, |Bj(λ)/
√

λ| � C, λ � λ0.

Suppose that λ has the form λ = (2πn)2 + 〈q〉 + o(1) as n → ∞, then there hold
(see [5, equation (2.3)])

Cj(1, λ) = 1 + o(1), C ′
j(1, λ) = [qj ]1 + o(1),

Sj(1, λ) = o(n−1), S′
j(1, λ) = 1 + o(1),

(3.7)

where [qj ]1 = 1
2

∫ 1

0
qj(x) dx.

Suppose that {Y (x, λn)} is a sequence of eigenfunctions for (3.1) with norm 1,
corresponding to the eigenvalue λn = (2πn)2 + 〈q〉 + o(1) as n → ∞. Write the
components yj(x, λn) as a linear combination

yj(x, λn) = Aj(λn)Cj(x, λn) + Bj(λn)Sj(x, λn).

Recall that the coefficients Aj(λn) and Bj(λn)/
√

λn are bounded sequences (see
[5, lemma 2.1]).

Firstly, we consider the values of yj(x, λn) for edges incident on a vertex v. The
continuity of Y at the vertex v thus implies [5]

Aj(λn) = Ak(λn) + o(1), n → ∞, (3.8)

for all edges j, k incident on v. Since the graph G(V,E) is connected, equation (3.8)
can be extended to all edges j, k.

Secondly, the root vertex is regarded as the top of the graph G(V,E), that is
to say, an edge ej is below an edge ek �= ej if a path from ej to the root passes
through ek. We label each vertex v of the graph G(V,E) with the combinatorial
distance from the root, and label edges with the larger of the vertex labels on the
edge. Let M be the maximum label. If the vertex v has label M − 1, then all its
incoming edges ek join v to a pendant vertex v. If ej is the outgoing edge for v,
then the derivative condition at v gives

Bj(λn) = A1(λn)
∑

h

[qh] + o(1), (3.9)

where the last sum is taken over all edges eh which are below ej on G(V,E).
For vertices v with label M − 2, and outgoing edge ej , the derivative condition

at v gives

Bj(λn) = A1(λn)
∑

l

[ql] + o(1), (3.10)

where the last sum is taken over all edges el which are below ej on G(V,E).
Thirdly, Aj(λn) are bounded away from zero, otherwise by ||Y (x, λn)|| = 1 we

get a contradiction.

https://doi.org/10.1017/prm.2021.84 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.84


286 C. F. Yang and D. Q. Liu

3.2. Nodes on a tree

Put

Y (x, λn) = {yj(x, λn)}
where

yj(x, λn) =

{
Aj(λn)Cj(x, λn) for boundary edges,
Aj(λn)Cj(x, λn) + Bj(λn)Sj(x, λn) for other edges.

Using the asymptotic expressions (3.4), (2.4) and (2.6), when n → ∞, we
obtain the asymptotics for the components (modulus nonvanishing Aj(λn)) of the
eigenfunction Y (x, λn), uniformly in x ∈ [0, 1]:

Cj(x, λn) = cos
√

λnx + [qj ]x
sin

√
λnx√

λn

+ o

(
1
n

)
on boundary edges

and on other edges

Cj(x, λn) +
Bj(λn)
Aj(λn)

Sj(x, λn)

= cos
√

λnx +

(∑
l

[ql]1 − l〈q〉 + [qj ]x

)
sin

√
λnx√

λn

+ o

(
1
n

)
.

Here the sum is taken over all edges el which are below ej on G(V,E).
There exists N0 such that for n � N0 the function Cj(x, λn) (or Cj(x, λn) +

Bj(λn)
Aj(λn)Sj(x, λn)) has exactly n simple zeros inside the interval (0, 1), that is, 0 <

x1
nj < · · · < xn

nj < 1. The sets Xj := {xk
nj}n�N0 (k = 1, n) are called the nodes on

the edge ej with respect to the eigenvalues λn.
Taking asymptotic formulae (2.4) and (2.6) into account, we obtain the asymp-

totic expressions of nodes as follows.

Lemma 3.1. For large n, the following asymptotic formulae for the nodes hold
uniformly in j :

xk
nj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k − 1
2

n
+

[qj ]x − 〈q〉x
n2π2

+ o

(
1
n2

)
on boundary edges,

k − 1
2

n
+
∑

l[ql]1 + [qj ]x − l〈q〉 − 〈q〉x
n2π2

+ o

(
1
n2

)
on other edges.

(3.11)

3.3. Inverse nodal problems on a tree

Note that for the fixed ej the nodal sets Xj is dense in (0, 1), respectively.
Analyzing the asymptotic expression xk

nj we have the following statements.

https://doi.org/10.1017/prm.2021.84 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.84


Inverse nodal problems on trees 287

Fixed ej and x ∈ [0, 1]. Suppose that X0
j ⊂ Xj is dense on (0, 1) and choose

{xknj

nj } ⊂ X0
j such that lim

n→∞x
knj

nj = x. Then the following finite limit holds:

lim
n→∞n2π2

(
x

knj

nj − k − 1
2

n

)
exists= θj(x), (3.12)

where θj(x) = [qj ]x − 〈q〉 for boundary edges, and θj(x) =
∑

l[ql]1 + [qj ]x − l〈q〉 −
〈q〉x for other edges.

Now we can provide a uniqueness theorem and constructive algorithm for the
inverse nodal problem on the whole interval (0, 1).

Theorem 3.2. Fix the edge ej. Suppose that the following conditions is true:

X0
j ⊂ Xj is dense on (0, 1) and X0

j = X̃0
j ,

then qj(x) = q̃j(x) a.e. on (0, 1). Therefore, the data X0
j uniquely determines the

potential qj(x) − 〈q〉 on the edge ej.
The constructive algorithm is as follows:

(1) X0
j determining θj(x) from (3.12);

(2)

qj(x) − 〈q〉 a.e.= 2θ′j(x). (3.13)
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