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Abstract. The space of 'quadratic-like' (unimodal) maps of a compact interval to
itself is shown to decompose in a 'nice' way (stratify) according to a dynamical
property of such maps (the existence of a homoclinic periodic orbit with given
period). This decomposition is refined by that discovered by Sarkovskii. Orbit
structure and bifurcation properties are also discussed.

1. Introduction
This paper discusses the space of maps of a compact interval and its decomposition
according to their dynamical properties. Recall that if F(n) denotes those maps in
C°(I, I) (the continuous functions / : [0, l]-» [0,1]) having a point of least period n,
then F(j) =>F(k) if and only if ; precedes k in Sarkovskii's order [13]:

1 A 2 A 4 A 8 A •••

• • • A 22 • 9 A 22 • 7 A 22 • 5 A 22 • 3 A

• • • A 2 - 5 A 2 - 3 A - - - A 5 A 3 .

Moreover, in C1(I, I), j A fe implies that cl F(k) <= int F(j) [3], [4]; we use the term
'stratification' to denote such a structure. We remark that F{j) is closed if j is not
a power of two. Also, 'infinity' may be inserted after the powers of two but before
the other integers, to denote those maps with all powers of two as periods; for all
r>0 and odd m> 1, F(2r) =>F(oo) ̂ >F(m- 2r), and F(oo) is closed.

A map has a point of period not a power of two if and only if it has a homoclinic
point, if and only if it has positive topological entropy [1], [11]. Denote those maps
which have a homoclinic point of period n by H{n). In general, the relationship
between these sets, or between them and the Sarkovskii stratification, is not par-
ticularly elegant [5]. If one considers the class % (defined in § 3 below) of 'quadratic-
like' maps, however, things become quite tidy.

THEOREM. In c€, F{m • T) c H(T), for any r>0 and odd m > 1. Moreover, H(2r)
is a closed subset and H(2r)\{Jm F(m • T) is the boundary of \Jm F(m • 2r), for r
and m as before.
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This gives rise to the following structure, where all sets are relative to C6.

F(l) => F(2) 3 F(4) 3 • • • 3 F(oo) 3

H(22) 3 • • • 3 F(5 • 22) = F(3 • 22) 3

H(2) 3 • • • 3 F(5 • 2) 3 F(3 • 2) 3

H(1)3-..3F(5)3F(3).

The maps only in the first row are exactly those with zero entropy; the maps with
positive entropy are stratified by the homoclinic sets, for powers of two, which in
turn are stratified by the corresponding Sarkovskii sets. This structure yields immedi-
ate information on the bifurcations which must occur for a family in %, as in [4],
[5]. In particular, an arc /, from F ( 1 ) \ F ( 2 ) to F(3) passes through the H(2r) in
the order indicated, by a sequence of homoclinic bifurcations (separated by sequences
of periodic bifurcations).

In proving these results, we also establish the following, where 'simple periodic
orbit' is defined as in [2], [8], [15] (and also in § 2 below).

THEOREM. Any map in C°(I, I) which has a periodic point of period n has a simple
orbit of period n.

For unimodal maps this may be obtained via kneading sequences, as in [9]; the
authors thank the referee for this observation and other helpful comments.

2. Simple periodic orbits
We first show that it suffices to consider a particular type of orbit structure.

Definition. Let S = {xu...,xn} be a finite set of points on the interval / = [0,1]
with Jti < x2 < • • • < xn. We say S is separated to order 1 under f if n is even, n = 2 m,
and the sets St = {xu ..., xm} and S2 = {xm+1,..., xn} are interchanged by /. We
say S is separated to order r under f if S is separated to order 1 and each of the sets
St and S2 is separated to order r — 1 under f2.

Definition. Let P be a periodic orbit of /, consisting of m • 2' points, where m is
odd. We say P is simple if the following conditions hold:

(i) if r> 0, P is separated to order r under /, and
(ii) if m > 1, P = Pi u P2 u • • • u P(2

r), where P^ denotes the least m points of P,
P2 the next m points, etc., and each Pk is periodic for / < 2 ) of Stefan type [15], i.e.
Pk = {xux2,...,xm} where

J (Xi) — Xi+i

and either

xm < xm-2 <-<xl<x2<-< *„,_!

or the opposite order.

Note that if P as above is simple, the sets PUP2,..., P(2'> are permuted by /. We
denote the maps with a simple periodic orbit of period n by Fs(n).
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We also require the following notion: the Markov graph of a set {/?,}, where
Pi <Pi+i, is the directed graph whose vertices are the intervals 7; = [p7, pj+i], possibly
renumbered, with an arrow It-*Ik if and only if /(/;) => Ik.

L E M M A [6]. / / a Markov graph of f contains a loop Jo-» A -»• • • -» In-\ -* Io, there is

a point xelo with fk(x) e Ik, and fn{x) = x.

The main result of this section generalizes [2], [8], [15].

THEOREM A. If feC°(I,I) has a periodic orbit of period n, then f has a simple
periodic orbit of period n:

F(n) = Fs(n).

The proof of theorem A is by 'induction' using the Sarkovskii order; we break it
into seven steps, some of which are already known. The first step is to note that
if all periods of / are powers of two, then each orbit of / is simple. This follows
from [2].

We next show that an orbit of maximal period (in the sense of Sarkovskii) is
simple. This follows from [8]; we give a much shortened proof. Consider such an
orbit, of period m • 2r, for odd m > 1 and r> 0 (we may assume m > 1, by the first
step, and r>0 , by [15]). As in [6], some vertex 1^ of the usual Markov graph
associated to this orbit covers itself, f{Ix) => /1; and there is a path

/i -» /2-»•••-» /k, for each k s m • 2r,

but there is no edge Ik -* 7X (or there would be a loop of odd length, and a periodic
point of odd period, contradicting the Sarkovskii-maximality of m • 2r). But then
all points in the orbit which are to the left of Zj move to the right, and vice versa,
so the orbit is separated to order one. Each half of the orbit is now a complete
periodic orbit for f2, of period m • 2r~\ and by induction the argument is completed.

The third step is that if m> 1 is odd and feFs(m), then feFs(k) for any odd
k> m. By hypothesis, there is an orbit {pt}, 1 < j < m, with /(/?,-) = pi+l, and lying
either in the order

Pm<- • -<P3<Pi<P2<- • -<pm-u

or in the opposite order; (assume that given, for definiteness). There is a fixed point
ee(pup2), and xe(e,p2) with f(x) = pu also y&(pue) with f(y) = x. Let
Ii,...,Im-i be the intervals defined above with

h = [Pu Pi\, h = [Pa, Pi], h = [Pz, P4], etc.

We form a new Markov graph with

J\=[y, e], J2 = [e,x], J3 = [puy], J4 = [x,p2],

and

Jk=Ik-3 f o r 5 < k < m + l.

There is, by the lemma above, a point weJu fixed by fm+2, with fk(w) e Jk+l; this
gives a simple orbit of period m + 2. The assertion follows by induction.
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The fourth step is Fs(m • 2r) c Fs(k • 2r), for any r, with k, m as above. We denote
the first (leftmost) m points in the orbit of length m-1' by Px, etc; P(2') denotes
the last m points. By hypothesis, / permutes Pu P2, • • • •> P(2r), and for each i, P, is
a simple periodic orbit of /<2> of period m. In each P, we can choose points x, and
y, so that the proof of step three can be applied to /(2° and the orbit Pt. The resulting
orbit is a simple periodic orbit of / of period

Again the conclusion follows by induction.
Fifth, Fs(m) c Fs(6) for odd m> 1. Let {px,... ,pm} be as before; by step two

we may assume m a 9 . If {Ik} is the Markov graph associated to this orbit in step
two, it contains the loop

since it is simple (as in [6]); hence there is a simple orbit of period six.
Sixth, Fs(m • 2 r ) c F s (3 • 2r+1). This follows from step five, just as step four

followed from three.
Finally, Fs(m • 2r) <= Fs(2

k), for any k. It suffices to take k = r (by the previous
steps). Let {p\,p2,...,P(m.2')} be a simple orbit of period m-2r, with Pi<pi+1,
and let

A = [P(k-l)m+l, Pkm], for 1 < fe < 2'.
Then / permutes the intervals Dk, so there are subintervals Jk that (after renumber-
ing) form a loop of length 2r as in the lemma. Thus we obtain a periodic orbit of
period 2r, which is simple since the orbit {/?,-} was. Theorem A now follows immedi-
ately.

3. Stratifications
The arguments in [4] show that cl F(j) <=• int F(k), if k A /. The only non-trivial case
is k = 2r, j = 2r+1, and fe cl F{j) with a periodic orbit y of period k = 2r, the limit
of 2r+1-periodic orbits; it suffices to take fc = 2 and ; = 4 (i.e. r= 1), since we may
consider g = /<2' K The derivative of f2 on y is negative, so by the implicit function
theorem y persists under perturbation of /. Therefore feint F(k).

In general, the homoclinic and periodic classifications do not mesh well [5]: the
best that can be said is that

H{2") c H(2r+1) u H(2r+2), for any r a 0,

while for odd m > 1,

F(m-2 r )cH(2 ' )uH(2 ' + 1 ) and H(2 ')cF(3-2r + 1) .

In this section we specialize to a class of maps for which the homoclinic classification
gives a stratification, which does mesh nicely with (is refined by) the Sarkovskii
stratification. Let <£ denote the maps / e C3(I, I) which have a unique critical point
(are 'unimodal') and negative Schwarzian derivative, i.e.

f" "? / f"\ 2

'-—-( —I <0
/' i\r)
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whenever / ' # 0. We also require that /(0) = 0 =/ ( l ) , and impose the C3-topology.
This class of maps has been widely studied; see for example [7], [10], [12], [14].

THEOREM B. In <$, F(m- 2r)<= H{2r), for any odd m>\ and r>0 .

Proof. Let feF(m- 2r), and let P be a simple orbit of period m- 2r, with blocks
Pi,P2,..., P(2') of m consecutive points as before. We may assume m > 7, by the
results of § 2.

Let /, and p, denote the least and greatest points of P,; then the unique critical
point c of / satisfies

lk < c< lk+1,

for some k, 1 < k<2r. Set g—f2° and Pk = {p1,... ,pm} where g(pi) =Pi+\. J\ is
simple under g, so

Pm<Pm-2<- • <Pl<P2<- ' ' < Pm-1,

or the opposite order; for definiteness, we consider the order given. Let

Il=[Pl,P2],---,Im-l=[Pm,Pm-2\

as in the usual Markov graph for {pk} and g, and note that g is somewhere increasing
in 7m_1, somewhere decreasing in 7m_3 = [pm-2. Pm-J, so that c e 7m_i u 7m_3; (other-
wise, / would be monotone on Im^x u 7m_3; since by choice of fc, / is monotone on
each interval [/,-, p,] for i / fe, it would follow that g is also monotone on Im-i u 7m_3,
a contradiction).

Since c does not lie between /'(Pi) and f'(p2) for 0< /<2 r + 1 , there exists an
interval J c I1 such that g ( J ) c / , and g2 is a homeomorphism of / onto 7^ Note
that g must be monotonically decreasing, and g2 monotonically increasing, on J.
Thus g has a fixed point qeJ. Since c cannot be in the semi-local stable manifold
of any fixed point of g2 in /, there can be no sink in J, [14]. Since g2 is a
homeomorphism on J, there must be a sink between any two fixed sources. Hence
q is a source, and the only fixed point of g2 in /. Therefore /<= W"(q, g) and

Im-^gm+2{J)^W(q,g).

But q e g(7m_!), so q is a homoclinic fixed point of g, whose period under / is 2'.
ThusF(m-2r)c7-f(2r). •

We remark that the assumption of negative Schwarzian is necessary in theorem B
[5]. Otherwise the orbit of period 2r produced above may be contained in an
invariant set of intervals on which / ( 2 ) is orientation-reversing. The endpoints will
then be a homoclinic orbit, but of period 2r+1.

THEOREM C. In % 77(2') is a closed set.

Proof. Let /„ be a sequence in <£ n 77(2r) converging to /, let s = 2r, and let gn = (/„)*,
g=fs; then gn^>g and it suffices to show that g has a homoclinic fixed point. We
may assume that each gn is orientation-reversing at its homoclinic fixed point pn

(or else, [5], each has a point of period three and we are done). Also pn->p = g(p),
and a sequence zKn in W(pn, gn) exists, converging to pn as fc->oo, with

gn(Zo,n)=Pn and gn(Zk+l,n) = Zk,n-
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Finally, let zk = limn zKn, so

g(zo)=p and g(zk+l) = zk.

Note that (gn)'(pn) =£ —1 implies g'(p) ^ —1; also that (gn)' is positive at some point
between zo,n and z2,n, so z0^ p and the zk are distinct. At f(p) one may construct
corresponding points {zk(n)}, such that g(zk+l(n)) = zk(n) and g(zo(n))=/"(p),
and the points zk(n) occur on each side of f(p). x

Since / e F ( 3 • 2r+1), p must be a (topological) source. Otherwise, the critical
point is in the semi-local stable manifold of fk(p), for some /c<2r [14]. This
orbit is simple (or / e F ( 3 • 2r~2)<=//(2r), [2]), and / is a homeomorphism on
each component of I\[Jk stem (fk(p)), so every period of / must factor 2r, a
contradiction.

Suppose that W(p, g) contains no critical points of g. The two endpoints of
W(p, g) are then not in W(p, g), but form a periodic orbit of period two under
g, which is stable on at least one side (i.e. the side towards p, contained in W(p, g)).
This orbit's stable manifold contains a critical point, so it cannot be stable on just
the side overlapping W"(p, g); but then we have a sink of period 2r+1, and (as
above) either / e H(2r) or every period factors 2r+1, a contradiction. Hence W(p, g)
does contain a critical point of g. It follows that W"(fn(p), g) contains the critical
point c of /, for some n, and that W(f"+1(p), g) contains a point x such that

g(x)=f(c) = sup (Range (/)).

Therefore Wu(fn+l(p), g) contains the points zk(n +1), and f"+l(p) is homoclinic.
Thus fsH(T), and H(T) is closed. •

THEOREM D. In % H{2r) = cl Umodd F(m • T).

Remark. The previous theorems show that

cl U F(m • T) <= cl H{2r) = H(T),

so we need only show that H(2r)ccl U F(m • 2r); this latter statement is true in
general, i.e. in Ck(I,I), 1 < fc<<x>, as will be clear from the following.

Proof. Let feH(2r) and g=/ ( 2 > . We may assume a point p of period 2r under /,
with g'(p)< — 1, and sequences z2n, z2n+u as before. Let / be the smallest positive
integer such that f'(z0) is in the orbit of p, and let k=j—l. Let S be a C°°-small
non-negative bump function supported in a neighbourhood U of fk(z0) such that U

(i) contains no point in the orbits of p or any of the zn (except of course fk(z0)
itself), and

(ii) contains no critical point of g, unless fk(z0) is itself such a point, in which
case we require S to be flat on a still smaller neighbourhood of fk(z0).
Finally, let / = / ± 8, where the sign is chosen so that gn(z0)<p. Then g"(z0)= z2n,
for appropriate small S and some large n, and z2n is a periodic point of g, of period
2n + l , and / eF ( (2n + l ) -2 r ) . ThusH(2r)cclUmf(m-2r) . •

THEOREM E. Any map in a C°-neighbourhood of a map with a homoclinic point of
period 2' has a point of period 3 • 2r+1; i.e.

H(2r)cintF(3-2r+1).
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Proof. It suffices to assume r = 0, and again to take the orientation-reversing case.
Then

Zo < Z2 < Z4 < p < Z5 < .

so

/6(z5)<z5</2(z5)</4(z5) .

This condition implies that f2 has a point of period three, and persists under
perturbations of /, so any g near / is in F(6). •

REFERENCES

[1] L. Block. Homoclinic points of mappings of the interval. Proc. Amer. Math. Soc. 72 (1978), 576-580.
[2] L. Block. Simple periodic orbits of mappings of the interval. Trans. Amer. Math. Soc. 254 (1979),

391-398.
[3] L. Block. Stability of periodic orbits in the theorem of Sarkovskii. Proc. Amer. Math. Soc. 81

(1981), 333-336.
[4] L. Block & D. Hart. The bifurcation of periodic orbits of one-dimensional maps. Ergod. Th. &

Dynam. Syst. 2 (1982), 125-129.
[5] L. Block & D. Hart. The bifurcation of homoclinic orbits of maps of the interval. Ergod. Th. &

Dynam. Syst. 2 (1982), 131-138.
[6] L. Block, J. Guckenheimer, M. Misiurewicz & L.-S. Young. Periodic points and topological entropy

of one dimensional maps. Lect. Notes Math. 819 (Springer, 1980), 18-34.
[7] P. Collet & J.-P. Eckmann. Iterated maps on the interval as dynamical systems, Prog. Phy. 1

(Birkhauser, 1980).
[8] C.-W. Ho. On the structure of the minimum orbits of periodic points for maps of the real line.

Preprint.
[9] L. Jonker. Periodic orbits and kneading invariants. Proc. London Math. Soc. 39 (1979), 428-450.

[10] O. Lanford. Smooth transformations of intervals, Lect. Notes Math. 901 Springer (1981), 36-54.
[11] M. Misiurewicz. Horseshoes for mappings of the interval. Bull. Acad. Polon. Sci. 27 (1979), 167-169.
[12] M. Misiurewicz. Structure of mappings of an interval with zero entropy, Publ. Math. IHES, to appear.
[13] A. N. Sarkovskii. Coexistence of cycles of a continuous map of the line into itself, (Russian) Ukr.

Mat. Z. 16 (1964), 61-71.
[14] D. Singer. Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math. 35 (1978),

260-267.
[15] P. Stefan. A theorem of Sarkovskii on the coexistence of periodic orbits of continuous endomorph-

isms of the real line. Comm. Math. Phys. 54 (1977), 237-248.

https://doi.org/10.1017/S0143385700002121 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002121

