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In the propagation and evolution of sea waves, previous studies pointed out that the
occurrence of the freak wave height is significantly related to the quasi-resonant four-wave
interaction in the modulated waves. From numerical–experimental study over an uneven
bottom, the nonlinear effect caused by the bathymetry change also contributes to the
occurrence of extreme events in unidirectional waves. To comprehensively analyse the
two-dimensional wavefield, this study develops an evolution model for a directional
random wavefield based on the depth-modified nonlinear Schrödinger equation, which
considers the nonlinear resonant interactions and the wave shoaling the shallow water.
Through Monte Carlo simulation, we discuss the directional effect on the four-wave
interaction in the wave train and the maximum wave height distribution from deep to
shallow water with a slow varying slope. The numerical result indicates that the directional
spreading has a dispersion effect on the freak wave height. In a shallow-water environment,
this effect becomes weak, and the bottom topography change is the main influencing factor
in the wave evolution.

Key words: coastal engineering, nonlinear instability, shallow water flows

1. Introduction

With the development of the technology in observation and recording, the rogue/
freak/extreme wave (from now on called a ‘freak wave’) has been generally recognized
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as a kind of marine disaster instead of a small probability event in special circumstances.
The concept of the freak wave was first suggested by Draper (1965), and it occurs when the
wave height abnormally exceeds the significant wave height by a factor 2. Under different
conditions, the occurrence probability of the freak wave clearly varies, which inspires us
to think that the influence mechanism in wave height distribution is more complicated than
generally expected.

Research to date indicates that the generation mechanism of the freak wave can be
divided into internal and external factors. For the internal factors, the nonlinear interaction
plays an important role in the occurrence of freak waves. Through a nonlinear wave
evolution model, Benjamin (1967) indicated that modulational instability, a phenomenon
leading to the energy concentration in a narrow-spectrum wave train, will make the
waveform of surface gravity waves significantly unstable in deep water. After the 1990s,
it was considered an important cause of freak waves behaving as four-wave interactions
in the nonlinear wave model. In the study of Janssen (2003), the instability in Benjamin
(1967) is actually an example of a non-resonant four-wave interaction in which the carrier
wave is phase-locked with the sidebands. Based on the four-wave interactions and random
wave statistics, a complete prediction model of freak waves in deep water is given by
Janssen (2003) and Mori & Janssen (2006) and is verified by wave tank experiments
(e.g. Mori et al. 2007; Kashima & Mori 2019). When it comes to the external factors,
the bathymetry effect, the interaction with current, wind force and others contribute to the
evolution of the nonlinear wave to varying degrees. The bathymetry effect on the water
depth and local topography change have been known as significant influencing factors in
the second-order nonlinear wave evolution.

For a more general explanation of freak wave occurrence, we need to consider the
synthetic effect of internal and external factors. For a uniform unidirectional wave train,
the modulational instability has a critical water depth at kh = 1.363 (k, wave number;
h, water depth) from Benjamin (1967). When kh < 1.363, the modulational instability
disappears, which implies the occurrence of a freak wave in relatively shallow water
may decrease due to the attenuation of four-wave interactions. However, when it comes
to a directional wavefield without limiting ourselves to collinear instabilities, there is no
critical water depth such as kh = 1.363 due to the transversal disturbance (Benney &
Roskes 1969; McLean et al. 1981). If we think that the four-wave interactions play an
important role in the occurrence of the freak wave, the variation of water depth seems
to be a non-negligible influencing factor. From the observation record, such as the World
Ocean and the coast in Nikolkina & Didenkulova (2011), the freak wave occurs in deep
water and finite and shallow water. Therefore, further investigation of the evolution of
the four-wave interactions in the nonlinear modulated wave with the variation of bottom
topography is necessary to study freak wave behaviours both offshore and onshore.

For a weakly dispersive long-wave train, its propagation process can be summarized by a
partial differential equation in time and space. The nonlinear Schrödinger (NLS) equation
(e.g. Zakharov 1968; Davey & Stewartson 1974), which can reflect the nonlinear effect
caused by modulation interactions, is widely used to describe the amplitude evolution.
From its standard format, a constant depth can be extended to a modified form with varying
depth, considering spatial inhomogeneity. For example, Djordjevié & Redekopp (1978)
derived a solution for an envelope-hole soliton moving over an uneven bottom and gave a
depth-modified NLS (dNLS) equation with a slope effect. Variation of the depth in Liu &
Dingemans (1989) was divided into different scales, and then they gave evolution equations
for modulated wave groups over an uneven bottom of different types. The evolution of a
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Freak wave in a two-dimensional directional wavefield

modulated wave train over an uneven bottom is also discussed in Peregrine (1983), Turpin,
Benmoussa & Mei (1983) and Mei & Benmoussa (1984).

Several numerical studies of the different nonlinear evolution equations have been given,
such as the NLS-like equation (Zeng & Trulsen 2012; Kimmoun et al. 2021; Lyu, Mori &
Kashima 2021), the Korteweg–De Vries (KdV) equation (Sergeeva, Pelinovsky & Talipova
2011; Majda, Moore & Qi 2019), Boussinesq equations (Gramstad et al. 2013; Kashima,
Hirayama & Mori 2014; Zhang et al. 2019) and other nonlinear methods (Viotti & Dias
2014; Zheng et al. 2020; Lawrence, Trulsen & Gramstad 2021, etc.). From the research
mentioned above, a similar conclusion can be derived, that is, the increase of bottom
slope angle will give rise to inhomogeneity of the wavefield and lead to an increase of
the kurtosis of surface elevation in very shallow water, which equals to the increase of the
exceedance probability of extreme wave height Pm(Hmax) occurring; here Pm represents
the cumulative distribution function (CDF) and H represents wave height. The abrupt
slope change, like the demarcation point between the sloping section (deep to shallow)
and the flat bottom, gives a significant increase of Pm(Hmax) as well as the skewness μ3
of the surface elevation, which suggests the bathymetry effect is more reflected by the
second-order effect. If we compare the numerical results in flat bottoms with different
water depths, Pm(Hmax) decreases from deep to medium water, as well as the kurtosis μ4
of surface elevation, and it corresponds to Benjamin’s (1967) result of the evolution of
modulational instability: in shallow water kh ≤ 1.363, modulational instability disappears
and μ4 shows an inverse effect on the unidirectional wave train in the deep-water case.
The variation of Pm(Hmax) with depth change can also be referred to Mendes et al. (2022),
in which the second-order theory provides a physical explanation about wave statistics.

A similar process in shallow water can be verified in experiments. Physical modelling
experiments can provide a reference for the steeper slope case and more variety of bottom
topography as shown by Trulsen, Zeng & Gramstad (2012), Kashima et al. (2014), Ma,
Dong & Ma (2014), Bolles, Speer & Moore (2019), Zhang et al. (2019), Kashima & Mori
(2019), Trulsen et al. (2020) and Lawrence et al. (2021), Lawrence, Trulsen & Gramstad
(2022). The values of kurtosis μ4 and skewness μ3 show a local maximum near the edge
between the sloping bottom and flat bottom (deep to shallow). As the slope angle becomes
very steep, this local maximum reaches its peak at the abrupt depth transitions in shallow
water (Zheng et al. 2020; Li et al. 2021).

It should be pointed out that most of the numerical and experimental studies to date
concentrate on the unidirectional wave train. The wave behaviours in the natural state
are a two-dimensional (2-D) hydrodynamic problem. The stability of deep-water random
waves in 2-D space is discussed in Alber & Saffman (1978). For long-crested irregular
waves propagating over 2-D bathymetry, Lawrence et al. (2022) discussed the statistical
properties of the surface elevation and the velocity field through numerical simulation
using the high-order spectral method. In addition, a 2-D wavefield model can provide the
directional wave spreading due to wind or current effect and the dispersion in one more
horizontal dimension. Recent works show that the four-wave interaction decreases due to
the directional dispersion effects. The maximum wave height in a directional wavefield
decreases with the unidirectional wave in numerical simulation through a modified form
of the NLS equation in Gramstad & Trulsen (2007). The enhancement of kurtosis is
significantly suppressed by the increase of directional spread in the directional wave in
Waseda (2006), Waseda, Kinoshita & Tamura (2009) and Onorato et al. (2009a,b). Based
on the contribution from the directional bandwidth in the directional spectrum, Mori,
Onorato & Janssen (2011) gave the theoretical estimation of kurtosis for directional sea
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Figure 1. Sketch of the wave propagating over an uneven bottom in a 2-D wavefield.

states, and the fourth-order cumulant and directional spreading can predict the occurrence
probability of freak waves. However, a comprehensive discussion about the bathymetry
effect on the 2-D modulated wave is still to be had.

To develop the freak wave analysis in 2-D wavefields, this study investigates the
directional nonlinear modulated wave evolution in an uneven bottom as an expansion to
the work of Lyu et al. (2021). The dNLS equation in 2-D form for a slow-varying bottom is
applied to establish the numerical model. In a 2-D wave basin, we consider the directional
dispersion effect as part of the initial value problem and discuss how to compare the roles
in the wave evolution of different parameters such as the slope angle, the water depth and
directional spreading. Random wave statistics and a Monte Carlo simulation are conducted
to give the evolution of the nonlinear effect and the distribution of extreme events in
2-D space–time (2-D + T). Section 2 gives the derivation of the theoretical model and
its numerical solution. Section 3 gives the computation result and the discussion, and they
are summarized in § 4. This article concentrates on the case when the wave is normally
incident with the contour line of the bottom, so we do not consider the wave refraction.
The oblique wave case will be given in the later work, Part 2.

2. Methodology

2.1. Two-dimensional dNLS equation for an uneven bottom
For a 2-D flow field, we continue to assume the flow is irrotational, inviscid and
incompressible with a free water surface. A coordinate system (x, y, z) is defined with
origin O, as shown in figure 1. Plane Oxy is defined along the quiescent water surface, and
z axis is defined in the vertically upward direction, opposite to gravitational acceleration g.
An incident directional random wave train comes from an external field, and its principal
wave direction is along the x axis. The bottom z = −h(x, y) mainly varies in the principal
direction in the region between dashed lines A and B. Velocity potentialΦ and free surface
elevation η are defined as

Φ = Φ(x, y, z, t), η = η(x, y, t), (2.1)

where t represents time.
In the entire flow field, Φ is a solution of the Laplace equation to satisfy continuity

∇2Φ = ∂2Φ

∂x2 + ∂2Φ

∂y2 + ∂2Φ

∂z2 = 0. (2.2)
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Freak wave in a two-dimensional directional wavefield

On the boundary of the free surface z = η(x, y, t), Φ and η satisfy the kinematic
boundary condition (i.e. free surface equation) and the dynamic boundary condition (i.e.
Bernoulli equation)

∂Φ

∂z
= ∂η

∂t
+ ∂Φ

∂x
∂η

∂x
+ ∂Φ

∂y
∂η

∂y
, z = η, (2.3)

2
∂Φ

∂t
+ 2gη +

(
∂Φ

∂x

)2

+
(
∂Φ

∂y

)2

+
(
∂Φ

∂z

)2

= 0, z = η. (2.4)

At the bottom of the flow field, Φ satisfies the no-flux boundary along the seafloor. If the
water depth h is constant at a flat bottom z = −h, Φ satisfies the flat bottom equation

∂Φ

∂z
= 0, z = −h. (2.5)

If we assume, the bottom is uneven, and water depth varies at z = −h(x, y),Φ satisfies the
uneven bottom equation

∂Φ

∂z
+ ∂h
∂x
∂Φ

∂x
+ ∂h
∂y
∂Φ

∂y
= 0, z = −h(x, y). (2.6)

Based on the periodicity of time and space in the propagation of gravity waves, wave
frequency ω and wavenumber k satisfy the linear dispersion relation

ω =
√

gkσ , (2.7)

where σ = tanh kh. For a medium that has no temporal variation, carrier wave frequency
ω = ω0, where subscript 0 represents a constant angular frequency independent of the
variable bathymetry. For a flat bottom with a constant water depth h, carrier wavenumber
k = k0 is also constant as ω; for an uneven bottom, wavenumber k will be changed because
of spatial inhomogeneity due to the bottom topography. The change in wave dispersion will
also be reflected in the group speed cg

cg = g
2ω0

[σ + kh(1 − σ 2)]. (2.8)

In other words, k and cg are functions of h.
For a weakly nonlinear wave train, the modulation parameter comes from the

contribution from the small perturbation in high-order harmonic, so we further expand the
velocity potential Φ and free surface elevation η into harmonic functions. In this research,
we assume the modulation caused by the nonlinear effect and the depth variations are of
the same order of magnitude, referring to Liu & Dingemans (1989). Therefore, we make
this small parameter equal to wave steepness ε, and expand Φ and η in the form of

Φ(x, y, z, t) =
∞∑

n=1

εn

[ n∑
m=−n

�nm(x, y, z, t)Em

]
, (2.9)

η(x, y, t) =
∞∑

n=1

εn

[ n∑
m=−n

ηnm(x, y, t)Em

]
, (2.10)

E = exp
{

i
[∫ x

k(x) dx − ω0t
]}
, (2.11)

where E represents the harmonic functions, and the complex conjugates part satisfy
Φn,−m = Φ̃nm, ηn,−m = η̃nm. We take n ≤ 3 in the derivation since ε is very small.
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With the expansion of Φ and η to the third order of ε, the method of multiple scales
introduced in Davey & Stewartson (1974) is applied to give the solution at different orders
and harmonic. The details in this process are similar to Hasimoto & Ono (1972). To
simplify the problem, we suppose that the water depth h varies slowly. Additionally, we
want to concentrate on the variation of depth in the wave propagation direction, so we
assume the magnitude of the gradient of depth change satisfies h′(x) ∼ O(ε2) and h′( y) ∼
O(ε3). Considering the expansion form in (2.9) and (2.10), the effect of bottom topography
change is only reflected in the third order O(ε3) and h′( y) ∼ O(ε3) is equivalent to
h′( y) = 0. As for the dispersion relation between wavenumber and frequency, the carrier
ω = ω0 is still constant since there is no temporal variation, but the carrier wavenumber k
changes. Based on the above inference, we can get k = k(x) and cg = cg(x) on the principal
wave direction, and we can introduce a specific variable substitution of t and x, referring
to Djordjevié & Redekopp (1978)

τ = ε

[∫ x dx
cg(x)

− t
]
, ξ = ε2x, ζ = εy. (2.12)

We apply (2.12) to transfer (x, y, t) to (ξ, ζ, τ ) and put (2.9)–(2.11) into (2.1)–(2.6), then
the evolution equation of envelope Ā(ξ, ζ, τ ) for a very mild slope can be given in the form
of

iβhĀ + i
∂Ā
∂ξ

+ βt
∂2Ā
∂τ 2 + βy

∂2Ā
∂ζ 2 = βn|Ā|2Ā, (2.13)

where

βh = (1 − σ 2)(1 − khσ)
σ + kh(1 − σ 2)

d(kh)
dξ

= 1
2cg

d(cg)

dξ
, (2.14a)

βt = − 1
2ω0cg

[
1 − gh

c2
g
(1 − σ 2)(1 − khσ)

]
, (2.14b)

βy = 1
2k
∂ω

∂k
≡ cg

2k
, (2.14c)

βn = k2ω0

[
1
16
(9 − 10σ 2 + 9σ 4)− 1

2sinh22kh

]

+
[
ω3

0
g

1
2g
(σ 2 − 1)+ k

cg

](
c2

g

c2
g − gh

)[
g2k

2ω0cg
+ ω2

0

4sinh(kh)2

]
.

(2.14d)

Here, βh represents the contribution from topography change, which is proportional to the
derivative of the wavenumber with respect to coordinate ξ . When the topography change
becomes very small, βh ≈ 0 and (2.13) is equivalent to the evolution equation in Davey &
Stewartson (1974). Here, βt and βy give the local curvature based on the linear dispersion
relation for carrier wave period and lateral component of wavenumber, respectively, and βn
represents the contribution from the nonlinear effect due to the quasi-resonant four-wave
interaction.

2.2. Numerical solution and freak wave estimation
In the 1-D problem of the unidirectional wave train, as in Lyu et al. (2021), the evolution
equation of Ā is numerically solved in a spatial step by the pseudo-spectral method.
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Freak wave in a two-dimensional directional wavefield

Based on the periodicity of the wave envelop in time and space, the partial differential
term in the evolution equation can be transformed into a more concise form by using
Fourier transform. In the 1-D problem, we can simplify the partial differential term with
respect to time and express it in the frequency domain. In the 2-D problem, the variation
in the lateral direction requires the consideration of one more dimension. Based on the
periodicity of time and space for a 2-D wavefield, the 2-D Fourier transform is applied to
transform (2.13) into an ordinary differential equation

dĀ
dξ

= −iβn|Ā|2Ā − iβtω
2
τ Ā − iβyk2

ζ Ā − βhĀ, (2.15)

where we take the Fourier transformation Fτ with respect to τ on time and Fζ with respect
to ζ on lateral spatial coordinate, respectively, and ωτ and kζ represent corresponding
variables about the frequency and the lateral wavenumber in the Fourier transform

Ȧ(ωτ , ξ, ζ ) = Fτ [Ā(τ, ξ, ζ )], Ä(ωτ , ξ, kζ ) = Fζ [Ȧ(ωτ , ξ, ζ )]. (2.16)

Through the spatial evolution of ξ in (2.15), the wave envelope can be numerically
simulated from an initial condition at ξ = ξ0. We assume the initial Fourier amplitude
Ä(ωτ , ξ0, kζ ) satisfies the 2-D Gaussian shape directional spectral

Ä(ωτ , ξ0, kζ ) = Ä(ωτ , ξ0, θζ ) = a
2πσωσθ

exp

{
−1

2

[(
ωτ − ω0

σω

)2

+
(
θζ − θ0

σθ

)2
]

+ iψ

}
,

(2.17)

where a represents the standard deviation of the envelop and ε = ka, θζ = arctan(kζ /k0)

represents the direction of a single wave with the lateral wavenumber kζ , k0 and ω0 are
carrier wavenumber and frequency, σθ is dimensionless directional width, ψ is the random
phase uniformly distributed at [0, 2π], σω is frequency spectral width and we will also use
its dimensionless form σs = σω/ω0 in the following discussion. Also, θ0 is the principal
wave direction, and here we set θ0 is fixed at θ0 = 0. When θ0 /= 0, the incident wave
is oblique with the contour line of topography, and wave refraction will occur due to the
inhomogeneity of the dispersion relation on the wave front line. This part of the discussion
will be given in Part 2.

In this problem, the initial spectrum is decided by the contribution from both the
temporal and spatial frequency, and Ä distributed in a 2-D plane about frequency ωτ and kζ
(or θζ ). Referring to the 1-D problem as in Janssen (2003), the Benjamin–Feir index (BFI)
is defined as the ratio between wave steepness ε and dimensionless spectral bandwidth σs

BFI =
√

2ε
σs

. (2.18)

In this study, we hope to separate the effect from different contributions in the temporal
and spatial parts and concentrate more on the directional dispersion effect, so we continue
to use (2.18) as the definition of BFI in the initial condition. The parameter σθ will be
taken as an individual parameter in the spectral bandwidth, and σs is set as constant (i.e.
σω is constant in (2.17)).

959 A19-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

73
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.73


Z. Lyu, N. Mori and H. Kashima

In the principal wave propagation direction, we can solve the wave envelope Ā at each
spatial step on x (or ξ ) through (2.15), and give the wave surface elevation η by (2.19)

η(x, y, t) = εRe
[

1
2

Ā(x, y, t)E
]

+ ε2Re
[

k cosh kh

8sinh3kh
(2cosh2kh + 1)Ā2

(x, y, t)E2
]
. (2.19)

Similar to Lyu et al. (2021), we integrate η( y, t) in (2.19) at each step from offshore
to onshore, assuming periodic boundary conditions in time, and construct the surface
elevation in a discrete 2-D + T form. Equation (2.19) considers the contribution from
first order to second order and second harmonic. The progressive wave is established on
the periodicity only in (∫xk(x) dx − ω0t), because of the contribution of kζ0 = 0 to the
component of lateral length y of the carrier propagating direction.

Because of the very small probability of freak wave occurrence, an ensemble simulation
size is necessary to provide a more reliable prediction. In this study, we continue to
estimate the nonlinear interaction in wave evolution by the fourth-order moment kurtosis
μ4 and the third-order moment skewness μ3, and their variation will be compared with
the wave height distribution directly obtained from the 2-D + T surface elevation data in a
large-size Monte Carlo simulation.

Parameters μ4 and μ3 of a fixed point (x∗, y∗) in the wavefield are derived from the
discrete surface elevation η(x∗, y∗, t) in time series

μ4 = Ex(ηi − η̄)4

η4
rms

, μ3 = Ex(ηi − η̄)3

η3
rms

, (2.20a,b)

where Ex represents expected value, i represents the index number of the data sample, η̄ is
the mean value and ηrms is the root mean square value of η. For a wave train in a Gaussian
process (i.e. linear random waves), μ4 = 3 and μ3 = 0. The theoretical value of μ4 can be
changed with different nonlinear processes or hypotheses. For a narrowband second-order
nonlinear wave train, the Stokes wave model gives the contribution from bound waves
(Longuet-Higgins 1963). Thus, the values of μ4 and μ3 of an estimated inbound wave
(marked as μb

4, μb
3) are related to the wave steepness ε

μb
4 = 3 + 24ε2, μb

3 = 3ε. (2.21a,b)

In Janssen (2003) and Mori & Janssen (2006), μ4 (marked as μ∗
4) can change the

quasi-resonant and non-resonant interactions in (2.21). It is parameterized by the
fourth-order cumulant κ40, which is proportional to the square of BFI defined by Janssen
(2003)

μ∗
4 = κ40 + 3, κ40 = π√

3
BFI2. (2.22)

Based on the contribution from the quasi-resonant four-wave interactions in (2.22) to wave
height H, Mori & Janssen (2006) gave the exceeding probability P(H)

P(H) = e−H2/8
[
1 + κ40

384
(H4 − 16H2)

]
, (2.23)

and exceeding probability Pm(Hmax) of maximum wave height Hmax

Pm(Hmax) = 1 − exp
{
−N0 e−H2

max/8
[
1 + κ40

384
(H4

max − 16H2
max)

]}
, (2.24)

where N0 represents the number of waves in a wave train. Equation (2.24) is well validated
by μ4 in wave tank experiments from Mori et al. (2007) and Kashima & Mori (2019).
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Freak wave in a two-dimensional directional wavefield

With the consideration of the directional effect, Mori et al. (2011) gave the estimation of
maximum κ40 with the directional spread σθ by

κ40 = π√
3

BFI2
(
α

σθ

)
, (2.25)

where α is an empirical coefficient, and α = 0.0276 from their asymptotic analysis in
Monte Carlo simulation.

3. Numerical results

3.1. Model set-up
With the 2-D Gaussian shape directional spectrum in (2.17) and inverse Fourier transform,
we give the initial envelope Ā(τ, ξ0, ζ ) in the matrix of time series and the spatial
distribution in the lateral direction. As a pseudo-spectral method, discrete Fourier
transform requires a sufficient length of the target variable to ensure the result has enough
information in the evolution. On the other hand, Fourier transforms for a 2-D matrix
require a large amount of time in calculation compared with the 1-D model, which is a
critical problem since we apply the Monte Carlo method simulation.

From (2.17), the shape of the initial directional spectrum is decided by the dimensionless
spread σθ and the frequency spectral width σω. In Lyu et al. (2021), the effect from σω has
been discussed from the unidirectional wave train with different initial BFI. For a 2-D
wavefield, the dimensionless spread σθ in different sea states varies from 0.15 to 0.5 from
research on observations and wave age (Banner & Young 1994; Ewans 1998; Forristall
& Ewans 1998). Yuen & Lake (1982) indicated a limitation of the 2-D NLS-like wave
model such that the instability of the wave train continually increases in a certain interval,
which reflects in our numerical model that the result cannot reach convergence in Monte
Carlo simulation when σθ ≤ 0.25. Therefore, we set the σθ = 0.3, 0.4, 0.5 in the following
comparison for different directional spreadings.

To ensure the accuracy and computational efficiency, we make the calculation step
constant at dξ = 2 × 10−5L0, where L0 is carrier wavelength. For the initial condition,
carrier angular frequency ω = 2.5 s−1, sampling time dt = 0.1 s, time length LT = 40T0,
where T0 is wave period, and carrier lateral wavenumber kζ0 = 0, sampling distance
dy = 0.5L0. To ensure that the initial condition given by (2.17) converges to a Gaussian
process, we generate the initial Fourier amplitude by a sufficiently large number (N =
LT/dt = 1000) of component waves with different frequencies ωτ uniformly distributed
around the carrier frequency. The kurtosis μ4 and skewness μ3 of the initial surface
elevation η(x0, y, t) satisfy the Gaussian distribution such that μ4 = 3 and μ3 = 0. The
initial water depth starts at a medium depth kh = 5, wave steepness ε = 0.1. The width of
the 2-D computational domain Ly = 30L0 to reflect the propagation of directional waves
(the analysis and discussion to decide the appropriate set of dy and Ly is given in the
supplementary materials available at https://doi.org/10.1017/jfm.2023.73). For different
forms of bottom topography, the length of the computational domain in the principal
direction varies from 30L0 to 150L0, and the calculation stops at the shallow water kh =
1.1, where wave steepness ε = 0.1343. This study assumes the water surface basically
maintains the form of a mechanical wave in the evolution, so the wave-breaking case is
not taken into consideration. Therefore, our simulation stops before the wave steepness
reaches the threshold value of breaking in very shallow water.
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Mei & Benmoussa (1984) introduced a normalization to make all parameters
dimensionless in the realization process. We apply a different normalization for the
variable (Ā, ξ, ζ, kζ , ωτ , τ ) in programming as follows:

A′ = 2π

L0
Ā, ξ ′ = 2π

L0
ξ, ζ ′ = 2π

εLy
ζ, (3.1a–c)

k′
ζ = ε

Ly

2π
kζ , ω′ = ε

LT

2π
ωτ , τ ′ = 2π

εLT
τ. (3.2a–c)

3.2. Evolution of modulated wave over flat bottoms
Firstly, we consider the wave evolution over a flat bottom to investigate the effect of initial
conditions as reference runs for uneven bottom cases. If we set βh = 0, (2.13) is equivalent
to the 2-D NLS equation in Davey & Stewartson (1974), and the evolution process is
constructed by a spatial step in the principal wave direction. The surface elevation is
given in discrete 2-D + T form. In figure 2, we give the transient surface elevation η at
t = 40T0 from three random samples with different directional spreads σθ and the initial
BFI = 1 (σs = 0.14) at water depth kh = 5. The viewing angle is vertical to the horizontal
plane, and we use the colour gradient to represent the elevation. The 2-D irregular waves
propagate from the left to the right side, and we can figure out the multi-directions from the
wavefront lines. As σθ increases from 0.3 to 0.5, the propagation becomes more divergent
in different directions, which makes the wavefront appear to be more discontinuous.

The initial condition with a random phase in (2.17) helps generate an irregular wave
train, and a Monte Carlo simulation is conducted. For a domain in strict-sense stationary
(SSS), the statistical properties remain invariant to any shift at any order, and the surface
elevation for a 2-D irregular wave at a fixed point will be generally closed to a zero-mean
SSS process when the Monte Carlo simulation for random wave phase has enough
ensemble size. In this study, we set the ensemble size to 300 and give the average value of
kurtosis μ4 and skewness μ3 in time series to each space node. The deciding process of
the ensemble size is also discussed in the supplementary materials.

The result in 2-D form can be modified into 1-D form by being averaged again in
one space dimension because the statistical significance is uniformly distributed in this
2-D domain. To show the wave evolution process, we take the averaged value on the
lateral direction of the principal wave direction and give the Monte Carlo result of the
unidirectional wave train and the 2-D wavefield with initial BFI = 0.5 (σs = 0.28) for a flat
bottom kh = 7 to discuss the effect from the directional spread σθ in figure 3. The result in
the unidirectional wave train can be regarded as σθ = 0. As σθ increases, both kurtosis μ4
and skewness μ3 decrease, which implies the increase of directional spreading disperses
the nonlinear interactions in the wave train.

For the 2-D propagation in a directional wavefield, both short-time and long-time
behaviour of κ40 for a narrowband wave train is related to the directional width and
a frequency width (Janssen & Bidlot 2009). We are also interested in the kurtosis
distribution at the intermediate stages in freak wave forecasting. Mori et al. (2011)
conducted an asymptotic analysis of κ40, BFI and σθ by numerical simulation, and gave
(2.25) with empirical coefficient α. Table 1 shows the ensemble-averaged result of the
expected maximum κ40 and mean κ40 at x ∈ [20L0, 30L0] from Monte Carlo simulation of
the wave model in this study, and gives the empirical coefficients αmax and αmean by (2.25)
for maximum κ40 and mean κ40, respectively. Due to different calculation conditions,
we give different empirical coefficients from Mori et al. (2011) (α = 0.0276), and the
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Figure 2. Transient surface elevation η at t = 40T0 from different directional spreads σθ with initial BFI = 1,
kh = 5. (a) σθ = 0.3, (b) σθ = 0.4 and (c) σθ = 0.5.

expected maximum κ40 is significantly larger than their prediction. Nevertheless, the result
from kh = 7 shows that the increase of σθ and the decrease of BFI lead to the decrease
of both maximum and mean κ40, but the change in empirical coefficient α represents that
κ40 is not strictly inversely proportional to σθ as in (2.25), and the case from different
initial BFI will ask for a different α. The value of αmean for mean κ40 at kh = 7 is better
than αmax to describe the kurtosis of the wavefield, and its value is around 0.09∼0.14.
When the water depth becomes shallow (kh = 5, 3, 1.1), (2.25) is no longer applicable
and αmean and αmax significantly decrease. For kh = 1.1, the increase of σθ leads to the
increase of κ40 and αmean, which seems anomalous. The behaviour of κ40 further indicates
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Figure 3. Spatial evolution of kurtosis μ4 and skewness μ3 of surface elevation from directional spread σθ
with initial BFI = 0.5, kh = 7 (1-D (σθ = 0), blue; 2-D: red, σθ = 0.3; yellow, σθ = 0.4; black, σθ = 0.5).
(a) Kurtosis μ4 and (b) skewness μ3.

kh σθ Initial BFI Max κ40 Mean κ40 αmax αmean

7.0 0.3 0.5 6.329 0.180 4.187 0.119
7.0 0.4 0.5 4.555 0.127 4.018 0.112
7.0 0.5 0.5 4.206 0.092 4.638 0.101
7.0 0.6 0.5 3.841 0.064 5.082 0.085
7.0 0.3 0.4 4.441 0.136 4.591 0.141
7.0 0.5 0.4 3.725 0.083 6.418 0.143
5.0 0.3 0.4 3.976 0.117 4.110 0.121
5.0 0.5 0.4 3.368 0.070 5.803 0.121
3.0 0.3 0.4 3.148 0.065 3.254 0.067
3.0 0.5 0.4 2.948 0.038 5.079 0.066
1.1 0.3 0.4 2.294 0.059 2.371 0.061
1.1 0.5 0.4 2.754 0.113 4.745 0.195

Table 1. The ensemble-averaged κ40 dependence on BFI and σθ at different kh.

that the occurrence of extreme wave height in medium and shallow water cannot only be
predicted by the four-wave interaction as in deep water. The contribution from water depth
becomes important, especially in shallow water, and the simulation over a changing depth
may reveal this process more effectively.

3.3. Evolution of modulated wave over uneven bottoms
This section considers Monte Carlo simulation of the 2-D wave model for uneven bottoms.
The variation in the bottom topography brings about the spatial inhomogeneity in the
dispersion, which reflects in both second-order and third-order effects. Our numerical
model by (2.13) assumes the depth mildly changes in the principal wave direction, and the
bottom topography does not vary in its lateral direction. Therefore, the statistical properties
remain stationary on the y-axis but vary on the x-axis.

As a simulation of the bottom topography from offshore to onshore, we set the depth to
slowly decrease from a medium-water depth to shallow water. In previous research (e.g.
Kashima & Mori 2019; Li et al. 2021; Lyu et al. 2021), the abrupt change in depth or
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Figure 4. The variation of water depth kh on the bottom topography with γs = 0.02.

slope led to significant local peaks in μ3 and μ4 due to the after effect. Usually, the water
depth decreases in a smoother way in the natural seabed. On the other hand, the local
peak caused by this unusual topography is so significant that it may cover the difference
caused by the directional effect. To make our simulation closer to the natural seabed,
we adjust the sloping region in figure 1 between A and B to become smoother and to
continuously decrease, as shown in figure 4. The sloping region is divided into two parts
by the dividing line C at kh = 1.2: the depth linearly decreases with a slope γs from
kh = 5 to kh = 1.2; the depth decreases with a decaying slope γ ′

s = γs(h/1.55)40 from
kh = 1.2 to kh = 1.1. In the shallow-water area, the derivative of the decreasing depth is
approximately continuous, and we set γs = 0.05, 0.02, 0.01 to ensure the depth changes
very mildly under the assumption h′(x) ∼ O(ε2).

Figures 5 and 6 shows the averaged values of kurtosis and skewness from the Monte
Carlo simulation of the bottom type in figure 4. In figure 5, we give the averaged kurtosis
μ4 in 2-D form at the different directional spread σθ and slope angle γs with initial
BFI = 0.4 (σs = 0.35). Comparing the result from different σθ in figure 5(a–c), we find
that μ4 decreases in the deep-water depth but increases in the shallow water when the
initial directional spreading σθ increases from 0.3 to 0.5, which shows that the same
phenomenon results in a flat bottom in § 3.1. In the medium-water depth region between
locations A and C, μ4 decreases with the decrease of water depth, and it rebounds at the
end of the constant sloping region (location C) where kh = 1.2. In the region between
C and B, where the slope angle mildly decreases, μ4 decreases and becomes stable at the
same level as the final flat bottom in shallow water kh = 1.1. The evolution of μ4 indicates
that the directional dispersion effect decreases the occurrence probability of freak waves
in deep and medium water but increases it in shallow water. As the wave propagates from
the medium water to shallow water, the wave evolution is significantly affected by the
bottom topography, and the 1-D result in figure 5(d) clearly gives the rebound of μ4 due
to the slope angle. To further study the effect from the bottom topography, we give the
mean μ4 at γs = 0.02 and γs = 0.01 with initial BFI = 0.4 and σθ = 0.3 in figures 5(e)
and 5( f ). The result shows that the rebound of μ4 decreases as the bottom change become
milder, and figure 5(g) provides the variation of μ4 in the principal wave direction in one
dimension. Comparing μ4 over uneven bottoms between the unidirectional wave train and
the 2-D wavefield, we find the slope angle similarly affects the wave evolution. However,
its contribution is more significant in two dimensions due to the dispersion effect in the
four-wave interaction, which implies the second-order effect plays a more important role
in a directional 2-D wavefield.
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Figure 5. Mean kurtosis of surface elevation η for uneven bottoms at different directional spreads σθ and
slope angles γs with initial BFI = 0.4 (blue, σθ = 0.3; red, σθ = 0.4; yellow, σθ = 0.5; g: blue, γs = 0.05;
red, γs = 0.02; yellow, γs = 0.01). (a) σθ = 0.3, γs = 0.05, (b) σθ = 0.4, γs = 0.05, (c) σθ = 0.5, γs = 0.05,
(d) σθ = 0.3, 0.4, 0.5, γs = 0.05, (e) σθ = 0.3, γs = 0.02, ( f ) σθ = 0.3, γs = 0.01 and (g) σθ = 0.3, γs =
0.05, 0.02, 0.01.
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Figure 6. Mean skewness of surface elevation η for uneven bottoms at different directional spreads σθ and
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In figure 6, we give skewnessμ3 in the same form asμ4 in figure 5 at the same condition.
Different from μ4, μ3 does not influence directional spread from figure 6(a–d) due to
the unchanging second-order nonlinear interaction. When the bottom topography changes,
figure 6(e–g) shows that μ3 increases as the water depth become shallow. This process
will slow down if the slope angle becomes mild, but it only means μ3 is determined by
the water depth kh and the change from slope angle γs has little influence. Different from
the unidirectional wave train, μ3 in the 2-D wavefield is basically only determined by the
variation in dispersion due to depth change, and is hardly affected by the local bathymetry
effect. When the wave trains propagate into shallow water, μ3 increases with the increase
of wave steepness ε.

3.4. Quantitative analysis of the extreme wave height
In §§ 3.2 and 3.3, the evolutions of the nonlinear resonant interactions have been discussed
with the bathymetry effect at different water depths. Parameters μ4 and μ3 represent
different nonlinear mechanisms, and they show different characteristics on the directional
wavefield over an uneven bottom. However, the final result of the occurrence of extreme
wave height is their combined effect, and we cannot simply give the estimation until giving
a quantitative analysis of the distribution of surface elevation η.

In figure 7, we give the expected maximum wave height Hmax and maximum wave crest
ηmax in the principal wave direction. In the same form as μ4 and μ3 in figures 5 and 6,
Hmax and ηmax are counted from the time series sampling data at a fixed point in the 2-D
wavefield, and their ensemble-averaged value is given by Monte Carlo simulation. We
make the wave height dimensionless by taking Hmax/ηrms and ηmax/ηrms, and continue
to write them as Hmax and ηmax for convenience. The result contains the wave train with
different directional spreadings σθ = 0.3, 0.4, 0.5 over the bottom topography γs = 0.05,
0.02, 0.01, and the theoretical result from the linear model (Rayleigh distribution) and
the numerical result from the second-order bound wave model in σθ = 0.3, γs = 0.05 are
given for comparison. The Rayleigh distribution can be referred to as the standard linear
narrow-banded wave theory in Goda (1970, 2000), in which the wave height H follows the
Gaussian distribution and the exceeding probability Pm(Hmax) follows

Pm(Hmax) = 1 − exp(−N0 e−H2
max/8), (3.3)

where the number of waves N0 = 40 in our simulation. From deep water to shallow,
Hmax in 2-D model monotonically decreases with the water depth in comparison with the
second-order model. Similar with μ4, the peak of Hmax is suppressed by the increase of
σθ in deep water but is enhanced in shallow water. However, there is no significant change
in the slope. In figure 7(b), the ηmax significantly increases in shallow water, and the local
peak reflects the contribution from the slope. Even when the bottom changes in a relatively
continuous process, this local peak still occurs, and is consistent with the variation of μ4.
Different from Hmax in shallow water, the increase of ηmax is related to μ3, in keeping with
the general deformation of waves in the shoaling process. In the Rayleigh distribution,
Hmax and ηmax are independent of the bathymetry. The linear model underestimates Hmax
in deep water and overestimates it in the shallow water, and significantly underestimates
ηmax. As a result of the second-order bound wave model, Hmax is hardly affected by
the bottom topography and ηmax is determined by wave steepness. Comparing different
models, the present model provides more consideration of the different effects of the
four-wave interaction at various depths. Comparing the result in figures 5–7, we find the
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Figure 7. Ensemble-averaged expected maximum wave height and free surface elevation distribution at initial
BFI = 0.4 from different σθ and γs (present model: black, σθ = 0.3 γs = 0.05; blue, σθ = 0.4 γs = 0.05; red,
σθ = 0.5 γs = 0.05; yellow, σθ = 0.3 γs = 0.02; grey, σθ = 0.3 γs = 0.01. Second-order model: dotted, σθ =
0.3 γs = 0.05. Rayleigh distribution: green line). (a) Maximum wave height Hmax and (b) maximum wave crest
ηmax.

rebound of μ4 at location C does not reflect in Hmax but shows in ηmax, which implies the
wave height distribution at this area is more determined by the topography effect at second
order rather than the four-wave interaction at third order.

When concentrating on the freak wave problem, only the expected value is insufficient
to estimate the extreme case. Therefore, we integrate the distributions of Hmax and ηmax
at each section in the principal wave direction. If we follow the common definition of the
freak wave as the wave height exceeds the significant wave height by a factor two, then
the occurrence probability of a freak wave height is Pf (Hmax) when Hmax > 8ηrms and
the corresponding probability estimated by the wave crest is Pf (ηmax) when ηmax > 4ηrms
under the standard linear narrow-banded wave theory from Goda (1970, 2000) ( f, freak
wave). Figure 8 calculates the probabilities as mentioned above and gives the fit curves
through the tenth-order polynomial. A little different from figures 5–7, the horizontal
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axis is set to be the water depth kh in figure 8, so we can more easily check the effect
from different γs at the same depth. In figure 8(a), Pf (Hmax) monotonically decreases
with the water depth as expected Hmax, but more details can be given: in relatively deep
water such as kh > 4, the convergence of Pf (Hmax) becomes worse, which implies the
variance of surface elevation significantly rises; for the shallow water kh < 2, the increase
of slope angle γs enhances the probability of freak waves; the directional spreading σθ
plays a more important role in deep water, but bottom topography has a greater impact
in shallow water. Compared with figure 8(a), Pf (Hmax) in figure 8(b) is much larger than
Pf (Hmax) in general, and it experiences a process of descending, ascending and descending
again with the decrease of kh. In the linear model, the probabilities in figure 8(a,b) show
the same result, and their deviation from current models corresponds to the evolution in
figure 7. The result from the second-order bound wave model continues to show a strong
correlation with wave steepness ε, and it gives an abnormal enhancement in both Pf (Hmax)
and Pf (ηmax) in very shallow water after the slope section, which is not consistent with the
natural state and experiments.

In figures 9 and 10, we give the wave height distribution in CDF in logarithmic
coordinates at specific sections at different water depths. We choose five sections on the
sloping region in figure 4: S1 (dashed line A in previous figures) where kh = 5; S2 where
kh = 3; S3 where kh = 2; S4 (dashed line C in previous figures) where kh = 1.2; S5
(dashed line B in previous figures) where kh = 1.1. Figure 9 shows the CDF of Pm(Hmax)
from the same conditions as before compared with the Rayleigh distribution (i.e. linear
distribution). As the water depth decreases from S1 to S5, the occurrence probability of
Hmax decreases from the comparison with the Rayleigh distribution (the linear distribution
model does not change with water depth). The nonlinear model gives a higher exceeding
probability of extreme events than the linear distribution in deep water (S1) but lower
in shallow water (S4, S5). They have a similar prediction of wave heights distribution in
medium-water depth (S2, S3). In S1–S3, the increase of directional spread σθ leads to the
decrease in the probability of exceeding Hmax/ηrms > 6. However, in shallow-water depth
(S4, S5), the effect of σθ is very limited or even becomes opposite. The effect from γs
works mainly in the shallow region, and focuses on the distribution of larger values (i.e.
the occurrence of a ‘freak wave’). The result from the second-order bound wave model is
hardly affected by the water depth from S1 to S4, but increases in very shallow water S5,
especially for the occurrence of extreme values, and exceeds the result from the present
model. In figure 10, we give the CDF of Pm(ηmax) in the same form. Basically, Pm(ηmax)

shows a similar variation as Pm(Hmax) under the effect from σθ and γs, but Pm(ηmax)
markedly exceeds the Rayleigh distribution, which indicates that the wave deformation
makes the wave crest exceed half the wave height due to the nonlinear effect. In shallow
water, this deviation becomes more obvious for a smaller value ηmax/ηrms > 3, even the
extreme case decreases, which indicates the second-order nonlinear effect significantly
rises due to the bottom topography change.

4. Conclusion

Based on the 2-D dNLS equation and pseudo-spectral method, we establish a third-order
nonlinear model for the evolution of the directional wave train in a 2-D wavefield for
an uneven bottom. With Monte Carlo simulation from random initial phase information,
we summarize the nonlinear effect from four-wave interaction and spatial inhomogeneity
and the dispersion from directional spreading in the wave evolution through the statistical
features of random irregular waves.
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Figure 8. Occurrence probability of the freak wave in wave height and free surface elevation distribution at
initial BFI = 0.4 from different σθ and γs (present model: black, σθ = 0.3 γs = 0.05; blue, σθ = 0.4 γs = 0.05;
red, σθ = 0.5 γs = 0.05; yellow, σθ = 0.3 γs = 0.02; grey, σθ = 0.3 γs = 0.01. Second-order model: dotted,
σθ = 0.3 γs = 0.05. Rayleigh distribution: green line). (a) probability of Hmax > 8ηrms and (b) probability of
ηmax > 4ηrms.

To investigate the occurrence of the freak wave in different conditions, we discuss the
contribution to the nonlinear interactions from different mechanisms and hypotheses, and
compare the distribution of extreme wave height and crest to find the essential factor. The
result indicates the following:

(i) Compared with the unidirectional wave, the directional spreading in the 2-D
wavefield significantly affects the wave train evolution and the occurrence of freak
waves. The rise of the directional dispersion will make the kurtosis decrease in
deep water but increase in shallow water. Correspondingly, the directional spread
contributes to the exceedance probability of maximum wave height and crest, the
same as kurtosis.
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Figure 9. Exceedance probability of maximum wave height Hmax at initial BFI = 0.4 from different σθ
and γs (present model: black cross, σθ = 0.3 γs = 0.05; blue, σθ = 0.4 γs = 0.05; red, σθ = 0.5 γs = 0.05;
yellow, σθ = 0.3 γs = 0.02; grey, σθ = 0.3 γs = 0.01. Second-order model: black circle, σθ = 0.3 γs = 0.05.
Rayleigh distribution: green line); (a) S1 (kh = 5), (b) S2 (kh = 3), (c) S3 (kh = 2), (d) S4 (kh = 1.2) and
(e) S5 (kh = 1.1).

(ii) The directional dispersion effect has almost no effect on the skewness of surface
elevation at second order, and the wave steepness mainly determines the skewness
in a 2-D wavefield.
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Figure 10. Exceedance probability of maximum wave crest ηmax at initial BFI = 0.4 from different σθ
and γs (present model: black cross, σθ = 0.3 γs = 0.05; blue, σθ = 0.4 γs = 0.05; red, σθ = 0.5 γs = 0.05;
yellow, σθ = 0.3 γs = 0.02; grey, σθ = 0.3 γs = 0.01. Second-order model: black circle, σθ = 0.3 γs = 0.05.
Rayleigh distribution: green line); (a) S1 (kh = 5), (b) S2 (kh = 3), (c) S3 (kh = 2), (d) S4 (kh = 1.2) and
(e) S5 (kh = 1.1).

(iii) In shallow water, a steep slope angle leads to the local peak of kurtosis due to wave
shoaling. Correspondingly, it reflects in the increase of the exceedance probability
of maximum wave height and crest.
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(iv) Regarding the degree of impact, the dispersion effect from directional spread mainly
affects the wave evolution and the occurrence of the freak wave in deep water.
However, the bottom topography change becomes the major role in the medium and
shallow water before wave breaking.

The model allows a weakly oblique incident wave angle to the slope. The oblique wave
case will be given in the near future.

It should be pointed out that this model still needs to be improved due to the following
limitations: first, the wave breaking in shallow-water depth is not taken into consideration;
second, the bottom topography is idealized, which ignores the variation on the lateral
direction and restricts the slope in a relatively mild range about the steepness squared.
Additionally, the wavefield in this study is of sufficiently narrow-banded spectrum. To
apply the results of this manuscript to field data, we also need to consider the contribution
from the bandwidth of the spectrum to the distribution of wave height and crest height
(e.g. Næss 1985). Furthermore, we assume that there is no extra contribution to the
wave evolution during its propagation processes, such as wind or current, so the initial
conditions and bottom topography only decide the directional spreading.

Supplementary material. Supplementary material are available at https://doi.org/10.1017/jfm.2023.73.
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