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A PROOF OF HIGGINS'S CONJECTURE

GABOR BRAUN

Let 0: G = Yl Gx —> B = Yl Bxbe a group homomorphism between free products
AeA A6A

of groups such that GxQ = Bx for all A € A. Let H C G be a subgroup such that

HQ = B. Then H = f[ Hx such that iJA0 = Bx and Hx = ]T(# n G^W) * Fx
AeA

where Fx is free.

1. INTRODUCTION
*

Recall that the free product of groups Gx is the group f] G\ generated by the Gx
AGA

in which every relation follows from group identities. In other words, free product is the
same as the coproduct in the category of groups. We use Y[* or * to denote free products.

Let Hx := x~lHx denote a conjugate of a group H. There are two main theorems
about subgroups of free products of groups:

THEOREM 1 . 1 . (Kuros's Theorem) Let H C \[ Gx be a subgroup of a free
» A6A

product. Then H has a free decomposition H = Y[ (i/nG**) * F where for each A the

xx runs through a suitable set of representatives of double cosets Gx^H such that GxH
is represented by 1. Moreover, F is free.

* *
THEOREM 1.2 . (Higgins's Theorem) Let 6 : G = J] GA -» B - \[ Bx be a

AeA A6A
group homomorphism such that GxQ = Bx for all A G A. Let H C G be a subgroup such

*
that HQ - B. Then there are groups Hx such that H = f] Hx and HXQ = Bx.

AeA

Higgins proved the above theorems in [3, Chapter 14] using groupoids. These proofs
are similar and Higgins conjectured that they can be united to a single proof of a common
generalisation of the two theorems.

However, Heath and Nickolas showed in [1] that there are difficulties in generalising
the proof and, in particular, Ordman's proof of Higgins's conjecture in [4] is incorrect.

Nevertheless, we give a simple proof of Higgins's conjecture in this paper using the
two theorems above.Received 5th January, 2004
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* *
THEOREM 1 . 3 . (Higgins's conjecture) Let 6 : G = \[Gx -* B = \[ Bx be a

AgA A€A

group homomorphism such that G\Q = B\ for all A € A. Let H C G be a subgroup such

that HO = B. Then H = f[ Hx such that # A 9 = Bx where Hx = f[(H n G^A) * FA
A6A IX

such that X\Q = 1 for all x\, and for each A tie X\ runs through a suitable set of
representatives of double cosets G\xH such that G\H is represented by 1. Furthermore,
the F\ are free.

Obviously, the H\ in the conjecture satisfy the requirements of Higgins's Theorem.
Therefore to prove the conjecture, one "only" has to decompose the H\ provided by
Higgins's Theorem. Fortunately, this is easy to do for the H\ in Higgins's proof: the
Kuros's Theorem just provides the right decomposition. This is what we are going to do.

The relevant additional property of the H\ in Higgins's proof is that their intersection
with G\ is contained in a conjugate of H\, see Lemma 3.1. This is proved by some
additional arguments to Higgins's proof.

Therefore we recall briefly Higgins's proof of his theorems in Section 2 as done in [1].
This will make the proof of our main lemma understandable to the reader not familiar
with the groupoid proofs.

In Section 3 we formulate a stronger version of Higgins's Theorem as our main
lemma. Then we prove the lemma and Higgins's conjecture.

2. GROUPOID METHOD

In this section we recall briefly Higgins's proof of Theorems 1.1 and 1.2. See [3,
Chapter 14] for full details. We follow the discussion in [1].

Recall that a groupoid is a category in which every morphism is invertible. Any
group G can be regarded as a groupoid with one object such that the automorphism
group of the object is G. If H is a subgroup of G then the standard covering 7: G —> G
is a functor defined as follows. First, we define the groupoid G. The objects are the right
cosets of H in G. Morphisms of G are {N,g)\ N —1 Ng where N is an arbitrary right
coset and g € G. Composition is defined by (N,g)o(Ng,h) := (N,gh). For example, the
automorphism group of the coset H in G is isomorphic to H via the map (H, h) >-* h.
Finally, 7 is given by the formula (TV, 3)7 := g.

We shall also think of a groupoid as an oriented graph where the vertices are the
objects and the edges are the morphisms. In this sense, we shall speak of connected
groupoids, trees and so on.

We shall use free product of groupoids: let G\ be groupoids whose objects are
contained in a set 5. The free product of G\ is the groupoid generated by the G\ in
which only the necessary relations hold. The objects of the free product are the objects
of all the G\ and hence is contained in 5. Free product is similar to coproduct but
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some objects are identified; that is the role of 5 . For example, every groupoid is the free
product of its connected components. If 5 is a one-element set, this notion is exactly the
free product of groups. In the following, 5 is always the set of objects of the standard
covering of a subgroup H of a group G.

If C is a connected groupoid and r is a spanning tree then r generates a wide tree

subgroupoid T of C, that is a subgroupoid in which there is exactly one morphism between
any two objects. Then C is isomorphic to the free product and the direct product of H
and T, where H is the automorphism group of an object. The canonical projection
pT = p: C^H*T = HxT->H is given by (N, h)^> fa1 -h- 0Nh. Here 0N denotes

the unique isomorphism N -> H in T.
*

Let us suppose now that G = Y[ G\ is a free product of groups. Now the idea of the
A€A

groupoid proofs of Kuros's Theorem and Higgins's Theorem is that the free decomposition
of G lifts to a free decomposition

A€A

where G\ := Gxj~l. Using a suitable tree r, the projection p maps this decomposition
to a free decomposition of H which will satisfy the theorems.

* *
In case of Higgins's Theorem (Theorem 1.2), let 6 : G = l\Gx-> B = Y[ B\ be a

AgA A€A

homomorphism such that G\Q = B\ and HQ — B. We choose the tree r such that the
wide tree subgroupoid T generated by r is contained in ker 76 (the full subgroupoid of
G consisting of morphisms mapped to identity by 70). If T is chosen with care, we shall
have
(2.2)

The condition T C ker 7© will guarantee H\Q C B\. See [2] or [3] for more details.
In case of Kuros's Theorem, we first decompose each G\ into its connected compo-

nents G\tli, which we further decompose to the group K\tfi of one of its objects and a
wide tree subgroupoid generated by a tree 7>t/i. This leads to the free decomposition:

*

(2.3)

where F(X) denotes the groupoid freely generated by the morphisms in X. Note that a
tree always generates a wide tree subgroupoid freely.

It is easy to see that UTA,M is connected and hence contains a spanning tree r. Now
pT gives the free decomposition:

•
(2.4) H
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It is easily seen that K\iltpT = H n G*x'" for some x\tll and F(UTA,^ \ r) is a free group so
this gives the Kuros decomposition of H. Actually, (H, z^J,) is the unique isomorphism
in F(T) between H and the object at which K\tli is located. An easy argument, which
we omit, yields that the x\itl form a set of representatives of double cosets G\xH. If we
have chosen K\^ at the object H whenever G\tli contains H, then the coset G\H will be
represented by 1.

Higgins conjectured that both theorems can be proved using a common r, which
would lead to a common generalisation of both theorems and their proofs. In [1] it is
shown that in general there is no tree r which is contained in both UT^,^ and ker70, so
such a generalisation requires significant changes to the above proofs.

3. PROOF OF HIGGINS'S CONJECTURE

First we prove that the H\ in Theorem 1.2 has some nice properties.

LEMMA 3 . 1 . (Generalisation of Higgins's Theorem) Suppose that a group ho-
* *

momorphism 0 : G — Y\ G\ —> B = n ^A between free products satisfies G\Q — B\
AeA A€A

for all A € A. Let H C G be a subgroup such that HQ = B. Then H — ]\ Hx such
AeA

that for each A we have H\Q = B\, and there are representatives P\<fi of double cosets
G\xH such that H n Gx

x'" C H\ and fi\:ll e ker 0 . Moreover, G\H can be represented

by 1 for all X simultaneously.

PROOF: We combine the ideas of Higgins's Theorem and Kuros's Theorem from
Section 2 together.

We start with the proof of Higgins's Theorem and thus obtain a free decomposition
of H into the H\ = G\pT. Now we use the proof of Kuros's Theorem for the tree r.
We decompose G\ into its connected components G\yft and from every G\yli we select the
automorphism group K\]fl of an object. Thus KxtlipT Q H\. It is not obvious whether
we obtain a free decomposition like (2.4) but we still have K\^pT = H (~) G^'* for some
representatives /3\t)1 of double cosets G\xH. We also have (H,^1^) € F(T) C ker 7©.
Hence /?A,M G ker 0 . The coset G\H is represented by 1 if we choose K\^ at the object
H when G\tli contains the object H.

Thus the P\tll satisfy the theorem. D

This lemma together with Theorem 1.1 is enough to prove Higgins's conjecture

without using groupoids.

PROOF: (Proof of Theorem 1.3) The proof consists of two steps: first we decom-

pose H into H\ using Lemma 3.1 and, secondly, Kuros's Theorem will give the required

decomposition of H\.
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By Lemma 3.1, we have a decomposition H = \\ Hx with HXQ C Bx such that
AgA

H n Gx'" is contained in Hx for some representatives f3x>li of double cosets GxxH and
^A,JI0 = 1. We do not claim that these representatives give a Kuros type decomposition;
we shall modify them.

Applying Theorem 1.1 to Hx we obtain a Kuros decomposition:

*
(3.1) Hx = ]J(HxnGs

s)*Fx,

where Fx is free. We claim that this decomposition is exactly the decomposition of H\
the theorem requires. First of all, FA will be the free component. Now we examine the
other components.

For every pair e,6 in (3.1) 6 lies in a double coset Gc(itiliH that is

(3.2) 8 - gPe^h for some g eGe and he H.

Then we have

(3.3) HnGs
e = Hn Gf'"h = (HD Gfe")h C *

Therefore

C H.

(3.4) x i x ( i ) x ^
I 1 otherwise.

In other words, HxC\Gs
e is trivial unless e = A and 5 comes from a double coset Gxf3XtflHx,

and in this case Hx n G\ — H n Gs
x. So if we denote by /3'Xll the representative of

G\/3\lltHx occurring in (3.1) then the free decomposition of Hx reduces to, after omitting
the components which (3.4) shows trivial:

(3.5) $

For each A the elements f}'Xill obviously form a set of double coset representatives and

/3AiM6 G {GxpXtllHx)Q = Bx. Since GA0 = Bx, there are elements gXili e Gx such that

gXjte = fl^e. Setting xXill := gx^ • PXli, we have XXjt £ ke r9 and G J ' " - G*x"*, hence

*
(3.6)

Moreover, the elements xXjti G Gx0XtllH form a set of representatives of double cosets

GxxH. For the unique n with /JA^ = 1, we have (iXti = 1, and we may choose ^A,^ = 1-

This implies xXill = 1 and hence 1 occurs in the double coset representatives. D

https://doi.org/10.1017/S0004972700034420 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034420


212 G. Braun [6]

REFERENCES

[1] P.R. Heath and P. Nickolas, 'On a conjecture of Higgins', Bull. Austral. Math. Soc. 54
(1996), 55-65.

[2] P.J. Higgins, 'Grushko's theorem', J. Algebra 4 (1966), 365-372.
[3] P.J. Higgins, Notes on categories and groupoids, Van Nostrand Reinhold Mathematical

Studies 32 (Van Nostrand Reinhold Co., London, 1971).
[4] E.T. Ordman, 'On subgroups of amalgamated free products', Proc. Cambridge Philos.

Soc. 69 (1971), 13-23.

Alfred Renyi Institute of Mathematics
Hungarian Academy of Sciences
Budapest
Realtanoda u 13-15
H-1053

https://doi.org/10.1017/S0004972700034420 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034420

