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Abstract

We present a Markov chain example where non-reversibility and an added edge jointly
improve mixing time. When a random edge is added to a cycle of n vertices and a
Markov chain with a drift is introduced, we get a mixing time of O(n3/2) with prob-
ability bounded away from 0. If only one of the two modifications were performed, the
mixing time would stay �(n2).
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1. Introduction

The fundamentals of Markov chain theory are well established, but it is still in constant
development with various motivations from applications and inspiring sparks from novel dis-
coveries [1, 13]. Understanding mixing gives an insight on the macroscopic behavior of the
dynamics of the chain; moreover, it is also a crucial factor determining the efficiency of
applications built using the chain. The Markov chain Monte Carlo approach is a popular
scheme to translate mixing of Markov chains into powerful methods for sampling or numerical
integration [6].

Simple examples realizing new phenomena, either expected or surprising, help the commu-
nity to get a deeper understanding of what is possible, and how. The aim of the current paper
is to present and discuss such an example.

The starting point is the cycle with n vertices, see Figure 1(a), where we consider the
class of Markov chains whose stationary distribution is uniform. For reversible Markov chains
(meaning that the stationary frequency of transition along every edge is the same in the two
directions), standard results [5, 13] show that the mixing time is �(n2).

Relaxing the reversibility condition does not help in this simple case. An important obser-
vation is that we only get a single extra degree of freedom, a possible drift: we may increase
all clockwise and decrease all counter-clockwise transition probabilities by the same amount
departing from a reversible transition structure. It is a surprisingly non-trivial result [9] that the
mixing time is still �(n2).
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(a) (b) (c)

FIGURE 1. Cycle graph with either (a) no extra edges, (b) all parallel edges between opposing vertices,
or (c) a single random extra edge.

Still striving for faster mixing, we may analyze a graph with additional edges. It was a key
revelation of [7] that when edges connecting opposing vertices are available, as in Figure 1(b),
and a strong drift is used, the mixing time drops to O(n) (this is a slight reinterpretation of their
context).

What happens if we use fewer extra edges? In this paper we want to understand the other
extreme, when the number of added edges is one. We choose a single extra edge randomly, see
Figure 1(c). For any reversible chain, the mixing time is again �(n2) as there is still a path of
length of order n without any other edge.

However, if again combined with a drift along the cycle, we may get a considerable speedup,
with the mixing time decreasing to O(n3/2) with probability bounded away from 0.

Related models in the literature have appeared demonstrating that this n3/2 order may
emerge. [2] considered a card shuffling model where either the bottom card or one from a
fixed position is put on top. Following a single card in the shuffle, they show n3/2 for asymp-
totically all choices of the fixed position, but computing only the inverse spectral gap, thus
capturing only asymptotic but not finite-time behavior.

A model closer to the current investigation is considered in [4], where two equal-size cycles
are glued together at a vertex, both with a biased walk on them, and the amount of bias is
modified for one of the cycles. This may result in a Markov chain with mixing time of �(n3/2).
Their theorem is stated for one specific value of the modification, but the proof is valid for any
badly approximable amount in the Diophantine sense, which provides a range of full Hausdorff
dimension but zero Lebesgue measure [11, 12].

For the current model, the nature of our results, Theorems 1 and 2, are conceptually in
between the above. We cannot capture asymptotically almost sure upper bounds at the moment,
but have a positive lower bound on the proportion of favorable cases, and for those the order
of the mixing time is properly determined.

Let us now proceed to the necessary formal definitions and precise statements.

2. Preliminaries and main results

Formally the Markov chains of interest X(t) can be built as follows.

Definition 1. Consider a cycle graph of n vertices on V = {1, 2, . . . , n}. To add a new edge, by
symmetry, we assume without loss of generality that one endpoint is n. Choose a uniform ran-
dom integer k from [2, n − 2], and add the edge (k, n). We will name the vertices k, n hubs. For
convenience, on the arc 1, 2, . . . , k we introduce the notation a1, a2, . . . , ak for the vertices
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and name the arc A, while on the arc k + 1, k + 2, . . . , n we use b1, b2, . . . , bn−k and B. Using
the convention P(X(t + 1) = j | X(t) = i) =: P(i, j) for the transition probabilities, we set

P(ai, ai+1) = P(bj, bj+1) = 1
2 for all 1 ≤ i ≤ k − 1, 1 ≤ j ≤ n − k − 1,

P(ak, b1) = P(bn−k, a1) = 1
2 ,

P(ai, ai) = P(bj, bj) = 1
2 for all 1 ≤ i ≤ k − 1, 1 ≤ j ≤ n − k − 1,

P(ak, ak) = P(ak, bn−k) = P(bn−k, ak) = P(bn−k, bn−k) = 1
4 .

Set all other transition probabilities to 0.

Note that we exclude the possible values 1, n − 1, and n for k, not only for the intuitive
reason of getting a real additional edge with (k, n), but also to avoid conflicting transition
probability definitions.

It is easy to verify that this transition kernel is doubly stochastic, and therefore is a valid
transition kernel with the uniform distribution as the stationary distribution (aperiodicity, irre-
ducibility ensures uniqueness). For initialization, set X(0) deterministically to any vertex of
preference.

For any random variable Y , let L(Y) denote its distribution. We are going to compare prob-
ability distributions with their total variation distance. For any probability distributions μ, σ ,
this is defined as

‖μ − σ‖TV := sup
S⊆V

|μ(S) − σ (S)| = 1

2

∑
x∈V

|μ(x) − σ (x)|.

Keeping in mind that currently the stationary distribution is uniform, which we denote by 1
n ,

we define the maximal distance and the mixing time as

dX(t) := sup
X(0)∈V

∥∥∥∥L(X(t)) − 1
n

∥∥∥∥
TV

, (1)

tmix(X, ε) := min{t : dX(t) ≤ ε}. (2)

We will omit X when it is clear from the context. We now have all the ingredients to state our
main results.

Theorem 1. There exist constants γ, γ ′ > 0 such that, for any 1
2 > ε > 0, the following holds.

For the (randomized) Markov chain of Definition 1, for n large enough, with probability at
least γ we have tmix(ε) ≤ γ ′n3/2 log (1/ε).

Theorem 2. There exist constants γ ∗, ε∗ > 0 such that, for the (randomized) Markov chain of
Definition 1, for n large enough we (deterministically) have tmix(ε∗) ≥ γ ∗n3/2.

During the statements and proofs various non-explicit global constants will appear, denoted
by γi. To ensure there is no circular dependence, as a general rule we index them in order so
that the value of γi may be chosen and fixed once all γi′ are determined for i′ < i. The final
constants γ , γ ′, γ ∗, and ε∗ of Theorems 1 and 2 might depend on all of them. We will carry
through a time scaling constant ρ, which we can take to be 1 for most of the paper but we will
need this extra flexibility for the lower bound. We use various βj during the proofs, but only
for the scope of the proof; they might be reused later. Currently our Markov chain is based on
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the cycle, so we will use the metric on it, therefore |i − j| will often be used as a simplification
for min (|i − j|, n − |i − j|) when appropriate.

To provide an initial intuition for the order of the mixing time, note that approximately
n3/2 random steps on arcs of length approximately n correspond to approximately n1/2 ran-
dom choices of arcs. For these random choices, they typically concentrate near approximately
n1/4 possibilities when added up. On the other hand, local steps themselves by the loop prob-
abilities provide an overall diffusion of size approximately n3/4. Thus, the jumps and local
diffusions together with approximately n1/4+3/4 coverage are sufficient for overall mixing.
These heuristics will be described formally later, together with the corresponding calculations.

The rest of the paper is organized as follows. First, we analyze the path taken after a certain
number of moves and represent it on a square grid. We give estimates on reaching certain points
of interest on this grid; this is worked out in Section 3. Then, we investigate the connection
of the grid to our original graph in Section 4. In Section 5 we switch from possible tracks to
the actual Markov chain and examine the diffusive randomness that appears. In Section 6 we
join the elements to get a complete proof of Theorem 1. We adjust this viewpoint to obtain the
lower bound of Theorem 2 in Section 7. Finally, we conclude in Section 8.

3. Grid representation of the tracks

As a first step, we want to understand the track of the Markov chain traversed without the
time taken to walk through it. That is, we disregard loop steps, and we also disregard (possibly
repeated) hopping between hubs; in this sense we will often treat the two hubs together. This
means that for our purposes the track of the Markov chain is composed of traversing an arc,
then choosing the next when reaching the pair of hubs, then traversing another one, and so on.

In order to represent and record this, consider the non-negative quadrant of the square
integer lattice together with a direction, i.e. Z

2+ × H, where H = {A, B}. A position
(x, y, h) represents that the Markov chain has taken the A arc x times, the B arc y times, and
has arrived at the position on a horizontal (A) or vertical (B) segment. A track on the cycle is
then partially represented by a walk on this grid with non-decreasing coordinates; we at least
see the A/B statistics developing. We may also translate intermediate points of the grid lines
of the non-negative quadrant to represent them as being within a certain arc (after completely
traversing some previously). Note that when traveling through an arc, say A, we already know
that the only possibility in a few more steps is to have an arc A completely passed. Therefore,
the meaningful interpretation for such points on the grid is to interpolate on the x coordinate
and to set h = A throughout once moving on the arc. The space in which these tracks move is
therefore contained in

R∗ = {(x, y, h) ∈R
2+ × H | (x ∈Z+, h = B) or (y ∈Z+, h = A)}.

Note that at grid points of Z2+ the arcs would overlap, representing both ak and bn−k; this is the
reason for the extra property of direction. Now all tracks can be represented as moving along
R∗ with non-decreasing coordinates. At the initial point there are no traversed arcs yet, so X(0)
corresponds to a point (−λ, 0, A) or (0, −λ, B) for some λ ∈ [0, 1). This structure can be seen
in Figure 2.

We are interested in the track when it has traveled some distance L = ρn3/2 + O(n) ∈Z on
the graph. This is represented by a distance of approximately ρn1/2 in the current grid, where
each segment represents an arc of the cycle. Most of the analysis to follow holds for a generous
range of the constant ρ, but afterwards it will have to be tuned differently when applied to the
upper and lower bounds on the mixing time.
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646 B. GERENCSÉR

FIGURE 2. Illustration of Z2+ × H. Points of the form (·, ·, A) are represented by gray dots while (·, ·, B)
points are represented by black dots. The extension to R∗ by grid lines is also shown, with gray (dashed)

and black (solid) lines corresponding to points having A and B as the last coordinate, respectively.

FIGURE 3. Illustration of R. An intersection of the slanted line with a grid line represents a single point
in R, while passing through a grid point corresponds to two points in R.

Formally, we need the following linear set, illustrated in Figure 3:

R = {(x, y, h) ∈R
2+ × H | (x ∈Z+, h = B) or (y ∈Z+, h = A), kx + (n − k)y = L}. (3)

Observe that the expression kx + (n − k)y exactly represents the scaling needed for a segment
corresponding to k or n − k steps on the cycle, depending on the orientation. In particular, the
current constraint with L ∈Z ensures that points of R ⊂ R∗ properly map to vertices of the cycle
graph, i.e. have appropriate rational and integer coordinates. Let us denote by g : R −→ V the
function that recovers the vertex of the graph given a point in R. For r ∈ R let us denote by
Er the event that the Markov chain reaches r. Observe that these present a mutually exclusive
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partitioning of the probability space (except for a null set where the movement of the Markov
chain is bounded).

3.1. Exact expression for Er probabilities

The main goal of this section is to obtain P(Er). We develop a precise formulation for
all r ∈ R∗ in Lemma 1, which, however, provides a formula that is hard to handle directly.
Therefore, in the following section we look for simpler asymptotic bounds based on the current
findings.

Let us examine how the Markov chain may reach r. The possibilities consist of a collection
of paths from X0 to r, each composed of unit grid segments, except possibly the first and last
sections.

The transition probabilities at the hubs imply that after traversing an A segment there is a
3
4 probability of moving along B and 1

4 of taking another A, and vice versa. Indeed, notice
that as long as moving happens between the hubs {ak, bn−k}, by having all four Markov chain
transition probabilities at 1

4 within this set, after the first step the conditional distribution is
uniform and stays so until moving forward on one of the arcs. Therefore, in total the chain
either steps ahead instantly with probability 1

2 or stays for one or more steps at the hubs,
resulting in a uniform split of the remaining probability. Formally, first for the representation
of the hubs as Z2+ × H the transition probabilities are

P((x, y, A), (x, y + 1, B)) = P((x, y, B), (x + 1, y, A)) = 3
4 ,

P((x, y, A), (x + 1, y, A)) = P((x, y, B), (x, y + 1, B)) = 1
4 .

We then need the straightforward extension for intermediate points of the segments, where the
transition is deterministic from/to the hubs.

Clearly, any possible route can be encoded by the segments taken, thus by a word w ∈ H∗,
noting that the first and last segments might be incomplete when the initial and end points
do not correspond to ak or bn−k. By the above, the probability of following such a word is
determined by the number of changes, in total

3|{1≤i≤|w|−1 | wi �=wi+1}|

4|w| .

For a fixed r = (x, y, h) ∈ R, let us define the preceding grid point on Z
2+ by decreasing in

the h direction to get r′ = (x′, y′):

r′ = (x′, y′) =
⎧⎨
⎩

(�x − 1, y) if h = A,

(x, �y − 1) if h = B.

We will simply use x′, y′ by themselves if r is clear from the context.

Lemma 1. For any r ∈ R∗, we have the following probability bound for reaching it:

P(Er) ≥ 1
4

[
Binom

(
x′, 3

4

) ∗ Binom
(
y′, 1

4

)]
(y′) ≥ 1

9P(Er), (4)

where Binom represents a binomial distribution, and ∗ indicates convolution.

Proof. For the moment, let us assume that X(0)H = A, rH = B, and x′, y′ > 0. The calcula-
tions for all other cases work similarly; we discuss the differences afterwards.
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We need to gather all possible routes to r together with their probabilities. Assume that there
were 2i + 1 changes of direction (it is certainly odd as a start on A ended on a B segment). This
already determines that the probability of such a path is

(
3

4

)2i+1(1

4

)x′+y′−2i

.

To achieve 2i + 1 changes of direction, we need to split the total of x′ full steps on A into
i + 1 parts, noting that a change may be valid after 0 steps due to the initialization X(0)H = A.

Consequently, there are
(

x′
i

)
ways to do this. Similarly, there are

(
y′
i

)
possibilities to arrange

the steps of B. Joining all the possible values of 2i + 1 we get

P(Er) =
∞∑

i=0

(
x′

i

) (
y′

i

) (
3

4

)2i+1(1

4

)x′+y′−2i

.

(The summation to ∞ is just for notational convenience – clearly there are only finitely many
non-zero terms.) We may reformulate this as follows:

P(Er) =
∞∑

i=0

(
x′

i

) (
3

4

)i+1 (
1

4

)x′−i ( y′

y′ − i

) (
1

4

)y′−i (3

4

)i

= 3
4

[
Binom

(
x′, 3

4

) ∗ Binom
(
y′, 1

4

)]
(y′).

For all the scenarios in terms of the orientation of the first and last segments, we can perform
the same computation. Collecting all the similar expressions together we get:

X(0)H = A, rH = B ⇒ P(Er) = 3
4

[
Binom

(
x′, 3

4

) ∗ Binom
(
y′, 1

4

)]
(y′), (5)

X(0)H = A, rH = A ⇒ P(Er) = 3
4

[
Binom

(
x′ + 1, 3

4

) ∗ Binom
(
y′ − 1, 1

4

)]
(y′), (6)

X(0)H = B, rH = B ⇒ P(Er) = 3
4

[
Binom

(
x′ − 1, 3

4

) ∗ Binom
(
y′ + 1, 1

4

)]
(y′),

X(0)H = B, rH = A ⇒ P(Er) = 3
4

[
Binom

(
x′, 3

4

) ∗ Binom
(
y′, 1

4

)]
(y′).

For our convenience we want to avoid case splitting. Observe that for each combination we get
the probability of interest through checking the sum of x′ + y′ independent bits for a certain
total value, with very minor differences between the distribution of the bits. For instance, when
comparing (5) and (6), we have, for any s ∈ [0, 1, . . . , x′ + y′],

1

3
≤

[
Binom

(
x′ + 1, 3

4

) ∗ Binom
(
y′ − 1, 1

4

)]
(s)[

Binom
(
x′, 3

4

) ∗ Binom
(
y′, 1

4

)]
(s)

≤ 3,

as the two bit-streams can be perfectly coupled except for a single bit of probability 3
4 being

coupled to a bit of probability 1
4 . Using the same comparison for the other cases with the

reference (5) and accepting this error margin, we get the overall bounds

P(Er) ≥ 1
4

[
Binom

(
x′, 3

4

) ∗ Binom
(
y′, 1

4

)]
(y′),

1
3P(Er) ≤ 3

4

[
Binom

(
x′, 3

4

) ∗ Binom
(
y′, 1

4

)]
(y′),
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which combine to give the statement of the lemma. This is now valid irrespective of direc-
tion. Even more, this final inequality holds true when x′ = 0 or y′ = 0 (although we will not
use it). �

We would like to emphasize that using the two binomial distributions and evaluating their
convolution at one point provides the probability for a single Er; different parameters appear
for every other element of R.

In the next subsection we aim to bound this in a simpler form that sheds light on the mag-
nitude of the expressions just obtained. For that purpose we restrict the analysis to the region
of interest R that is at the prescribed distance, and, even further, to a central region where a
concentration effect will provide a non-negligible probability of arriving there.

3.2. Simplified estimates of Er probabilities

We will provide estimates of P(Er) for points which are close to the diagonal, where we can
hope a large number of high-probability tracks will pass through leading to some concentration,
which intuitively means approximately equal numbers of A and B. Formally, define

R0 = {r ∈ R | |x′ − y′| ≤ √
ρn1/4}.

By the definition of R in (3) we get min (x′, y′)n ≤ L ≤ max (x′, y′)n, which ensures that, for
any r ∈ R0,

x′, y′ ∈ [
ρn1/2 − √

ρn1/4 + O(1), ρn1/2 + √
ρn1/4 + O(1)

]
. (7)

Lemma 2. There exists a constant γ1 > 0 such that, for n large enough and any point r ∈ R0,

P(Er) ≥ γ1√
ρn1/4

. (8)

Clearly this is what we would expect from central limit theorem (CLT) asymptotics
after approximately ρn3/2 steps, and such bounds are widely available for simple binomial
distributions. Here is one possible way to confirm the claim for our non-homogeneous case.

Proof. Let Q = Binom
(
x′, 3

4

) ∗ Binom
(
y′, 1

4

)
, the distribution appearing in (4). It can be

viewed as the sum of x′ + y′ independent indicators. We will approximate Q with a Gaussian
variable in a quantitative way using the Berry–Esseen theorem [3, 8].

In terms of expectation, we clearly have (3x′ + y′)/4 in total. For an indicator with prob-
ability 1

4 the variance is 3
16 , and we get the same for the indicator with probability 3

4 due to
symmetry. Consequently, we may consider the approximation

Q ≈N
(

3x′ + y′

4
,

3x′ + 3y′

16

)
.

The absolute third moment after centralizing is 15
128 for both types of indicator, which is used

in the approximation bound.
Denoting by FQ and FN the cumulative distribution functions of Q and the properly scaled

Gaussian above, the Berry–Esseen theorem (for variables that are not identically distributed)
ensures

sup
ξ∈R

|FQ(ξ ) − FN (ξ )| ≤ β1

15
128 (x′ + y′)( 3

16 (x′ + y′)
)3/2

= β2

(x′ + y′)1/2
, (9)

where β1 > 0 is the global constant of the theorem, leading to a constant β2 > 0 when combined
with the numerical values coming from the second and third moments involved.
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Note that here we are comparing an independent sum and a Gaussian with matching first
and second moments rather than a centered and normalized sum with a standard Gaussian as
originally stated for the Berry–Esseen theorem, but joint shifting and scaling does not change
the difference of the cumulative distribution functions nor the bounding quantity.

We now introduce the normalized distribution Q̃ by

Q̃

((
C − 3x′ + y′

4

)
4√

3x′ + 3y′

)
= Q(C)

for any measurable set C, which is then approximated by the standard Gaussian distribution 


(but is still a discrete distribution). This definition implies that in (4) we need the value of β3 =
Q̃({α}), where α = √

3(y′ − x′)/
√

x′ + y′. Observe that, by the definition of R0 and thus (7) we
have |α| < √

3/2 + O(n−1/8) < 3/2 for n large enough. Define the intervals I− = [−2, − 3
2

]
,

I+ = [ 3
2 , 2

]
. Recall that binomial distributions are log-concave, and so is their convolution Q,

and its affine modification Q̃. Consequently, for any grid point the probability is at least all
those that precede it, or at least all those that are after it. In particular, β3 is bounded below
by all the (grid point) probabilities of I− or I+. Simplifying further, we can take the average
probabilities on the intervals; the lower will be a valid lower bound for β3.

By the Berry–Esseen estimate (9) for the overall probabilities on the intervals we have

q− = Q̃(I−) = 

([−2, − 3

2

]) + O(n−1/4), q+ = Q̃(I+) = 

([ 3

2 , 2
]) + O(n−1/4).

We estimate the number of grid points in the two intervals. To compute the average we refer
back to the unnormalized distribution Q where we have to count the integers in the correspond-
ing intervals, considering the scaling used. As an upper bound m for the number of contained
grid points we get

m ≤
⌊

1

2

√
3x′ + 3y′

4

⌋
+ 1 ≤

√
6ρ

8
(n1/4 + O(n1/8)) + 1 ≤ 1

2
√

ρn1/4 + O(n1/8).

Combining our observations and estimates we can bound by the averages:

β3 ≥ min (q−, q+)

m
≥ 
([3/2, 2]) + O(n−1/4)

(1/2)
√

ρn1/4 + O(n1/8)
= β4√

ρn1/4
+ O(n−1/8).

Finally, plugging this bound on β3 into (4), we arrive at

P(Er) ≥ γ1√
ρn1/4

,

for any 0 < γ1 < β4/4 and n large enough, which matches the claim of the lemma. �

4. Mapping the grid to the cycle

In the previous section, using the grid we abstractly identified points R at appropriate dis-
tance from the starting position, and also points R0 ⊆ R which are reached with non-negligible
probabilities. As the next step, we want to understand what these points represent on the orig-
inal cycle. If we are able to show that these points are sufficiently spread out, it will serve as a
good foundation to establish mixing. Without loss of generality we assume k ≤ n/2.

Lemma 3.
√

ρn1/4 + O(1) ≤ |R0| ≤ 4
√

ρn1/4 + O(1).
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(i) (ii) (iii) (iv)

FIGURE 4. Possible transitions depicted as U → U′ while scanning through R1.

Proof. For the moment, we use the notation L̃ = L/n = ρn1/2 + O(1). Setting both x and
y to L̃ would solve the defining equation kx + (n − k)y = L. Thus, for any integer x ∈ [

L̃ −
1
2
√

ρn1/4 + 1, L̃ + 1
2
√

ρn1/4 − 1
]

there is a corresponding y in the same interval that solves
the defining equation. Notice that, by the assumption k ≤ n − k, the y we get will differ from
the center value no more than x. Therefore, |x − y| ≤ √

ρn1/4 − 2, which is enough to ensure
the pair accompanied by a B being in R0. The number of integers in the given interval for x
confirms the lower bound.

Adjusting this argument, check in the interval x ∈ [L̃ − √
ρn1/4, L̃ + √

ρn1/4], x ∈Z, with
approximately double width, which is a necessary condition for being in R0 and of the form
(·, ·, B). There will be at most one such point in R0 for each x, so 2

√
ρn1/4 + O(1) in total.

Now, counting the points on horizontal grid lines (collecting (·, ·, A) points), for any y ∈ [L̃ −√
ρn1/4, L̃ + √

ρn1/4], y ∈Z, there will be at most one matching point in R0 again. Adding up
the two cases we get the upper bound. �

It will be more convenient to handle a set of points of known size, so let R1 ⊆ R0 be a subset
of size

√
ρn1/4 (or maybe O(1) less) of the elements in the middle.

We want to convert our grid representation to the cycle and acquire the image of R1, i.e.

V1 = {g(r) | r ∈ R1};
recall that g is the mapping from the grid points and lines to the cycle. To understand this
set, we scan through the elements of R1, starting with the one with the lowest x and increasing
(taking direction A before B when passing through a grid point), and follow where they map on
the cycle. When switching from one point, U, to the next, U′, we may encounter the following
configurations, as shown in Figure 4:

(i) We see that the final few l steps (out of L) start on the B arc for U and on the A arc for
U′. Consequently, U′ can be reached from U by exactly k counter-clockwise steps on
the cycle.

(ii) Here, we almost reach the next grid point; some l steps are missing on the A arc for
U and also l steps are missing on the B arc for U′. This means, again, that U′ can be
reached from U by exactly k counter-clockwise steps on the cycle.

(iii) Here, we are on the B arc for both U and U′, but we had one more horizontal A segment
for U′ (representing k steps) which is missing from the height. Therefore, we get the
same relation: U′ can be reached from U by exactly k counter-clockwise steps on the
cycle.

(iv) Note that case (iv) cannot happen due to our assumption of k ≤ n/2.

(v) Passing through a grid point can be treated as a special case of either (i) or (ii), with the
same consequence.
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To sum up, we can generate the set V1 ⊂ V on the cycle corresponding to R1 by finding the
first vertex, then taking jumps of −k (modulo n) for |R1| − 1 more steps. To proceed, we want
to ensure the elements of V1 are sufficiently spread out.

Lemma 4. There exist constants γ2 > 1
2 and γ3 > 0 such that the following holds for large

enough n. For a uniform choice of k ∈ [2, 3, . . . , n − 2], with probability at least γ3, we have,
for all r, r′ ∈ R1, r �= r′,

|g(r) − g(r′)| ≥ γ2√
ρ

n3/4. (10)

Proof. We use γ2 as a parameter for now, which we will specify later. We consider a uni-
form choice k ∈ [1, 2, . . . , n] for convenient calculations; clearly this does not change the
probability asymptotically.

Two elements of R1 map close if, after some repetitions of the k-jumps, we get very close
to the start (after a number of full turns). More precisely, the condition is violated if and only
if there exists 1 ≤ m ≤ |R1| − 1 such that |mk| < (γ2/

√
ρ)n3/4. Our goal is to have a k so that

this does not happen. For a fixed m this excludes k from the intervals

( in − γ2√
ρ

n3/4

m
,

in + γ2√
ρ

n3/4

m

)
, i = 0, 1, . . . , m − 1.

To simplify our calculations we treat these intervals as real intervals on the cycle (rather than
integer intervals). The length and number of integers contained differ by at most one; we will
correct for this error at the end.

We need to merge these intervals for all 1 ≤ m ≤ |R1| − 1. We imagine doing this by collect-
ing the intervals as increasing m. Observe that if gcd (i, m) = c > 1, then we already covered
the interval around (in)/m when encountering [(i/c)n]/(m/c) with a wider interval before. That
is, we only have to count those i where gcd (i, m) = 1, having only ϕ(m) of them, ϕ being the
classical Euler function. Therefore, combining their count and the length of a single interval,
the total newly covered area at step m is at most

2γ2√
ρ

n3/4 ϕ(m)

m
.

Once we add these up, and use the summation approximation [15], we get

2γ2√
ρ

n3/4
|R1|−1∑
m=1

ϕ(m)

m
= 2γ2

6

π2
n + O(n3/4 log n), (11)

knowing that |R1| = √
ρn1/4 + O(1). When we switched from integer counts to approximation

by interval lengths, the total error is at most one per interval, i.e.
∑|R1|−1

m=1 m = O(n1/2), which
is negligible compared to the quantities of (11). Consequently, (11) is an upper bound on the
number of k that should be excluded. Let us therefore choose γ2 > 1

2 so that the coefficient of n
above is strictly less than 1. Then, there is still a strictly positive probability of picking a good
k, in particular γ3 = 1 − (12γ2)/π2 − ε is adequate for any small ε > 0. �

5. Including diffusive behavior

So far we have understood the position of the chain after L moves from the first grid point.
Now we want to analyze the true Markov chain dynamics where randomized moving or paus-
ing is included. In V1 we have a large number of positions, hopefully different and separated
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enough on the cycle, and we can bound the probability of reaching the corresponding elements
in R1 on the grid. Our goal is to show that with the randomization of moving, a diffusive
phenomenon enters, so that vertices near V1 will be likely to be reached.

For technical reasons, we want to avoid points in V1 that are very close to the hubs, so we
define

V2 = {v ∈ V1 | |v − k|, |v − n| > 4
√

ρn3/4
√

log n},
W = {w ∈ V | there exists v ∈ V2, |w − v| < γ2

√
ρn3/4/2}, (12)

R2 = {r ∈ R1 | g(r) ∈ V2}.
We would like to emphasize that in the favorable case when (10) holds (ensured with positive
probability by Lemma 4), we have |V2|, |R2| = √

ρn1/4 + O(
√

log n), and when ρ ≤ 1 this also
implies |W| = γ2ρn + O(n3/4√log n).

At most vertices of the cycle, a Geo
( 1

2

)
distribution controls when to step ahead, so let

us choose some T = 2ρn3/2 + O(n) ∈ 2Z and analyze X(T). Oversimplifying the situation at
first, in T steps the chain travels T/2 in expectation, O(n) to reach the origin grid point, and
ρn3/2 + O(n) afterwards, which is exactly the case analyzed before. Assuming this constant
speed, we have approximately

√
ρn1/4 expected endpoints in R2 ⊆ R0 with probability uni-

formly bounded below to be hit by Lemma 2. We will have a diffusion of approximately√
ρn3/4 around each of them, which together will provide a nicely spread-out distribution.
However, there are some non-trivial details hidden here. The most important caveat is that

when visiting the hubs, the distribution of the time spent is not independent of the direction
taken. In fact, when arriving at a hub, say at vertex ak, with probability 1

2 there is a single
step, going to b1. Otherwise, in some loops or some loop steps, jumps are taken between the
hubs before moving on, which tells us that with probability 1

4 , 1
4 the chain continues to a1, b1

in 1 + Geo
( 1

2

)
steps. Let us combine all the heuristics and work out the details in a formally

precise way.
We are going to describe a procedure to generate the Markov chain and the position X(T).

If X(0) is λ steps before one of the hubs, thus the origin grid point, fix L = T/2 − λ = ρn3/2 +
O(n), and define R with this value in (3). Assume we are given an infinite independent and
identically distributed series of fair coin tosses which may either say ‘go’ (1) or ‘do nothing’
(0). We perform the following steps.

• Choose the exit point r ∈ R, with appropriate probability P(Er).

• Choose one of the possible tracks ξ reaching r (with the appropriate conditional
probability).

• Generate a series of coin tosses c0 of length T − (x′ + y′ + 1), which is the major part of
the movement of the chain.

• Complement the above series depending on the track. Following the Markov chain using
the beginning of c0, when we reach a hub where the direction should be continued
according to ξ (AA or BB), insert an extra 0 symbol (correcting for the 1 + Geo

( 1
2

)
wait-

ing time distribution there). Similarly, when we reach a hub where the direction changes
(AB or BA), with probability 2

3 insert a 1 (meaning an instant step), with probability 1
3

insert a 0 (for the 1 + Geo
( 1

2

)
case).

• If we encounter a grid point further than r, we freely choose the direction together with
the inserted symbol with probabilities 1

4 , 1
2 , 1

4 for the three cases we had.
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Let the elongated series be c1, and the sequence of only the added symbols be ch. We use the
notation |c0| for the length of c0 and

∑
(c0) for the number of 1s in c0 (and similarly for the

other sequences). Let us also introduce τ = |c1|. Therefore, at the end of the procedure above
we arrive at X(τ ). More importantly, τ matches T very well, as stated next.

Lemma 5. For r ∈ R2, P(τ = T) = 1 − O(n−4).

Proof. In c0, for the number of 1 symbols we have∣∣∣∣
∑

(c0) − (L + λ)

∣∣∣∣ ≤
∣∣∣∣
∑

(c0) − 1
2 (T − (x′ + y′ + 1))

∣∣∣∣ +
∣∣∣∣ 1

2 (T − (x′ + y′ + 1)) − (L + λ)

∣∣∣∣.
The second term on the right-hand side is deterministic and O(n1/2) by the definitions. For the
term before, we can use standard tail probability estimates for the binomial distribution (based
on Hoeffding’s inequality). Merging the two error terms, we get

P

(∣∣∣∣
∑

(c0) − (L + λ)

∣∣∣∣ > 3
√

ρn3/4
√

log n

)
= O(n−4). (13)

Let us denote this bad event of the left side above by B for future use. Assume that this
event does not occur, so

∑
(c0) is within the error bound 3

√
ρn3/4√log n. This means that

the Markov chain takes the first λ steps to the origin and then approximately L steps within the
stated bounds.

By the definition of R2, this concentration means that even only considering the c0 steps we
reach the grid line segment where r lies. On the way, we pass through x′ + y′ + 1 hubs, which
results in x′ + y′ + 1 = O(n1/2) entries in ch. Conversely, inserting these O(n1/2) steps into c0,
the upper bound ensures that we will not reach the next grid point (or the hub once more, in
other words). Consequently, |ch| = x′ + y′ + 1.

In this case we have τ = |c1| = |c0| + |ch| = T , which is the preferable case we wanted to
show; the exceptional probability is controlled by (13), which matches the claim. �

Now we are ready to bound the probability of the Markov chain to reach the points of the
set highlighted by W.

Lemma 6. For any w ∈ W, P(X(T) = w) ≥ γ4/(ρn) for an appropriate global constant γ4 > 0.

Proof. By the definition of W there is a v = g(r) ∈ V2 with |v − w| ≤ 1
2γ2

√
ρn3/4 (if multiple,

we choose one). We use the procedure above to actually bound the probability for X(τ ), but
by Lemma 5 we know this is correct up to an O(n−4) error, which is enough for our case. In
the process, let us consider Er chosen and also pick some temporarily fixed track ξ reaching it,
and condition on them.

With these conditions, let us analyze the dependence structure of the step sequences. For c1,
the positions of the additions strongly depend on c0. However, we know exactly which hubs
and turns we are going to take, which means ch is independent of c0 (assuming B̄); only their
interlacing depends on both.

Now, first drawing and fixing ch we know by
∑

(ch) precisely how many 1s we need from c0
to exactly hit w (still conditioning on Er and ξ ). Let this number be s, for which we clearly have
|s − ρn3/2| ≤ γ2

√
ρn3/4/2 + O(n1/2). The length of c0 is T ′ = T − (x′ + y′ + 1) = T + O(

√
n).

We have to approximate this binomial probability of 1s in c0. This is a tedious calculation
based on the Stirling formula; we refer to [14], where it is shown that

(
T ′

s

)
= (1 + o(1))

2T′
√

T ′π/2
exp

(
− (T ′ − 2s)2

2T ′
)

,

https://doi.org/10.1017/jpr.2022.88 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.88


Analysis of speedup by a single edge 655

if |T ′/2 − s| = o(T ′2/3), which clearly holds in our case. Substituting the variables, we get the
bound (

T ′

s

)
1

2T′ ≥ (1 + o(1))
1√

πρn3/4
exp

(
−γ 2

2

4
+ O(n−1/4)

)
≥ β1√

ρn3/4
,

for some constant β1 > 0 and n large enough. Thus, for the conditional probability of interest
we get

P(X(T) = w | Er, ξ, ch) ≥ β1√
ρn3/4

− P(B) ≥ β2√
ρn3/4

for any constant β1 > β2 > 0 and n large enough.
Observe that we have the same lower bound for P(X(T) = w | Er), as it is a mixture of the

conditional probabilities above, so we can average out through ξ and ch. Finally, combining
with (8) we arrive at

P(X(T) = w) ≥ P(X(T) = w | Er)P(Er) ≥ γ4

ρn
, (14)

with an appropriate constant γ4 > 0. �

6. Global mixing

We now turn to evaluating the mixing metrics of our Markov chain. In order to establish the
upper bound on the mixing time initially claimed in Theorem 1, we fix ρ = 1 and T = 2�ρn3/2
for this section and use previous results using these parameters. We will drop X from the indices
and arguments in (1) and (2) when clear from the context.

Our current reasoning would only prove a total variation decrease down to a certain constant
amount but no further, so we need to add one more step to reach any ε. An alternative to
d(t) compares the distribution of the Markov chain when launched from two different starting
points: d(t) := supX1(0),X2(0)∈V ‖L(X1(t)) −L(X2(t))‖TV. It is known how this compares with

d(t), in particular d(t) ≤ d(t) ≤ 2d(t), and moreover this variant has the advantage of being
submultiplicative, d(s + t) ≤ d(s)d(t); see [13, Chapter 4]. We can quantify this distance for
our problem as follows.

Lemma 7. Assume that n is large enough and k is such that (10) holds. Then we have

d(T) ≤ 1 − γ5, (15)

for some global constant γ5 > 0.

Proof. Fix two arbitrary starting vertices for X1(0) and X2(0), and denote the distribution of
the two chains at time T by σ 1, σ 2. Simple rearrangements yield

‖σ 1 − σ 2‖TV = 1

2

∑
v∈V

|σ 1(v) − σ 2(v)|

= 1

2

∑
v∈V

(σ 1(v) + σ 2(v) − 2 min (σ 1(v), σ 2(v)))

= 1 −
∑
v∈V

min (σ 1(v), σ 2(v)).

(16)
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For both realizations, in the definitions of (12) we get a subset of vertices W. Denote the two
realizations by W1, W2, and notice that there must be a considerable overlap; in particular,

|W1 ∩ W2| ≥ |W1| + |W2| − n = (2γ2 − 1)n + O(n3/4
√

log n) ≥ βn

for some β > 0 and n large enough, relying on the fact that γ2 > 1
2 . By Lemma 6, for any

w ∈ W1 ∩ W2 we have both σ 1(w), σ 2(w) ≥ γ4/n. Substituting this back into (16), we get
‖σ 1 − σ 2‖TV ≤ 1 − (βn)(γ4/n) = 1 − γ5, with γ5 = βγ4. This upper bound applies for any
two starting vertices of X1, X2, and therefore the claim follows. �

We just need the final touch to prove Theorem 1.

Proof of Theorem 1. Using Lemma 4, we have a spread-out collection in V2 as stated in (10)
with probability at least γ3 =: γ . In this case, we can apply Lemma 7. Fix

T∗ =
⌈

log ε

log (1 − γ5)

⌉
T .

Substituting (15) and using the basic properties of d, d, we get

d(T∗) ≤ d(T∗) ≤ d(T)�(log ε)/(log (1−γ5)) ≤ (1 − γ5)�(log ε)/(log (1−γ5)) ≤ ε.

Consequently, tmix(ε) ≤ T∗. On the other hand,

T∗ =
⌈

log ε

log (1 − γ5)

⌉
T =

⌈
log ε

log (1 − γ5)

⌉
2�n3/2 ≤ γ ′n3/2 log

1

ε
,

for an appropriate constant γ ′ > 0 and n large enough. Together with the previous calculation,
this confirms the theorem. �

7. Lower bound

Our goal is to have a universal lower bound, so our viewpoint has to be altered. In this
section we fix ρ = γ4/2. To highlight the theme to follow, Lemma 6 would tell us that at
elements of W there is at least 2/n probability of the Markov chain arriving, and thus the total
variation can be bounded below by collecting these 1/n increments compared to the uniform
distribution; as W ‘should’ have size approximately γ2ρ, we would get a constant-order lower
bound.

We will need multiple refinements since, for general k, for all edge selections we have
no information on the size of W, and there might be significant overlaps, multiplicities when
defining V1 or W; we do not have the comfort based on Lemma 4. It is key for completing the
proof to be able to handle this.

We know |R1| = √
ρn1/4 + O(1), but we have no size estimates on |R2|, |V2|. For the tech-

nical conditions needed, as they were included in the definitions in (12), similarly for these
constraints let the set of interest be

I = {v ∈ V | |v − k|, |v − n| > 4
√

ρn3/4
√

log n}.
For the moment, we cannot guarantee that most of R1 maps into I. In order to change this, we
start slightly increasing the target time and distance to shift these points, hopefully mostly into
I. We define Ti = 2�ρn3/2 + 2i and Li = �ρn3/2 − λ + i for i = 0, 1, . . . , n − 1. Accordingly,
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FIGURE 5. Evolution of the points of Ri
1 with the increase of i. Two such zigzag paths are depicted.

there is an evolution Ri and Ri
0. Recall that λ corresponds to the position of X(0), which is

arbitrary, but we consider it as fixed.
For Ri

1 (together with Vi
1), we investigate this evolution from the perspective of the individ-

ual points. We can verify that a valid interpretation is that every r = (x, y, h) ∈ R0
1 performs a

zigzag away from the origin along the grid lines, stopping just before (x + 1, y + 1, h), turning
at both grid points it passes along the way. Indeed, during the move, |x′ − y′| changes by at
most 1, so we always get the centermost

√
ρn1/4 + O(1) points with the smallest |x′ − y′|. This

defines Ri
1 up to edge effects, which we may encounter, but only at the extremal points of Ri

1.
This process is illustrated in Figure 5.

Observe that such a zigzag corresponds to walking around the cycle exactly once. This
will allow us to conveniently calculate the total number of hits to I by V0

1 , . . . , Vn−1
1 . More

precisely (to account for multiplicities), we are interested in M = ∑n−1
i=0

∑
r∈Ri

1
1I(g(r)). By

the previous argument, we know that along each point the number of hits is exactly |I|, except
maybe near the edges. Thus, we get M ≥ |R1| · |I| − O(n). Comparing the two while dividing
by n, we get

1

n

n−1∑
i=0

∑
r∈Ri

1

1I(g(r)) ≥ |R1| |I|
n

− O(1) ≥ |R1|
2

.

Consequently, there has to be a term of the average on the left-hand side larger than the right-
hand side:

∑
r∈Ri

1
1I(g(r)) ≥ 1

2 |R1|. Let us take and fix such an index i from now on. Define the
analogous sets as before:

Ri
2 = {r ∈ Ri

1 | g(r) ∈ I},
Wi = {w ∈ V | there exists r ∈ Ri

2, |g(r) − w| ≤ γ2
√

ρn3/4/2}.
We now formulate an extension of Lemma 6.

Corollary 1. For any r ∈ Ri
2, w ∈ Wi such that |g(r) − w| ≤ γ2

√
ρn3/4/2, we have

P(X(Ti) = w, Er) ≥ γ4

ρn
,

for the same global constant γ4 > 0 as before.
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Proof. This is actually what happens under the hood in the proof of Lemma 6; there, the
choice of r is given by the structure W and the extra knowledge on Er is discarded at the end in
(14). Now there might be multiple values of r corresponding to the same w due to overlaps. �

Proof of Theorem 2. We want to bound d(Ti), with the i carefully chosen above. By only
analyzing the case of the starting point fixed above, we get a lower bound on d(Ti). We need
to estimate the total variation distance:∥∥∥∥L(X(Ti)) − 1

n

∥∥∥∥
TV

= 1

2

∑
v∈V

∣∣∣∣P(X(Ti) = v) − 1

n

∣∣∣∣.

Note that for any w ∈ Wi there is a corresponding r nearby to apply Corollary 1, and with the
choice of ρ at the beginning of the section we get P(X(T) = w) ≥ 2/n. That is, these terms in
the sum are positive without the absolute value. We drop all other values for a lower bound.
Thus, we get∥∥∥∥L(X(Ti)) − 1

n

∥∥∥∥
TV

≥ 1

2

∑
w∈Wi

(
P(X(Ti) = w) − 1

n

)
≥ 1

2

∑
r,w

2

n
− 1

2
|Wi|1

n
.

In the first term we may include all compatible pairs of r,w for which Corollary 1 can be
applied. Recall that |Ri

2| ≥
√

ρn1/4/2 + O(1), each element compatible with a γ2
√

ρn3/4 +
O(1) number of ws.

For the second term being subtracted, we may count very similarly starting from Ri
2 and

looking for compatible pairs. This time, however, the multiplicity does not add up as we need
the size of the set, but we want an upper bound for this term anyway. In total, we get∥∥∥∥L(X(Ti)) − 1

n

∥∥∥∥
TV

≥ 1

n
|Ri

2|
(
γ2

√
ρn3/4 + O(1)

) − 1

2n
|Ri

2|
(
γ2

√
ρn3/4 + O(1)

)

≥ γ2ρ

4
+ O(n−1/4).

As d(·) is non-increasing, for the constants of the theorem we may choose γ ∗ = 2ρ = γ4
and any ε∗ < γ2ρ/4 = γ2γ4/8. With such choices, the above calculations show that the claim
holds. �

8. Discussion and conclusions

Let us further elaborate on the results obtained, together with ideas for possible extensions.
First of all, Theorem 1 provides a global probability estimate for the mixing time bound

to hold, but is not an asymptotically almost sure result. It is unclear if this is the result of our
bounds being conservative, or because there is truly a large proportion of badly behaving k.
Note that there are bad k, for instance if n is even then for k = n/2 the mixing time is truly
quadratic in n. Indeed, when starting from the distribution (δa1 + δb1 )/2, i.e. weight 1

2 on both
a1, b1, we will observe the evolution of a homogeneous biased random walk on a cycle of
length n/2 mirrored, the long edge acting simply as a loop. This needs quadratic time to mix
in n, improved by a constant as we halved the length. The same reasoning can be applied for
(p/q)n for any fixed rational 0 < p/q < 1 as n → ∞. In Figure 6 we observe this non-trivial
behavior.

Concerning the proof technique, observe that the grid together with the grid lines correspond
to a covering of the original graph which is well suited for our purpose.
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FIGURE 6. Fluctuation of tmix

(
1
4

)
depending on the extra edge length k by computer numerical results:

(a) for a cycle of n = 2000 vertices; (b) comparing for various values of n, both normalizing edge lengths
and scaling down mixing times with an n3/2 factor.

An interesting question is whether there is an extension possible for slightly more connec-
tions. The more natural one is to increase the number of random edges. In this case, however,
we might need to handle the effects of the small permutations generated by the various edges.
The more accessible one is to increase the number of random hubs, then add all-to-all connec-
tions between them. Closely related work has been done for the asymptotic rate of convergence
[10] when then number of hubs can grow at any small polynomial rate, and it turns out that
in that case the inverse spectral gap is linear in the length of the arcs (excluding logarithmic
factors), which would be a bottleneck anyway.

Still, we might guess the mixing time in a heuristic manner for a constant number of hubs,
with the generous assumption that our concepts can be carried over. Let us consider K random
hubs – and thus also K arcs – and check mixing until nα for some α. We can assume the lengths
of the arcs are of order n, so the set generalizing R is on a (K − 1)-dimensional hyperplane at a
distance of approximately nα−1 from the origin. We can hope to get a CLT-type control on the
probability in a ball of radius approximately n(α−1)/2 again, and thus the number of such points
in the hyperplane is approximately n(K−1)(α−1)/2. If once again these map to far away points
on the cycle and this movement can be nicely blended together with the diffusion, that would
provide an extra factor of approximately nα/2, meaning the total number of vertices reached

is approximately n(K−1)(α−1)/2+α/2 = n(K/2)(α−1)+ 1
2 . We hope for mixing when the exponent

reaches 1, which translates to α = 1 + 1/K, and leads us to the following conjecture.

Conjecture 1. Consider K ∈Z+, ε > 0 fixed. On a cycle of n vertices, choose K hubs ran-
domly. With an appropriate interconnection structure among the hubs, and a Markov chain
otherwise analogous to the one before, there is a positive bounded probability of having
tmix(ε) = �

(
n1+1/K

)
for n large enough.

In the special case of k random edges, corresponding to K = 2k and a perfect matching, the
full hyperplane will not be attained, but a similar heuristic computation leads to the following
natural conjecture.

Conjecture 2. Consider k ∈Z+, ε > 0 fixed. On a cycle of n vertices, add k random edges
uniformly and independently. As the new edges are disjoint with high probability, we may
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consider the Markov chain analogous to the one before. Then there is a positive bounded
probability of having tmix(ε) = �

(
n1+1/(k+1)

)
for n large enough.

Clearly, there is quite some flexibility left for the class of Markov chains to consider. This
remains as a question for future research to find out exactly what is needed to generalize the
current toolchain.
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