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A LINK BETWEEN TWO CHARACTERISATIONS OF
COMPLETE MATRIX RINGS

N.J. GROENEWALD AND L. VAN WYK

We establish a link between the two characterizations, independently obtained in
1991 by Fuchs and Robson, of complete matrix rings in terms of the existence of
nilpotent elements.

Every ring herein is associative with identity, and matrix ring will mean complete
matrix ring of size n ^ 2.

Apart from the well known characterisations of matrix rings, Fuchs [1] and Robson
[3] independently gave in 1991 new criteria for a ring to be a matrix ring. Following
a characterisation of matrix rings of size 2 in [2, Theorem III.2], Fuchs showed in [1,
Theorem 1] that a ring R is isomorphic to a matrix ring M,,(5), for some ring S, if
and only if there are elements x and y in R such that

(1) «"" ' ^ 0, x" = 0 = y2, x+yis invertible and Annfx""1} D Ry = {0},

where Ann{a;n~1} denotes the left annihilator of xn~1. We first note that the condition
a;""1 ^ 0 in (1) is superfluous, since if xn~1 = 0, then y = 0, otherwise Ann{xn~1}nRy

contains the nonzero element y. But then x is invertible, contradicting the nilpotency
of x.

Robson proved in [3, Theorem 2.2] that R = Mn(S), for some ring S, if and only
if there are elements x and y in R such that xn = 0 and

(2) xn-xy + xn~2yx + ••• + xyxn~2 + yx71'1 = 1.

Robson's method of proof involved the characterisation of a matrix ring M,,(5) as a
direct sum of n mutually isomorphic right ideals, whereas Fuchs invoked the charac-
terisation of a matrix ring in terms of a set {eij : 1 ^ i, j ^ n} of matrix units, that is,

n
Y^, en = 1 and eijeu — 6jkeih $jk being the Kronecker delta.
i=i

This short sequel was inspired by the observation that x + y is its own inverse

in the proof of (i) =*• (ii) in [2, Theorem III.2]. Consider now the following criterion,
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which is a combination of (2) and some of the conditions in (1): there are elements x
and y in a ring R such that

(3)
x

n = 0=y2, xn-1y+xn-2yx+-+xyxn-2+yxn-1 = 1 and Annjx"-1} D Ry = {0}.

We first show in Theorem 1 that (3) explicitly yields, in terms of x and y, on
the one hand, the inverse of x + y, and on the other hand, a set of matrix units. This
drastically simplifies the proof by Fuchs that the mentioned set is indeed a set of matrix
units. Second, we prove in Proposition 2 that the intersection condition in (3) follows
from the other conditions in (3) if n — 2 or 3, but we show in Example 3 that this
is not necessarily so if n ^ 4. Fuchs observed in [1, Corollary 4] that the intersection
condition in (1) follows from the other conditions in (1) if n = 2. Example 3 also
shows that the intersection condition in (1) does not necessarily follow from the other
conditions in (1) if n ^ 4. Finally, Example 4 shows that the intersection condition in
(1) does not necessarily follow from the other conditions in (1) if n = 3.

Before we formally state the first result, we assume that x and y are elements
of a ring R such that xn — 0 = y2 and such that (2) holds, and we point out three
equalities. If we premultiply (2) by y, then

(4) yxn~1y + yxn~2yx + •••+ yxyxn~2 = y ,

s i n c e y 2 = 0 . S i m i l a r l y , p o s t m u l t i p l i c a t i o n o f ( 2 ) b y y s h o w s t h a t x n ~ 2 y x y + ••• +

xyxn~2y + yxn~1y = y, and so by (4)

(5) yxn~2yx + h yxyxn~2 = xn~2yxy + ••• + xyxn~2y.

Next, if we simultaneously premultiply (2) by yxn~2 and postmultiply (2) by y, then

(6) yxn-2(xyxn-2)y + yxn~2 (yx^y = yxn~2y,

since xn = 0.

THEOREM 1 . If a. ring R contains elements x and y such that xn = 0 =
y2, xn~1y + xn~2yx + ••• + xyxn~2 + yxn~x = 1 and A n n { z n ~ 1 } C\ Ry = {0} for
some n ^ 2, then (a; + y)"1 = x n - 1 + xn~2y + xn~*yx H h xyxn~3 + yxn~2 and
{xx~lyxn~i : 1 < i,j < n} is a set of matrix units in R (which implies that R is a
matrix ring).

PROOF: We first show that

(7) yxn-1y = y,
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and, if n ^ 3 , that

(8) yxiy = 0, j = l,...,n-2.

It follows directly from (2) (or (4)) that yxy = y in case n = 2. If n ^ 3, then by (5) we
have (yxn~2y + •••+ yxyxn~3)x = (xn~2yx -\ + xyxn~2)y £ Ann^""1} n Ry =
{0}. Therefore (4) implies (7). We conclude from (6) and (7) that yxn~2y + yxn~2y =

yxn~2y, that is, yxn~2y = 0, and so (8) holds in case n — 3. If n ^ 4, then let
2 < fc ^ n — 1, and suppose now that yxn~*y — 0 for i = 2 , . . . , fc — 1. Then,
again since xn = 0, simultaneous premultiplication of (2) by yxn~k and postmultipli-
cation of (2) by y shows that yxn~k{xk~1yxn~k)y + yxn~k(xk~2yxn-k+1)y + h
yxn~k (xyxn-2)y + yxn~k {yx^^y = (yxn-1y)xn-ky + (yxn-2y)xn-(-k-1'*y + • •• +
(yxn~(k~1)y)xn~2y + yxn~k(yxn~1)y = yxn~ky. Hence, by (7) and the induction hy-
pothesis we have yxn~ky + yxn~ky = yxn~ky, and so yxn~ky — 0. Therefore induction
establishes (8).

For 1 ^ i,j ^ n, we set e<j := xl~1yxn~'. Let 1 ^ k,l ^ n. We con-
clude from (7) that e^tji = xi~1yxn~1yxn~l -en. If j ^ fc, then (8) and the
fact that xn = 0 = y2 imply that e<;ejtj = xi~1yxn-'+k-1yxn~l = 0 . By (2)

n
we have ^ en = 1, and so {eij : 1 ^ t , j ^ n} is a set of matrix units. Fi-

t=i

nally, if one invokes (2), (8) and the nilpotency of x and y, then direct verifi-

cation shows that (x + y)(xn~1 + xn~2y + xn~3yx + ••• + xyxn~s + yxn~2) = 1 =
(x"- 1 +xn-2y + xn~3yx + -- • + xyxn~3 +yxn~2)(x+y). D

PROPOSITION 2 . Let n — 2 or 3. If R is a ring containing elements x and
y such that xn - 0 = y2 and xn~xy + xn~2yx + • • • + xyxn~2 + yx71'1 = 1, tien

PROOF: If n = 2 and ry G Ann{z} n Ry, r G R, then ry = ry(xy +yx) = 0.
Next, let n = 3. Then (5) states that

(9) yxyx = xyxy.

Also, if we premultiply (2) by yxy, then yxyx2y + yxyxyx — yxy, and so by (9)

(I) yxyx2y = yxy.

Similarly, postmultiplication of (2) by yxy shows that

(II) yx2yxy = yxy.

But (6) states that yx2yxy + yxyx2y = yxy, and so by (10) and (11) we have

(12) yxy = 0.
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Consequently, if ry G Ann {a;2} n Ry, r £ R, then ry = ry(x2y + xyx + yx2) =

(ryx2)y + r(yxy)x +ry2x2 = 0 . D

We now exhibit, for every n ^ 4, a ring R(n) containing elements x and y

such that a;""1 ^ 0, xn = 0 = y2, x + y is invertible and xn~1y + xn~2yx H (-
xyxn~2 + yx71-1 = 1, but Ann{ajn-1} n #(71)1/ ^ {0}, which shows, firstly, that the
intersection condition does not necessarily follow from the other conditions in (3) if
n ^ 4, and, secondly, that the intersection condition neither necessarily follows from
the other conditions in (1) if n ^ 4.

EXAMPLE 3. Let 5 be any ring and set R{n) := M,,(5), n ~£ 4. We use the standard

notation Eij for the matrix in M«(5) with I5 (the identity of 5) in position (i,j)

and zeros elsewhere. Set x := E2,i + ^3,2 -\ h -^n.n-i — .£4,1 and y := ^ i i n + E2lTl-i.
Then

-Sfc+1,1 + Ek+2,2 H +-̂ 71,71-* — Ek+3,1, if 1 ^ fc ̂  n — 3;

t E-n-i.i + -Sn,2, if A = n — 2;
(13) x* = I

0, if A; = n.

Hence

I J.rrJ X y ^= JUfi 7i) T/»C ^ -*̂ 1 1) X l c / * I = = JBli!/i 2 T~ -^2 1 / ~~ *-J2 2~i *-'3 1—-*^4 2)

and

-1̂ 3,3 ~r -^4,2 — -^3,1) II 71 — 4,

£4,4+ £5,3-£5,1, ifn = 5;

•En-l,n-l+^n,n-2, if n > 6.

If n ^ 5 and 2 < A: ^ n - 3, then 2 < n - l - J f c ^ n - 3 , and so by (13)

,n-l — Ek+3,n)(En-k,l + -En-fc+1,2 H +

,t — Ek+2,n-lEn-k+2,l

(16)
^3,3 — -̂ 3,1 + Ei>2 — £5,3 + £5,1, if k = 2;

= { £4,4 + £5,3 - £5,1 - #6,4, if n ^ 6 and fc = 3;
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We conclude from (13)-(16) that

xn~1y + xn~2yx + ••• + xyxn~2 + y z " " 1

£4,4 + (-#3,3 + £4,2 - E3A) + (E2,2 + £3,1 - £4,2) + JEi,i, if n = 4;

•#5,5 + (-#4,4 + J#5,3 — -#5,1) + (-#3,3 — £3,1 + -#4,2

- £ 5 , 3 + -#5,1) + (#2,2 + £3,1 - £4,2) + £1,1, if n = 5;

•#6,6 + (-#5,5 + E6,i) + (-#4,4 + -#5,3 — -#5,1 — -#6,4) + (-#3,3

— •#3,1 + -#4,2 — -#5,3 + -#5,l) + (-#2,2 + -#3,1 — -#4,2) + -#1,1, if n = 6;
n-3

En,n + ( - #n- l ,n - l + #71,11-2) + X) (-#ib+l,ib+l + -#*+2,* — -#ib+3,fc+l)
Jfc=4

+ (-#4,4 + -#5,3 — -#5,1 — -#6,4) + (-#3,3 — -#3,1 + -#4,2 — -#5,3 + -#5,l)

= £1,1 -f E2,2 + • • • + En<n = lR(n) for every n ^ 4.

However, Ann^"" 1 } D R(n)y = S.#i,n-i + 5E2,n_i + • • • + 5En,n_i ^ {0}. Also note
that

•#1,2 — -#l,n + -#2,3 + -#3,2 + -#3,4 — -#3,n

+E4,5 + " - + ^n-i,n + ^»,i, i f n ^ 5 ;

\{EX>2 - EiA) + E2t3 + |(-#3,2 + -#3,4) + -#4,i, if 2 is invertible in 5 and n = 4.

Finally we construct a ring .R(3) containing elements x and y such that x2 ^
0, x3 = 0 - y2 and x + y is invertible, but Ann{a;2} 0 R{3)y ^ {0}.

EXAMPLE 4. Here Z denotes the ring of integers and Z4 denotes the ring Z/4Z with
elements 0,1,2,3. Set R(3) := Ms(Z4) and

Then x2 ± 0, x3 = 0 = y2 ,

/ 0 3 2 \ / 0 2Z4 0 \

( i t + j l ) ' ^ 0 1 3 J , and Ann{z2} n R(3)y = I 0 2Z4 O l .

\ 1 0 0 / \ 0 2Z4 0 /

R E F E R E N C E S
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