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The Rho/ROCK pathway is involved in numerous pivotal cellular processes that have made it an area of intense
study in cancer medicine, however, Rho-associated coiled-coil containing protein kinase (ROCK) inhibitors are
yet to make an appearance in the clinical cancer setting. Their performance as an anti-cancer therapy has been
varied in pre-clinical studies, however, they have been shown to be effective vasodilators in the treatment of
hypertension and post-ischaemic stroke vasospasm. This review addresses the various roles the Rho/ROCK
pathway plays in angiogenesis, tumour vascular tone and reciprocal feedback from the tumour microenvironment
and explores the potential utility of ROCK inhibitors as effective vascular normalising agents. ROCK inhibitors
may potentially enhance the delivery and efficacy of chemotherapy agents and improve the effectiveness of
radiotherapy. As such, repurposing of these agents as adjuncts to standard treatments may significantly improve
outcomes for patients with cancer. A deeper understanding of the controlled and dynamic regulation of the key
components of the Rho pathway may lead to effective use of the Rho/ROCK inhibitors in the clinical
management of cancer.

Cancer is one of the leading causes of death worldwide,
accounting for 8.2 million deaths in 2012 (Ref. 1).
Although therapies for advanced stage malignancy
are improving, the therapeutic options for patients are
limited and often inadequate. In general, efficacy of
chemotherapeutic agents is limited by adverse effects
caused by their activity on normal tissues. Therefore,
adjunctive treatments which specifically improve the
delivery of cytotoxic therapies to the tumour may be
of high value. Further, the efficacy of adjunctive
therapies needs to be examined with regard to the
effects on both tumour cells and the surrounding
microenvironment.
The Rho/Rho-associated coiled-coil containing

protein kinase (ROCK) signalling pathway plays a crit-
ical role in a range of diseases including those of the
central nervous system and the cardiovascular system
(e.g. spinal cord injury, vasospasm, hypertension, ath-
erosclerosis and myocardial hypertrophy) (Refs 2, 3,
4). In cancer, over-expression of ROCK induces migra-
tion and invasion in vitro and in vivo (Refs 5, 6). Its
involvement in cellular proliferation, cell shape and

motility, tumour progression and metastasis (Ref. 7)
make it an attractive target in cancer medicine.
However, the full potential of ROCK inhibitors as
anti-cancer therapies may not have been fully exam-
ined. The effects of the Rho/ROCK pathway on the
vascular system have been extensively studied in the
treatment of vascular disorders. Inhibition of Rho
signalling within the hypoxic and abnormal tumour
vasculature may lead to an improved anti-tumour effi-
cacy of cytotoxic agents through the normalisation of
the vascular supply to tumours (Ref. 8). Moreover,
the effects of ROCK inhibition on other key compo-
nents of the tumour microenvironment, including acti-
vated (myo)fibroblasts, immune cells and extracellular
matrix (ECM), may have an additional therapeutic
value (Refs 9, 10, 11). This review summarises our
current understanding of the diverse and complex
roles of aberrant Rho/ROCK signalling in tumour
development and progression, highlighting new
avenues for the utilisation of ROCK inhibitors as
anti-cancer therapy, increasingly in the context of
modulating the tumour microenvironment.
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Key components of the Rho/ROCK pathway
The Rho family of small GTPases regulate a diverse
array of cellular processes, including cytoskeletal
dynamics, cell polarity, membrane transport and
gene expression, which are integral for the growth
and metastatic potential of cancer cells (Ref. 7). The
three best characterised members of this family are
Rho (A, B and C), Rac (1, 2 and 3) and Cdc42
(Ref. 7). They cycle between a GTP-bound active
state and GDP-bound inactive state which is mediated
by guanine nucleotide exchange factors (GEFs) and
GTPase-activating proteins (GAPs), as illustrated in
Figure 1 (Refs 12, 13). In their active state, they act
on one of over 60 downstream targets which include
Rho-associated coiled-coil containing protein kinase
(ROCK), mDia (Ref. 14), serine/threonine p21-
activating kinases 4-6 (Ref. 15), Par6 (Ref. 16) and
Wiskott-Aldrich Syndrome Protein (Ref. 17). In add-
ition, through interaction with various well charac-
terised pathways, including the phosphoinositide 3-
kinase, focal adhesion kinase, Src, LIM domain
kinase (LIMK) and mitogen-activated protein
kinase/Erk protein networks, Rho GTPase activation
ultimately leads to actin cytoskeleton remodelling,
increased cell motility, changes in proliferation and
cell survival (Refs 10, 18, 19, 20). ROCK, a down-
stream effector of Rho, phosphorylates MYPT1, the
targeting subunit of myosin phosphatase, resulting
in decreased myosin phosphatase activity and
thereby increased phosphorylation of the regulatory
myosin light-chain 2 (MLC2) protein (Ref. 21).
Both ROCK/MYPT1/MLC2 and ROCK/LIMK/
cofilin signalling axes are heavily involved in stress
fibre assembly, cell adhesion and motility (Fig. 1).
Further, the ROCK family contains two members,
ROCK1 and ROCK2, which share 65% overall iden-
tity and 92% identity in the kinase domain (Ref. 22)
and are thus believed to also share more than 30 imme-
diate downstream substrates, including MYPT1,
MLC, and LIMK (Ref. 7). Some differences in the
activation of specific isoforms of ROCK have also
been reported. For example, induction of pressure
overload cardiac hypertrophy in mice leads to
elevated ROCK1, but not ROCK2, expression
(Ref. 22) and specific activation of the Rho/
ROCK1/c-Jun N-terminal kinase (JNK) signalling
in hypertrophic cardiomyocytes (Ref. 23). Similarly,
ROCK2 has been implicated as the relevant isoform
in a mouse model of acute ischaemic stroke
(Ref. 24). Finally, emerging evidence suggests poten-
tial distinct roles of ROCK1 and ROCK2 in regulating
stress-induced actin cytoskeleton reorganisation and
cell detachment in mouse embryonic fibroblasts
(Ref. 25) and migrating neurons (Ref. 26).
Moreover, ROCK can be effectively targeted by

(non-isoform) specific inhibitors including Y-27632,
fasudil and new generation compounds, which
prevent activation of ROCK by competing with ATP

for binding to the kinase (Refs 27, 28, 29).
Interestingly, fasudil has been shown to be safe for
use in humans for the treatment of cerebral vasospasm
with an acceptable side effect profile, making it an
attractive drug for clinical study (Ref. 30).

Exploring the effects of inhibiting Rho/
ROCK in cancer: the pre-clinical evidence
Numerous studies have thus far investigated the thera-
peutic efficacy of Rho/ROCK inhibition in in vitro and
in vivo models of cancer (Table 1, (Refs 5, 28, 29, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58). As sum-
marised in Table 1, blocking Rho/ROCK signalling in
cancer cells can effectively reduce cellular prolifer-
ation, invasion and angiogenesis in vitro and reduce
tumour growth and metastasis formation in vivo.
Interestingly, the effects on proliferation are heteroge-
neous, with several studies reporting no effect at all
(Refs 21, 28, 39, 42, 46, 49), one study demonstrating
an anti-proliferative effect when fasudil was used at a
supraphysiological concentration (Ref. 38) and
several more recent studies suggesting marked effects
on cell growth (Refs 29, 31, 43, 52, 56) that can be
further enhanced when ROCK inhibition is combined
with chemotherapy (Refs 35, 43). Further, when effi-
cacy of ROCK inhibitors was examined in the
context of tumour cell motility, migratory and invasive
characteristics, more consistent findings were observed
across a variety of cancer models examined (Refs 5, 28,
39, 42, 49). Several groups have also shown that inhib-
ition of ROCK and its stimulated signalling might
prove to be a promising strategy for restraining
tumour progression in vivo, for example by slowing
down primary tumour growth (Refs 45, 52, 55) and for-
mation of metastases (Refs 37, 48, 49, 51, 56). The
potential differences observed between the in vitro
[two-dimensional (2D) observations] and in vivo find-
ings may be partially explained by the different
models examined, origin of the inhibitors used
(Table 1), or the critical role RhoA plays in cellular
invasion and metastasis (Ref. 59). Perhaps, this dis-
crepancy could also be more reflective of the
complex involvement Rho/ROCK has in cellular pro-
cesses in cancer that cannot be accurately recapitulated
in simple 2D assays (Ref. 60). A deeper understanding
of Rho/ROCK signalling activation in vivo is neces-
sary to fully characterise the importance of inhibiting
this pathway in cancer medicine as has recently been
achieved for its prototype partner Rac GTPase
(Ref. 61).

The Rho/ROCK pathway is critical in
angiogenesis
Sustained angiogenesis is one of the key hallmarks of
tumour progression (Ref. 62) that incorporates abnor-
mal signalling cues from key cell types within the
complex tumour microenvironment (Ref. 63). It is
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well documented that in response to tissue hypoxia,
angiogenesis is constantly stimulated resulting in a
highly abnormal vasculature (Ref. 64). These vessels
are immature, tortuous, have increased permeability
and lead to intratumoural hypoxia, which can
mediate resistance to anti-cancer therapies (Ref. 65).
Moreover, the tumour-associated angiogenic vascula-
ture, growth-promoting trophic factors that are
expressed and secreted by the endothelial cells and pro-
longed hypoxia can collectively drive hyper-prolifer-
ation and development of a more aggressive tumour
phenotype with increased propensity to metastasise
(Ref. 66). Angiogenesis is a complex process, which
is largely controlled by Vascular endothelial growth
factor (VEGF) and its membrane receptors. To initiate
the angiogenic process, endothelial cells (ECs) lose
junctional integrity and increase permeability
(Ref. 67). Subsequent degradation of the basement
membrane and remodelling of the ECM enables ECs

to migrate, proliferate and ultimately undergo morpho-
genesis in order for new vessels to develop (Ref. 68).
The Rho/ROCK pathway has been shown to be an

integral part of VEGF-mediated angiogenesis and is
not only implicated in VEGF signalling, but also in
numerous processes necessary for angiogenesis to
occur, including EC migration, survival and cell per-
meability (Ref. 69) (Fig. 2). It has been shown that
adherin junctions between ECs need to be loosened
in order for EC migration and proliferation to occur
(Ref. 66). Rho/ROCK signals via p-MLC break
down intracellular junctions and thereby increase vascu-
lar permeability (Ref. 70). In order for ECs to invade
surrounding tissue and form new vessels, the basement
membrane (BM) and ECMmust be disrupted via matrix
metalloproteinase (MMP) secretion (Ref. 71). Rho/
ROCK activation has been shown to directly stimulate
MMP-9 secretion (Ref. 72) and is also associated with
increased MMP expression in tumours (Refs 73, 74).

PP

GDP Rho Rho

Agonists: Angiotensin 2,
PDGF, Integrins, VEGF

ROCKi
e.g. Fasudil

ROCK LIMK
P

P P

MLC

Myosin phosphorylation
Actomyosin contractility

Actin filament stabilisation

Regulation of cell morphology, proliferation, motility
and adhesion

MLC Cofilin Cofilin

GTP

GEFs

GAPs

“Inactive” “Active”

“Inactive” “Inactive”“Active”“Active”

- -

Key components of the Rho/ROCK signalling pathway
Expert Reviews in Molecular Medicine © 2015 Cambridge University Press

FIGURE 1.

Key components of the Rho/ Rho-associated coiled-coil containing protein kinase (ROCK) signalling pathway. Various extracellular stimuli
(growth factors and hormones) bind to cell membrane receptors, which subsequently act upon guanine-nucleotide-exchange factors (GEFs) and
GTPase-activating proteins (GAPs) to regulate activation of Rho GTPase proteins. Once in its GTP-bound ‘active’ state, Rho GTPase binds to
ROCK (ROCK1/2) to stimulate key downstream effectors (Refs 7, 12, 21). ROCK-mediated phosphorylation of myosin light-chain (MLC)
promotes phosphorylation of myosin and increased actomyosin contraction. Activation of LIMK by ROCK leads to phosphorylation and inacti-
vation of the actin-depolymerising protein cofilin, altering actin filament organisation. Collectively, activation of key downstream effectors of

Rho causes changes in motility, proliferation and other essential cellular processes.
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Once the BM and ECM are disrupted, ECmigration and
tube formation can occur. van Nieuw Amerongen et al.
(Ref. 75) used human umbilical vein endothelial cells
(HUVECs) to show that not only do VEGF-induced
changes in the EC cytoskeleton depend on RhoA, but
also that growth of human microvascular endothelial
cells (hMVECs) into a fibrin matrix in response to

VEGF is inhibited by Y-27632, suggesting that the
Rho/ROCK pathway is necessary for ingrowth of
ECs. Bryan et al. (Ref. 76) showed that disruption of
the Rho/ROCK pathway inhibits VEGF-mediated
changes to the cytoskeleton in ECs and also that ECs
treated with Y-27632 failed to assemble into recognis-
able vessel structures, highlighting the importance of
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FIGURE 2.

Rho/ Rho-associated coiled-coil containing protein kinase (ROCK) signalling and the tumour microenvironment: unexplored treatment oppor-
tunities. (a) Schematic illustrating key events that lead to tumour progression and metastasis. (b) In the presence of ROCK inhibitors, invasion
and metastasis are impaired: the Rho/ROCK pathway as a mediator and therapeutic target of cancer metastasis. Within cancer cells, ROCK
inhibitors prevent the phosphorylation of LIMK and p- myosin light-chain (MLC) which results in impaired actin-myosin filament bundling.
This in turn affects cellular proliferation, morphology, adhesion, motility and gene transcription. ROCK is essential in cancer-associated fibro-

blasts (CAF) associated invasion and also in cell- extracellular matrix (ECM) signalling.
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the Rho/ROCK pathway in vasculogenesis. Hoang and
Uchida (Refs 77, 78) both demonstrated that inhibiting
Rho/ROCK prevented ECs from forming organised
vascular structures by suppressing cellular motility. As
the Rho/ROCK pathway has been established as
being critical to multiple steps in angiogenesis, many
studies have attempted to elucidate the importance of
its involvement in the cancer setting. Croft et al.
(Ref. 79) used a conditionally active form of ROCK2
in colon carcinoma cells to show that increased
ROCK signalling promoted tumour angiogenesis and
tumour cell invasion in vivo. Using HUVEC and
glioma cell co-culture techniques, Nakabayashi et al.
(Ref. 38) further showed that the ROCK inhibitor
fasudil suppressed tumour-induced angiogenesis and
the migration of HUVEC cells through transwell
plates. Moreover, the same group showed that the
growth of T98G glioma xenografts was significantly
inhibited when tumour-bearing mice were treated
daily with fasudil (Ref. 38). ROCK inhibitors also
showed significant promise as anti-angiogenic agents
in additional in vivo models, for example Nakajima
et al. (Ref. 40) showed that administration of the
ROCK inhibitor Wf-536 reduced the number of spon-
taneous metastases and impaired angiogenesis in a
Lewis lung carcinoma model. Further, Somlyo et al.
(Ref. 47) showed that mice bearing xenotransplants of
PC3 cells had a reduction in tumour volume and
increased survival when treated with a combination of
Wf-536 and Marimastat (an MMP inhibitor). ROCK
inhibitors have not been evaluated in human trials to
date. However, considerable clinical data exists regard-
ing the effects of VEGF inhibitors on various cancer
subtypes. Although anti-angiogenic therapies have
shown variable efficacy in cancer treatment, a deeper
understanding of the mechanisms of action has high-
lighted the potential importance of timing of administra-
tion on the anti-cancer effects. This hypothesis is an
interesting new strategy to explore and test.

Rho/ROCK inhibitors as vascular
normalising agents
Clinical use of anti-angiogenic agents has generated
disappointing results when used as monotherapy
(Ref. 80), but more success has been had when these
agents are combined with cytotoxic chemotherapy
(Ref. 81). A potential explanation for this may
include acquired resistance mechanisms because of
continual VEGF inhibition (Refs 82, 83), intrinsic vas-
cular heterogeneity within tumours (Ref. 84) and/or
impaired drug delivery because of excessive reduction
in tumour vasculature, which ultimately shifts the net
balance towards hypoxia-driven rebound angiogenesis
(Ref. 85). VEGF inhibition leads to increased tumour
oxygenation when administered in a transient manner,
a process called vascular normalisation (Refs 86, 87,
88) (Fig. 2). Exploiting this process to improve the effi-
cacy of standard cytotoxic therapies is attractive and
several pre-clinical and clinical studies have explored

this concept thus far. Lee et al. (Ref. 89) demonstrated
that blocking VEGF in glioblastoma or colon adenocar-
cinoma compensates for hypoxia-induced radiation
resistance. The authors further showed that using an
anti-VEGF antibody resulted in greater tumour
growth delay when combined with radiation, than radi-
ation alone. Blocking VEGF signalling was subse-
quently found to lead to pruning of immature vessels
and generation of a morphologically ‘normalized’ vas-
cular network within tumours, allowing deeper pene-
tration of molecules, such as chemotherapeutics into
the cancer (Ref. 88). Most recently, Coutelle et al.
(Ref. 90) showed that dual targeting of VEGF and
Angiopoietin-2 in addition to reducing tumour
growth and sprouting angiogenesis significantly
improved vascular normalisation parameters, including
leakiness, hypoxia and perfusion as prerequisites for
improved access for chemotherapy. Importantly, in
the same study, the authors also showed for the first
time, that the formation of vascular basement mem-
brane sleeves that facilitate the rapid vascular regrowth
associated with resistance to VEGF-targeting drugs can
be eliminated by such dual targeting strategies. Falcon
et al. (Ref. 91) similarly demonstrated that platelet-
derived growth factor (PDGF) beta blockade in Lewis
lung carcinoma tumours increased tumour vessel effi-
ciency in vivo. Further, they found that the combination
of imatinib with cyclophosphamide improved the
delivery of cyclophosphamide to the tumour and the
tumour burden was reduced in vivo.
The Rho/ROCK pathway has been specifically

examined in this context: Ader et al. (Ref. 92) per-
formed in vivo induction of dominant negative Rho
(RhoBN19) to show that inhibiting Rho decreased
tumour cell survival after irradiation and moreover,
tumours had improved oxygenation and decreased
vessel density. The critical aspect of optimal timing
of administration of combinations involving anti-
VEGF therapies and cytotoxic agents was further
explored by Winkler et al. (Ref. 8). Treatment of glio-
blastoma xenografts with an anti-VEGF receptor
(VEGFR) 2 monoclonal antibody resulted in a signifi-
cant reduction in tumour hypoxia on day 2, with
maximal reduction on day 5. By day 8, tumour
hypoxia had started to increase. Further, radiation
therapy produced a synergistic effect when given on
days 4–6. This suggests that after VEGFR blockade,
there is an initial increase in tumour oxygenation
during which, the effects of radiotherapy are increased,
but importantly with continual VEGFR blockade, the
tumour becomes hypoxic again and the synergism
with radiation is lost. Several randomised trials have
shown that the addition of bevacizumab to chemother-
apy and radiotherapy improves progression free sur-
vival in patients with central nervous system
malignancies (Refs 93, 94) and a phase I trial specific-
ally testing the vascular normalisation strategy has
shown this holds considerable promise in patient care
(Ref. 95). Here, patients with rectal cancer receiving
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neoadjuvant chemotherapy plus radiation were exposed
to the VEGF inhibitor, bevacizumab. Interestingly,
bevacizumab treatment led to normalisation of the
tumour vasculature, increased tumour cell apoptosis
and resulted in a complete pathological response in
two patients (Ref. 95). Therefore, it would be interest-
ing to examine whether Rho/ROCK pathway inhibi-
tors may prove effective vascular normalising agents,
increasing efficacy of cytotoxic therapies by modulat-
ing key components of the VEGF signalling pathway.
However, the transient nature of vascular normalisation
means that the window of opportunity for drug delivery
is temporary, may be difficult to predict and therefore
apply in the clinical setting. These issues are yet to
be systematically examined.

Rho/ROCK inhibitors as provascular agents
In addition to normalising the tumour vasculature, a
provascular strategy may also be a promising treatment
approach, where transient vasodilation by targeted
therapy improves blood supply and exposure of
tumour cells to circulating chemotherapeutics and/or
sensitivity to radiation. As most vasodilators dilate
both the tumour and systemic vasculature, there can
be unpredictable effects on the tumour vasculature. If
the tumour vessels are in series with the systemic circu-
lation, systemic vasodilation can increase tumour blood
flow, however if the tumour vasculature is in parallel,
then systemic vasodilation will cause a reduction in
tumour blood flow (vascular steal phenomenon)
(Ref. 96). An ideal provascular agent would therefore,
be one that preferentially targets the tumour vascular
bed. A number of studies have shown some success
with this strategy, suggesting the idea has merit.
Gallez and Sonveaux (Refs 97, 98) both demonstrated
the possibility of increasing tumour blood flow using
vasodilators. Jordan and Stewart (Refs 99, 100)
further showed that in vivo administration of nitric
oxide not only increased tumour blood flow, but sensi-
tised tumours to the effects of radiation. Given the crit-
ical interplay between tumour hypoxia and
angiogenesis, modulation of tumour-oxygen sensing
has also proven an effective strategy to improve
blood flow to the tumour. A systematic review of clin-
ical trials assessing the effects of improving tumour
oxygenation to radiosensitise tumours, suggests there
may be clinical benefit, finding a 23% improvement
in locoregional control and a 13% improvement in
overall survival (Ref. 101). In terms of improving the
delivery of chemotherapy, studies by Masunaga et al.
(Ref. 102) and Martinive et al. (Ref. 103) observed sig-
nificant improvements in the uptake of selected che-
motherapies when tumour-bearing mice were injected
with nicotinamide or an endothelin-1 receptor antagon-
ist, respectively. Most recently, Wong et al. (Ref. 104)
demonstrated that treatment combining low-dose
Cilengitide, an αvβ3/ αvβ5 integrin receptor inhibitor,
with a calcium channel blocker, Verapamil, significantly
improved efficacy of chemotherapeutic, gemcitabine, in

in vivo models of lung and pancreatic cancer. In the
same study, detailed analysis of pre- and post-treatment
material revealed that the cyclical administration of the
dual vascular modulator-chemotherapy combination
led to increased tumour vascular function and intratu-
moural drug delivery while reducing hypoxia and des-
moplasia in these models. Finally, by comparing the
ability of capillary ECs isolated from normal versus
tumour microvasculature to sense and respond to phys-
ical cues in their ECM, Ghosh et al. (Ref. 105) demon-
strated that tumour-derived ECs exhibit different
sensitivities to various mechanical cues in vitro and
that these abnormal responses, which may be implicated
in the loss of normal structure in the tumour microvascu-
lature, are because of aberrant and increased Rho
signalling.
With this in mind, exploration of the vasodilatory

effects of ROCK inhibitors in cancer may be an inter-
esting treatment approach. ROCK inhibitors reduce
vasospasm via reduction in smooth muscle contraction
and down-regulation of endothelial nitric oxide syn-
thase, leading to their use in the treatment of ischaemic
stroke (Ref. 30), with significant efficacy in reducing
post stroke cerebral vasospasm and an acceptable side
effect profile. Importantly, no statistically significant
differences in the side effects reported by patients
were observed when fasudil was compared with
placebo. ROCK inhibitors have been shown to normal-
ise smooth muscle contraction and suppress vascular
lesion formation, making them a therapy of interest in
hypertension, pulmonary hypertension, hypertensive
vascular disease and ischaemic heart disease (Refs 3,
4). It is therefore plausible to hypothesise that Rho/
ROCK inhibitors may act as provascular agents,
improving tumour blood flow and increasing exposure
of cells to chemotherapy and/or sensitising cells to the
effects of radiation (Fig. 2). However, as outlined for
vascular normalisation, the timing and dosing of pro-
vascular agents are likely to be critical in determining
success and this concept is yet to be systematically
examined.

Rho/ROCK signalling within the complex
tumour microenvironment
The dynamic and complex interplay between tumour
cells, stromal cells and the ECM affect cancer initi-
ation, progression, metastasis and also, chemoresis-
tance (Refs 106, 107). Recent data indicate that
carcinogenesis and tumour angiogenesis result not
only from the interaction of cancer cells with ECs of
various origin (as discussed above), but that surround-
ing ‘normal’ stromal and inflammatory cells also have a
crucial role in directing the formation of the blood
vessels that nourish a developing tumour (Ref. 108).
In addition, loss of normal tissue homeostasis during
tumourigenesis initiates a stromal remodelling
cascade which leads to fibroblast activation (i.e. myofi-
broblasts/cancer-associated fibroblasts or CAFs) and
production of biomechanically and biochemically
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altered ECM (Ref. 109). Increased deposition and
modification of the ECM mediated through CAF-
expressed biochemical signalling molecules, including
Rho/ROCK, Caveolin-1, Syndecans and Hippo
pathway members YAP/TAZ (Refs 109, 110) can
then lead to activation of signal transduction pathways
that promote tumour cell growth, proliferation and
survival.
Rho GTPases have been shown to be implicit in a

number of stromal processes that contribute to the
invasiveness and metastatic potential of cancer cells
(Refs 11, 59). It has been long understood that the
presence of high density stroma in breast tissue
confer an increased risk of developing breast cancer
(Ref. 111). Women with high mammographic dens-
ities have increased proliferation of stromal or epithe-
lial tissue on histological examination and this has
been correlated with an increased risk of breast
cancer (Ref. 111). It was further hypothesised that
interactions between the stroma and epithelium ultim-
ately lead to cancer formation (Ref. 111). In an effort
to better understand this phenomenon, Lisanti et al.
(Ref. 112) conducted genome-wide transcriptional
profiling of low density (LD) breast fibroblasts, com-
pared with high density (HD) breast fibroblasts, reveal-
ing differences in several key processes including
stress response, inflammation, stemness and signal
transduction. The authors postulated that the presence
of HD fibroblasts could be considered a pre-cancerous
phenotype and Rho GTPase activation (along with
increased JNK1, inducible nitric oxide synthase, fibro-
blast growth factor receptor, epidermal growth factor
receptor and PDGF receptor signalling) was identified
as a key biological process in this setting (Ref. 112).
Moreover, in an in vitro system of tumour explants
embedded in collagen gels, activation of Rho/ROCK
was shown to be essential for contractility-dependent
collagen realignment, whereas inhibition of Rho/
ROCK led to a substantial reduction of contact guid-
ance tracks, an early step in the invasion process
(Ref. 113). Goetz et al. (Ref. 114) further demonstrated
that high levels of stromal Caveolin-1, an activator of
Rho/ROCK signalling (Ref. 115), can initiate ECM
re-organisation in the tumour and in the cancer-asso-
ciated stroma, promoting metastatic behaviour in a
Rho–ROCK-dependent manner. Conversely, in the
same study, down-regulation of Caveolin-1 blocked
Rho/ROCK activity, leading to altered ECM topog-
raphy and reduced cell contractility (Ref. 114).
Further work in breast cancer has shown that breast

cancer cells grown in a 3D floating matrix differentiate
into tubular structures, however if the same matrix is
attached to the dish, the cells do not differentiate, but
proliferate and spread (Ref. 116). In the same study,
differentiation could be disrupted by increasing the
density of the matrix. Interestingly, it was also shown
that tubulogenesis required contraction of the 3D
matrix which was dependent on the Rho/ROCK
pathway and that RhoA activity was down-regulated

in differentiated cells (Ref. 116). Subsequently,
p190RhoGAP-B was shown to mediate down-regula-
tion of RhoA activity and inhibition of ductal morpho-
genesis. RhoA activity was reduced at cell-cell
adhesions versus activity at cell-ECM adhesions
(Ref. 117). These studies highlight the important role
the Rho/ROCK pathway has in how cancer cells inter-
act with their environment, and how this environment
in turn, affects tumour cell behaviour.
The stromal compartment of tumours has long been

thought to contribute to the aggressive phenotype of
cancers, and CAFs have been found to provide
tumour cells with proliferative and anti-apoptotic
signals affecting angiogenesis and ECM remodelling.
Specifically, Cadamuro et al. (Ref. 118) showed that
PDGF-D plays a major role in CAF recruitment and
activates Rho/ROCK to promote fibroblast migration.
Further, increased palladin expression in CAFs is asso-
ciated with increased growth and metastasis of pancre-
atic cancer cells by increasing their ability to remodel
the ECM, thereby promoting tumour invasion
(Ref. 119). Gaggioli et al. (Ref. 120) demonstrated
that squamous cell carcinoma (SCC) cells required
fibroblasts to invade into a 3D organotypic matrix.
Moreover, they showed that inhibition of Rho/ROCK
signalling specifically in the fibroblasts (not in the
SCC cells) reduced invasion of the SCC cells. In add-
ition, Scott et al. (Ref. 121) showed that LIMK signal-
ling, downstream of ROCK, is required for path
generation during cancer cell invasion by both
leading tumour cells and stromal cells. These findings
suggest that the presence of fibroblasts is necessary
for cancer cell invasion and that the Rho/ROCK activa-
tion is critical in this context. Similarly, Sanz-Moreno
et al. (Ref. 10) demonstrated a role for cytokine signal-
ling through GP130-IL6ST/JAK1 in the regulation of
ROCK-dependent actomyosin contraction, which
drives matrix remodelling by CAFs and migration of
melanoma cells. Interestingly, the ROCK-induced acto-
myosin contractility was found to further stimulate
JAK1/STAT3 signalling, indicating that there is a self-
reinforcing positive feedback loop (Ref. 10).
Therefore, inhibition of Rho/ROCK signalling in this
context may block both intrinsic and microenviron-
ment-derived extrinsic signals that promote CAF-facili-
tated cancer invasion, and could potentially have a
sustained effect by breaking the positive feedback loop.
Migration and invasion are important elements of

the growth of the primary tumour, but also play a crit-
ical role in the development of metastasis. In vivo, cells
must breach the endothelial barrier to metastasise
(Refs 122, 123). The process of intercalation is where
cancer cells first adhere to ECs, open the EC junctions,
stimulate EC retraction and then insert into the endo-
thelial monolayer. It has been shown that Cdc42 deple-
tion impairs intercalation in PC3 cells and also that
Cdc42, RAC1 and RhoA impair EC junction
opening. Mice injected with Cdc42 depleted PC3
cells developed fewer metastases, highlighting the
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TABLE 1.

THE THERAPEUTIC EFFICACY OF RHO/ROCK INHIBITORS (ROCKI) IN VARIOUS MODELS OF CANCER.

Species/Cancer
type

Model Inhibitor examined Origin of inhibitor Effect on
proliferation

Effect on
invasion

Effect on
angiogenesis

In vivo findings Additional comments Study

Human
Acute myeloid
leukaemia

Primary
leukaemia
culture

Fasudil
Y-27632

Selleck Chemicals ↓ – – ↓ Tumour (leukaemia)
load in vivo

↑ Apoptosis
↓ Leukemic progenitors

(52)

Bladder cancer UM-UC3, 5637 Fasudil Asahi Kasei
Pharmaa

↓ ↓ – – ↓ Migration
↑ Apoptosis

(31)

Breast cancer MDA-MB-231 RKI-18 In-house (129) No effect ↓ – – ↓ Migration and
anchorage
independent growth

(28)

MDA-MB-231,
SUM 1315,
MCF-7

Y-27632 Sigma ↓ ↓ – No effect on primary
tumour weight

↓ Formation of bone
metastases

↓ Migration (37)

MDA-MB-231 Y-27632, ROCK shRNA Sigma – ↓ – No difference in
tumour volume when
knockdown cells
were injected into
mice

↓ Migration (36)

MDA-MB-231 RhoA/C siRNA Eurogentech ↓ ↓ ↓ ↓ Tumour growth and
vascularisation

– (44)

Colorectal cancer HCT116, HT29 Y-27632 R&D Systems – – – ↓ Formation of
intrahepatic
metastases

↓ Migration (51)

Glioblastoma T98G, U87MG Fasudil Biaffin GmbH ↓ (100 μM) – ↓ ↓ Tumour growth (38)
T98G, U251 Fasudil Chasesun

Pharmaceutical
↓ ↓ − ↓ Tumour growth,

invasion
↑ Survival

↑ Apoptosis (32)

LN-18 Y-27632 Calbiochem ↓ – – – – (58)
Hepatocellular
carcinoma

Li-7 Y-27632 Welfide
Corporation a

– – – ↓ Formation of
intrahepatic
metastases

– (48)

Li-7, KYN-2 Dominant negative p160
ROCK mutant

In-house – – – ↓ Formation of
metastases
(p160ROCK mutant
tumours)

↓ Cell motility
(p160ROCK mutant
cells)

(33)

Fibrosarcoma HT1080 Wf-536 Mitsubishi
Pharma

– ↓ – – ↓ Migration (41)

Melanoma NRAS-mutant
SK-MEL147,
BLM

GSK269962A
(ROCKi)+GSK1120212
(MEKi)

Axon Medchem
Selleck
Chemicals

↓ – – ↓ Tumour growth
↑ Survival with
combination therapy

↑ Apoptosis and
cytostasis with
ROCKi+MEKi
combination

(29)

Non-small cell
lung cancer

A549 Fasudil Hongri
Pharmaceutical

↓ ↓ – – – (57)

95D Fasudil Hongri
Pharmaceutical

↓ ↓ – – ↓ Adhesion (54)

A549 Y-27632 Sigma ↓ (Y-27632
given prior
to cisplatin)

– – – – (35)
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Ovarian cancer A2780,
A2780CDDP
(cisplatin
resistant)

Fasudil, Y-27632 Sigma ↓ – – – ↑ Cisplatin-induced
apoptosis and growth
inhibition

(43)

Caov-3,
SKOV3ip1

Fasudil Asahi-Kasei
Corporation

No effect ↓ – ↓ Tumour growth
↓ Formation of ascites
(SKOV3ip1)

– (42)

SKOV3,
OVCAR3

Y-27632, Lovastatin Calbiochem – ↓ – ↓ Formation of
metastases when
treated with
Lovastatin

– (34)

Prostate cancer PC3 Y-27632 Sigma ↓ – – ↓ Tumour growth
↓ Formation of lung
metastases

↓ Cell motility and
migration

(56)

PC3, LNCaP Y-27632 Yoshitomi
Pharmaceuticala

No effect – ↓ ↓ Tumour growth
↑ Survival

↓ Migration (46)

PC3 Wf-536 Welfide
Corporationa

– – ↓ ↓ Tumour growth in
combination with
Marimastat and/or
Paclitaxel

↓ Migration (47)

Kidney carcinoma A-498, 769-P ROCK1 siRNA Invitrogen – ↓ – – ↓ Cell motility (50)
Mouse

HCC CB0140C12 Y-27632 Welfide
Corporation a

– ↓ – ↓ Tumour growth
↓ Formation of
metastases

↑ Apoptosis
↓ MMP-9 expression

(73)

Lung carcinoma Lewis Lung
Cancer

Wf-536 Mitsubishi
Pharma

No effect ↓ ↓ ↓ Formation of
metastases

↓ Migration (40)

Melanoma B16F10 H1152
Fasudil

Calbiochem
Selleck
Chemicals

No effect ↓ – ↓ Tumour growth
↑ Survival (both
ROCKi)
↓ Pulmonary
metastases (H1152)

↓ Migration
↑ Intratumoural
leukocyte infiltration

(49)

B16 Fasudil Hongri
Pharmaceutical

– – ↓ ↓ Tumour growth ↓ Migration
Disrupted actin stress
fibres

(53)

B16F1 Y-27632 Sigma ↓ ↓ – ↓ Tumour growth – (45)
B16BL6, B16F10 Wf-536 Mitsubishi

Pharma
No effect ↓ – ↓ Formation of

metastases
↑ Survival when
combined with
Paclitaxel

– (39)

Rat
Hepatoma MM1 Y-27632 Yoshitomi

Pharmaceuticala
No effect ↓ – ↓ Formation of

metastases, ascites
↓ Incidence of tumour
dissemination

– (5)

Other (Mixed)
MDA-MB-231

HT1080
MM1

Fasudil Asahi-Kasei
Corporation

↓ – – ↓ Tumour formation
(MDA-MB-231)

↓ Formation of lung
metastases (HT1080)
↓ Peritoneal
dissemination (MM1)

↓ Migration (55)

aIndicates pharmaceutical collaboration.
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importance of the Rho GTPases in intercalation
(Ref. 124). Collectively, these studies indicate a critical
role for the Rho/ROCK pathway in modulating
relevant cross-talk between tumour cells and their sur-
rounding microenvironment, particularly in the context
of driving cellular migration, invasion and metastasis
(Fig. 2).

Conclusions and the long road to clinical
translation
The Rho/ROCK pathway has been a popular field of
study for cancer researchers. However, despite ROCK
inhibitors being demonstrated to be safe for human
use, these agents have not yet been translated to the
cancer clinic. These compounds have well documented
effects on cellular proliferation, however their effects on
cell invasion, tumour growth and metastasis appear to
be more robust. Large scale cancer genome sequencing
studies have revealed that mutations in the Rho GTPase
family are rare (Refs 125, 126), where generally aber-
rant activation of this pathway occurs through overex-
pression of Rho GTPases or by changes in the levels
of regulators of Rho activity, including increased acti-
vation of GEFs and inactivation or loss of GAPs or
GDIs. Importantly, it should be noted that increased
expression of Rho/ROCK signalling components
may not necessarily correlate with an increase in total
activity of these proteins, as this process is also
tightly regulated through subcellular localisation of
Rho and downstream effectors and by their interaction
with key regulatory molecules (Refs 59, 61, 127).
Thus, although this is an active area of research, there
are currently no effective predictive biomarkers of treat-
ment response to Rho/ROCK inhibition.
In addition to their effects on tumour cell prolifer-

ation and motility, ROCK inhibitors modulate angio-
genesis and vascular tone and thus could potentially
improve the delivery and efficacy of chemotherapy or
other novel targeted agents (Refs 29, 34, 47). The
Rho/ROCK pathway is also important in regulating
the dynamic cross-talk between tumour cells and their
microenvironment which may also be therapeutically
exploited to inhibit metastasis formation. Finally, the
therapeutic potential of ROCK inhibitors as an
adjunct to cytotoxic chemotherapy is yet to be system-
atically examined.
As differences in the activation of the two ROCK

isoforms have been reported in cardiovascular or
CNS disorders, with ROCK1 implicated as the pre-
dominant mechanism for the hypotensive effects of
pan-ROCK inhibitors, one could hypothesise that
there may be isoform-specific regulation of cancer
cell behaviour, interactions within the tumour micro-
environment and control of carcinogenesis and metas-
tasis. From this, targeting ROCK2 could potentially
lead to less toxicity compared with pan-ROCK inhib-
ition. Attempts to produce more specific and clinically
suitable ROCK inhibitors are ongoing, with increased

focus on isoform-specific targeting (Ref. 128). On the
other hand, given that tumours are highly adaptive
and rapidly acquire resistance when exposed to
therapy, hitting multiple oncogenic signalling nodules
or hallmarks of cancer with non-isoform selective
ROCK inhibitors, may overall represent a more effect-
ive treatment strategy, as recently highlighted by
Hanahan D (Ref. 63).
Further understanding of Rho signalling in the

various tumour compartments will determine whether
the inhibitors of this complex pathway may serve as
effective treatments for newly diagnosed or recurrent
tumours and will establish the optimum combinations
with radiation, cytotoxic chemotherapy, and other
targeted molecular compounds. Importantly, these
agents may improve the delivery of chemotherapy to
the tumour, perhaps enhancing efficacy, reducing the
effective dose required or overcoming some mechan-
isms of chemoresistance.

Research in progress and outstanding
research questions
This review highlights a number of avenues for further
research when examining the clinical utility of ROCK
inhibitors to treat cancer. Some interesting areas of
research include closely examining how the Rho/
ROCK pathway is implicated in tumour stromal signal-
ling, particularly in cancers where tumour stroma is
highly prominent such as pancreatic cancer. Studying
the stroma for potential biomarkers of tumour response
may provide additional important insights rather than
solely focusing research on the tumour itself. State of
the art molecular imaging techniques such as Forster
resonance energy transfer (FRET) imaging can
provide relevant information into the dynamic and
spatiotemporal regulation of cell signalling behaviour
under physiological and disease conditions.
Transgenic mice expressing Rho GTPase FRET bio-
sensors will provide detailed knowledge of the
normal physiological roles this pathway plays at the
cellular level. In addition, crossing these mouse
strains with other disease models will allow us to
examine, in an intact 3D system, how this pathway is
involved in cancer initiation, progression, chemother-
apy responsiveness and chemoresistance mechanisms.
This knowledge will allow further biomarker develop-
ment, examination of the effects of ROCK inhibition in
primary versus metastatic lesions and in pre-cancerous
lesions.
ROCK inhibitors have yet to make an appearance in

the clinical setting to treat patients with cancer. They
have been shown previously to have an acceptable
side effect profile when used to treat post cerebrovascu-
lar accident vasospasm, but these patients had a short,
continuous infusion and were monitored in intensive
care. Patients with cancer will need long term exposure
and ideally, take an oral preparation. Before trials
examining the anti-cancer effects of these drugs can
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be planned, further phase I studies need to be con-
ducted to determine the most appropriate dosing sched-
ule and with chronic dosing in mind. Protracted
infusion with a pump, such as that used for 5-fluorour-
acil in the oxaliplatin, 5-fluorouracil and folinic
acid (FOLFOX) chemotherapy combination for colon
cancer is possible, but could potentially considerably
increase the cost of the treatment as well as patient mor-
bidity. Hypotension is the most predictable side effect
for patients (Ref. 30), and it may mean that elderly
patients would be less likely to tolerate this drug
well, which could be an issue in the management of
pancreatic cancer. In our pre-clinical trials laboratory,
our early data indicate that mice are able to tolerate a
daily, oral preparation of a ROCK inhibitor and this
is associated with measurable anti-tumour effects.
Further systematic in vivo studies are needed to
exactly predict the optimal sequence of administration
of these drugs in conjunction with chemotherapy or
other targeted therapeutics.
An interesting challenge remains in determining

which Rho GTPase family members are the most prom-
ising druggable targets and how significant the benefi-
cial effects of targeting this signalling network, in
combination with other targeted agents and/ or con-
ventional chemotherapeutics, will be. Further studies
are necessary to accurately ascertain the effects this
pathway has in cancer and in cancer stroma and if pos-
sible, identify potential biomarker(s) of response.
Refining exactly which patients are most likely to
benefit and which combinations dosing schedules are
most effective is the key goal for further research.
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