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A GAME THEORETIC LOOK AT LIFE INSURANCE
UNDERWRITING*

JEAN LEMAIRE

University Libre de Bruxelles

The decision problem of acceptance or rejection of life insurance proposals is
formulated as a two-person non cooperative game between the insurer and the set
of the proposers. Using the minimax criterion or the Bayes criterion, it is shown
how the value and the optimal strategies can be computed, and how an optimal set
of medical informations can be selected and utilized.

1. FORMULATION OF THE GAME

The purpose of this paper, whose mathematical level is elementary, is to
demonstrate how game theory can help the insurers to formulate and solve
some of their underwriting problems. The framework adopted here is life
insurance acceptance, but the concepts developed could be applied to any
other branch.

The decision problem of acceptance or rejection of life insurance proposals
can be formulated as a two-person non cooperative game the following way:
player 1, Pi, is the insurer, while player 2, P2, is the set of all the potential
policy-holders. The game is played many times, in fact each time a member
of P2 fills in a proposal. We suppose that this person is either perfectly healthy
(and should be accepted) or affected by a disease which should be detected
and cause rejection. We shall assume for the moment that the players possess
only two strategies each: acceptance and rejection for Pi, health or disease
for P2. To be more realistic we should introduce a third pure strategy for Pi:
acceptance of the proposer with a surcharge. To keep the analysis as simple
as possible we shall delay the introduction of surcharges until section 4.
Consequently we can define a 2 x 2 payoff matrix for the insurer.

\ P2 healthy ill
Pi \ proposer proposer

acceptance A C

rejection B D

It is evident that the worst outcome for the insurer is to accept a bad risk.
Interpreting the payoffs as utilities for Pi, C should be the lowest figure.
Clearly D > B: it is better for the insurer to reject a bad risk than a good
risk. Also A must be greater than B. One might argue about the relative
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values, A and D, of the good outcomes. We shall suppose in the examples
and the figures that D > A, but the analysis does not rely on this assumption.

In order to find the value of the game and the optimal strategy for Pi,
we can apply
— the minimax criterion, or
— the Bayes criterion.

2. THE MINIMAX CRITERION

To apply the minimax criterion assimilates P2 to a malevolent opponent
whose unique goal is to deceive the insurer and to reduce his payoff. This is
of course an extremely conservative approach, to be used by a pessimistic
insurer, concerned only by its security level.

2.1. Value and Optimal Strategies without Information

Since Pa's objective is to harm Pi, the game becomes a 2 x 2 zero-sum two-
person game, which can be represented graphically. The vertical axis of fig. 1
is the payoff to Pi. His possible choices are represented by the two straight
lines. The horizontal axis is P2Js choice: he can always present an healthy
proposer, or a non healthy, or pick any probability mix in between. The use
of mixed strategies is fully justified here since the game is to be played many
times. Since Pa's payoff is the negative of Pi's', his objective is to minimize
the insurer's maximum gain, the heavy broken line. The ordinate of point M

Pay oil to
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is then the value of the game. The abscissa of M provides the optimal mixed
strategy of P2. Pi's optimal strategy can be obtained similarly (for more
details see for instance OWEN (1968, p. 29)).

Thus, by adopting a mixed strategy (to accept any risk with a probability
D-B

ft A = ~. p;—5—J-, and to reject with a probability ftR = 1 — ftA), Pi can
AD-BC

guarantee himself a payoff of Vi = -. ——-—j,, whatever the strategy

adopted by his opponent. P2S optimal strategy is to present a proportion

*B = A + D-B-C °f g 0 0 d r i s

2.2. Introduction of Medical Information

The preceding model is extremely naive (and will only be used as reference
for comparisons) since it does not take into account Pi's possibility to gather
some information about the proposer's health, by asking him to fill in an
health questionnaire, or by requiring him to undertake a medical examination.
This information is of course only partially reliable. But, however imperfect,
it can be used to improve Pi's guaranteed payoff. How can the insurer make
optimal use of the information he does have ? It is sufficient for our purposes
to characterize the medical information by two parameters: ps, the probability
of successfully noticing a bad risk, and pF, the false alarm probability of
detecting a non-existant illness. Let us introduce a third pure strategy for
Pi: to follow the indications of the medical information. If the proposer is not
healthy, his illness is detected with a probability ps, and remains undetected
with a probability l — ps. Pi's expected payoff thus equals

E = Dps + C{i-ps).

Similarly, his payoff in case the proposer is healthy is

F = {i-pF)A + pFB.

Fig. 2 represents a "detector" with a .7 success probability and a .4 false
alarm probability.

We notice that, in this case, Pi can guarantee himself a payoff V2 > vi by
mixing the strategies "to accept" and "to follow the detector's indication".
Of course, for other values of ps and pF, the optimal mixed strategy varies
and can mix a different set of pure strategies. The detector can even be so
imperfect that the line FE passes below the intersection of BD and AC; then
the medical information is so weak that it is useless.
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Payoff to
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Fig. 2

2.3. Optimal Detection System

A detector is characterized by a pair (ps, PF) of probabilities. The under-
writers can decide to render the standards of acceptation more severe, by
rejecting more people, thereby increasing the success probability ps. Un-
fortunately, the false alarm probability pF will then increase too. Can game
theory help us to select an optimal detection system? Must the company
choose a "nervous" detector, with a high success probability, but also a high
false alarm rate, or a "phlegmatic" or "slow" system with low probabilities
ps and pp ?

Let us assume for simplicity that all the medical information has been
aggregated into a single discriminating variable (for instance by using dis-
criminant- or regression analysis). The distribution of the discriminating
variable for the healthy population will usually overlap the distribution for
the non healthy group. The choice of a particular detector can consist of
selecting a critical value, any higher observed value leading to rejection, any
lower value to acceptance (this procedure is optimal if the distributions are
normal with equal variances. Otherwise, the decision rule can be obtained by
a likelihood ratio method (see appendix or LEE (1971, pp. 201-203)).

The shaded zone represents the false alarm probability, the dotted region
the success probability. Each critical value determines those two probabilities.
If the critical value is moved to the right, the detector becomes slower. If it
is moved to the left, it becomes more nervous. The set of all the critical values

https://doi.org/10.1017/S0515036100006565 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100006565


LIFE INSURANCE UNDERWRITING

healthy

value of the
discriminating variable

acceptance rejection

Fig- 3

Fig. 4

defines the efficiency curve of the discriminant variable. The weaker the
discriminant power of this variable, the nearest to the bissecting line its
efficiency line. A perfect discriminant variable has a triangular efficiency xyz.

The set of all the detectors determines a set of values for the game. The
highest value v* for the insurer is reached when the payoff line is horizontal.
This can be roughly seen as follows (for a more rigorous proof see LUCE and
RAIFFA (1957, pp. 394-396)): the critical value, moving from left to right,
generates a family of lines with decreasing slope. If Pi chooses a detector with
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a positive slope, P2 can reduce his payoff below v* by always presenting
healthy proposers. Similarly, if the slope is negative, a continuous flow of non
healthy proposers will keep Pi's payoff below v*.

Fig. 5

The optimal detector can be easily obtained by equating the payoffs E and F:

Dps + C(i--ps) = A(i-j>F) + BpF.

Then

(1) pF =
D-C
B-A +

C-A
B-A

defines a straight line in fig. 4, whose intersection with the efficiency line
determines the optimum.

Note that the optimal strategy of Pi is a pure strategy: to follow the advice
of the detector; the insurer does not have to throw a coin after the mecidal
examination in order to decide if the proposer is accepted. What happens is
that the "noise" in the observation system, however small, provides the
necessary randomization in order to prevent P2 from outguessing the insurer.

2.4. The Value of Improving the Detection System

A medical examination can always be improved: one can introduce an electro-
cardiogram, a blood test, . . . for each proposer. But is it worth the cost ? An
improved discrimination ability means that the distributions of fig. 3 are more
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Healthy non healthy

Fig. 7

separated and present less overlap. The characterizing probabilities fs and fp
are improved, and the efficiency line moves away from the bisecting line.

The intersection of the improved efficiency line with (l) (which is determined
only by the payoffs and therefore does not change with increased discrimina-
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tion) provides the new optimal detector; the associated value is higher for
the insurer. If the cost of implementing the new system is less (in utilities)
than the difference between the two values, it is worthwhile to introduce it.
The insurer should be willing to pay any amount inferior to the difference of
the values for the increase in his discrimination ability.

2.5. An Example 1

All the proposers above 55 years of age willing to sign a contract of over
3 million Belgian Francs in a given company have to pass a complete medical
examination with electrocardiogram. We have selected 200 male proposers,
100 rejected because of the electrocardiogram, and 100 accepted. This focuses
the attention on one category of rejection causes: the heart diseases, and
implicitly supposes that the electrocardiogram is a perfect discriminator. This
(not unrealistic) hypothesis being made, we can consider the rejected persons
to be non healthy. Correspondingly the accepted proposers will form the
healthy group. We have then noted the following characteristics of each
proposer:

Xi: overweight or underweight (number of kilograms minus number of
centimeters minus 100);

Xi'. number of cigarettes (average daily number);
X3: the presence of sugar
Xi: or albumine in the urine;
xs: the familial antecedents, for the mother,
x%: and the father of the proposer.

We then define a variable

x0 =
0 if the proposer is healthy
1 otherwise

and apply a standard selection technique of discriminant analysis in order to
sort out the variables that significantly affect xo. The procedure only retains
three variables Xi, xz and xe, and combines them linearly into a discriminating
variable. The value of this variable is computed for all the observations, and
the observed distributions are presented in fig. 8. As was expected, the discrimi-
nation is quite poor, the distributions strongly overlap. The multiple correla-
tion between x0 and the set of the explaining variables equals .26. The group
centroids are respectively .4657 and .5343.

We then estimate for each possible critical value ps and pp and plot them
on fig. 10.

1 This example presents very weak detectors and is only introduced in order to illu-
strate the preceding theory.
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Fig. 8

Fig. 9

We must now assign utilities to the various outcomes. We shall select
A = 8, B = 4, C = o and D = 10. Then the value of the game without medical
information is 5.714, P2 presenting 2/7 of bad lisks and Pi accepting 3/7 of
the proposals.

Let us now introduce the medical information and for instance evaluate the
strategy that corresponds to a .5 critical value. On fig. 10, we can read ps = .51
and fiF = .33. Then E = .51 x 10 + .49 x o = 5.1, and F = .33 x 4 4-
.67 x 8 = 6.68. The value of this game is 6.121, P2 presenting more bad risks
(34.1%), Pi mixing the strategies "reject" and "follow detector" with respect-
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LIFE INSURANCE UNDERWRITING 11

ive probabilities .208 and .792. Fig. 11 shows that this strategy is too "slow",
that too many risks are accepted.

On the other hand, a detector with a .4 critical value is too nervous: too
many risks are rejected. The value is 5.975; 2Ys optimal strategy is to present
74.7% of good risks, while Pi should accept 29.7% of the time and trust the
detector otherwise.

To find the optimum, we read the intersection of the efficiency line with
equation (1), in this case

PF = 2 - - ps-

We find

PF = 425

Ps = -63

with a critical value of .475. Then

E = 10 x .63 + ox .37 = .425x4 + .575x8 = 6.3:

if the insurer adopts the pure strategy of always accepting the advice of the
medical information, he can guarantee himself a value of 6.3 irrespective of
his opponent's strategy.

Let us now attempt to improve the medical examination by adding a new
variable xi, the blood pressure of the proposer. Because of the high positive
correlation between xi and xi, the selection procedure only retains as signi-
ficant the variables xz, Xe and xi. Fig. 9 shows that the distributions are more
separated. In fact, the group centroids are now .4172 and .5828 and the
multiple correlation between x0 and the selected variables rises to .407. The
efficiency line (fig. 10) is uniformly to the right of the former one. The inter-
section with (l) is

PF = -37
ps = .652

with a critical value of approximatively .45. The value of the game rises to
6.52, an improvement of .22 for the insurer at the cost of controlling the blood
pressure of each proposer (see fig. 11).

3. THE BAYES CRITERION

Instead of playing as if the proposer's sole objective were to outsmart him,
the insurer can apply the Bayes criterion, i.e. assume that P% has adopted a
fixed a priori strategy. He can suppose (from past experience or from the
results of a sample survey performed with a maximal medical examination)
that a proportion pn of the proposers is healthy. The analysis is easier in this
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case, since P2's mixed strategy is now assumed to be known. Pi only faces a
one-dimensional problem: he must maximize his utility on the dotted vertical
line of fig. 12.

Pa/oil to

healthy

1-PM

Fig. 12

One notices from fig. 12 that a medical examination is sometimes useless,
especially if pn is near l. In this case, Pi's optimal strategy is to accept all
the proposers. In the general case, Pi should maximize the linear function of
pp and pjj

{i-pF)A]j>H +

under the condition that pF and ps are linked by the efficiency curve of fig. 4.
As far as the example is concerned, this economic function (represented in

fig. 10) becomes

6.8 + i.Sps - 3 - # F
if one supposes that ^2's mixed strategy is to present 15% of bad risks.

For the first set of medical information (xi, x%, x6), the maximum is reached
at the point ps = .28, pF = -09. Since pn is rather high, this is a very slow
detector, yielding a final utility of 6.914. Comparing to the optimal mixed
strategy, this represents an increase in utility of .614, due to the exploitation
of P2!s poor play. Of course, this detector is only good as long as P2 sticks to
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his mixed strategy. It is uneffective against a change in the proposers' behav-
iour: if for instance pu suddenly drops below .725, Pi's utility decreases
under 6.3, the guaranteed payoff with the minimax strategy. In this aspect,
the Bayes criterion implies a more optimistic attitute of Pi.

For the second set of medical information (%2, Xe, x?), the optimal detector
(ps = .45, pF = .09) grants a utility of 7.169 if pg = -85, an improvement
of .649 comparing to the minimax strategy (see fig. 11).

4. TOWARDS MORE REALISM

4.1. Surcharges

Conceptually, the introduction of the possibility of accepting a proposer with
a surcharge presents little difficulty: it amounts to introduce one more pure
strategy for the insurer.

healthy

Fig. 13

A detector could then be defined by two critical values Ci and C2 enveloping
an incertitude or surcharge zone.

The two critical limits would deteimine 4 probabilities

pi = probability of accepting a bad risk
pi = probability of surcharging a bad risk
pz = probability of rejecting a good risk
pi = probability of surcharging a good risk
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Fig. 14

and two efficiency curves. A necessary condition for a detector to be optimal
is that the corresponding payoff line is horizontal, i.e. that

(2) {i-pa-pt)A + + p3B = {l-pi- + P2H + PiC.

The two efficiency curves and (2) determine 3 relations between the prob-
abilities. One more degree of freedom is thus available to maximize the payoff.

4.2. Increasing the Number of Strategies of Pi

In order to practically implement the preceding theory one should subdivide
Pa's strategy "present a non healthy proposer" according to the various
classes of diseases. Pi should then have as pure strategies: reject, accept, a
set of surcharges, and follow detector's advice, and P2 as many pure strategies
as the number of health classes. The graphical interpretation of the game is
lost, but linear programming can be used in order to determine its value and
optimal strategies.

Appendix: The Likelihood Ratio Method

Let
— x be the value of the discriminant variable,
•—• p(H) and p(NH) the a priori probabilities of being healthy or non

healthy,
— f(x I H) and f(x | NH) the conditional distributions of x.

We can then compute the a posteriori probability of being non healthy, given
the value of the discriminant variable

(1) p = p(NH I x) =
/(* I NH)p{NH)

f(x I NH)p(NH) + f(x I H)p(H) '
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Similarly p(H \ x) = l - p.
The expected payoffs for the two decisions are

EPA = (i

EPR = (i-

Define D* to be

D* = EPA - EPR = [(A-B) + (D-C)]f> - (A-B).

Consequently, D* is a linear function of p, with a positive slope.There exists
a critical p, pc, for which D* = o:

_
(A-B) + (D~C)

and the optimal decision rule is to

— reject if p > pc (then D* > o) and to
— accept if p < pc (thenD*<o).

If f(x | H) and f(x | NH) are normal densities with equal variances, there is
a one-to-one monotonic relationship between p and x, and thus the critical
probability pc induces a critical value xc.

In general, however, the cutoff point is not unique. There may be two
or more critical values.

In that case, we define the likelihood ratio of x for hypothesis NH over
hypothesis H as

[X) ~ fix | H)
Of course o ^ L(x) ^ oo.

Substituting L{x) in (l) gives

p =
P(H)

+ io r L{x) P(NH)

P(H) p
(2) L{X)(2) L{X) ~ p(NH) i-p-

For constant a priori probabilities, there is a monotone relationship between
p and L(x); L(x) goes from o to oo as p goes from o to l. Therefore, a unique
critical likelihood ratio Lc(x) exists and can be obtained by replacing pc for p
in (2)

p{H) A-B
(3) Lc(x) = p{NH) D-C
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f (xlNH)

Fig. 15

The optimal decision rule reads

if L(x) > Lc(x), reject;

if L(x) < Lc(x), accept.
Notice that, if A —B = D-C, pc = 1/2. The decision rule is equivalent to

maximizing the expected number of correct classifications. From (3)

T (\ -
p(NH) •

If, furthermore, the prior probabilities are equal, Lc(x) = l.
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