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0. Introduction. Various authors have obtained an eight term exact sequence in
homology

(1)

from a short exact sequence of groups

the term V varying from author to author (see [7] and [2]; see also [5] for the simpler case
where N is central in G, and [6] for the case where N is central and N c [G, G]). The
most satisfying version of the sequence is obtained by Brown and Loday [2] (full details of
[2] are in [3]) as a corollary to their van Kampen type theorem for squares of spaces: they
give the term V as the kernel of a map G A N-* N from a "non-abelian exterior product"
of G and N to the group N (the definition of G A N, first published in [2], is recalled
below). The two short exact sequences

and
1^>R-*F^>G^>1

where F is free, together with the fact that H2(F) = 0 and H3(F) = 0, imply isomorphisms

H2(G) as ker(G A G -* G), (2)
# 3 (G)sker(F A/?-»/?)• (3)

The isomorphism (2) is essentially the description of H2(G) proved algebraically in [11].
As noted in [2], the isomorphism (3) is the analogue for H3(G) of the Hopf formula for
H2(G).

The aim of this paper is to give an algebraic proof of the isomorphism (3), and then
to use the isomorphisms (2) and (3) to give a purely algebraic derivation of the (Brown
and Loday version of) exact sequence (1). Further, we shall show that (1) is part of a long
exact sequence. More precisely, denote by fi(G)#, B(Q)tt the bar resolutions of G and Q
over Z. The surjection <f>:G—>Q gives rise to a short exact sequence of chain complexes

t The contents of this paper form part of the author's Ph.D. thesis which was supervised by Prof. R. Brown.
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14 G. J. ELLIS

which in turn gives rise to a long exact homology sequence

We shall give isomorphisms

H&er <!>„)* N/[G,N\, (4)

#2(ker 0#) s= ker(G A J V ^ J V ) . (5)

The extension of (1) to a long exact sequence is also clear from the topological approach
taken in [2,3] (see Remark 1 below and also [1]).

One purpose of giving an algebraic derivation of (1) is to find similar results in other
contexts. This will be done for Lie algebras in a sequel.

1. The "non-abelian" exterior product. Let M, N be normal subgroups of a group
G. The exterior product of M and N is the group M A N generated by the elements m A n
with (m, n) e M x. N, subject to the relations

mm' A n = m(m' A n)(m A n), (6)

m A nn' = (m A n)"(m A n'), (6)'

m A n = 1 whenever m = n. (7)

where by definition x(y A Z) = (xy A XZ) = (xyx"1 A xzx~l), and conjugation *y = xyx~l is
taken in the group G. (A more general construction M' A N' is given in [2] for arbitrary
crossed G-modules M', N'.)

The exterior product M /\N can also be defined by its universal property: given a
group H and a function h:MxN—*H, we say that h is an exterior pairing if for all
m, m' eM, n,n' eN,

h(mm',n) = h(mm',mn)h(m,n), (8)

h(m,nn') = h(m,n)h(nm,"n'), (8)'

ft(m, n) = 1 whenever m=n; (9)

the function M x N^>M A N, (m, n)>->m AH is the universal exterior pairing from
MxN.

It is perhaps helpful to note that the function M x N-+MHN, (m, n)<-+[m, n] =
mnm~ln~l is an example of an exterior pairing.

We shall now give some results on the exterior product.
Suppose that AT is a normal subgroup of G which is contained in the intersection

M f)N. The exterior pairing K x N—*M A N, (k, n ) i - > h n induces a homomorphism
i^-.K A N^>M A N, and the exterior pairing M x K^>M A N, (m, k)>-^m A k induces a
homomorphism t2: M A K—* M A N. Let Kx = ix{K A N) and K2 = ^{M A K). The group
product KXK2 is clearly a normal subgroup of M A N and we have

PROPOSITION 1. There is a canonical isomorphism (M/K) A (N/K) = M A N/KlK2-
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Proof. The proof is a routine verification of the universal property of the exterior
product which we leave to the reader. •

Any group G can be considered as a normal subgroup of itself, and so the exterior
product G A G can always be constructed. It is a simple matter to check that G A G is
isomorphic to the group (G, G)/B(G) introduced by Miller [11]. Theorem 1 of that
paper can be restated as

PROPOSITION 2 (Miller). If F is a free group, then the homomorphism 9:FAF—^
[F, F], f A / ' •-» \f, f] is an isomorphism.

Proof. Let n3(F A F) denote the kernel of the homomorphism 9:F A F—>[F, F].
The key step in Miller's proof is the fact [11, p. 398] that if F = A*B is a free product
then JT3(F A F) = n3(A A A) x JI3(B A B). The result then follows easily. •

As a consequence of Proposition 2 we have

COROLLARY 3. If F is a free group and R-^F the inclusion of a normal subgroup R,
then the canonical homomorphisms IAI.RAR^FAR, LAI:RAR^>FAF are nor-
mal inclusions.

Proof. The commutative diagrams

R A R = [R,R] R A R s [R,R]

IIAI I
FAR > [F, R] FAF = [F,F]

imply the injectivity of the homomorphisms t A 1 and i A L. For a l l / e F , r,r',r" eR, the
following identity (in both FAR and F A F) is immediately derivable from proposition
4.1(d) of [2]:

(f A r)(r' A r")(f A r)~l = (lf- V A lf- r]r").

It follows from this identity that the inclusions u l , I A I are normal. •

We shall use the inclusions of Corollary 3 to regard R A R as a subgroup of F A R
and of F A F.

PROPOSITION 4. / / R^>F—>G is a free presentation of the group G, then there is a
short exact sequence of groups

l-» [R, R]^F A 7?^/G<8>G/?ab->0,

where IG is the augmentation ideal of G and <8>c denotes the usual tensor product of
G-modules.
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Proof. The map xp is given on generators by xp(f A r) = (pf - 1) ® r where r is the
element of Rab represented by r; it is readily checked that xp is well denned. The group
IG<8)GRab is generated by the elements (g-l)<8>r with geG, FeRab. Plainly xp is

surjective. The composite map [R, R]-^->R A R^^+F A R is injective by Corollary 3. To
complete the proof we need to show that the homomorphism xp' :F A R/R A R—>
IG<8>GRab induced by xp is an isomorphism.

For all f,f'eF, r,r'eR, the following two identities in F A R are immediately
derivable from Proposition 4.1 of [2]:

r'(f A r)~\f A r)"1 = r' A [/, r], (10)

[ ( /Ar) , ( / 'Ar ' ) ] = [ / , r ]A[ / \ r ' ] . (11)

The identity (11) implies that the group T = F A /?//? A i? is abelian. Suppose that (x, f)
is an arbitrary element of the cartesian product IG x Rab. Thus x can be written as a sum
* = £ £.(g(. - l) with g, e G, e, = ±1. Let 6:IGx Rab-> T be the function which sends
(x, F) to the coset of II (g, A r)e' in T, where pg, = g,. The function 0 is well defined since
T is abelian and since, for all g e G , r, r',r" e R, it can be shown that

gr A r' = (g A r') modulo R A R,
and, by (10)

g A r[r', r"] = (g A r) modulo R A R.

Using (10) again one sees that 6 is a G-bilinear map. Hence it induces a homomorphism
6':lG(&GRab-*T. It is readily checked that 6' is an inverse to the homomorphism xp'
and the proof is complete. •

2. The second and third homology of a group. Throughout this section let us
suppose given a commutative diagram of groups in which the rows and columns are exact
and F is free; such a diagram can be constructed for any surjective homomorphism <f>.

1 1

I i
R = R

I 1

N G

i I
1 1

Let us define the group jr3(Af A N) to be the kernel of the homomorphism
d:M A N—>M HN, m A n >-»[m, «]. This notation is in keeping with the topological
significance of the exterior product (see remark 1 below and \2,3,4,91).
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THEOREM 5. There is an isomorphism H2(G) = n3{G A G).

Proof. It follows from Propositions 1 and 2 that G A G is isomorphic to [F, F]/[F, R].
The theorem now follows from the Hopf formula

= Rn[F,F)/[F,R]. •

Theorem 5 is given in [2] and, modulo a few formal differences, in [11]. Our proof is
a slight modification of the one given in [11]. The following result is obtained in [2] by
topological methods.

THEOREM 6. There is an isomorphism H3(G) = JZ3(F A R).

Proof. Let <5:/G<8>Gfiab->/?ab be the homomorphism (g - 1) <g> f -*
Then H3(G) = HX(G, /?ab) = ker 6 (see [8, Chapter VI, sections 4 and 12]). We thus have
a commutative diagram with exact rows and columns

1 1

I 1
JT3(FAR) H3(G)

I J
1 > RAR » FAR * IG®cR

ab >1,

1= i 1-
1 • [R, R] > [F, R] > [F, R]/[R, R] > 1

I I
1 1

from which the theorem follows. •

Recall from the Introduction that ker <(>„ is defined to be the kernel of a chain map
induced by the homomorphism (/>.

THEOREM 7. There is a commutative diagram

n3(F AR) > n3(F A 5) >• JT3(G AN) > JT3(G A G) *

H3(G) * H3{Q) * //2(ker0#) > H2(G) >

A Q) > N/[G, N] > Gab > 2 a b > 0,

—*H2(Q) — * tfi(ker0#) —> H,(G) —> Hx{Q)

in which the rows are exact and the vertical maps are isomorphisms.
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Proof. The maps in the top row are canonical. Proposition 1 implies isomorphisms
Q AQ = G A G / I 2 ( G AN), G AG = F AF/I2(F AR) and G A J V s f A 5 / I 2 ( F A /?).
Armed with these isomorphisms, it is routine to check the exactness of the top row. The
maps alt p1 are the standard isomorphisms; the maps a2, P2 are the isomorphisms of
Theorem 5, and the maps a3, /J3 are the isomorphisms of Theorem 6. (Note that at this
point we have proved the existence of the exact sequence (1).) The bottom row is
obtained as in the Introduction.

Recall that if we take F to be the free group on the set G \ l , then the bar re-
solution B(G)# has a description in which B(G)2n = ZG ® z (fl

ab)", B(G)2n+l =
(ZG®F/F)®z(i?ab)" where ZG is the group ring on G, IF is the augmentation ideal of
F, and (Rab)n is the M-fold tensor product of Rab over Z (see [8, Chapter VI, section 13]).
The function N-»ZG® F /F, « ^ 1 ® ( « - 1 ) induces a homomorphism yx:NI[G, N]
—* /^(ker (j)#). For each x in G AN choose an x in F A S such that the canonical map
F AS^*G A N maps x onto x, and let < 3 : F A S - » S be the map /Aj ->[ f , s ] . The
function JZ3(G A./V)-»ZG<8>z#

ab, x>-^l<S>(dx)[R, R] induces a homomorphism
y2: n3(G A N) —* H2(\L&T <£#). We leave the reader to check that the homomorphisms
Yi, y2 are well denned, and that the resulting diagram is commutative (use [8, Chapter
VI] to obtain explicit descriptions of the isomorphisms ah /},-). It follows that y, and y2

are isomorphisms by the 5-lemma because ah /?, are all isomorphisms. •

3. Remarks. 1. Suppose the group G contains two normal subgroups M, N such
that G = MN. In [3] a homotopy push-out

K(G, 1) * K(G/N, 1)

I i
K(G/M, 1) > X

of three K{n, l)-spaces is considered. It is shown that H3(X) = n3{M A N) and H2(X) =
M D N/[M, N]. Part of the Mayer-Vietoris sequence associated to the push-out is thus
the exact sequence:

H3(G)^>H3{G/M) 0H3(G/N)-> JT3(M AN)^>H2(G)^>

H2(G/M)@H2(G/N)^MnN/[M,N]-*Hl(G)^

HiiGIM) © /f,(G/N)'-> 0. (12)

The first six terms of (12) (starting from the right) are derived algebraically in [4]. Note
that on taking M = G the above sequence (1) is retrieved.

2. By omitting relation (7) in the above definition of the exterior product M A N, we
obtain the notion of a non-abelian tensor product M®N (this notion is related to a
notion of [10] and described more generally in [2]). Since Ji3(M A N) is a quotient of the
kernel of the "commutator map" d.Mx N^> M (1JV, it is clear from Theorem 7 that a
short exact sequence of groups
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gives rise to a six term exact sequence in homology

>0. (13)

If N is central in G, then kei(G <S> N-^N) is isomorphic to the usual tensor product
Gab <g> N of abelian groups. The term Gab <8> N is often referred to as the "Ganea term"
[6,10].

3. In [4] the construction of a non-abelian exterior product of Lie algebras is given,
and used to obtain the first six terms of the Lie algebra analogue of the exact sequence
(12).
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