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Abstract

Advanced myoelectric prostheses feature multiple degrees of freedom (DoFs) and sophisticated control algorithms that
interpret user motor intentions as commands. While enhancing their capability to assist users in a wide range of daily
activities, these control solutions still pose challenges. Among them, the need for extensive learning periods and users’
limited control proficiency. To investigate the relationship between these challenges and the limited alignment of such
methods with human motor control strategies, we examine motor learning processes in two different control maps
testing a synergistic myoelectric system. In particular, this work employs a DoF-wise synergies control algorithm tested
in both intuitive and non-intuitive control mappings. Intuitive mapping aligns body movements with control actions to
replicate natural limb control, whereas non-intuitive mapping (or non-biomimetic) lacks a direct correlation between
aspects, allowing one body movement to influence multiple DoFs. The latter offers increased design flexibility through
redundancy, which can be especially advantageous for individuals with motor disabilities. The study evaluates the
effectiveness and learning process of both control mappings with 10 able-bodied participants. The results revealed
distinct patterns observed while testing the two maps. Furthermore, muscle synergies exhibited greater stability and
distinction by the end of the experiment, indicative of varied learning processes.

1. Introduction

Individuals with limb loss face significant daily challenges. Prostheses aim to assist them in daily
activities, thereby improving their quality of life and independence. Modern prostheses commonly rely
on electromyographic (EMG) signals from the residual limb to control the system. Despite their potential
to provide more versatile and energy-efficient replacements to body-powered prostheses, they require
extensive training due to the cognitive burden, especially the more dexterous the system is. Difficulties in
mastering control are a key factor in users abandoning their prostheses before becoming proficient
(Salminger et al. 2022). While virtual training tools have been introduced to engage users (e.g., Armiger
and Vogelstein 2008), successfully transferring myocontrol skills from virtual environments to real
prosthesis use remains a significant challenge (Kanzler et al. 2019; Terlaak et al. 2015; van Dijk L
et al. 2016).
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Research has focused on decoding user intentions to enable simultaneous and natural control of
multiple degrees of freedom (e.g., Huang et al. 2005; Smith et al. 2015), but challenges remain in
successfully applying these approaches to real-world scenarios (Farina et al. 2023). Recently, high-
density surface electromyography (HD-sEMG) sensors have garnered significant attention. Previous
efforts have explored the application of HD-sEMG inmyoelectric control algorithms (Barsotti et al. 2019;
Chen et al. 2020). These sensors capture high spatial resolution signals from muscle groups, enabling
detailed observation of muscle activation. Moreover, HD-sEMG demonstrates increased robustness to
issues like electrode shift compared to classic myoelectric controls (Ison and Artemiadis 2014; Muceli
et al. 2013).

The effortless execution of movements in healthy subjects, such as reaching, grasping, and
stabilizing the body’s center of mass contradicts the intricate complexity involved in those due to the
multiple muscles, joints, and bones that are engaged. Understanding how the nervous system orches-
trates these actions remains a significant challenge in the field of motor control. The human motor
system’s ability to coordinate several degrees of freedom (DoFs) and motor redundancy offers
flexibility in executing actions. Electrophysiological studies in animals suggest that muscle activation
occurs in synergistic groups rather than individual muscles (e.g., Hart and Giszter 2010; Overduin et al.
2012), referred as muscle synergies. Nonetheless, various explanations and interpretations have been
proposed for the hypothesis of muscle synergies existence withinmotor control studies (Tresch and Jarc
2009). Recent research has extensively investigated this hypothesis, often employing statistical
analyses of EMGs during behavior. One interpretation suggests that the brain modulates weighting
and timing of a group of synergies to reduce the control dimensions and cognitive load (Bizzi and
Cheung 2013). Another proposes that muscle synergies serve as a link between task-level objectives
(e.g., stabilizing the center of mass) and execution level commands (e.g., activation of individual
muscles) (Ting and McKay 2007). Therefore, synergies are not static elements; rather, they evolve
through learning (Dominici et al. 2011). While their nature and developmental process remain subjects
of ongoing investigation, synergies offer valuable insights into motor performance and learning
conditions. Furthermore, the exploration of muscle synergies extends to myoelectric control algo-
rithms. For instance, Choi and Kim (2011) detected four muscle synergies from wrist movements for
controlling a 2D cursor, while Jiang et al. (2008) proposed an algorithm for DoF-wise synergies to
estimate wrist forces. While classification techniques may yield more accurate initial prosthesis
performance, the use of synergistic control methods offers potential advantages in long-term usage
and adaptation to new muscle conditions.

Furthermore, establishing the relationship between user movement intentions and the reference
commands for actuators, also known as maps, is a fundamental aspect of myoelectric control. While
intuitive mappings aim to replicate human movement directions, non-intuitive mappings may not
directly mirror user movements. The latter is also known in literature as “non-biomimetic” or
“arbitrary” control maps. Ison et al. (2014) and Schone et al. (2024) emphasize the growing interest
of such methods and their learning capabilities. Both mapping approaches tend to perform similarly
after training (e.g., Ison and Artemiadis (2015); Radhakrishnan et al. (2008)). Additionally, subjects
retain learning when using the same mapping in a new task (Antuvan et al. 2014). Despite the
prevalence of intuitive mappings, identifying suitable EMG signals for these can be challenging,
especially for patients with motor disabilities (Thorp et al. 2015; Verros et al. 2019). Hence, non-
intuitive mapping could offer design flexibility, or other features such as under-actuation, which are
especially important in the context of abnormal muscle conditions and customized solutions are
needed.

In this study, we aim to assess the performance and learning dynamics of myoelectric synergistic
control using two types of control mappings and employing HD-sEMG sensors. One of the main goals of
this study is to compare two control approaches – intuitive and non-intuitive – both of which were tested
by all participants and their relationship to a faster learning. Themotor control interpretation that positions
muscle synergies within a hierarchical control strategy (Lockhart and Ting 2007) suggests that they enable
the organization of complexmotor control variables and sensory feedback in a task relevant manner. Both
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aspects are pertinent to this study, as visual feedback serves as the only estimation regarding the tested
mappings, given the tight relationship between estimation and control when performing a task. The two
control mappings investigated possess advantages and drawbacks, potentially influencing the learning
curve of newmyoelectric users.We hypothesize that themajority of individuals will find the intuitivemap
easier to use. Nonetheless, themain focus of this research is to determine whether the ability to excel in the
typicallymore complexmap (i.e., non-intuitive) is linked to specific muscle conditions of the participants.
Our previous study (Tse et al. 2023) assessed learning through performance metrics and user experience,
demonstrating equivalent performance and perception across both control mappings. Notably, only
participants who overall performed better with the non-intuitive mapping showed performance improve-
ments over time. In this study, we extend this research by analyzing learning dynamics through motor
development. To achieve this, we classified participants based on their overall performance preference
and investigated whether prior knowledge of muscle properties can predict if a subject will eventually
become proficient in a particular control map. If proven, this could enhance the selection process of
myoelectric controllers for individuals with limb deficiencies who require rapid learning and effective
prosthesis operation. To do so, we examine changes in muscle synergies during task completion and the
use of different controllers. Additionally, we explore the similarities in synergy patterns and their
correlation with performance outcomes to assess muscle predisposition for learning more complex
control mappings.

2. Material and methods

2.1. Synergistic control algorithm and cursor maps

This human study aims to assess motor learning dynamics while using a synergistic myoelectric control
system. In particular, a DoF-wise synergies control algorithm was implemented for simultaneous and
proportional control of the virtual prosthesis/cursor velocity (see a schematic representation in Figure 1).
The proposed algorithm uses extractedmuscle synergies to identify occurrence of four distinct gestures or
movements. Synergies were extracted from the collected signals using non-negative matrix factorization

Figure 1. Control architecture. Electromyographic (EMG) signals are collected from the forearm area
while participants performed four movements. For each pair of movements, non-negative matrix

factorization is applied to the training dataset to extract four degrees-of-freedom (DoF)-wise synergies.
We tested two control mappings to move a cursor in a two-dimensional workspace. The movement of the
cursor for intuitive mapping is directly connected to the associated pair of synergies (blue lines). On the
contrary, for the non-intuitive mapping, both pairs of synergies contribute with a certain weight wi to both
DoFs (yellow lines). The initial position of the orange cursor and the five targets tested are visualized in
the two-dimensional workspace. On the bottom right corner, a picture of the experimental setup, with the

high-density surface EMG matrices and a hand holder placed on the table.
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(NMF), chosen for its robust performance across datasets (Tresch et al. 2006) and its popularity in
literature for muscle synergy extraction. Two 8 × 8 high-density surface electrode grids were placed on the
wrist flexor and extensor muscles. A primary synergy is extracted individually for each DoF direction of
movement, as proposed in the study byMuceli et al. (2013).Wrist flexion and extensionmovements were
categorized under one DoF, from which two corresponding synergies were extracted during a training
algorithm phase of the experiment. Similarly, forearm supination and pronation movements constituted
another DoF, from which two additional synergies were extracted. Each primary synergy is assumed to
correspond largely to a specific gesture.

The four primary synergy weights were linked to control activation movements for the real-time
control within the completion of the experiment. We evaluated the same control algorithm for two control
mappings, also termed intuitive and non-intuitive. In the intuitive mappings, commands replicate human
movement directions. In the non-intuitivemappings, commandsmay not directly mirror user movements,
as all movements or both pairs of synergies contribute with a certain weight wi to both DoFs (see yellow
lines in Figure 1). The latter introduces redundancy (i.e., under-actuated control maps), offering greater
flexibility to the design. This enables navigation of the two-dimensional workspace with three commands
instead of four, as first introduced in the study by Ison and Artemiadis (2015). In this work, the weights
(w1 = �0:5537,�0:5404½ �,w2 = 0:0941,1:0½ �,w3 = �0:5214,0:0142½ �,w4 = 1:0,�0:4929½ �) were selected
according to Ison andArtemiadis (2015) and consistent for all subjects. Further information on the control
can be found in the study by Tse et al. (2023).

2.2. Experimental design

Ten able-bodied participants (eight males and two females) provided informed consent andwere involved
in the experiment, with ages ranging from 22 to 30 years old. The study was conducted according to the
guidelines of the Declaration of Helsinki, and approved by the Ethics Commission of the Technical
University of Munich, reference number 478/21 S-SR (September 27, 2021). The experiment involves
performing a center-out reaching task for multiple targets and testing two distinct control maps on the
same day, with a break in between. Accordingly, 10 participants were divided into two equally distributed
groups, testing both maps in a randomized order.

Positioned in front of a computer screen, participants rested their right forearm on a table with the hand
fixed in place (Figure 1). The experiment consists of performing a twoDoFs center-out reaching task using
isometric muscle contractions of the wrist and forearm. The experiment started with a calibration and
training algorithm phase, involving the collection of surface EMG signals to construct the control
algorithm. For the pre-processing of the EMG signals, data were acquired during a no contraction or relax
muscle condition, serving as the subject’s baseline. Additionally, maximum voluntary contraction (MVC)
measurements were taken during the execution of the four gestures. Subsequently, data were collected for
each DoF in different force levels. Participants were instructed to follow a sine wave visual cue during the
intended gestures: wrist flexion/extension and forearm supination/pronation. The maximum amplitude of
the sinusoidal wave corresponds to the 30% of the corresponding MVC to prevent muscle fatigue. These
same values were also set as the workspace limitations of the cursor.

To train the algorithm, we first calculate the EMG envelope and the sensor bipolarity, followed by the
normalization of the dataset based on the MVC and resting baseline. Each bipolar output is calculated by
subtracting the signals from two consecutives EMG monopolar channels, with channel i subtracted from
channel i + 1 until reaching the last row of the matrix. As a result, each HD-sEMG grid consists of
56 bipolar channels, with both grids using the same configuration.NMFwas applied to the training dataset,
including both extensor and flexor matrices, to extract two synergies for each DoF, corresponding to each
direction of movement. During the experiment, the cursor can be directed to move left, right, rotate
clockwise, or rotate counter-clockwise. Similar to conventional myoelectric controls on the market, the
velocity of the cursor was proportional to the users’ synergistic muscle contractions. In the intuitive
mapping, commands associated to wrist flexion and extension corresponded to moving the cursor left and
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right, respectively. Forearm supination and pronation movements commanded rotation in both directions.
Conversely, in the non-intuitive mapping, each gesture commanded both DoFs with a specific weighting.

Participants were instructed to complete 60 trials for each mapping during the experiment, with five
distinct target positions appearing randomly (see Figure 1). They were asked to hold the orange cursor on
the black target for 0.5 s to successfully complete a trial, thereby assessing the controller stability. The total
duration of the experiment was approximately 2 hr.

2.3. Metrics and data analysis

Throughout the experiment, various datasets were collected, including the raw EMG training and EMG
trial data, control synergies (comprising the four synergies used for real-time control), cursor position,
target position, and trial duration. The main goal of this work is to investigate distinct muscle learning
dynamics corresponding to the subject overall expertise. In pursuit of this, participants were rearranged
into two post hoc groups: Group IB (intuitive better) and Group NB (non-intuitive better) during data
analysis. Eight participants were included in the IB group, exhibiting a higher completion rate for intuitive
mapping, while two participants were included in the NB group, given their higher completion rate for
non-intuitive mapping. Despite the unequal distribution of participants across the post hoc groups, this
approach was necessary to evaluate distinct learning dynamics and their relation to specific muscle
conditions, if any. For IB group, there were 383 successful recorded trials for intuitive mapping and
297 successful recorded trials for non-intuitive mapping. There were 120 successful recorded trials for
intuitive mapping and 118 successful recorded trials for non-intuitive mapping in the NB group.
Nonetheless, the number of successful trials was limited especially in temporal analysis, where each
bit consisted of five trials and not all were successful. Both IB and NB groups achieved similar
performance metrics when testing the intuitive mapping (Tse et al. 2023). However, significant differ-
ences were observed during non-intuitive mapping use.

2.3.1. Performance analysis
This work includes a few performance metrics to study the relationship between motor learning and skill
improvement, in relation to muscle conditions. In this regard, this paper elaborates on completion rate,
completion time andmatch time. The completion rate is the percentage of targets successfully reached and
held, divided by the total number of targets the subject could attempt using each controller. Completion
time refers to the duration required to successfully complete a trial.Match time is defined as the duration
from the start of the trial to the moment at which the cursor and target first align. It does not necessary
indicate an immediate cursor holding on the target thereafter. Thus, the time difference between match
time and completion time reflects the capacity to maintain the cursor precisely on the target position.
A shorter difference indicates more stable control. The analysis of these two time metrics allows us to
evaluate which grasping phases show improvement first when learning a new myoelectric controller.

2.3.2. Synergies analysis
The raw EMG data collected during the trials was used for temporal analysis of motor learning. Synergies
were extracted for every set of five trials, referred to as bins. To do so, themuscle activations from the initial
position to the target reachedwere concatenated resulting in amatrixDbin

nxT , with n referring to the number of
bipolar sEMG sensors (n= 112) and T representing the total duration of the bin. A non-negative matrix
factorization was applied to D, and the optimal number of synergies was decided. We iterated from one
synergy pattern up to a maximum of 10 synergy patterns to determine the optimal number of synergies
corresponding to each bin. The optimal number of synergies is defined as the minimum number of
synergies that achieves a Variance Accounted For (VAF) score greater than 85% and exhibits less than
a 6% increase in the subsequent number (Israely et al. 2018). Both the quantity and morphology of
synergies extracted under various experimental conditions are compared.
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Synergy similarity (s x,yð Þ) between two patterns is computed using cosine similarity of two vectors x
and y. Within a set of synergies, the similarity is determined by averaging the similarities among all
possible combinations of extracted synergy patterns for a given condition or bin, excluding the diagonal.
When comparing two sets of synergies, the similarity is computed based on the mean of the highest
similarity combinations, known as best-matching pairs. Initially, similarities are calculated for all possible
combinations, and the pair with the highest similarity is chosen to represent similar motor content.
Subsequently, all other combinations involving the selected synergy pairs are disregarded. This selection
process is repeated until no combinations remain, and all synergies from one dataset are matched with
another synergy from the other dataset. Ultimately, the synergy similarity is determined as the average
similarity between best-matching pairs of the two datasets. This procedure is employed to evaluate motor
content similarity between two sets of synergies. To do so, synergies extracted from each bin with a fixed
number of four were named DoF-wise trial synergies. They were compared to (1) the four control
synergies, and to (2) those of the first bin, to evaluate synergy development across trials. Finally, the
similarity procedure was employed for the comparison of best-matching pairs for (3) average synergy
weights at the first and last bin corresponding to each control mapping.

3. Results

3.1. Control synergies similarity

The average weights extracted from all subjects, and of the four control synergies tested, are reported in
Figure 2 with a heatmap representing their spatial information. During wrist flexion movement, the
primary pattern is highly active over the grid placed at the wrist flexor muscles. During both wrist

Figure 2. Average control synergies extracted for all subjects. Each panel displays a heatmap of the
muscle synergy matrix, which is time-independent. The spatial distribution of 112 bipolar electromyog-
raphy (EMG) channels is depicted with 7 rows and 16 columns per synergy. The associated movement for

each synergy is indicated on the left side of the figure. On the right side, a scheme illustrating the
placement and muscles involved for each high-density surface EMG matrix is provided.
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extension and forearm supination movements, the average primary extracted patterns show high activa-
tion over the grid placed at wrist extensor muscles. As their active spatial location overlaps, the
corresponding two synergies are also highly correlated, with a cosine similarity of 0.98. The weights
for the primary synergy pattern during forearm pronation movement demonstrate high activity in both
wrist flexor and extensor muscles. Therefore, its active area overlaps with all three other gestures. Among
them, the highest cosine similarity is 0.89 for forearm pronation and supination, followed by 0.84 with
wrist extension and 0.73 with wrist flexion. Among all paired combinations, similarity is the lowest
between wrist flexion and extension, with 0.38, followed by 0.52 for supination and wrist flexion.

Control synergies are defined as the four muscle patterns used as control inputs to the virtual
environment. The calibration process used to extract control synergies was the same for all subjects.
The subjects were then randomly assigned to two groups, according to the order mappings were tested. It
is reasonable that the average control synergy similarity between these two groups followed the same
distribution (Mann–Whitney U rank test, p = .690). Pearson correlation coefficient was used to quantify
the linear correlation between the control synergies average similarity and the corresponding completion
rate for both intuitive and nonintuitive mapping. However, no significant correlation was found for none
of the control mappings. The results of all subjects for intuitive mapping showed a Pearson correlation
coefficient = .326 (p = .358) and for non-intuitive mapping showed a Pearson correlation coeffi-
cient = �.003 (p = .994).

3.2. Performance metrics

We conducted a two-way analysis of variance (ANOVA) on the completion rate and completion time (for
successful trials). Neither the order nor mapping had a statistically significant effect on task performance.
We present these results in Figure 3 with three plots, displaying the effects of order, mapping, and their
interaction and their p-value in the subcaption.

Performance results are divided post hoc to differentiate between participants that performed better for
the intuitive mapping (IB), and participants who overall performed better for the non-intuitive mapping
(NB). During the experiment, we noticed that participants consistently moved slightly off target.
The discrepancy between match time and completion time highlighted the duration differences between
the reaching and holding phases from the center-out reaching task. While these phases are relevant to our
study and virtual prosthesis control, note that they pertain to the myoelectric capacity of prosthesis users.
Two-wayANOVAwas applied to evaluate results under these different conditions, with results reported in
Table 1. Two main factors were included: mapping and time metric, with two conditions for each factor.
Tukey’s honestly significant difference test was used after significance from ANOVA to observe

(a) Completion rate (b) Completion time

Figure 3.Plots of completion rate and completion time (successful trials) arranged in order, mapping and
their interaction. In panel (b), the numbers on the bottom of each bar referred to the number of trials
accounted for that bar. The p-values refer to the result of two-way ANOVA with order and mapping as
factor. Note that 1st: first attempt; 2nd: second attempt; int: intuitive mapping; and non: non-intuitive

mapping.
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significant differences among tested conditions. Figure 4 reported both time metrics for the two groups,
testing both control mappings.

For Group IB, both the completion time andmatch time of intuitivemappingwere significantly smaller
(p < .01) than that of the non-intuitive mapping. On the other hand, time metrics showed no significant
difference between the two control mappings for Group NB. Comparing both metrics, during the same
mapping, the match time is significantly smaller (p < .01) than completion time in both groups.
Furthermore, the temporal evolution of completion time and match time revealed a consistent stability
in the difference between them in Group IB (Figure 4). Each bin was computed at intervals of five trials,
encompassing all pre-defined target combinations. As the number of trials increased, there was a decrease
(i.e., a performance improvement) in completion time for the non-intuitive mapping of Group NB, also
present in match time.

3.3. Development of synergies

The optimal number of synergies was then calculated offline on the data of each bin. In line with our
previous analysis, we assessed the effect of order on the extracted synergies, as it cannot be assumed that
the absence of a performance effect directly correlates with no impact on the developed synergies. To
examine this, we conducted a two-way ANOVA and presented the interaction results for the optimal

Table 1. Statistical results from two-way ANOVA test, for performance metrics

Group IB Group NB

Source F PR (>F) F PR (>F)
Mapping: intuitive versus non-intuitive 123.890 <.0001 0.347 .5564
Time metric: completion time versus match time 178.432 <.0001 79.467 <.0001
Interaction 12.884 .0003 7.834 .0053

Note. Two groups (IB and NB) were tested separately.
Abbreviations: ANNOVA, analysis of variance; IB, intuitive better; NB, non-intuitive better.

Figure 4. Temporal evolution of time metrics for Groups IB and NB. The top panel displays the mean
estimates with comparison intervals from a Tukey’s honestly significant difference test used after

significance in two-way analysis of variance (interaction). Significance among pairs is reported with
asterisks. The bottom panels report the time evolution with bin averaging ± SD (bin size = 5 trials).

Subjects are separated into intuitive better and non-intuitive better groups, according to their completion
rate results. Note that int: intuitive mapping and non: non-intuitive mapping.
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number of synergies in a bar plot in Figure 5(a). No significance was achieved in the factor order (p = .105,
μd(2nd-1st) = �0.293) neither for map (p = .153, μd(Mon-Int) = 0.258). On the contrary, significant
differences were found with the interaction of order and mapping. Participants who tried non-intuitive
mapping first had smaller optimal numbers in both mappings. Furthermore, the optimal number of
synergies were plotted against match time for all bins. For non-intuitive mapping, the optimal synergies
number showed statistically significant linear relationship with match time with Pearson correlation
coefficient = .418, p < .0001.

To assess differences in motor development according to overall performance (either IB or NB), a
three-way ANOVAwas used to evaluate the effect of three factors: group,mapping and bin number, with
results reported in Table 2 (M1).Group is the only factor that reported significant difference, with a larger
number of optimal synergies obtained for Group IB. Although without significance for interaction of
factors, some trends could be observed in Figure 6(a). For Group IB, the number of synergies decreased

Figure 5. Plots of optimal number of synergies and relationship with performance. Panel (a) shows the
results of two-way analysis of variance with order and mapping as factor. The p-value demonstrates a
significant interaction between these two. Significance among pairs is reported with asterisks. Note that
1st: first attempt; 2nd: second attempt; int: intuitive mapping; and non: non-intuitive mapping. Panel

(b) shows the optimal synergies numbers plotted against match time (considering all bins of the
experiment). The linear regression lines of the two mappings are visualized. A solid line indicates a
significant Pearson correlation. Intuitive mapping reports a Pearson correlation coefficient = .045
(p = .654), and non-intuitive mapping with a Pearson correlation coefficient = .418 (p < .0001).

Table 2. Statistical results from three-way ANOVA test, for three different datasets highlighted in bold

M1 M2 M3

Source F PR (>F) F PR (>F) F PR (>F)

Group: IB versus NB 8.796 .004 1.730 .191 9.217 .003
Mapping: intuitive versus non-intuitive 2.204 .140 2.156 .144 2.102 .149
Bin number: 1–12 0.305 .984 0.045 1.00 3.015 .001
Group and mapping 0.004 .952 1.273 .261 1.977 .162
Group and bin number 0.333 .978 0.117 1.0 0.561 .857
Mapping and bin number 0.395 .956 0.041 1.0 0.233 .995
Group and mapping and bin number 0.255 .992 0.055 1.0 0.289 .987

Note. Interaction among factors is also reported.M1:Optimal number of synergies.M2: Similarity between control synergies and DoF-wise trial synergies.
M3: Similarity between extracted synergies at first bin and DoF-wise trial synergies.
Abbreviation: DoF: degree of freedom.
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only for intuitive mapping, and even increased by the end of the experiment in non-intuitive mapping. For
Group NB, the number of synergies decreased only for non-intuitive mapping. The standard deviation
among participants also decreasedwhen comparing the optimal number of synergies between the first and
last three bins, especially for Group IB (Figure 6(b)).

For a second analysis, four synergies were extracted for each bin and participant, named as DoF-wise
trial synergies, and compared with the control synergies – those actually used for control during the
experiments. The temporal progression of their similarity value is reported in Figure 7(a) according to the
control mapping tested. The stability of the results indicates a lack of alteration in both IB and NB groups.
Table 2 (M2) shows the summary of three-wayANOVA,with three factors included: group,mapping, and
bin number.

Figure 6. Results for the optimal number of synergies. Panel (a) reports the optimal number of synergies
for each bin (bin size = 5 trials) and separated by groups. Panel (b) shows the mean (red dots) and

standard deviation of optimal number of synergies for each group and mapping during the first and last
3 bins. Note that IB: intuitive better group; NB: non-intuitive better group; int: intuitive mapping; and

non: non-intuitive mapping.

Figure 7.Degree of freedom-wise trial synergies similarity analysis. Panel (a) compares them to control
synergies, while panel (b) to those developed at the first bin, separated in groups IB and NB. Both panels
show the temporal evolution of the average synergies similarity computed for each bin (bin size = 5 trials).

Note that IB: intuitive better group and NB: non-intuitive better group.
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The DoF-wise trial synergies extracted for each bin were compared to those extracted at the first bin
(see Table 2, M3). Among factors, both group and bin number achieved significant difference between
conditions, with PR = .003 and .001, respectively. These differences are also visible in Figure 7(b), where
the temporal evolution of similarities decreased from1.0 to around 0.8 for both controlmappings inGroup
IB. The change in similarities was equivalent for Group NB, with a decrease to around 0.8 for intuitive
mapping, already reached at bin five (after 25 reached targets). The similarity value for non-intuitive
mapping decreased during the first four bins, but increased afterwards.

Finally, Figure 8 reports the average DoF-wise trial synergies across all subjects, extracted at the first
and last bin and divided by group and mapping. To evaluate the spatial precision of each synergy, we
computed the number of highly active channels (amplitude > 0.6) in average synergiesweights for the first
and last bin. We achieved smaller number in all last bin cases, independently of the condition, with 15.75
channels (30.5 channels average were activated for the first bin). This indicates that there was less overlap
between synergies corresponding to different movements at the end of the experiment. Note that their
difference is more evident for the NB group with 36 channels first-to-last bin difference in intuitive map
and 16 in non-intuitivemap. For IB group, participants achieved three channels difference in intuitivemap
and four for non-intuitive map. Figure 9 shows that the average similarity values of last bin were slightly
lower than those for the first bin, except for NB non-intuitive mapping (values at the diagonal). The
similarity value was 0.78 when comparing intuitive versus non-intuitive in Group IB for both first and last
bin. This indicates a consistent motor control strategy for bothmaps. However, this motor strategymay be
only useful in one case, that is, the intuitive map. In Group NB, the value was 0.74 for first bin – intuitive
versus non-intuitive, and 0.59 for last bin – intuitive versus non-intuitive.

4. Discussion

In this study, we assessed learning dynamics in participants using a synergistic control method and two
control mappings. To train the algorithm, surface EMG signals were recorded from two muscle groups in
the forearm: wrist extensors and flexors, while participants performed four distinct actions. Control
synergy patterns, representing the four synergies used to command the two-dimensional workspace, were
extracted for each participant before the start of the experiment. Two control mappings were tested to
analyze differences in their learning curves based on the synergies developed.While under-actuation may
be relevant feature for future prosthetic applications, this study primarily focuses on the foundational
processes of learning non-intuitive or non-biomimetic control strategies.

Figure 8.Average bin synergies weights. Synergies extracted in each group from the first and last bin and
considering all subjects are reported in a heatmap to provide spatial information. Note that IB: intuitive

better group and NB: non-intuitive better group.
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The results obtained from the analysis of control synergies, as depicted in Figure 2, indicate that these
synergies were not entirely distinct, as evidenced by high similarity values observed in various pairs, such
as s supination,extensionð Þ= 0:98 and s pronation,supinationð Þ= 0:89. Consequently, a wrist or forearm
movement could activate multiple control synergies simultaneously, allowing the cursor to navigate in
multiple directions. Participants needed to learn how to isolate single DoFs when convenient during real-
time control in the center-out reaching task. In theory, a system controllability improves withmore precise
and distinct control synergies and a more understandable mapping. This situation enhances stability and
repeatability in how a virtual prosthesis/cursor responds to each gesture command. Users can thus more
rapidly identify control mapping characteristics, predict robotic system responses, and improve opera-
tional efficiency. However, no evident correlation was found between the similarity of control synergies
and the completion rate, independently of the control mapping.

Regarding performance metrics, significant difference was observed between match time and com-
pletion time, indicating that subjects took considerable time to maintain the cursor on target during the
holding phase, compared to the reaching phase of the trial. This trend persisted across trials, with the
difference remaining consistent even as overall times decreased, as seen in Group NB for non-intuitive
map. While velocity control, proportional to muscle synergies activation, enabled subjects to move the
cursor toward the target more rapidly, it consistently led to overshooting. Consequently, although
subjects’ intentions were accurately detected and fatigue is avoided with such method, achieving precise
and stable control proved challenging. Subjects had to relax their forearm muscles to slow down cursor
movement, which contrasted with the natural tendency to contract muscles when maintaining a specific
arm position. Adjusting to this method and relaxing muscles quickly proved difficult for participants,
particularly under stress and due to the slight delay from muscle command to visual feedback in the
reference command of the cursor.

Figure 9.Average bin synergies similarity. The correlation heatmap displays the similarity values for first
and last bin in each group. Note that IB: intuitive better group; NB: non-intuitive better group;

int: intuitive mapping; and non: non-intuitive mapping; first: first bin; last: last bin.
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In the analysis of synergy development concerning the learning of a new motor skill, the optimal
number of synergies decreased over the course of the experiment, but only for the control mapping in
which subjects performed better (Figure 6(a)). The optimal number of synergies is related to the
consistency of muscle activations and functional units required to execute a movement. Initially, subjects
employed various muscle activation strategies to explore control options, resulting in a larger number of
synergies needed. As subjects became proficient in certain gestures, they refined their motor control
strategy, leading to a reduction in the optimal number of synergies and a more stable control approach by
the end of the experiment. Conversely, for Group IB, the number of optimal synergies increased when
testing the non-intuitive mapping (see Figure 6(a)). This suggests that even at the end of the experiment,
subjects were still exploring different gestures to navigate the control mapping. Therefore, a larger
number of trials would be necessary to establish an efficient control strategy for non-intuitive mapping
within Group IB. In accordance, independently of the group they belong, the optimal number of synergies
during the non-intuitive mapping showed a positive linear relationship with match time. Figure 5(b)
shows that the smaller optimal number of synergies is related to a better control performance (i.e., shorter
match time). While the reduced optimal number of synergies might seem counterintuitive regarding the
use of HD-sEMG and the amount of channels recorded, these sensors provide flexibility in sensor
placement and accommodate variability across subjects. Moreover, they enable recordings from deeper
muscles, which can enrich the information captured. Although having perfectly positioned bipolar
sensors at the belly of each muscle relevant to limb movement might not yield a significant increase in
the number of necessary synergies, HD-sEMG allows for enhanced spatial visualization of the synergies
(as shown in Figures 2 and 9) and provides insights into their temporal evolution concerning spatial
precision.

The similarity analysis conducted on the extracted synergies (i.e., DoF-wise trial synergies) in relation
to those from the first bin revealed a gradual modification in the synergies throughout the experiment.
Changes within theDoF-wise trial synergies set were larger for the first four bins, which could indicate the
exploration of the control mappings (Figure 7(b)). Average similarity within the best-matching pairs is
more stable afterwards, which could represent the understanding and exploitation of themapping. Despite
this evolution, the changes consistently maintained a stable similarity in comparison to the four control
synergies (Figure 7(a)). This indicates that new muscle synergies were formed during the experiment
rather than reproducing the control synergies. However, as the myoelectric control was defined by these
control synergies, these changes were constrained to ensure responsiveness of the control system.

By the end of the experiment (last bin), the developed synergies showed more localized areas of high
activation within the sEMG matrix, becoming more distinguishable (Figure 9). This indicates a more
precise localization of motor neuron firings corresponding to specific commands, along with enhanced
motor abilities to control the virtual prosthesis/cursor. The difference in spatial active location areas
between the initial and final bins is notably more pronounced in the Group NB. While this could be
attributed to the complexity of the mapping and the increased motor skills required for proficiency, it is
also possible that this outcome stems from the smaller sample size of participants belonging to this post
hoc grouping. Despite the spatial overlap among control synergies, it is possible to develop and use new
muscle synergies to independently and efficiently control each DoF, in agreement with Gigli et al. (2023).

Our results demonstrate that synergies evolved throughout the experiment in accordance with the
tested control mapping. However, findings from prior research (Tse et al. 2023) suggest that synergies
obtained at the end of the initial experiment (first control map tested) did not transfer motor skill to the
subsequent map. Furthermore, subjects exhibited diverse synergy patterns corresponding to the tested
control map. Although the number of participants in the non-intuitive better (NB) groupwas small, posing
a significant limitation to the study, this classification was essential for identifying muscle predispositions
based on individuals’ overall performance, which is the primary objective of this research. In Group NB,
the similarity of synergies between the two mappings was notably lower during the final bin compared to
the initial bin (Figure 9). This decrease suggests that initially, participants exhibited similar motor control
strategies regardless of the implemented mapping. However, by the end of the experiment (last bin),
participants in Group NB adopted different myoelectric control strategies for each corresponding
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mapping. Consequently, they achieved highly distinct final developed synergies for the two mappings,
and demonstrated better performance with the non-intuitive mapping. Most subjects did not demonstrate
significant performance improvements during the experiment, as reported in the study by Tse et al. (2023).
For this reason, another limitation is the number of trials included, which may have constrained
participants’ ability to fully learn the control systems. This study wasmotivated by the needs of prosthesis
users and the investigation for simplified myoelectric control strategies suited to their limited muscle
condition. However, no experiments were conducted to specifically test the generalization of these control
methods to this population, which will be addressed in future research. Conducting further studies with
individuals with motor disabilities would be highly valuable for assessing the applicability of such
mappings in cases of limited muscle conditions. Finally, exploring a control algorithm capable of
commanding a higher number of DoFs, akin to those found in modern multi-fingered prostheses, would
be beneficial for evaluating motor development in these scenarios.

5. Conclusions

This study focuses on analyzing motor control development during the acquisition of a new skill.
Specifically, it assesses changes in synergy patterns and their correlation with performance within the
experiment. The developed muscle synergies offer insights into control strategies and the adaptation
process. We observed an initial exploration phase within the first 20 trials, and the development of a more
specialized set of synergies by the end of the experiment for both control mappings. Additionally, a few
participants demonstrated the ability to interpret non-biomimetic maps and leverage their features to
improve performance. In addition to muscle synergies, decomposition algorithms can be employed to
extract neural information from HD-sEMG datasets (Tanzarella et al. 2021). Understanding the syner-
gistic organization of neural inputs could provide further insights into spinal interneuron circuitry and its
adaptation during motor skill acquisition. The findings of this study demonstrate that understanding
muscle properties and user motor control abilities, through the use of muscle synergies, offers important
insights into skill acquisition and the personalization of myoelectric control, which could be particularly
beneficial for individuals with motor disabilities and limited available muscles.

Data availability statement. The authors confirm that the data supporting the findings of this study are available within the article.

Author contributions. K.C.T., P.C-M., and C.P. designed the study. K.C.T. collected the data. K.C.T. and P.C-M. analyzed the data
andwrote the first draft. P.C-M. andC.P. supervised the experiment, revised themanuscript. All authors approved the final version of
the manuscript.

Funding statement. This research workwas supported by TUMAGENDA2030, funded by the FederalMinistry of Education and
Research (BMBF) and the Free State of Bavaria under the Excellence Strategy of the Federal Government and the Lander as well as
by the Hightech Agenda Bavaria.

Competing interest. No competing interests.

Ethical standard. This study was approved by the Ethics Commission of the Technical University of Munich, and all participants
gave their informed consent.

References
Antuvan CW, Ison M and Artemiadis P (2014) Embedded human control of robots using myoelectric interfaces. IEEE

Transactions on Neural Systems and Rehabilitation Engineering 22(4), 820–827.

Armiger RS and Vogelstein RJ (2008) Air-guitar hero: a real-time video game interface for training and evaluation of dexterous
upper-extremity neuroprosthetic control algorithms. IEEE Biomedical Circuits and Systems Conference. Baltimore, MD. Los
Alamitos (CA): IEEE, pp. 121–124.

Barsotti M, Dupan S, Vujaklija I, Dosen S, Frisoli A and Farina D (2019) Online finger control using high-density EMG and
minimal training data for robotic applications. IEEE Robotics and Automation Letters 4(2), 7.

Bizzi E and Cheung VC (2013) The neural origin of muscle synergies. Frontiers in Computational Neuroscience 7, 51.

Chen J, Bi S, Zhang G and Cao G (2020) High-density surface EMG-based gesture recognition using a 3D convolutional neural
network. Sensors 20(4), 1201.

e1-14 King Chun Tse, Patricia Capsi-Morales and Cristina Piazza

https://doi.org/10.1017/wtc.2024.24 Published online by Cambridge University Press

https://doi.org/10.1017/wtc.2024.24


Choi C and Kim J (2011) Synergy matrices to estimate fluid wrist movements by surface electromyography.Medical Engineering
& Physics 33(8), 916–923.

Dominici N, Ivanenko YP, Cappellini G, d’Avella A,Mondì V, Cicchese M, Fabiano A, Silei T, Di Paolo A,Giannini C, et al.
(2011) Locomotor primitives in newborn babies and their development. Science 334(6058), 997–999.

Farina D,Vujaklija I, Brånemark R,Bull AM,Dietl H,Graimann B,Hargrove LJ,Hoffmann K-P,Huang H, Ingvarsson T,
et al. (2023) Toward higher-performance bionic limbs for wider clinical use. Nature Biomedical Engineering 7(4), 473–485.

Gigli A,Gijsberts A,NowakM,Vujaklija I andCastellini C (2023) Progressive unsupervised control of myoelectric upper limbs.
Journal of Neural Engineering 20(6), 066016.

Hart CB and Giszter SF (2010) A neural basis for motor primitives in the spinal cord. Journal of Neuroscience 30(4), 1322–1336.
Huang Y, Englehart K, Hudgins B and Chan A (2005) A Gaussian mixture model-based classification scheme for myoelectric

control of powered upper limb prostheses. IEEE Transactions on Biomedical Engineering 52(11), 1801–1811.
Ison M, Antuvan CW and Artemiadis P (2014) Learning efficient control of robots using myoelectric interfaces. In 2014 IEEE

International Conference on Robotics and Automation (ICRA). Hong Kong, China: IEEE, pp. 2880–2885.
Ison M and Artemiadis P (2014) The role of muscle synergies in myoelectric control: Trends and challenges for simultaneous

multifunction control. Journal of Neural Engineering 11(5), 051001.
Ison M and Artemiadis P (2015) Proportional myoelectric control of robots: muscle synergy development drives performance

enhancement, retainment, and generalization. IEEE Transactions on Robotics 31(2), 259–268.
Israely S,GerryL,Machluf CC andEli C (2018)Muscle synergies control during hand-reaching tasks inmultiple directions post-

stroke. Frontiers in Computational Neuroscience 12, 10.
Jiang N, Englehart KB and Parker PA (2008) Extracting simultaneous and proportional neural control information for multiple-

dof prostheses from the surface electromyographic signal. IEEE transactions on Biomedical Engineering 56(4), 1070–1080.
Kanzler CM, Catalano MG, Piazza C, Bicchi A, Gassert R and Lambercy O (2019) An objective functional evaluation of

myoelectrically-controlled hand prostheses: a pilot study using the virtual peg insertion test. In 2019 IEEE 16th International
Conference on Rehabilitation Robotics (ICORR). Toronto, ON, Canada: IEEE, pp. 392–397.

Lockhart DB and Ting LH (2007) Optimal sensorimotor transformations for balance. Nature Neuroscience 10(10), 1329–1336.
Muceli S, Jiang N and Farina D (2013) Extracting signals robust to electrode number and shift for online simultaneous and

proportional myoelectric control by factorization algorithms. IEEE Transactions on Neural Systems and Rehabilitation
Engineering 22(3), 623–633.

Overduin SA, d’Avella A,Carmena JM and Bizzi E (2012)Microstimulation activates a handful of muscle synergies.Neuron 76
(6), 1071–1077.

Radhakrishnan SM, Baker SN and Jackson A (2008) Learning a novel myoelectric-controlled interface task. Journal of
Neurophysiology 100(4), 2397–2408.

Salminger S, Stino H, Pichler LH, Gstoettner C, Sturma A, Mayer JA, Szivak M and Aszmann OC (2022) Current rates of
prosthetic usage in upper-limb amputees – have innovations had an impact on device acceptance? Disability and Rehabilitation
44(14), 3708–3713.

Schone HR, Udeozor M, Moninghoff M, Rispoli B, Vandersea J, Lock B, Hargrove L, Makin TR and Baker CI (2024)
Biomimetic versus arbitrary motor control strategies for bionic hand skill learning. Nature Human Behaviour 8(6), 1108–1123.

Smith LH, Kuiken TA and Hargrove LJ (2015) Evaluation of linear regression simultaneous myoelectric control using
intramuscular EMG. IEEE Transactions on Biomedical Engineering 63(4), 737–746.

Tanzarella S,Muceli S, Santello M and Farina D (2021) Synergistic organization of neural inputs from spinal motor neurons to
extrinsic and intrinsic hand muscles. Journal of Neuroscience 41(32), 6878–6891.

Terlaak B, Bouwsema H, van der Sluis CK and Bongers RM (2015) Virtual training of the myosignal. PloS ONE 10(9),
e0137161.

Thorp EB,Abdollahi F,Chen D, Farshchiansadegh A, LeeM-H, Pedersen JP, Pierella C,Roth EJ,Gonzáles IS andMussa-
Ivaldi FA (2015) Upper body-based power wheelchair control interface for individuals with tetraplegia. IEEE Transactions on
Neural Systems and Rehabilitation Engineering 24(2), 249–260.

Ting LH and McKay JL (2007) Neuromechanics of muscle synergies for posture and movement. Current Opinion in Neurobi-
ology 17(6), 622–628.

Tresch MC, Cheung VC and d’Avella A (2006) Matrix factorization algorithms for the identification of muscle synergies:
evaluation on simulated and experimental data sets. Journal of Neurophysiology 95(4), 2199–2212.

Tresch MC and Jarc A (2009) The case for and against muscle synergies. Current Opinion in Neurobiology 19(6), 601–607.
Tse K, Capsi-Morales P, Castaneda TS and Piazza C (2023) Exploring muscle synergies for performance enhancement and

learning in myoelectric control maps. In 2023 International Conference on Rehabilitation Robotics (ICORR). Singapore,
Singapore: IEEE, pp. 1–6.

vanDijk L,CorryK, van der Sluis HWVDandBongers RM (2016) Learning an emg controlled game: Task specific adaptations
and transfer. PLoS ONE 11(8), e0160817.

Verros S, Lucassen K,Hekman EE, Bergsma A,Verkerke GJ and Koopman BF (2019) Evaluation of intuitive trunk and non-
intuitive leg semg control interfaces as command input for a 2D Fitts’s law style task. Plos ONE 14(4), e0214645.

Cite this article: Tse KC, Capsi-Morales P and Piazza C (2025) Learning dynamics of muscle synergies during non-biomimetic
control maps. Wearable Technologies, 6, e1. doi:https://doi.org/10.1017/wtc.2024.24

Wearable Technologies e1-15

https://doi.org/10.1017/wtc.2024.24 Published online by Cambridge University Press

https://doi.org/10.1017/wtc.2024.24
https://doi.org/10.1017/wtc.2024.24

	Learning dynamics of muscle synergies during non-biomimetic control maps
	Introduction
	Material and methods
	Synergistic control algorithm and cursor maps
	Experimental design
	Metrics and data analysis
	Performance analysis
	Synergies analysis


	Results
	Control synergies similarity
	Performance metrics
	Development of synergies

	Discussion
	Conclusions
	Data availability statement
	Author contributions
	Funding statement
	Competing interest
	Ethical standard
	References


