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ORDER TYPES OF MODELS OF
FRAGMENTS OF PEANO ARITHMETIC

LORENZO GALEOTTI AND BENEDIKT LÖWE

Abstract. The complete characterisation of order types of non-standard models of Peano
arithmetic and its extensions is a famous open problem. In this paper, we consider subtheories
of Peano arithmetic (both with and without induction), in particular, theories formulated
in proper fragments of the full language of arithmetic. We study the order types of their
non-standard models and separate all considered theories via their possible order types.
We compare the theories with and without induction and observe that the theories without
induction tend to have an algebraic character that allows model constructions by closing a
model under the relevant algebraic operations.

§1. Introduction.

1.1. Background I: order types of models of Peano arithmetic and its
extensions. It is well-known that non-standard models of Peano arithmetic
have order type N + Z ·D where D is a dense linear order without first or
last element (cf. [10, Theorem 6.4]). For countable models, this determines
their order type up to isomorphism: it is necessarily N + Z ·Q. In general,
not every order of the form N + Z ·D is the order type of a model of Peano
arithmetic and it is not known how to characterise those dense orders D for
which this is the case.

Question 1. For which dense orders D is there a model of Peano arithmetic
with order type N + Z ·D?

If T is any consistent extension of Peano arithmetic, we write OT for the
class of order types of models of T. Friedman asked the “especially vexing
question” [12, p. 281] whether this class depends on the choice of T :1

Question 2 (Friedman’s Question). Are there any consistent extensions T
and T ′ of Peano arithmetic such that OT �= OT ′?
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theories without induction.
1Friedman’s original question was formulated as follows: “Is there any extension T of

Peano arithmetic such that OT �= OTh(N)?” [7, Problem 14]. Shelah has another (not quite
equivalent) variant of the question: “Is there any non-standard model M of Peano arithmetic
such that all models with the same order type must be elementarily equivalent to M?” [24,
Question 1.4]. All variants of Friedman’s Question are open.
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ORDER TYPES OF MODELS OF FRAGMENTS OF PEANO ARITHMETIC 183

While Questions 1 and 2 are wide open, many results have been obtained
that give us some information about the relationship between models of
arithmetic and their order types. We refer the reader to the expertly written
survey paper [2] that outlines the state of knowledge.

Let � be a regular uncountable cardinal with 2<� = �. Then there is a
unique dense saturated orderQ� of size � [14, Corollary 4.3.14 and Theorem
4.3.20] and it follows from [10, Theorem 6.4] that any saturated model
of Peano arithmetic of cardinality � has order type N + Z ·Q�. However,
Pabion’s Theorem shows that more is true:

Theorem 3 (Pabion; [15, Proposition 2]). Letκ be an uncountable cardinal.
Then a model of Peano arithmetic is κ-saturated if and only if its order type is
κ-saturated.

In his doctoral dissertation [1], Bovykin constructed many examples
of additional order types of models of Peano arithmetic (under the
appropriate assumptions that guarantee that the dense saturated orders
exist), e.g.,N + Z ·Qℵ1 · N,N + Z ·Qℵ1 · Z,N + Z ·Qℵ1 · (�∗

1 + �1),N + Z ·
Qℵ2 · (�∗

2 + �2), N + Z · (Qc+ +Qc+ ·Qc++), and many others [2, Section 5]
(here, as usual, c := 2ℵ0). He also gave examples of order types that have
different non-isomorphic models of Peano arithmetic living on them, e.g.,
N + Z ·Qℵ1 · N [2, Proposition 5.3]. However, for many similar orders, we
do not know whether they are order types of models of Peano arithmetic,
e.g., N + Z · (Q + Q ·Qℵ1) [2, Question 3].

More is known if we restrict our attention to classes of particularly well-
structured models of Peano arithmetic, e.g., order self-similar models [2,
Section 8] or resplendent models [2, Sections 8 and 9] (cf. also [11, 22]).
The most recent results in this direction are Shelah’s investigation of almost
isomorphism of order rigid models in [24]: we shall discuss these briefly in
Section 8.

1.2. Background II: fragments of Peano arithmetic. All of the results
mentioned in Section 1.1 are about models of Peano arithmetic or its
extensions. In this paper, we shall go in the other direction and consider
fragments of Peano arithmetic where the natural analogue of Friedman’s
Question 2 would be:

Question 4. Given two fragments T and T ′ of Peano arithmetic, when is
OT = OT ′?

The standard language of Peano arithmetic contains the symbols<, s, +,
and ·; the fragments we consider are those axiomatised in languages lacking
some of these symbols, in particular, Successor arithmetic without + and ·
and Presburger arithmetic without · (cf. [17]). We shall not be considering
the fragment containing only multiplication, known as Skolem arithmetic
(cf. [26]) for reasons discussed at the end of Section 2.1.2

2We note that in contrast to Peano arithmetic, both Presburger and Skolem arithmetic
are complete and decidable [19, Section 1.2.3]. It is the combination of addition and
multiplication that makes theories sequential, i.e., they can encode the notion of finite
sequence; this in turn paves the path to Gödel’s incompleteness argument.
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184 LORENZO GALEOTTI AND BENEDIKT LÖWE

The axioms of our systems of arithmetic consist of a list of algebraic axioms
governing the meaning of the symbols <, s, +, and · and the axiom scheme
of induction. Almost all of the algebraic axioms are universal sentences3

and allow us to think of models as generated by the operations. Models of
theories defined by the algebraic axioms alone therefore have an algebraic
and constructive character. In contrast, theories with the full induction
scheme (or sufficiently large fragments of the induction scheme) require
model theoretic methods to analyse their models.4 We shall discuss and
illustrate this notable difference in Section 6 with some elementary examples.

1.3. Overview. We consider three operations, the unary successor opera-
tion and the binary operations of addition and multiplication, as well as their
associated languages: L<,s := {0, <, s}, the language with an order relation
and the successor operation, L<,s,+ := {0, <, s,+}, the language augmented
with addition, and L<,s,+,· := {0, <, s,+, ·}, the full language of arithmetic.
For each of the languages, we shall define the appropriate arithmetical axiom
systems and the corresponding axiom schemes of induction, resulting in a
total of six theories,

SA– ⊆ SA⊆ ⊆

Pr– ⊆ Pr⊆ ⊆

PA– ⊆ PA,

where the theories in the left column are without induction and the theories
in the right column are with the axiom scheme of induction (for definitions,
cf. Section 2.1).

It is a folklore result that SA– proves the axiom scheme of induction for
L<,s (Theorem 11) and hence SA– and SA are the same theory, reducing our
diagram to five theories. We solve Question 4 for these theories by showing
that for any two theories T and T ′ from this list, we have OT �= OT ′ . In the
following diagram, an arrow from a theory T to a theory S means “every
order type that occurs in a model of T occurs in a model of S.” In Section 9,
we shall show that the diagram is complete in the sense that if there is no
arrow from T to S, then there is an order that is the order type of a model
of T that cannot be the order type of a model of S.

SA

Pr–

����������
Pr��

����������

PA–

��

PA.��

��

3The exceptions are axioms S1 and �; cf. the discussion in Section 6.
4Some research on models of fragments of Peano arithmetic deals with weakenings of

the induction scheme to subclasses of formulae (cf., e.g., [3, 4, 13, 29]). These theories have
infinitely many instances of the axiom scheme of induction and consequently do not have the
algebraic character that our induction-free theories have.
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§2. Definitions and basic results.

2.1. Definitions. In this section, we shall introduce the axiomatic systems
studied in this paper. The axioms come in four groups corresponding to
the order relation, the successor function, addition, and multiplication. As
usual, we use the following syntactic abbreviations: for n ∈ N and a variable
x, we write

sn(x) := s(··· (s︸ ︷︷ ︸
n times.

(x)) ··· ) and

nx := x + ··· + x︸ ︷︷ ︸
n times.

.

The order axioms O1 to O4 express that < describes a linear order with
least element 0 (O1 is trichotomy, O2 is transitivity, and O3 is irreflexivity):

x < y ∨ x = y ∨ x > y, (O1)

(x < y ∧ y < z) → x < z, (O2)

¬(x < x), (O3)

x = 0 ∨ 0 < x. (O4)

The successor axioms S1 to S4 express that < is discrete and that s is the
successor operation with respect to <:

x = 0 ↔ ¬∃yx = s(y), (S1)

x < y → y = s(x) ∨ s(x) < y, (S2)

x < y → s(x) < s(y), (S3)

x < s(x). (S4)

Taken together, the axioms O1 to O4 and S1 to S4 (later called SA–)
constitute the theory of discrete linear orders with a minimum and a strictly
increasing successor function. Note that all the order and successor axioms
with the exception of S1 are universal sentences. The axiom S1 is a particular
instance of the induction scheme and is in ∀∃ form.

The addition axioms P1 to P5 express the fact that + and < satisfy the
axioms of ordered abelian monoids:

(x + y) + z = x + (y + z), (P1)

x + y = y + x, (P2)

x + 0 = x, (P3)

x < y → x + z < y + z, (P4)

x + s(y) = s(x + y). (P5)
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186 LORENZO GALEOTTI AND BENEDIKT LÖWE

Axiom � expresses the fact that if x < y, then the difference between them
exists:

x < y → ∃zx + z = y. (�)

Like S1, axiom � is an instance of the induction axiom scheme and not
a universal sentence but in ∀∃ form; we shall comment on S1 and � in
Section 6.

The multiplication axioms M1 to M6 express that · and + are commutative
semiring operations respecting <:

(x · y) · z = x · (y · z), (M1)

x · y = y · x, (M2)

(x + y) · z = x · z + y · z, (M3)

x · s(0) = x, (M4)

x · s(y) = (x · y) + x, (M5)

(x < y ∧ z �= 0) → x · z < y · z. (M6)

Finally we have a schema of induction axioms.

(ϕ(0, ȳ) ∧ ∀x(ϕ(x, ȳ) → ϕ(s(x), ȳ)) → ∀xϕ((x, ȳ). (Indϕ)

When considering subsystems of these axioms, we denote the axiom schema
of induction restricted to the formulas of a language L by Ind(L). We shall
consider the following systems of axioms:

SA– = O1 + O2 + O3 + O4 + S1 + S2 + S3 + S4,
SA = SA– + Ind(L<,s),
Pr– = SA– + � + P1 + P2 + P3 + P4 + P5,
Pr = Pr– + Ind(L<,s,+),
PA– = Pr– + M1 + M2 + M3 + M4 + M5 + M6,
PA = PA– + Ind(L<,s,+,·);

standing for ‘Successor Arithmetic’, ‘Presburger Arithmetic’, and ‘Peano
Arithmetic’, respectively.5

In his original paper, Presburger uses a different axiomatisation of
Presburger Arithmetic that we shall call PrD [17]. The axioms of PrD are
those of Pr– plus the following axiom schema:

∀x∃yx = ny ∨ x = s(ny) ∨ ··· ∨ x = sn–1(ny), (Dn)

for 0 < n ∈ N. Presburger’s famous theorem shows that PrD axiomatises
the complete theory Th(N,+). Since our Pr clearly implies PrD, it also
axiomatises Th(N,+).

5Note that SA should not be confused with the theory Th(Q,+) called SA in [9, 27] (the
‘S’ there stands for ‘Skolem’).
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In this paper we do not take into consideration Skolem arithmetic Sk, i.e.,
the multiplicative fragment of PA. This is due to the fact that Sk, usually
defined as Th(N, ·), does not carry an order structure, i.e., the order is not
definable in L·. Moreover, adding the order to Skolem arithmetic makes
it much more expressive: Robinson showed that addition is definable in
Th(N, <, ·), and thus Th(N, <, ·) is essentially full arithmetic [20, Theorem
1.1]. Therefore, an analysis of Skolem arithmetic in terms of order types is
not fruitful.

2.2. Order types. As usual, order types are the isomorphism classes of
partial orders. If L is any language containing < and M is an L-structure,
by a slight abuse of language, we refer to the {<}-reduct of M as its order
type. In situations where the order structure is clear from the context, we do
not explicitly include it in the notation: e.g., the notation Z refers to both
the set of integers and the ordered structure (Z, <) with the natural order<
on Z.

If A and B are two linear orders, then A∗ is the inverse order of A, A+ B
is the order sum, and A · B is the (anti-lexicographic) product order, i.e.,
(a, b) ≤ (a ′, b′) if and only if b < b′ or b = b′ and a ≤ a ′. If B has a least
element 0 then BA is the set of functions f from A to B with finite support
(i.e., the set {a ∈ A ; f(a) �= 0} is finite) ordered anti-lexicographically, i.e.,
f < g if and only if f(a) < g(a) for the largest a ∈ A such that f(a) �=
g(a). Note that in the case that A and B are ordinal numbers, then the above
operations of sum, product, and exponentiation correspond to the classical
ordinal operations.

If a ∈ A, we denote the initial segment defined by a as IS(a) := {b ∈
A ; b < a} and the final segment defined by a as FS(a) := {b ∈ A ; a < b}.

If (G, 0, <,+) is an ordered abelian group (i.e., satisfies the axioms O1 to
O4 and P1 to P4), then we define G+ := {g ∈ G ; 0 < g} = FS(0) to be the
positive part of G. We call linear orders groupable if and only if there is an
ordered abelian group with the same order type.

Let (G,<,+) be an ordered group. We define the standard monoid over G
as the ordered monoid (N + Z ·G+, <,+) where < is the order relation of
N + Z ·G+ and + is defined point-wise, i.e.,

x + y =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n +m, if x = n, y = m and m, n ∈ N,

(z + x, g), if x ∈ N and y = (z, g) ∈ Z ·G+,

(z + y, g), if y ∈ N and x = (z, g) ∈ Z ·G+,

(zx + zy, gx + gy), if x = (zx, gx) ∈ Z ·G+ and
y = (zy, gy) ∈ Z ·G+.

It is easy to see that for each ordered group G the standard monoid over G
is indeed a monoid with least element 0.

If (B,<,+) is any ordered group and X is a variable, we can consider the
set B[X ] of polynomials in the variable X over B, consisting of terms

f = bnX n + ··· + b1X + b0
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with bn �= 0 (unless n = 0); the degree of a polynomial is the highest
occurring exponent, i.e., deg(f) = n in the term given above. If n = b0 = 0
(i.e., f = 0), we call f the zero polynomial. We order polynomials anti-
lexicographically: if f = bnX n + ··· + b1X + b0 and g = cmXm + ··· c1X +
c0 are different, find the largest natural number k such that bk �= ck ; then

f < g if and only if bk < ck.

This order respects addition and multiplication of polynomials in the sense
of axioms P4 and M6, respectively. A polynomial is called positive if it is
larger than the zero polynomial in this order. If we define

O0 = ∅,

O�+1 = O� + Z� · N,
O� =

⋃
�∈�
O� for � limit,

then for every natural number n > 0, the linear orderOn is the order type of
non-negative polynomials with integer coefficients of degree at most n – 1
and thus O� is the order type of all non-negative polynomials with integer
coefficients.

2.3. Basic properties. In this section, we shall remind the reader about
basic tools of model theory of PA. We refer the reader to [10] for a
comprehensive introduction to the theory of non-standard models of PA.
One of the main tools in studying the order types of models of PA is the
concept of Archimedean class.

Definition 5. Let M be a model of SA–. Given x, y ∈M we say that x
and y are of the same magnitude, in symbols x ∼ y, if there arem, n ∈ N such
that sn(y) ≥ x and y ≤ sm(x). The relation ∼ is an equivalence relation. For
every x ∈M , we shall denote by [x] the equivalence class of x with respect
to ∼ called the Archimedean class of x.

The Archimedean classes of a model of SA– partition the model into
convex blocks: if y,w ∈ [x] and y < z < w, then z ∈ [x] (the reader can
check that only the axioms of SA– are needed for this). Therefore, the
quotient structure M/∼ of Archimedean classes is linearly ordered by
the relation < defined by [x] < [y] if and only if x < y and [x] �= [y].
Furthermore, [0] is the least element of the quotient structure. We refer
to the classes that are different from [0] as the non-zero Archimedean classes.
In particular, if A is the order type of the non-zero Archimedean classes of
M, then the order type of M is N + Z · A.

So far, we worked entirely in the language L<,s with just the axioms of
SA–. If we also have addition in our language, we observe:

Lemma 6. Let M be a non-standard model of Pr– and a ∈M be a non-
standard element of M. Then for every n,m ∈ N such that n < m we have
[na] < [ma]. In particular, if N + Z · A is the order type of M, then A does
not have a largest element.
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Proof. Assume that n < m. We want to prove that [na] < [ma]. Let n′ >
0 be such thatm = n + n′. Let i ∈ N we want to show that na + si(0) < ma.
By definition, ma = (n + n′)a = na + n′a. Now by P4 and by the fact that
a is non-standard and n′ > 0 we have na + si(0) < na + a = (n + 1)a ≤
(n + n′)a = ma. Therefore [na] < [ma] as desired. �

Another important tool in the classical study of order types of models of
PA is the overspill property:

Definition 7. Let M be a model of SA–. Then I ⊆M is a cut of M if it
is an initial segment of M with respect to < and it is closed under s, i.e., for
every i ∈ I we have s(i) ∈ I . A cut of M is proper if it is neither empty nor
M itself.

Definition 8. Let L ⊇ L<,s be a language. A theory T ⊇ SA– has the L-
overspill property if for every modelM |= T there are no L-definable proper
cuts of M.

Overspill is essentially a notational variant of induction:

Theorem 9. Let L ⊇ L<,s be a language and T ⊇ SA– be any theory. Then
the following are equivalent:

(i) Ind(L) ⊆ T and
(ii) T has the L-overspill property.

Proof. “(i)⇒(ii).” LetM |= T and I be a proper cut of M. Then 0 ∈ I .
Suppose towards a contradiction that I is definable by anL-formulaϕ. Then
Indϕ implies that I =M , so I was not proper.

“(ii)⇒(i).” Assume that Indϕ /∈ T for someL-formulaϕ and findM |= T
such that M |= ¬Indϕ . Define the formula ϕ′(x) := ϕ(x) ∧ ∀y(y < x →
ϕ(y)). Then ϕ′ defines a proper cut in M, and thus, T does not have the
L-overspill property. �

In particular,SA,Pr, andPAhave the overspill property for their respective
languages L<,s, L<,s,+, and L<,s,+,·.

§3. Successor arithmetic. We begin our study by considering the two
subsystems obtained by restricting our language to L<,s, viz. SA– and SA.
The theory SA– is the theory of discrete linear orders with a least element
and a strictly increasing successor function. Model theoretic properties of
SA– are discussed in [5, Example 3.4.4].

It is a folklore result that the theory of the structure (N, 0, <, s) has
quantifier elimination (cf., e.g., [14, Exercise 3.4.4]) and the argument works
for the theory SA–. The standard reference for the axiomatic version is
[6, Theorem 32A] where Enderton shows quantifier elimination for a theory
he callsAL which is essentially the conjunction of our O1 to O4, S1, S3, and
S4. Enderton claims that AL = Th(N, <, s, 0) [6, Corollary 32B(b)], but his
theory cannot prove our axiom S2 (the discreteness of the order). For the
sake of completeness, we give a proof of quantifier elimination in this paper.
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Lemma 10. The theory SA– satisfies quantifier elimination.

Proof. It is enough to prove that for every quantifier free formula �(x, y)
there is a quantifier free formula ϕ such that

SA– |= ∃y�(x, y) ↔ ϕ(x),

where y does not appear in ϕ. We prove this claim by induction over �. The
only interesting cases are the atomic formulas.

If �(x, y) ≡ sn(x) < sm(y): let ϕ ≡ x = x. Let M |= SA–, we want to
showM |= ∃y�(x, y). First assumem ≥ n. Since SA– � ∀xsn(x) < sm+1(x)
we haveM |= ∃ysn(x) < sm(y) as desired. Otherwise if n > m since SA– �
∀xx < s(n–m)+1(x) thenM |= ∃y�(x, y). Hence:

SA– |= ∃y�(x, y) ↔ ϕ(x)

as desired.
If �(x, y) ≡ sn(y) < sm(x): first assume m > n then since SA– �

∀xsn(x) < sm(x) we have SA– � ∃y�(x, y) ↔ x = x. If m ≤ n then
SA– � ∃y�(x, y) ↔ sn(0) < sm(x). Indeed, let M |= SA– be a model such
that there is a y ∈M such that M |= sn(y) < sm(x) and M |= ¬sn(0) <
sm(x). We have two cases: if M |= sn(0) = sm(x) then we would have
M |= sn(y) < sm(x) = sn(0) but sinceM |= ∀xsn(x) < sn(y) → x < y then
we would have M |= y < 0. If M |= sm(x) < sn(0) again we would have
M |= sn(y) < sm(x) < sn(0) which impliesM |= y < 0. On the other hand
ifM |= sn(0) < sm(x) then triviallyM |= ∃y�(x, y) as desired.

If �(x, y) does not have occurrences of y: then ∃y�(x, y) is either
equivalent to 0 = 0 or ¬(0 = 0).

If �(x, y) ≡ sn(x) = sm(y): similar to the second case. �
By using quantifier elimination, it is not hard to see that SA– proves the

induction schema.6

Theorem 11. For every formula ϕ in the language L<,s we have

SA– � Indϕ.

Proof. We shall prove that for every model M of SA–, the only definable
set which contains 0 and is closed under s is M itself. This proves the claim
by Theorem 9.

We say that I ⊆M is an open interval if there are a, b ∈M ∪ {∞} such
that I = {x ∈M ; a < x < b} and a setX ⊆M is called basic if it is a finite
union of open intervals and singletons. As usual, an L-theory T is called
o-minimal or order-minimal if every L-definable subset is basic.

We claim that SA– is an o-minimal theory: Let (M, 0, <, s) |= SA– and
X ⊆M be L<,s-definable; by Lemma 10, SA– has quantifier elimination and
therefore, X is definable by a quantifier-free L<,s-formula. We observe that

6An alternative route to proving SA = SA– without going through quantifier elimination is
the following: [5, Example 3.4.4] proves that the theory SA– is model complete and complete;
thus all theorems true in the standard model (including induction) are true in every model,
so SA– |= SA.
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sets definable by atomic formulae are either open intervals or points, hence
basic; we furthermore observe that the basic sets are closed under finite
intersections and complements. Thus all sets definable by quantifier-free
formulae are basic.

Now suppose X is an L<,s-definable cut in M. By o-minimality, we have
that X = I0 ∪ ··· ∪ In where for every 0 ≤ j ≤ n, the set Ij is either a non-
empty open interval (aj, bj) or a singleton {bj}. Towards a contradiction,
let y ∈M be such that y /∈ X . Letm := max{bj ; 0 ≤ j ≤ n}. Note that for
all x ∈ X we have x ≤ m.

Case 1: m ∈ X . Then, since X is closed under successors, and so s(m) ∈ X .
But then m < s(m) which is a contradiction.

Case 2: m /∈ X . Then there is some 0 ≤ j ≤ nwith Ij = (aj,m). By axiom
S1, we find m′ ∈ Ij ⊆ X such that s(m′) = m. Once more, since X is closed
under successors, m ∈ X , but this yields a contradiction as we have seen
before. �

In particular, this means that SA and SA– axiomatize the same theory:

Corollary 12. Let M be a structure in the language L<,s. ThenM |= SA
if and only ifM |= SA–.

Visser asked whether there is a reasonable finitely axiomatised theory
that satisfies full induction (preferably in the full language of arithmetic);
it is known that such a theory cannot be sequential (cf. [18, 28] for more
on sequentiality). By Corollary 12, SA is a finitely axiomatised theory that
satisfies full induction (and is not sequential).

Corollary 13. A linear order L is the order type of a model of SA if and
only if there is a linear order A such that L ∼= N + Z · A.

Proof. By Corollary 12, it is enough to show that a model satisfies SA–

in order to get full SA. We already observed that the forward direction holds
in Section 2.3 (the linear order A is the quotient structure M/∼ with the
least element removed). For the other direction, if A is a linear order then
N + Z · A can be easily made into an SA– model by defining s(n) := n + 1
and s(z, a) := (z + 1, a). �

§4. Models based on generalised formal power series.

4.1. Definitions. Generalised formal power series, introduced by Levi-
Civita, are a generalisation of polynomials over a ring: while polynomials
only have natural number exponents, generalised formal power series allow
more general formal exponents.7 In this section, we shall adapt the classical
theory of generalised formal power series to our context. In particular, we
shall show how generalised power series can be used as a tool in building
non-standard models of Pr–, PA–, and Pr.

A linear order (Γ, 0, <) with a least element 0 will be called an exponent
order; an ordered abelian group (B, 0, <,+) with Z ⊆ B will be called the

7For an introduction to the theory of generalised formal power series, cf. [8].
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base group and its elements will be called coefficients. The generalised formal
power series will generalise the idea of a polynomial with coefficients in B,
using formal terms of the form∑

f(a)Xa,

where a ranges over elements of Γ.
If f : Γ → B , we shall call the set supp(f) = {a ∈ Γ ; f(a) �= 0} ∪ {0}

the support of f. As usual, we say that a subsetS ⊆ Γ is reverse well-founded if
it has no strictly increasing infinite sequences. A functionf : Γ → B is called
a formal power series with base B and exponent Γ if supp(f) is reverse well-
founded and f(0) ∈ Z.8 Since non-empty reverse well-founded sets have a
maximal element, we can define the leading term of a formal power series f,
denoted by LT(f), as the maximal element of supp(f).

We say that f is non-negative if f(LT(f)) > 0 or f is the function that is
constant and equal to 0 everywhere. The set of non-negative formal power
series with base B and exponent Γ is denoted by B(X Γ).

4.2. Addition of formal power series. We think off ∈ B(X Γ) as the formal
sum

∑
a∈supp(f)f(a)Xa and define the order and additive structure on

B(X Γ) according to this intuition:

1. The order < on B(XΓ) is the anti-lexicographic order: if f �= g, then
the reverse well-foundedness of supp(f) and supp(g) implies that there
is a largest a ∈ Γ such that f(a) �= g(a); we define f < g if and only
if f(a) < g(a) for that largest such a.

2. The constant function that is equal to 0 everywhere is clearly the
minimal non-negative formal power series with respect to the order
< and will be denoted by 0.

3. If f ∈ B(XΓ), we define its successor by

s(f)(a) :=
{
f(a), if a �= 0 and
f(a) + 1, if a = 0.

4. Given f, g ∈ B(XΓ), we define f + g pointwise by (f + g)(a) :=
f(a) + g(a). Note that supp(f + g) ⊆ supp(f) ∪ supp(g), so
supp(f + g) is reverse well-founded. Furthermore, if f and g are
both non-negative, then f + g is non-negative. Thus, + is a binary
operation on B(XΓ).

Theorem 14. If Γ is an exponent order and B is a base group, then
(B(X Γ), 0, <, s,+) is a model of Pr–.

Proof. It is routine to check that the axioms of Pr– are satisfied. Note
that it is axiom S2 (the fact that s(x) is the order successor of x) that uses
our additional requirement that f(0) ∈ Z. �

8Cf. the proof of Theorem 14 to understand the last requirement.
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Let us consider a few instructive examples:

1. If Γ = {0} = 1 and B = Z then B(XΓ) = Z(X 1) and (Z(X 1), 0, <,
s,+) is isomorphic to the natural numbers.

2. If Γ = {0, 1} = 2 and B = Z, then B(XΓ) = Z(X 2) and (Z(X 2), 0, <,
s,+) is isomorphic to the non-negative polynomials of degree at most
one on Z with the standard order and operations, and, more generally
for every 0 < n ∈ N, if Γ = n and B = Z, then (Z(Xn), 0, <, s,+) is
isomorphic to the non-negative polynomials of degree at most n – 1
over Z with the standard order and operations.

3. Finally, by taking Γ = N and B = Z we have that (Z(XN), 0, <, s,+) is
isomorphic to the non-negative polynomials over Z with the standard
order and operations. As mentioned in Section 2.2, this means that the
order type of Z(Xn) is On and the order type of Z(XN) is O�.9

If we require in addition that B is a divisible group, then Presburger’s
theorem implies that the formal power series construction gives a model of
Pr. This fits with Theorem 17(ii) (due to Llewellyn-Jones) discussed in the
next section.

Theorem 15. Let (Γ, 0, <) be a linearly ordered set with least element 0 and
(B, 0, <,+) be a ordered divisible abelian group. Then (B(X Γ), 0, <, s,+) is a
model of Pr.

Proof. By Theorem 14 and Presburger’s characterisation of Pr by PrD,
we only need to show that that for every natural number n > 0, the axiom
Dn holds.

Let f ∈ B(X Γ) and 0 < n ∈ N; we shall define g such that f = sm(g · n).
First find z ∈ Z and 0 < m < n such thatf(0) = zn +m. Use the divisibility
of B to find for every a ∈ Γ an element ba ∈ B such thatf(a) = ba · n. Now,
define

g(a) =

{
z, if a = 0,
ba, if a > 0.

Then f = sm(g · n) as desired. �

4.3. Multiplication of formal power series. In order to define multiplica-
tion on formal power series, we need an additive structure on the exponents
and a multiplicative structure on the coefficients. So, we now assume that
we have an addition + on our exponent order such that (Γ, 0, <,+) is an
ordered abelian monoid with least element 0 and a multiplication · on the
base group such that (B, 0, 1, <,+, ·) is an ordered ring.

If f, g ∈ B(X Γ), we define f · g by

(f · g)(a) :=
∑
b+c=a

f(b) · g(c).

9Cf. the proof of Theorem 33 for further generalisations of this example.
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In order to see that this defines a formal power series, we need to check
that for every a ∈ Γ, there are only finitely many pairs c, b ∈ Γ such that
c + b = a andf(b) �= 0 and g(c) �= 0. Assume towards a contradiction that
there are infinite sets {bn ; n ∈ N} and {cn ; n ∈ N} such that for all n ∈ N,
we have bn + cn = a, f(bn) �= 0, and g(cn) �= 0. From this, we now build
either a strictly increasing sequence in supp(f) or in supp(g), contradicting
their reverse well-foundedness.

Given a sequence s : N → Γ we call an element s(n) of the sequence a spike
if for all m > n we have s(n) > s(m). Consider b : N → Γ and c : N → Γ
as sequences defined by b(n) := bn and c(n) := cn. Each of them either has
infinitely many spikes or some n such that there are no spikes after n.

If b has only finitely many spikes, then we can easily define a strictly
increasing subsequence, contradicting the reverse well-foundedness of
supp(f). On the other hand, if b has infinitely many spikes, then the
subsequence of spikes forms a strictly decreasing sequence, but since
bn + cn = a, the corresponding subsequence of c must form a strictly
increasing sequence, contradicting the reverse well-foundedness of g.

A minor modification of that argument shows that if f, g ∈ B(X Γ), then

Z := {b + c ; b ∈ supp(f) and c ∈ supp(g)}

is reverse well-founded. Since supp(f · g) ⊆ Z, we have that supp(f · g)
is reverse well-founded. Furthermore, LT(f · g) = LT(f) + LT(g) and (f ·
g)(LT(f · g)) = f(LT(f)) · g(LT(g)) > 0, so f · g is non-negative. Together,
f · g ∈ B(X Γ).

Theorem 16. Let (Γ, 0, <,+) be an ordered abelian monoid with least
element 0 and (B, 0, 1, <,+, ·) be an ordered commutative ring. Then the
structure (B(X Γ), 0, <, s,+, ·) is a model of PA–.

Proof. It is routine to check the axioms M1 to M6. �

Note that by Theorem 15, if B = Q and Γ = 2, then Q(X 2) is a model of
Pr of order type N + Z ·Q, but it is not closed under multiplication and so
cannot be a model of PA–. This model is well-known in the literature; cf.,
e.g., [29].

§5. Presburger arithmetic. Presburger arithmetic, the additive fragment
of arithmetic, is closely related to ordered abelian groups. Llewellyn-Jones
considered an integer version of Presburger arithmetic, allowing for additive
inverses and gives an axiomatisation for this theory that we shall call PrZ

[13]. If (M, 0, <, s,+) |= PrZ, then (M, 0, <,+) is an ordered abelian group;
Llewellyn-Jones calls these groups Presburger groups and proves in his
integer setting that G is a Presburger group if and only if G is isomorphic
to Z ·H where H is an ordered divisible abelian group [13, Sections 3.1
and 3.2]. In the following, we reformulate Llewellyn-Jones’s approach in the
standard setting of arithmetic (i.e., without additive inverses).
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Theorem 17. Let M be an L<,s,+-structure.

(i) The structure M is a model of Pr– if and only if there is an ordered
abelian group G such that M is isomorphic to the standard monoid over
G, and

(ii) the structure M is a model of Pr if and only if there is an ordered
divisible abelian group G such that M is isomorphic to the standard
monoid over G.

Proof. This proof is a reformulation of the characterisation of Presburger
groups as in [13] to the standard setting.

For the forward direction of (i), it is enough to see that in N + Z ·G+ all
the axioms of Pr– are trivially satisfied. For the other direction, ifM |= Pr–

then by (the proof of) Corollary 13, the order type of M is N + Z · A for
a linear order A consisting of the non-zero Archimedean classes of M. For
each a ∈ A, we define a formal negative element – a such that the negative
elements are all distinct from the elements of A and pairwise distinct. Then
we define – A := {– a ; a ∈ A} and G :=– A ∪ {[0]} ∪ A. For notational
convenience, we define – [0] := [0]. We define an abelian group structure on
G as follows:

1. For any g ∈ G , g + [0] := [0] + g := g.
2. If a, b ∈ A are non-zero Archimedean classes of M, then there is a

unique c ∈ A such that for all x ∈ a and y ∈ b, we have that x + y ∈ c;
define a + b := b + a := c and (– a) + (– b) := (– b) + (– a) :=– c.

3. If a, b ∈ A, x ∈ a, and y ∈ b with x < y, then by �, we find z such
that x + z = y. Let c be the Archimedean class of z, i.e., c ∈ A ∪ {[0]}.
Then (– a) + b := b + (– a) := c and a + (– b) := (– b) + a :=– c.

It is routine to check that (G, 0, <,+) is an ordered abelian group and that M
isomorphic to N + Z ·G+. For (ii), all that is left to show is that divisibility
of the group corresponds to the additional axioms Dn of PrD. �

Corollary 18 (Folklore). There is a model ofPr with order typeN + Z · R.

Proof. The real numbers R are an ordered divisible abelian group, so
by Theorem 17 (ii), there is a model of Pr with order type N + Z · R+. The
claim follows from the fact that R+ and R have the same order type. �

Corollary 19. Let M be a non-standard model of Pr. Then M has order
type N + Z · A where A is a dense linear order without endpoints.

Proof. It is enough to observe that divisibility implies density and use
Theorem 17. �

We can use Theorem 17 and the general theory of groupable linear orders
to get a characterisation theorem for the order types of models of Pr–. First
let us recall a classical result about groupable linear orders; cf., e.g., [21,
Theorem 8.14]:

Theorem 20. A linear order (L,<) is groupable if and only if there is an
ordinal α and a densely ordered abelian group (D, 0, <,+) such that L has
order type Zα ·D.
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Corollary 21. A structure M is a model of Pr– if and only if there is an
ordinal α and a densely ordered abelian group (D, 0, <,+) such that M has
order type N + Z · (Zα ·D)+.

Proof. Follows from Theorems 17 and 20. �
As we have seen in Section 4, the non-negative formal power series

on Z with exponent 2 are isomorphic to the ordered abelian monoid of
polynomials of degree at most one with integer coefficients. Moreover, by
Theorem 14 (or Theorem 17), (Z(X 2), 0, <, s,+) |= Pr–. The next theorem
expresses that this is a lower bound for non-standard models of Pr–.

Theorem 22. Let M be a non-standard model ofPr–. Then M has a submodel
isomorphic to (Z(X 2), 0, <, s,+).

Proof. Let M be a non-standard model of Pr– and a ∈M be a non-
standard element of M. define the following mapping ϕ : Z(X 2) →M :

ϕ(f) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sn(0), if LT(f) = 0 and f(0) = n,
sm(na), if LT(f) = 1 and f(1) = n, f(0) = m ≥ 0,
b, if LT(f) = 1 and f(1) = n, f(0) = m < 0 and

s–m(b) = na.

It is easy to see that ϕ is an order-preserving injection. �
Corollary 23. Let M be a non-standard model of Pr– then the order N +

Z · N can be embedded in the order type of M.

Proof. As mentioned, Z(X 2) is the set of non-negative polynomials of
degree at most 1 over Z and clearly has order type N + Z · N. The result then
follows from Theorem 22. �

Corollary 24. Every non-standard model of Pr– has a proper non-standard
submodel.

Proof. By Theorem 22, it is enough to show that Z(X 2) has a non-
standard submodel. Consider all polynomials with degree at most 1 and
even leading terms, i.e.,

M := {2nX + z ∈ Z(X 2) ; n ∈ N, z ∈ Z}.

Clearly, this set is closed under s and +, so it is a substructure of Z(X 2).
Moreover, every element of M except for 0 has a predecessor. Therefore, M
satisfies axiom S1. The only existential axiom of Pr– which still needs to be
checked is�. Letf, g ∈M such thatf < g. Define h(a) = g(a) – f(a). We
want to show thath ∈M . If LT(f) = 0, this is trivially true sinceh(1) = g(1).
If LT(f) = 1, then f(1) = 2n and g(1) = 2n′ for some n, n′ ∈ N such that
n < n′. Then h(1) = 2n′ – 2n = 2(n′ – n); therefore h ∈M . The fact that
f + h = g follows trivially by the definition of + in Z(X 2). �

§6. The algebraic nature of models of theories without induction. In this
section, we are going to discuss the difference between the theories without
induction and those with induction: since almost all of the axioms in the
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former are universal sentence, they behave essentially like algebraic theories;
this means that their models can be obtained as algebraic closures. In
contrast, the latter require richer constructions.

We illustrate this by considering the simplest cases of non-standard models
of SA and Pr– as discussed in Sections 3 and 5. In the case of SA– = SA,
the axioms O1 to O4 and S2 to S4 are universal, so models of these axioms
are just constructed by closing under the operation s. Axiom S1 requires the
existence of a s-predecessor for each element other than 0. The closure under
s-successors and s-predecessors (i.e., the unique witnesses for all instances
of the ∀∃-axiom S1) of a given non-standard element is its Archimedean
class and thus, if we take a set A of generators, it will generate the model of
order type N + Z · A from Corollary 13.

Concretely, if A = {a} consists of just one generator, we get the standard
part and a single additional Archimedean class, i.e., a model of order type
N + Z:

0 1 2

s s

Standard part

a

s s

Archimedean class of a

Once we add the operation + and want to extend our model to an L<,s,+-
structure, for each non-standard element a, we need to have the elements
a + a = 2a, a + a + a = 3a, etc. By Lemma 6, their Archimedean classes
must be separate, so we generate an �-sequence of Archimedean classes
resulting in a model of order type N + Z · N, the minimal order type of a
non-standard model of Pr–. The following is a picture of the case where D
is the one-element group and α = 1 in Corollary 21. It could be considered
a picture proof of Corollary 23.

0 1 2

s s

Standard part

a

s s

2a

s s

+

3a

s s

0000 11 222

sss ss

+

4a 5a

+

aa

s s

2a

s s

3a

s s

+

4a 5a

Moving to the concrete case where A = {a, b} with a < b is a set of two
generators, the models of SA remain purely generated: by Corollary 13,
the generated model of SA has order type N + Z · 2: each of the generators
generates its own Archimedean class.

0 1 2

s s

Standard part

a

s s

Archimedean class of a

b

s s

Archimedean class of b
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However, if we add the operation +, a new phenomenon occurs. The
closure of this model under + (taking axiom P4 into account) will produce
all of the terms of the form na +mb for n,m ∈ N with the order

na +mb < ka + 	b if and only if m < 	 or m = 	 and n < k.

These terms give us the generated Archimedean classes, and consequently,
the generated non-standard elements of the model can be described as a pair
(z, na +mb) where na +mb is the term determining the Archimedean class
and z ∈ Z determines the position within the Archimedean class. The order
type of this generated structure is N + Z · N · N with � many copies of the
non-standard part of the model of Pr– with one generator.

0 1 2 a 2a b b+a 2b 3b

+ +

0000000 1111 222222

+

333bbbb

++

aa 222222222222aaaaaaaa bbb bbbbbbbbbbbbb++++++++++aaaaaaaaaa 222bbbb

+ +

But this generated structure is not a model of Pr–; this follows, e.g., from
Theorem 17(i), since N · N is not the order type of the standard monoid of
an ordered abelian group.

The reason for this failure is the is axiom � which –as mentioned before–
is an instance of the induction scheme and the only axiom of Pr– (other than
S1 which we dealt with earlier) that is not in universal form. In this context,
it guarantees the existence of an (additional) element c such that a + c = b,
i.e., the element b – a. This element must be bigger than all finite products
of a, i.e., above the part of the model +-generated from a, but smaller than
b.

Yet � is of the syntactic form ∀∃, so we can form the closure of the above
structure of order type N + Z · N · N under adding (unique) witnesses for
(�). This will produce the next case in Corollary 21 with D the one-element
group and α = 2 with order type N + Z · Z · N.

Our discussion of models generated by one and two generators illustrates
the main theme of this paper: theories without induction can be handled
by simple closure techniques, but theories with induction require model
theoretic arguments.

§7. Peano arithmetic. Theorem 17 tells us that every model M |= PA–

(M |= PA) must have the order type N + Z ·G+ where G is an ordered
(divisible) abelian group. However, in the case of Peano Arithmetic, this
cannot be a sufficient condition since Potthoff proved that no model of PA
can have the order type N + Z · R [16]. It is easily checked that the proof of
Potthoff’s theorem given in [2, p. 5] works in PA–:

Theorem 25. Let M be a non-standard model of PA– with order type N +
Z · A. If A is dense then there are |M | many non empty disjoint intervals in A.
In particular, A �= R.
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Proof. Let a ∈M be non-standard. Consider the set {am ; m ∈M}
where am = a ·m for every m ∈M . By M6, this set has cardinality |M |.
We shall now show that {([am], [as(m)]) ; m ∈M} forms a collection of non-
empty disjoint intervals of size |M | in A:

By Lemma 6, [a ·m] < [a · s(m)] for every m ∈M . By density of A, the
interval ([am], [as(m)]) is not empty in A. Now if m < m′, then by M6 we
have a · s(m) ≤ a ·m′ and [a · s(m)] ≤ [a ·m′]. Therefore ([am], [as(m)]) ∩
([am′ ], [as(m′)]) = ∅ as desired.

IfA = R, then the order type of M isN + Z · R and hence |M | = 2ℵ0 . Now
the main claim of the theorem gives us an uncountable family of pairwise
disjoint intervals in R which contradicts the countable chain condition of
the real line. �

Theorem 25 shows that the closure under multiplication adds more
requirements on the order type of models of PA–. The following is a natural
requirement: we remind the reader of the definitions of initial and final
segments and order exponentiation from Section 2.2. In particular, if L is
a linear order and 	 ∈ L, then IS(	) is the initial segment given by 	 and
IS(	)� is the set of functions from � to IS(	) with finite support, ordered
anti-lexicographically.

Definition 26. Let L be a linear order. We say that L is closed under finite
products of initial segments if for every 	 ∈ L the order IS(	)� embeds into
FS(	).

Theorem 27. Let M be a non-standard model of PA– with order type N +
Z · L. Then L is closed under finite products of initial segments.

Proof. As before, we assume that L is the set of non-zero Archimedean
classes of M. For every 	 ∈ L choose a representative r	 ∈M such that
r	 ∈ 	 and r	 > 0. Let 	 ∈ L be an element of the linear order L. We want
to define an order embedding of IS(	)� into FS(	). Fix some non-standard
a ∈M such that 	 ≤ [a] and consider the following function:

ϕ(f) =

⎡
⎣ ∑
i≤LT(f)

rf(i) · ai+1

⎤
⎦ ,

for every f ∈ IS(	)�. Note that since f has finite support, the function ϕ
is well defined. Now we want to prove that ϕ is order-preserving. First we
prove the following claim:

Claim 28. For every n > 0 and every finite sequence (	0, ... , 	n–1) of elements
of IS(	) we have

∑
i<n

r	i · ai+1 < an+1. �
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Proof. By induction on n. For n = 1 we have r	0 · a < a · a. For n =
n′ + 1 > 1 we have∑

i<n′+1

r	i · ai+1 =
∑
i<n′

r	i · ai+1 + r	n′ · an
′+1

< an
′+1 + r	n′ · an

′+1

= an
′+1 · (s(0) + r	n′ ) < a

n′+2. �

We want to prove that if f < f′ are two elements of IS(	)� then ϕ(f) <
ϕ(f′). Let n ∈ N be the biggest natural number such that f(n) �= f′(n).
Since f < f′ we have f(n) < f′(n), then [rf(n)] < [rf′(n)].

Moreover since n ≤ LT(f′) we have∑
n<i≤LT(f′)

rf(i) · ai+1 =
∑

n<i≤LT(f′)

rf′(i) · ai+1.

Therefore, by monotonicity of + it is enough to prove that for every n′ ∈ N

we have ∑
i≤n
rf(i) · ai+1 + sn

′
(0) < rf′(n) · an+1.

For n = 0 it is trivially true. For n > 0, we have∑
i≤n
rf(i) · ai+1 + sn

′
(0) =

∑
i<n

rf(i) · ai+1 + rf(n) · an+1 + sn
′
(0)

< an+1 + rf(n) · an+1 + sn
′
(0)

< an+1 · (rf(n) + sn
′+1(0))

< an+1 · rf′(n),

where we used Claim 28 in the first inequality. Therefore ϕ is order-
preserving as desired. �

Theorem 16 showed that the non-negative polynomials with integer
coefficients Z(XN) are a model of PA–. In analogy to Theorem 22, we show
that this provides a lower bound for the order type of non-standard models
of PA–:

Theorem 29. Let M be a non-standard model of PA–. Then there is a
submodel of M isomorphic to (Z(XN), 0, <, s,+, ·).

Proof. Let M be a non-standard model of PA– and a ∈M be a non-
standard element of M. Let f ∈ Z(XN); remember that if supp(f) ⊆
{0, ... , n} and LT(f) = n, then f can be thought of as a polynomial

f(n)Xn + f(n – 1)Xn–1 + ··· + f(0),

where f(n) > 0 and f(i) ∈ Z (for 0 ≤ i < n). We define the function

ϕ : Z(XN) →M : f �→ f(n)an + f(n – 1)an–1 + ··· + f(0),
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where negative terms are uniquely interpreted by the fact that we have
axiom�. It is routine to check thatϕ is an embedding of (Z(XN), 0, <, s,+, ·)
into M. �

Corollary 30. Let M be a non-standard model of PA–. Then the order type
O� can be embedded in the order type of M. In particular, Z(X 2) is not a
model of PA–.

Proof. SinceO� is the order type of the non-negative polynomials on Z,
this follows directly from Theorem 29. �

Corollary 31. Every non-standard model ofPA– has a proper non-standard
submodel.

Proof. As in the proof of Corollary 24, by Theorem 29, it is enough
to check that Z(XN) has a proper non-standard submodel. Consider the
polynomials in which only terms with even exponent occur and observe that
they are closed under addition and multiplication and that the structure
satisfies �. �

The contrast between Z(X 2) �|= PA– and Z(XN) |= PA– derives from the
fact that the exponential order N is closed under addition and forms a
monoid (allowing us to use Theorem 16) whereas the exponential order 2 is
not.

This can be easily generalised: an ordinalα is called additively indecompos-
able (or a gamma number) if it cannot be written as α = 
 + � for ordinals

, � < α; equivalently, it is closed under ordinal addition, i.e., for all 
, � ∈ α,
we have 
 + � ∈ α. If α is additively indecomposable, then it is also closed
under the natural (Hessenberg) sum of ordinals, denoted by ⊕, which is a
commutative operation (cf. [25, XIV.28]).

Clearly, all ordinals of the form α = �� are additively indecomposable,
and if α is additively indecomposable, then the structure (α,<, 0,⊕) is an
ordered commutative positive monoid. Thus, by Theorem 16, the structure
Z(Xα) is a model of PA–. Note that the order type of Z(Xα) is Oα (defined
in Section 2.2).

We end this section by showing that these order types give us many non-
isomorphic order types of models of PA– of a given cardinality. This yields
a markedly different situation from the theories with induction, Pr and PA,
in the countable case.

Lemma 32. Let α and � be two ordinals. Then Oα and O� are order
isomorphic if and only if α = � .

Proof. We observe that for positive ordinals α, �α embeds order-
preservingly intoOα . We shall show that�α+1 does not embed intoOα . Once
we have proved this, these two statements immediately imply the claim: if
α < � , thenO� cannot embed order-preservingly intoOα and so they cannot
be isomorphic.

In order to show our non-embedding results, we first prove the following
claim by induction for positive ordinals α:

Every order-preserving embedding ϕ : �α → Zα must be cofinal. (*)

https://doi.org/10.1017/bsl.2021.48 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2021.48


202 LORENZO GALEOTTI AND BENEDIKT LÖWE

The claim is obvious for α = 1 and the limit case follows directly from the
induction hypothesis. Let nowα = � + 1 andϕ : ��+1 → Z�+1 be an order-
preserving embedding where we write elements of ��+1 = �� · � as pairs
(�, n) with � ∈ �� and n ∈ � and elements of Z�+1 = Z� · Z as pairs (g, z)
with g ∈ Z� and z ∈ Z. If n ∈ � and z ∈ Z, we write An := {ϕ(�, n) ; � ∈
��} ⊆ ran(ϕ) and Bz := {(g, z) ; g ∈ Z�}; these sets have order type ��

and Z� , respectively. Clearly, ran(ϕ) =
⋃
n∈� An and Z�+1 =

⋃
z∈Z Bz .

If we fix n ∈ �, the set An is non-empty and bounded in Z�+1. Therefore
there is a minimal integer zn such that for all z ≥ zn, we have An ∩ Bz = ∅.
In particular, An ∩ Bzn–1 �= ∅, and thus Bzn–1 contains a final segment of
An. The order type of An is �� , i.e., an additively indecomposable ordinal;
therefore, final segments of An still have order type �� . By the induction
hypothesis, we know that An ∩ Bzn–1 must lie cofinal in Bzn–1.

Now we consider elements of An+1: these are strictly bigger than all of
the elements of An, and therefore they must lie in some Bz for z > zn. In
particular, zn+1 > zn. This shows that the sequence zn is a strictly increasing
sequence of integers indexed by natural numbers, hence cofinal in Z. This
implies that ran(ϕ) is cofinal in Z� · Z, finishing the proof of (*).

We now use (*) to prove that every order-preserving embedding from �α

into Oα must be cofinal. This clearly implies our desired non-embedding
claim for �α+1 and therefore finishes the proof of the lemma.

As in the proof of (*), the case α = 1 is obvious and the limit case
follows directly from the induction hypothesis. Let α = � + 1 and let
ϕ : ��+1 → O�+1 = O� + Z� · N be an order-preserving embedding. We
apply the induction hypothesis to ϕ��� and obtain that its image cannot be
bounded inO� ; thus, a final segment of ran(ϕ) lies in theZ� · N part ofO�+1.
By the fact that ��+1 is additively indecomposable, this final segment has
order type ��+1, so we can partition it into a strictly increasing �-sequence
of sets each of order type �� . Applying (*) inductively to these fragments
of the map ϕ, we see that the nth of these sets has to lie cofinal in the nth
copy of Z� or reach beyond it. In total, the image of ϕ has to lie cofinal in
the entire Z� · N part of O�+1 and hence in O�+1 itself. �

Theorem 33. There are at least �+ non-isomorphic order types of models
of PA– that are not models of Pr (or PA) of cardinality �.

Proof. There are �+ many additively indecomposable ordinals smaller
than �+. For each such α, we have that (Z(Xα), 0, <, s,+, ·) is a model
of PA– of cardinality �; by Lemma 32, they have pairwise non-isomorphic
order types. It is easy to see that none of these models are models of Pr using
Corollary 19. �

Note that for � = �, Theorem 33 gives us uncountably many non-
isomorphic countable models of PA– in stark contrast with the two order
types of countable models of PA (by Cantor’s theorem, N and N + Z ·Q are
the only possible order types).

We note that for uncountable �, Theorem 33 is the consequence of a
result related to Shelah’s famous Non-structure Theorem or Many-Models
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Theorem. As part of his proof of the Non-structure Theorem, Shelah
considers the number of reducts in [23, Chapter VIII]:

Theorem 34 (Shelah; [23, Theorem VIII.0.4]). Let � be an uncountable
regular cardinal, L ⊆ L∗ be two countable languages, T an L-theory, and
T ′ ⊇ T an L∗-theory. If T ∗ has infinite models and T is not stable, then there
are 2� many pairwise non-isomorphic models of T that are L-reducts of models
of T ∗.

Now let T be the complete theory of discrete linear orders with a least but
no largest element (which is a standard example for an unstable theory) and
T ′ to be PA–. Then Theorem 34 yields 2� many non-isomorphic order types
of models of PA– of regular size � ≥ ℵ1.

Comparing Theorems 33 and 34, we see that our construction gets �+

instead of 2� many models, but provides the additional information that
they are not models of Pr and works for � = �.

§8. Shelah on almost isomorphism of order rigid models. The most recent
progress on Friedman’s Question 2 was made by Shelah in [24]. Since this
is one of the few other papers that discusses fragments of Peano arithmetic
with no induction or only fragments of induction, we should like to present
Shelah’s results here.

Let (M, 0, <, s,+, ·) be an L<,s,+,·-structure; as usual, without loss of
generality, we assume that N ⊆M . For a, b ∈M , we say that a is
exponentially small relative to b if for all natural number n, we have that
an < b. We define two equivalence relations on M: we say that a is standardly
close to b, in symbols a E2 b, if there is a natural number n such that a < b · n
and b < a · n; we say that a is exponentially close to b, in symbols a E3 b, if
there is a c which is exponentially small relative to both a and b such that
a < b · c and b < a · c.

The structure (M, 0, <, s,+, ·) is called two-order rigid if any a, b ∈M that
define order isomorphic initial segments are standardly close; it is called 3-
order rigid if any a, b ∈M that define order isomorphic initial segments are
exponentially close.

If (M, 0, <, s,+) and (N, 0, <, s,+) are any L<,s,+-structures, we call a
map f :M → N an almost isomorphism if it is a L<,s-isomorphism and for
any a, b ∈M , the elements f(a) + f(b) and f(a + b) are standardly close
in N.

Theorem 35 (Shelah; [24, Theorems 2.6 and 3.5]). If (M, 0, <, s,+, ·) |=
PA is two-order rigid or three-order rigid and (N, 0, <, s,+, ·) |= PA has the
same order type as (M,<), then the additive reducts (M, 0, <, s,+) and
(N, 0, <, s,+) are almost isomorphic.

Not much is known about how close the theorem is to being optimal:
in particular, it is not known whether the additive reducts are isomorphic
(rather than almost isomorphic) [24, Question 2.7].

In our context, it is interesting to note that in [24, Section 5], Shelah
considers whether Theorem 35 holds for L<,s,+,·-structures that are models
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of fragments of PA without induction. He considers four weaker theories
PA–4, PA–3, PA–2, and PA–1, of which PA–4 is our PA– and the others are PA–

with an increasing amount of additional instances of induction. Shelah then
observes that for Theorem 35 in the case of two-order rigidity, the theory
PA–1 is sufficient [24, Theorem 5.4].

§9. Summary. We combine the various insights into possible order types
of our five theories SA– = SA, Pr–, Pr, PA–, and PA in order to provide
the solution to Question 4 restricted to these five theories: they can all be
separated by order types.

For the theories SA and Pr–, we were able to give complete character-
isations in Corollaries 13 and 21; for the theories Pr and PA–, we were
able to give necessary conditions in Corollary 19 and Theorems 25 and 27,
respectively. In particular, the negative results from Sections 4 and 5 imply:

Corollary 36. There is no model of Pr (and hence, no model of PA) with
order type O2 or O�.

Proof. We have that O2 = N + Z · N and O� = N + Z ·O�. Clearly, N
and O� are not the positive parts of a densely ordered abelian group, so by
Corollary 19, no model of Pr can have these order types. �

In the following diagram, an arrow from a theory T to a theory S means
“every order type that occurs in a model of T occurs in a model of S”. The
diagram is complete in the sense that the absence of an arrow means that no
arrow can be drawn, i.e., “there is an order type of a model of T that cannot
be an order type of a model of S.”

SA

Pr–

����������
Pr��

����������

PA–

��

PA��

��

The non-implication SA � Pr– follows from Corollaries 13 and 23: N + Z

is an order type witnessing the separation.
The non-implication Pr– � Pr follows from Theorem 14 and Corollary

36: N + Z · N is an order type witnessing the separation.
The non-implication Pr– � PA– follows from Theorem 14 and

Corollary 30: N + Z · N is an order type witnessing the separation.
The non-implication PA– � Pr follows from Theorem 16 and

Corollary 36: O� = N + Z ·O� is an order type witnessing the separation.
The non-implication Pr � PA– follows from Theorem 25 and

Corollary 18: N + Z · R is an order type witnessing the separation.
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