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Rotational dynamics of a neutrally buoyant
prolate spheroid in viscoelastic shear flows at
finite Reynolds numbers
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Non-spherical particles exhibit peculiar behaviour in non-Newtonian flows. In this paper,
we numerically investigate the dynamics of a neutrally buoyant prolate spheroid immersed
in viscoelastic shear flows at finite Reynolds numbers by means of the immersed boundary
method. Our results show that the period of particle rotation changes monotonically with
the solvent viscosity ratio but non-monotonically with the mobility factor. Furthermore,
we find five rotation modes of the spheroid under the effects of fluid inertia and fluid
rheology in the present flow configuration. With weak fluid inertia, the particle rotation
rate is remarkably reduced by fluid elasticity, which also induces asymmetric rotational
behaviour. While the particle tends to tumble in the shear plane with weak fluid elasticity
and moderate fluid inertia. However, as the fluid elasticity increases, the particle rotates
with a newly observed mode, named the asymmetric-kayaking mode, which is classified
by two additional critical elastic numbers that differ from the earlier studies on Stokesian
viscoelastic shear flows. The present findings imply the importance of fluid inertia and
fluid elasticity on the particle dynamics and could be potentially used to control the particle
orientations in viscoelastic fluid flows.

Key words: particle/fluid flow, viscoelasticity

1. Introduction

Particle-laden flows of non-Newtonian fluids are widely encountered in the natural
and industrial areas. Examples of these particle-laden non-Newtonian flows include
fibre-reinforced polymers or rubbers (D’Avino & Maffettone 2015), red blood cell
(RBC) transport in the vessels (Ye, Phan-Thien & Lim 2016; Beris et al. 2021),
viscoelasticity-based cell separations in microfluidics (Lin & Huo 2015; D’Avino,
Greco & Maffettone 2017; Li & Lin 2022), the fibre-like microorganisms swimming
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in non-Newtonian fluid environments (Storm et al. 2005; Li & Ardekani 2016), just to
name a few. All these suspensions mentioned above can exhibit peculiar features, such
as viscoelastic and shear-thinning effects. It is well known that these non-Newtonian
characteristics can significantly influence the behaviour of particles in fluid flow. Needless
to say, the particle dynamics will conversely affect the bulk properties of suspensions
(Ngo, Nguyen & Oh 2021). Thus, from both the fundamental and the applied perspectives,
understanding the dynamics of particles is important for designing and optimizing
industrial applications involving non-Newtonian particulate two-phase flows. To uncover
the statistical physics of the collective distribution and orientation of particles, it is,
first of all, of importance to understand how a single particle orientates and rotates in
non-Newtonian flows.

The particle dynamics in shear flows has been widely explored in previous studies.
For a single particle rotation in an unconfined shear flow, Jeffery (1922) first derived the
angular velocity of a non-spherical particle immersed in a simple shear flow of Newtonian
fluid, ignoring both fluid and particle inertia. The results indicate that the particle rotates
around the vorticity axis along different closed orbits (so-called Jeffery orbits) with
different initial orientations. There exist abundant studies on the modulations of Jeffery
orbits due to fluid or particle inertia (Taylor 1923; Saffman 1956; Lundell & Carlsson
2010). Rosén, Lundell & Aidun (2014) and Rosén et al. (2015a) conducted a systematic
study on the effect of fluid inertia on the rotation mode of a neutrally buoyant particle
with different Reynolds numbers. Besides the fluid and particle inertia, the rheological
characteristic of the fluid flow is another factor affecting the particle rotation modes.
Considering that viscoelasticity is a typical rheological characteristic of non-Newtonian
fluids, the rotation modes of a single particle in viscoelastic fluids have long been actively
investigated.

The studies on particle rotational dynamics in viscoelastic fluid flows began with
spherical particles. When the elastic effect of fluid is weak, the theoretical results show that
the particle angular velocity is almost unchanged in the second-order fluid (SOF, a kind
of weakly viscoelastic fluid) (D’Avino & Maffettone 2015). However, when the particle is
immersed in a fluid with strong viscoelasticity, both experimental and numerical results
evidence that the fluid elasticity can dramatically slow down the particle rotation rate
(Hwang, Hulsen & Meijer 2004; D’Avino et al. 2008; Snijkers et al. 2009; Housiadas &
Tanner 2011; Snijkers et al. 2011). Snijkers et al. (2011) numerically explored the rotational
dynamics of a spherical particle in the Oldroyd-B fluid, the results indicate that the closed
orbits around the particle become distorted and form two recirculation regions, which are
opposite to the primary flow.

Regarding non-spherical particles, researchers devoted efforts to investigating the
rotational behaviours of ellipsoids in viscoelastic fluid flows by experiments. These
experimental studies show that the viscoelasticity could significantly increase the particle
rotational period (Gauthier, Goldsmith & Mason 1971). Apart from the particle rotation
rates, the Jeffery orbits can also be affected by fluid rheology. Experiments, indeed,
indicate that, when fluid elasticity is weak, the symmetry axis of rod-like particles
eventually drifts to the vorticity direction, whereas it aligns in the shear plane for disk-like
particles (Gauthier et al. 1971). However, moderate and strong fluid elasticities lead
to distinct particle orientations, which have been demonstrated by experiments of red
blood cell in a Boger fluid flow (Johnson, Salem & Fuller 1990). In moderately elastic
fluids, it was observed that the ellipsoidal cells orientate between the vorticity and flow
directions. In highly elastic fluids, the fibre-like particles align their symmetry axes along
the flow direction (Iso, Cohen & Koch 1996a; Iso, Koch & Cohen 1996b). Later, several
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more detailed experiments were conducted to analyse the effect of a wide range of fluid
elasticities on the orientations of ellipsoids with different shapes (aspect ratio ranges
from 2.0 to 8.0) (Gunes et al. 2008). Besides the aforementioned particle orientations in
weakly and highly elastic fluids, there exists a more interesting particle orientation mode
characterized by the bimodal distribution in a viscoelastic shear flow with a specific range
of Deborah numbers (Gunes et al. 2008).

As for the theoretical studies, Leal (1975) derived an asymptotic solution for a rod-like
particle immersed in the shear flow of a SOF fluid. The orientation modes predicted by
the theoretical model are consistent with the experiments: rod-like particles evolve towards
the vorticity axis in shear flows with low Deborah number, while they align along the flow
direction in high Deborah number flow. Brunn (1977) further extended the theoretical
model to the ellipsoids with other aspect ratios. Moreover, Dabade, Marath & Subramanian
(2015) proposed a viscoelastic torque model based on the generalized reciprocal theorem.
This model predicts the longside-on orientation for both prolate and oblate particles in the
uniform flow of viscoelastic fluids, in which the first normal stress difference of fluid is
positive and dominant.

Considering the limitation of the small expansion parameters used in the asymptotic
theory, theoretical studies are mainly restricted to weakly viscoelastic fluids, such as a
SOF. The results predicted by this theorem could not reveal the more complex orientation
modes (such as the orientation between the vorticity and flow directions) observed in
experiments. In addition, the theoretical approaches also could not be used to handle
the more realistic fluids described by the highly nonlinear constitutive equations, such
as the Giesekus model. Thus, to understand the mechanisms of the particle behaviours in
fluid flows with more complex rheological properties, numerical approaches are needed.
Numerical simulations of the rotational dynamics of ellipsoids in viscoelastic shear flows
have received extensive attention (Phan-Thien & Fan 2002; Nguyen-Hoang et al. 2008;
Wang, Yu & Lin 2019). D’Avino et al. (2014) and D’Avino, Greco & Maffettone (2015)
systemically analysed the detailed dynamics of prolate particles in a sheared Giesekus
fluid by finite element simulations. Due to the fluid elasticity, the particle rotation could be
categorized into four different modes: (i) in low Deborah number flow, the prolate particles
align their symmetry axes along the vorticity direction and behave in a ‘log-rolling’ mode.
(ii) With increasing shear rate or fluid elasticity, the particles drift towards the shear plane
and finally align between the flow and vorticity directions. (iii) When the Deborah number
reaches a critical threshold value, an interesting bi-stable orientation mode appears. In this
rotation mode, the final equilibrium state of a particle depends upon its initial orientations.
(iv) Finally, in highly elastic flow with large Deborah number, the particles eventually align
with the flow direction.

To summarize, although there are a few studies on the rotational dynamics of
non-spherical particles in viscoelastic flows, these studies are mostly confined to flows
which are fluid elasticity dominated, where the fluid and particle inertia are both absent.
The interplay between fluid elasticity and inertial effects on particle behaviours in shear
flows is not yet explored. The elasto-inertial coupling effect is expected to affect the
particle dynamics. For example, induced by the competition between fluid inertia and
elasticity, the particles exhibit a different lateral migration in duct flows (Li, McKinley
& Ardekani 2015; Yu et al. 2019). However, in viscoelastic flows with fluid inertia, the
research on this coupling effect on particle rotational behaviours is still developing.

The main dimensionless numbers governing the particle dynamics in viscoelastic flows
include the Reynolds number, Re, Stokes number, St and Weissenberg, Wi or Deborah
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number, De. The previous studies are mostly confined to inertia-free particles immersed in
viscoelastic flows within the Stokesian regime, i.e. Re, St ∼ 0 and Wi or De > 0. From this
point of view, there exist gaps in the parameter space, where fluid inertia, particle inertia
and fluid elasticity coexist in the suspension system (Re > 0, St > 0, Wi or De > 0). The
present research aims at mapping the parameter space and understanding the influences
of the controlling parameters on the particle rotational dynamics in viscoelastic flows.
Besides the above potential fundamental contributions, it is also of practical importance
to study the particle rotation in viscoelastic–inertial shear flows. One of the popularly
used techniques to improve the efficiency of particle separation in microfluidics is using
viscoelastic liquids with low viscosity and high elasticity (Lu & Xuan 2015; Li et al. 2015;
D’Avino et al. 2017; Raoufi et al. 2019). In this regard, both fluid inertia and elasticity are
important to the particle behaviours. Therefore, studying the elasto-inertial orientation of
particles is instrumental in optimizing particle manipulation in microfluidic applications.
Considering that viscoelastic-based particle manipulation is mainly utilized in biomedical
areas, particles (such as RBC) are nearly neutrally suspended in the background fluids.
The densities of these particles are generally similar to those of suspension fluids (Atwell
et al. 2022). Thus, the present study mainly focuses on neutrally buoyant particles.
Moreover, the prolate spheroids suspended in viscoelastic fluids are widely encountered
in various engineering applications, such as fibre-reinforced composite materials (Altan
1990; Nabergoj, Urevc & Halilovič 2022), papermaking processes (Lundell, Söderberg
& Alfredsson 2011) and the ‘rouleaux’ structure (a prolate spheroidal microstructure
of RBCs) in blood (Fedosov et al. 2011; Kang 2002). The orientation modes of these
elongated particles can significantly affect the bulk properties of polymeric suspensions.
This motivates the present study on the rotational dynamics of neutrally buoyant prolate
spheroids in viscoelastic shear flows.

Finally, the particle shape and the characteristics of the particle surface also greatly
affect the particle rotation in shear flows. For example, the critical Weissenberg numbers
for the transition of the spheroid rotation modes are decreased by the particle aspect
ratio (Gunes et al. 2008). Oblate spheroids behave differently with prolate spheroids in
Newtonian (Rosén et al. 2015b) and viscoelastic (Gauthier et al. 1971) shear flows. For a
more complicated case, i.e. particles with irregular shapes, Daghooghi & Borazjani (2018)
found that the periodicity of the angular velocity could be broken by the non-asymmetry
of irregularly shaped particles. This implies that the rotational dynamics of particles can
be greatly altered by the particle shape. As for particles with a non-smooth surface, the
local flow field near the particle surface is sensitive to the characteristics of the particle
surface. Liu et al. (2020) indicated that the rotation periods of highly permeable elliptical
particles are smaller than those of particles with smaller porosity. In this case, the porous
effect on the flow field should also be considered in the governing equations of fluid flow.
Note that the coupled effect of fluid inertia and fluid elasticity on the rotation modes of
the above complex spheroids should be studied based on the systematic knowledge of the
single effect, which, however, is still developing. Considering this, the effects of particle
shape and surface characteristics on particle rotational dynamics deserve to be studied in
detail in future work.

The work is organized as follows. In § 2, we introduce the mathematical models and
numerical methods for resolving the viscoelastic flow and particle rotation. Then the
modulations of the three-dimensional (3-D) rotation modes by the interplay between
fluid elasticity and inertial effects are analysed in § 3. Finally, conclusions are drawn
in § 4.
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2. Mathematical models and numerical methods

2.1. Governing equations
The mathematical models describing the present problem consist of the governing
equations for viscoelastic fluid flow and particle rotation.

2.1.1. Viscoelastic fluid flow
For the fluid phase, the governing equations for incompressible and isothermal viscoelastic
flows are written as

∇ · u = 0, (2.1)

ρf

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · τ s + ∇ · τ p + f IB, (2.2)

where u is the fluid velocity, ρf is the fluid density, p is the pressure and f IB is the
momentum force due to the fluid–particle interaction. To improve the computational
stability of the viscoelastic flow simulation, the total stress is decomposed into the
polymeric stress τ p and the solvent stress τ s (Alves, Oliveira & Pinho 2021).

Generally, the solvent stress of viscoelastic fluid can be written as

τ s = μs
(∇u + (∇u)T

)
. (2.3)

The zero-shear-rate viscosity μ0 and the solvent viscosity ratio β are defined as follows:

μ0 ≡ μs + μp, (2.4a)

β ≡ μs

μ0
, (2.4b)

where μs and μp represent the solvent and polymeric contributions to the zero-shear-rate
viscosity, respectively.

The polymer stress can be further formulated as the following constitutive equation:

τ p + λ
(
∂τ p

∂t
+ u · ∇τ p − τ p · ∇u − (∇u)T · τ p + α

μp
τ p · τ p

)
= μp

(∇u + (∇u)T
)
,

(2.5)
where λ is the polymer relaxation time and α denotes the mobility factor representing the
shear-thinning rheology of the polymeric solution. For a Giesekus-type fluid, the larger
the mobility factor is, the more appreciable is the shear-thinning effect of the fluid; it is
normally less than 0.5 to avoid unphysical solutions (Alves et al. 2021). Specifically, (2.5)
reduces to the Oldroyd-B model when α = 0.

The polymer stress in the Oldroyd-B and Giesekus models can be determined by the
conformation tensor B based on the kinetic theory as

τ p = μp

λ
(B − I) , (2.6)

where I is the identity matrix.
Then the conformation tensor-form constitutive equation can be described as

∂B

∂t
+ u · ∇B − B · (∇u)− (∇u)T · B = 1

λ
[I − B − α (B · B − 2B + I)] . (2.7)
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2.1.2. Particle rotation
Concerning the particle rotational motion, the following Euler equation is utilized:

d
(
Ipωp

)
dt

=
∮
Γp

r × (τ · n) ds, (2.8)

where Ip is the particle moment of inertia, ωp represents the particle angular velocity, Γp
is the particle surface, r is the position vector on the particle surface from the particle
centre and n denotes the unit normal vector pointing outwards on the particle surface; τ
represents the hydrodynamic stress tensor acting on the particle as τ = −pI + τ s + τ p.
The integration of τ accounts for the fluid–particle interaction

The immersed boundary method (IBM) is capable of resolving the effects of finite fluid
inertia and fluid elasticity on particle rotation. Therefore, IBM is adopted to model the
viscoelastic fluid–particle interaction in the present study. By integrating the momentum
equation (2.2) and the Gauss theorem, the hydrodynamic torque acting on the particle can
be rewritten as∮

Γp

r × (τ · n) ds =
∫
Ωp

r × (∇ · τ ) dv = d
dt

∫
Ωp

ρf r × u dv −
∫
Ωp

r × f IB dv, (2.9)

where Ωp is the particle region bounded with surface Γp. In IBM, the momentum forcing
term f IB in (2.2) and (2.9) is used to satisfy the no-slip condition on the particle surface,
which is spread from the fluid–particle interaction forcing term F IB

f IB =
∮
Γp

F IBδ(x − X ) ds, (2.10)

where δ is the Dirac delta function. Here, X denotes the positions of material Lagrangian
points distributed on the particle surface. In the penalty IBM, the fluid–particle interaction
forcing term F IB, acting on the particle surface from the fluid, is given as (Huang, Chang
& Sung 2011)

F IB = −κ [(X IB − X )+
t (U IB − U)] , (2.11)

where κ is a large penalty constant in IBM with κ = 104 in the present simulations; X IB
and U IB represent the positions and velocities of the massless counterparts of the material
Lagrangian points, respectively, and U denotes the velocities of the material Lagrangian
points; 
t is the time step.

To elaborate on the elasto-inertial effect on the particle rotational dynamics, the particle
is fixed at the centre of the simulation domain, thus the translation of particles is neglected
in this study. However, the particle rotation is not constrained, and the particle can freely
rotate in all directions. The flow configuration investigated in the present work is sketched
in figure 1, and the corresponding non-dimensional parameters are summarized as follows:

(i) Particle Reynolds number, Rep = GD2
p/ν0, where G is the constant shear rate of the

flow, Dp is the characteristic length of the particles, i.e. the major diameter of the
particles, and ν0 is the zero-shear-rate kinematic viscosity of viscoelastic fluids. In
the present simulation, the fluid shear rate G and particle major-axis diameter Dp are
set as G = 1.0 and Dp = 1.0, respectively. The effect of fluid inertia is represented
by the variation of the zero-shear-rate kinematic viscosity ν0.

(ii) Stokes number, St = ρrRep, which represents particle inertia. Here, ρr is the ratio
between the particle and fluid densities, ρr = ρp/ρf . In the present work, we focus
on neutrally buoyant particles, i.e. ρr = 1.0, and thus St = Rep .
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y

xz

p

Figure 1. Schematic of a prolate spheroid in a viscoelastic shear flow.

(iii) Weissenberg number, Wi = λG, which represents the elastic effect of fluids.
(iv) Elastic number, El = Wi/Rep, which quantifies the competition between fluid elastic

and fluid inertial effects.
(v) Particle aspect ratio, AR = a/b, where a and b are the polar and equatorial radii of a

spheroid, respectively.

2.2. Numerical methods

2.2.1. Viscoelastic flow solver
The governing equations of a viscoelastic fluid are discretized on the staggered grid using
a finite-difference method. The pressure and conformation tensor are defined on the cell
centre, while the velocity is located on the centre of the cell face, which is orthogonal to its
stored velocity component. For spatial discretization of the governing equations, all terms
are approximated by the second-order central difference scheme, except for the convective
term in the constitutive equation, which is evaluated by a high-resolution scheme, i.e. the
CUBISTA scheme that is often used in viscoelastic flow simulations (Pimenta & Alves
2017). For temporal discretization of the momentum and constitutive equations, all terms
are integrated in time by the second-order Crank–Nicolson scheme. The incremental form
and staggered time (ST) scheme are utilized to treat the pressure gradient and elastic stress
terms. In the ST scheme, the velocity was defined at the n time level while the pressure and
conformation tensor were defined at the n + 1/2 time level. More details on the numerical
method can be found in Li et al. (2022). With the above temporal and spatial discretization
schemes, the discretized governing equations of viscoelastic flow can be written as

Dun+1 = cbcn, (2.12)

un+1


t
+ Nun+1 − β

2Re
Lun+1 + Gf δp − 1 − β

WiRep
DδB

= un


t
− Gf pn−1/2 + β

2Re
Lun + 1 − β

WiRep
DBn−1/2 + mbcn+1/2 + f IB,n+1/2

, (2.13)

δB


t
+ 1

2
NuδB + NuBn−1/2 − 1

2
δB · (Gf un)− Bn−1/2 · (Gf un)

− 1
2

(
Gf un)T · δB − (

Gf un)T · Bn−1/2
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+ 1
2Wi

δB + α

2Wi

(
δB · Bn−1/2 + Bn−1/2 · δB − 2δB

)

= 1
Wi

(
I − Bn−1/2

)
− α

Wi

[
Bn−1/2 · Bn−1/2 − 2Bn−1/2 + I

]
, (2.14)

where δp = pn+1/2 − pn−1/2, δB = Bn+1/2 − Bn−1/2, cbc is the discretization of the
boundary condition in the continuity equation and mbc is the discretization of the
boundary condition in the momentum equation. Further, D represents the discretized
divergence operator, N represents the coefficient matrix of un+1 in the discretized
convective term of the momentum equation, Gf denotes the discretized gradient operator,
L represents the discrete Laplacian operator and Nu denotes the coefficient matrix of B in
the discretized convective term of the constitutive equation. Note that there is no need to
prescribe a boundary condition for the constitutive equation.

By rearranging the discretized governing equations (2.12)–(2.14) in a monolithic matrix
system, the pressure, conformation tensor and velocity can be decoupled from the
viscoelastic flow system sequentially based on the approximate factorization of the system
coefficient matrix. This decoupling procedure has been successfully applied to Newtonian
(Kim, Baek & Sung 2002; Pan, Kim & Choi 2019) and viscoelastic (Li et al. 2022) flow
simulations. With this method, all quantities can be resolved in a projection framework
without iteration.

2.2.2. Particle solver
For the particle phase, substituting equation (2.9) and (2.10) into the particle governing
equation (2.8), the rotation of a particle is further described as follows:

d
(
Ipωp

)
dt

≈ −
Nl∑
l

r × F IB,l
sl + ρf
d
dt

(∫
Ωp

r × u dv

)
, (2.15)

where 
sl is the surface area of each Lagrangian element on the particle surface and Nl is
the total number of Lagrangian points.

The discretized particle rotation equation (2.15) is solved in the particle frame with the
fourth-order Runge–Kutta scheme. The particle orientation is represented by quaternions
(Goldstein 1980), which are updated based on the particle angular velocity.

In the present study, the particle is located at the centre of a box with a size of L × H ×
W. The top and bottom boundaries of the computational domain move with a constant
velocity in opposite directions. The velocity distribution of a simple shear flow is applied
at the inlet boundary. Considering the fluid inertial effect, the convective outflow boundary
is set at the outlet of the computational region. The periodic boundary is set in the spanwise
direction. The size of the computational domain could affect the particle rotation in shear
flows, thus, we compared the results calculated in the different computational domains to
examine the domain-size effect on the particle rotation, as shown in figure 2. It can be seen
that the evolutions of particle orientation and angular velocity calculated with two larger
domains are in good agreement, while the results obtained using the small domain deviate
slightly. Considering the computational cost, the domain size of L × H × W = 8 × 8 × 4
is chosen in the following simulations. The number of Eulerian grid points per major
diameter of the particle is 32, thus the mesh resolution is Δ = 1/32. The time step is
set as 
t = 10−3 in all simulations. With this time step, the Courant–Friedrichs–Lewy
numbers in all simulations satisfy max{u
t/Δ, v
t/
x,w
t/Δ} � 0.2, where u, v,w
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Figure 2. Comparisons of (a) azimuthal angle and (b) angular velocity vs time for a prolate with AR = 2.0,
Rep = 0.1 and Wi = 2.0 in different computational domain sizes.

denote three velocity components in the flow field. The validation of the present numerical
methods is presented in Appendix A.

3. Results and discussion

As mentioned in § 1, the single effect of fluid inertia or fluid elasticity on the rotation
of prolate spheroids has been extensively studied. For fluid inertia, the orientation modes
of prolate spheroids with AR = 2 (Yu, Phan-Thien & Tanner 2007; Huang et al. 2012)
and AR = 4 (Rosén et al. 2014) have been comprehensively analysed in Newtonian shear
flows. In Stokesian viscoelastic shear flows, the rotational dynamics of prolate spheroids
(AR = 4) is also reported in simulations (D’Avino et al. 2014) and experiments
(AR = 2 ∼ 6) (Johnson et al. 1990). To clearly elaborate on the different orientation modes
of prolate spheroids induced by the elasto-inertial effect, we focus on the prolate spheroids
with the same aspect ratios (AR = 1, 2 and 4) used in the earlier studies on the single
effect.

Considering the finite fluid inertia in the practical applications related to the dynamics
of particles in viscoelastic fluids, we set the particle Reynolds number as Rep = 0.1 and
Rep = 10.0 in the present study. These specific values of Rep are chosen mainly for
the fluid inertia in the manipulation of bioparticles in microfluidics. Lu & Xuan (2015)
and Lim et al. (2014) experimentally studied the elasto-inertial focusing of particles in
viscoelastic flows with different fluid inertia, i.e. bulk Reynolds numbers ReH = UH/ν0 =
4.86 and 105.0 (U is the bulk velocity and H denotes the height of microchannel).
Correspondingly, the shear Reynolds numbers of particles in their experiments are roughly
estimated as Rep about O(0.1) ∼ O(10.0). Thus, the present study mainly focuses on the
cases with weak and moderate fluid inertia, i.e. Rep = 0.1 and Rep = 10.0.

In this section, the rotational dynamics of particles in viscoelastic shear flows with finite
fluid inertia is investigated numerically. To investigate the effect of fluid elasticity on the
particle rotation in the shear plane, we first focus on the case with weak fluid inertia (Rep =
0.1) in § 3.1. Then, with moderate fluid inertia (Rep = 10.0), the orientation modes and
drift of particle 3-D orbits induced by the competition between fluid elasticity and fluid
inertial effects are studied in § 3.2.
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3.1. Particle rotation in the shear plane

3.1.1. Effect of fluid elasticity
To understand the mechanism of the reduction of the particle rotation rate caused by fluid
elasticity, we look into the viscoelastic shear flow with weak fluid inertia (Rep = 0.1). The
rheological parameters in the present viscoelastic shear flows are set as β = 0.0909 and
α = 0.2, which are consistent with those in the earlier work (D’Avino et al. 2014). The
evolutions of the azimuthal angle of prolate spheroids are shown in figure 3, in which,
compared with the Newtonian case (Wi = 0), fluid elasticity significantly increases the
particle rotation period in viscoelastic flows. The rotation period of particles with large
aspect ratios is more obviously changed by fluid elasticity. For AR = 4.0, the particle
can remain in a motionless state, which reveals that fluid elasticity stabilizes the particle
rotation. In addition, we further analyse the effect of fluid elasticity on the particle angular
velocity at different orientations, and the results are shown in figure 4.

For spherical particles, figure 4 suggests that spherical particles rotate with a constant
angular velocity in viscoelastic fluids, which is similar to that in a Newtonian case.
The sphere rotation rate is remarkably reduced by fluid elasticity, which is consistent
with the results reported by Snijkers et al. (2011), and spheroidal particles exhibit more
peculiar rotation behaviours in viscoelastic shear flows. The particles with different
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aspect ratios are affected by fluid elasticity in different ways. For particles with small
eccentricity (AR = 2.0), figure 4(b) shows that the curve of the particle angular velocity
at different orientations in a stronger viscoelastic fluid (Wi = 4) is bounded by that in
a weaker viscoelastic fluid (Wi = 2). This reveals that the particle angular velocities
at all orientations are decelerated by fluid elasticity. However, for particles with large
eccentricity (AR = 4.0), the influence of fluid elasticity on the particle angular velocity
becomes orientation dependent. When the particle orients toward the flow direction, the
particle angular velocity is slightly decreased by fluid elasticity, while it is increased when
the particle is normal to the flow direction (seen in figure 4c). More interestingly, when the
fluid elasticity further increases, the particle with AR = 4.0 reaches a steady alignment in
the streamwise direction.

Figure 5 shows the variations of total torque during the particle rotation. It can be
seen that fluid elasticity breaks the symmetry of the particle rotation process observed in
Newtonian flow (blue line in figure 5). The particle deceleration takes a longer time than
the acceleration. More quantitatively, the period of particle deceleration is approximately
twice that of acceleration, which could be caused by the coupled effect of stress relaxation
and the transient shear-thinning rheology (Varchanis et al. 2022) of viscoelastic fluids.
During the particle deceleration, the local shear rate on the particle increases, except
for the tip area of the particle. With the transient shear-thinning effect, the decreased
local viscosity near the particle would lead to an attenuated drag force (less energy) on
the particle from the surrounding fluids, and thus the particle rotation rate is hindered
during its deceleration. This will strengthen the symmetry breaking of the particle rotation
process.

Based on the kinematic theory, the conformation tensor B is defined as (Bird et al. 1987)

B = 〈QQ〉
Q2

eq
, (3.1)
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where Q is the end-to-end vector in the dumbbell model of polymer molecules, and Qeq
represents Q at the polymer equilibrium state. From (3.1), the conformation tensor can
quantify the relative deformation of the polymer molecule in the flow field.

According to the conformation tensor field shown in figure 6, it is found that the polymer
deformation induced by the flow field depends on the particle orientation. When the
particle symmetry axis changes from being perpendicular (y axis) to parallel (x axis) to
the flow direction, Bii becomes smaller. This represents the deformation of polymer being
reduced and partially recovered (3.1) when the particle aligns its symmetry axis along the
flow direction. The elastic torque acting on the particle is associated with the polymer
deformation (as shown in (2.6)), thus the elastic stress will decrease during the particle
deceleration process. However, the stress relaxation effect (due to the relaxation time λ)
of the viscoelastic fluid makes the response of the elastic stress hysteretic to the strain
variation (Ewoldt & Saengow 2022). Therefore, the decay of the elastic stress is retarded
to the recovery of deformed polymer. Such a decaying characteristic of the elastic stress
makes the particle experience a longer period of resisting hydrodynamic torque, thus the
particle angular velocity evolves asymmetrically, as shown in figure 5.

Physically, the polymer is generally stretched in shear flows and forms stretched
microstructures (seen in figure 6) in the flow field; these microstructures of polymer
would create tension along the streamlines (Ewoldt & Saengow 2022). By comparing
the distributions of the conformation tensor around particles with different orientations
in figure 6, we find that the deformation of polymer is more obvious when the particle is
perpendicular to the flow direction. This indicates that it is more difficult for particles to
overcome the streamline tension when they are perpendicular to the flow direction. Thus,
the orientation-dependent polymer deformation might also bring asymmetry to the particle
rotation process shown in figure 5.

On the other hand, the reduction of the particle rotation rate in viscoelastic shear flows
is also linked to the above stretched structure of polymer in the flow field. From figure 6, it
is found that the maximum of the conformation tensor (Bxx in figure 6a,d) mainly locates
around the particle tip. The distribution of the conformation tensor shows the ‘sheet-like’
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(b–g) the six independent components of the elastic stress tensor.

structure of polymer deformation in the particle upstream, especially for the distribution
of Bxx in figure 6(a). Additionally, figure 7 shows the distribution of elastic stress on the
particle surface when the particle aligns along the flow direction. Similar to figure 6, the
strong elastic stress also mainly locates near the particle tip. The above distributions of
the conformation tensor and elastic stress reveal that the polymer is highly stretched near
the particle tip. When the particle rotates, the streamlines near the particle surface will
be changed, and the streamline tension generated by the stretched structures of polymer
induce an opposite torque to hinder the particle rotation, causing a reduction of the particle
rotation rate in viscoelastic shear flows, as shown in figures 4 and 5.

3.1.2. Effect of solvent viscosity ratio and mobility factor
In addition to the effect of fluid elasticity (Wi), other rheological factors, including the
solvent viscosity ratio and the mobility factor, also affect the flow characteristics and
particle dynamics.

Figure 8 shows the particle angular velocities in viscoelastic shear flows with different
solvent viscosity ratios. The solvent viscosity ratio reflects the contribution of solvent to
the total zero-shear-rate viscosity of the viscoelastic fluid solution. From (2.6), it can
be found that the smaller the solvent viscosity ratio is, the stronger the elastic stress is.
Figure 8(a) indicates that the solvent viscosity ratio has little influence on the relationship
between particle angular velocity and orientation. However, figures 8(b) and 8(c) obviously
show that the evolutions of particle orientation and angular velocity can be changed by
the solvent viscosity ratio. Figure 8(b) shows that the particle rotation period decreases
monotonically with the viscosity ratio. With increasing solvent viscosity ratio, the elastic
stress becomes weaker, and the particle angular velocity increases, thus the period of
particle rotation decreases.

Compared with the influence of fluid elasticity (Wi) on the particle angular velocity
(figure 5), the solvent viscosity ratio shows a more peculiar effect. From figure 8(c), we
find that, with increasing solvent viscosity ratio, the magnitude of the maximum angular
velocity decreases, while that of the minimum angular velocity increases.

Moreover, the shear-thinning and extension-hardening rheology, as two additional
important rheological characteristics of polymeric solution, can be described by the
Giesekus model. Previous studies have shown that the migration dynamics of particles
is strongly affected by the mobility factor (Li et al. 2015). In this paper, we examine the
effect of the mobility factor on the particle rotation behaviour, as shown in figure 9.

From figures 9(a) and 9(c), it is found that the mobility factor mainly affects the
maximum angular velocity of the particle. Specifically, the magnitude of the maximum
angular velocity is attenuated by the mobility factor, while the minimum angular velocity
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is almost the same. Unlike the solvent viscosity ratio, the particle rotation period is a
non-monotonic function of the mobility factor. The mobility factor affects viscoelastic
flows in two main regards (Li et al. 2015): (i) reducing the elastic stress; and (ii)
strengthening the fluid inertial effect through decreasing the apparent viscosity of fluids.
Compared with the viscoelastic shear flow with α = 0.0 (Oldroyd-B fluid), the elastic
stress is weaker in the flows with α > 0.0, and thus the particle rotates faster. For example,
when α = 0.2, the particle rotation period is less than that in an Oldroyd-B fluid. However,
when α = 0.4, the particle rotation slows down again. This non-monotonic relationship
between the particle rotation period and the mobility factor is related to the shear-thinning
and extension-hardening rheology of viscoelastic fluids. The role of the shear-thinning
rheology in the particle rotation can be explained by the effect of fluid inertia, which has
been studied systematically in Newtonian shear flows (Mao & Alexeev 2014).

On the other hand, the extension-hardening rheology of viscoelastic fluids is suppressed
by increasing the mobility factor (Giesekus 1982). Moreover, Debbaut & Crochet (1988)
indicated that the extension-hardening effect could increase the drag on the sphere in
viscoelastic fluids. In the present flow system, compared with the case of α = 0.2, the
extension-hardening effect in the flow with α = 0.4 is weaker, and thus the hydrodynamic
torque exerted on the particle is decreased due to the attenuated drag force of the particle.
Therefore, the particle rotation period is enlarged with α = 0.4. The above results indicate
that there exists a critical α to minimize the reduction of the particle rotation rate in
viscoelastic shear flows.
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3.2. Three-dimensional rotation modes of particle in viscoelastic–inertial
shear flow

The 3-D rotation and orientation modes of particles have been extensively studied in
Newtonian shear flows (Mao & Alexeev 2014; Rosén et al. 2014, 2015a) or viscoelastic
shear flows neglecting fluid inertia (Stokes flow) (D’Avino et al. 2014). However, the
coupled effect of fluid inertia and viscoelasticity on the rotation modes of particles has
not been explored. Therefore, in this section, the rotation modes of a prolate particle
(AR = 4.0) in the viscoelastic shear flow at Rep = 10.0 are studied numerically. The
mobility factor α and the solvent viscosity ratio β are set as α = 0.2 and β = 0.0909,
respectively.

3.2.1. Tumbling mode with weak fluid elasticity
Firstly, we analyse the particle rotation modes in viscoelastic shear flows with weak fluid
elasticity. The tumbling mode of the prolate particle is shown in figure 10 and we find
that, when fluid elasticity is weak, the particle spirals out to the shear plane and eventually
tumbles around the vorticity direction. This particle rotation mode is similar to that in
Newtonian shear flow with the same fluid inertial effect (Rep = 10.0). According to the
analysis by Rosén et al. (2014, 2015a), particle inertia induces the tumbling mode in the
shear plane. Thus, the present tumbling mode of the particle in weakly viscoelastic shear
flow is also caused by particle inertia.

In addition, the particle orbit drift is also modified by fluid elasticity. The particle orbit
drift can be quantified by the orbit parameter Cb and the orbit drift rate c′. These two
parameters have been widely used to analyse the particle orbit drift in Newtonian shear
flows (Lundell & Carlsson 2010; Mao & Alexeev 2014; Rosén et al. 2014). The normalized
orbit parameter Cb is formulated as follows (Mao & Alexeev 2014):

Cb = C
C + 1

, (3.2)

C = AR−1 tan θ
√(

AR2 sin2 φ + cos2 φ
)
, (3.3)

where θ and φ are the polar angle and azimuthal angle of the particle symmetry axis,
respectively.

The rate of orbit drift is quantified by the parameter c′, defined as (Lundell & Carlsson
2010)

c′ = 2 ln
(
Cφ=−π/2/Cφ=−3π/2

)
TJ

, (3.4)

where TJ is the period of the Jeffery orbit (Jeffery 1922). Herein, the above two orbit
parameters are also utilized to evaluate the effect of fluid elasticity on the particle orbit
drift, as shown in figure 11.

Figure 11(a) shows the evolution of the particle orbit parameter Cb. Compared with
the Newtonian case (El = 0), the time required for a particle to drift to the shear plane
(Cb = 1.0) is obviously increased. This means that fluid elasticity slows down the particle
drift process. The reason is that the drift direction of the particle orbit induced by weak
fluid elasticity is opposite to that driven by particle inertia: weak fluid elasticity drives
the particle to the vorticity direction, while particle inertia makes the particle spiral out to
the shear plane (seen in figure 10). Therefore, fluid elasticity would weaken the effect of
particle inertia on the particle orbit drift. In figure 11, the particle inertia is still dominant in
viscoelastic shear flow due to the weak fluid elasticity, and thus the particle finally tumbles
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Figure 12. Trajectory of particle tip in viscoelastic flows with different elastic numbers: (a) El = 0.01;
(b) El = 0.03; (c) El = 0.05; (d) El = 0.1. Different colours denote different initial particle orientations.

in the shear plane. From figure 11(a), it is found that the particle orbit parameter Cb varies
nonlinearly with time, which is similar to that in the Newtonian case. Specifically, the
closer the particle is to the shear plane, the more slowly the particle orbit drifts.

To further quantitatively describe the effect of fluid elasticity on the drift rate of the
particle orbit, figure 11(b) shows the relation between the particle orbit drift rate and
the elastic number, El. In figure 11(b), the orbit drift rate is negatively correlated with
El, indicating fluid elasticity attenuates the particle orbit drift rate. The fitting curve in
figure 11(b) reveals that the particle orbit drift rate is approximately linearly correlated
with the elastic number within the ranges of El considered in the present study.

3.2.2. Asymmetric-kayaking mode with moderate fluid elasticity
In this section, we focus on the particle rotation behaviour in viscoelastic shear flows
with moderate fluid elasticity. In this situation, the final rotation mode of the particle is
determined by the competition among the fluid inertia, particle inertia and fluid elasticity.

Figure 12 shows the 3-D trajectories of the particle tip at two different initial
orientations, i.e. (φ, θ, ψ)0 = (0.5π, 0.4π, 0) and (0.5π, 0.1π, 0). As a contrast, the
particle rotation mode induced by weak fluid elasticity (El = 0.01) is also included
in figure 12(a). The comparisons between figures 12(a) and 12(b–d) reveal that, with
increasing fluid elasticity, the drift direction of particle orbit is changed: the particle spirals
toward a specific closed orbit between the vorticity axis and shear plane, and finally rotates
along a Jeffery-like orbit, which depends upon the fluid elasticity. This peculiar rotation
mode, caused by the interplay between fluid elasticity and inertial effects, is similar to the
kayaking mode (Rosén et al. 2014) in Newtonian shear flows.

To quantify the modulations of particle orbit drift by moderate fluid elasticity, figure 13
shows the evolution of the particle orbit parameter Cb under moderate fluid elasticity (El =
0.03 ∼ 0.1). Here, we find that the actual drift direction of the particle orbit is determined
by the relative position of the particle initial orientation to the final equilibrium orbit.
The particle always migrates to the equilibrium orbit despite different initial orientations.

958 A20-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

69
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.69


Y. Li, C. Xu and L. Zhao

0 200 400 600 800 1000

El = 0.03

El = 0.05

El = 0.10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cb

Gt
Figure 13. Evolution of particle orbit parameter in viscoelastic shear flow with moderate fluid elasticity. The

red filled and open circles at t = 0 denote two different initial orientations.

This observation indicates that this final equilibrium orbit is a stable limit cycle in phase
space. In the Newtonian case, there exists an unstable limit cycle between the shear plane
and vorticity direction (Rosén et al. 2014). Figure 13 also shows that the particle orbit
parameter is a nonlinear function of time. The drift rate of the particle orbit slows down
when the particle approaches the final equilibrium orbit. Different from the case with weak
fluid elasticity (figure 11), the moderate fluid elasticity accelerates the drifting process of
the particle orbit. This means that the particle can be quickly attracted to the equilibrium
orbit through increasing fluid elasticity.

Figure 14 shows the final equilibrium orbits of particles at different elastic numbers, El.
As shown in figure 12, in viscoelastic shear flows with moderate fluid elasticity, the particle
eventually rotates along a Jeffery-like orbit periodically. However, the shape of the present
equilibrium orbit is different from the Jeffery orbit (Jeffery 1922) in Newtonian flows, the
projection of Jeffery orbits on the shear plane is axisymmetric to the x or y axis (the green
circle in figure 14), while the projection of the present equilibrium orbit is asymmetric
about the x or y axis. Therefore, referring to the kayaking rotation mode of the particle
in Newtonian shear flows, the present rotation mode associated with the asymmetric
equilibrium orbit could be named the asymmetric-kayaking mode. Figure 14 also reveals
that, with increasing fluid elasticity, the deviation between the present equilibrium orbit
and the Jeffery orbit is more obvious. Thus, the asymmetry of the equilibrium orbit is
more remarkable.

Moreover, the sensitivities of the tumbling and asymmetric-kayaking modes to the
rheological parameters (α and β) of viscoelastic fluids are demonstrated in figures 15 and
16. In figure 15(a), it is found that, in weakly viscoelastic flows with different mobility
factors α = 0.0, 0.2 and 0.4, the spheroid finally shows the tumbling mode in the shear
plane, and the orbit drift rates are almost unchanged by α. Similarly to the mode observed
in figure 14(c), when the fluid inertia and fluid elasticity are comparable, particle rotation
remains in the asymmetric-kayaking mode in viscoelastic shear flows with different α.
However, the final equilibrium orbit of the spheroid is determined by α: the larger α is, the
flatter the shape of the steady orbit (figure 15c).

Figure 16 shows the effect of the solvent viscosity ratio (β = 0.0454, 0.0909 and 0.1818)
on the spheroid rotation modes. Similarly to the mobility factor, the rotation modes of the
spheroid are slightly affected by the solvent viscosity ratio. The prolate spheroid eventually
shows the tumbling mode and asymmetric-kayaking mode when El = 0.005 and
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Figure 14. Steady asymmetric-kayaking mode in viscoelastic flows with different elastic numbers:
(a) El = 0.03; (b) El = 0.05; (c) El = 0.1. The green line is the Jeffery orbit (Jeffery 1922).
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Figure 15. Effect of mobility factor on the rotation modes of spheroid in shear flow with weak (El = 0.005)
and moderate (El = 0.1) fluid elasticities, AR = 4.0, Rep = 10.0, β = 0.0909: orbit parameter at El = 0.005
(a) and El = 0.1 (b); (c) equilibrium asymmetric-kayaking mode at El = 0.1.
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Figure 16. Effect of solvent viscosity ratio on the rotation modes of spheroid in shear flow with weak (El =
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Figure 17. Polar angle of the intersection point of the equilibrium orbit and y axis (φ = π/2).

El = 0.1, respectively. Within the present range of α and β, compared with the solvent
viscosity ratio, the rotation modes are more sensitive to the mobility factor.

Finally, from results in § 3.2.1 (weak fluid elasticity) and § 3.2.2 (moderate fluid
elasticity), we conclude that there exists a critical elastic number, Elc, governing the
transitions of particle rotation modes in viscoelastic shear flows with Rep = 10.0: (i)
when El < Elc, the particle inertia is dominant and the particle exhibits the ‘tumbling
mode’ in the shear plane; (ii) with El > Elc, the fluid elasticity and inertial effects become
comparable, the competition makes particle rotate in the ‘symmetric-kayaking mode’. In
the present simulation, this critical elastic number is estimated numerically as Elc ∼ 0.02,
as shown in figure 17. This means that, with the present simulation parameters, once
the elastic number exceeds 0.02, the final particle rotation mode begins to be primarily
affected by fluid elasticity. Note that the present Elc is of the same order as the critical
elastic number governing the elasto-inertial lateral migration of spherical particles (Elc ∼
0.01) (Li et al. 2015). This further indicates that when the elastic number in viscoelastic
flow systems reaches O(0.01), the effect of fluid elasticity on both the migration and
rotation of particles has to be considered.

3.2.3. Rotation modes induced by strong fluid elasticity
In this section, we examine the particle rotation modes in viscoelastic shear flows with
strong fluid elasticity. As shown in figure 18, we find that, with increasing fluid elasticity,
the particle shows a rolling mode between the flow and vorticity directions, a bi-stable
orientation mode and a flow-alignment mode. Except for El = 0.4 (figure 18b), the
final orientations of the particle released from different initial positions are consistent
(figure 18a,c), which indicates that the rolling mode in the flow–vorticity plane (figure 18a)
and the flow-alignment mode (figure 18c) are both stable (stable fixed point in phase
space). Interestingly, the bi-stable orientation mode reported in the experiments (Johnson
et al. 1990; Gunes et al. 2008) and numerical simulations in viscoelastic shear flow with
zero fluid inertia (D’Avino et al. 2014) is also found in the present viscoelastic shear flow
with finite fluid inertia. Overall, the particle orientation modes under the present flow
conditions are similar to those in viscoelastic shear flows without fluid and particle inertia.
This indicates that, once fluid elasticity becomes fully dominant in a flow system, the
particle rotational dynamics in viscoelastic–inertial shear flows could still be predicted by
the results obtained with the Stokesian flow assumption.
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Figure 18. Particle rotation modes induced by the strong fluid elasticity: (a) El = 0.3; (b) El = 0.4;
(c) El = 0.5. The different colours of particle trajectories in (a i–c i) and (a ii–c ii) denote particles released
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particles with the above two different initial orientations.

When the fluid elasticity becomes dominant in the flow system, the rheological
properties of viscoelastic fluids are highly dependent on α and β. Both figures 19 and
20 reveal that α and β significantly affect the particle orientation modes in the shear flow
with strong fluid elasticity. As shown in figure 19, with increasing α, the fluid elasticity
is suppressed, thus the equilibrium orientation of the particle is approaching the vorticity
direction (figure 19b,c). When α increases to α = 0.4, the attenuated fluid elasticity is not
dominant in the flow system, then the comparable fluid inertia and fluid elasticity together
induce the asymmetric-kayaking mode, which is similar to the rotation mode observed in
the shear flow with the moderate fluid elasticity (figure 12).

Figure 20 shows the dependence of the orientation modes of the prolate spheroid on
the solvent viscosity ratio. As discussed in § 3.1, the smaller the solvent viscosity ratio
is, the stronger the fluid elastic stress is. From this point of view, as β varies from β =
0.0454 to β = 0.1818, the fluid elasticity attenuates in the flow system, thus the prolate
particle finally exhibits the flow-alignment state (figure 20a), the inclined-rolling mode
between the flow and vorticity directions (figure 20b) and the asymmetric-kayaking mode
(figure 20c). It is worthwhile noting that, although these two rheological parameters can
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Figure 19. Effect of mobility factor on the orientation modes of prolate spheroid in the shear flow with strong
(El = 0.3) fluid elasticity, AR = 4.0, Rep = 10.0, β = 0.0909. (a) α = 0, (b) α = 0.2, (c) α = 0.4.
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Figure 20. Effect of solvent viscosity ratio on the orientation modes of a prolate spheroid in the shear
flow with strong (El = 0.3) fluid elasticity, AR = 4.0, Rep = 10.0, α = 0.2. (a) β = 0.0454, (b) β = 0.0909,
(c) β = 0.1818.

modulate the critical elastic number Elc, which governs the transition of particle rotation
modes, the mechanism behind the transitions of particle rotation modes is consistent with
that discussed in previous sections.

On the other hand, the fluid inertia can also modulate the particle rotation modes in the
viscoelastic shear flow with strong fluid elasticity. Figure 21 shows that, with increasing
fluid inertia (Rep), the particle gradually approaches the shear plane. When Rep < 8.0, the
fluid elasticity is dominant in the flow system, and thus the particle orientation modes
are similar to those in the viscoelastic flow with negligible fluid inertia (Rep = 0.1).
However, the angle between the particle symmetry axis and the shear plane is changed
due to the fluid inertia (figure 21a–c). When the fluid inertia becomes more dominant
(Rep > 13.0), the particle is driven to the shear plane and finally reaches a steady state,
which is similar to the rotation mode of the particle in a Newtonian shear flow with large
fluid inertia (Rep ∼ 100.0) (Rosén et al. 2014). The steady angle between the particle
symmetry axis and flow direction is slightly modulated by the higher Rep = 40.0 and
Rep = 50.0. Note that, different from the Newtonian case, such a motionless state of a
particle in the shear plane within the present elasto-inertial shear flow can be realized with
moderate fluid inertia (Rep ∼ 13.0). This implies that it is convenient to manipulate the
orientations of non-spherical particles in elasto-inertial flows with moderate fluid inertia,
which corresponds to a small pressure gradient (less energy) used to operate microfluidic
devices.
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Figure 21. Effect of fluid inertia on the orientation modes of a prolate spheroid with AR = 4.0,El = 0.4.
The initial orientation of particle is (φ, θ, ψ)0 = (0.5π, 0.4π, 0). (a) Rep = 0.1, (b) Rep = 5.0, (c) Rep = 8.0,
(d) Rep = 13.0, (e) Rep = 40.0, (f ) Rep = 50.0.
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Figure 22. Illustration of multi-orientation modes of a neutrally buoyant prolate particle (AR = 4.0) in
viscoelastic shear flow with finite fluid inertia (Rep = 10.0). Here, Elc1∼c4 are four critical elastic numbers
that classify particle rotation modes.

Finally, according to results in § 3.2, an overall picture of rotation modes for a
neutrally buoyant prolate particle in viscoelastic–inertial shear flows is plotted in figure 22.
Compared with the observed particle orientation modes in viscoelastic shear flows with
zero fluid and particle inertia (D’Avino et al. 2014), the rotational and orientational
dynamics of neutrally buoyant particles in the present viscoelastic shear flows is more
complicated. Figure 22 shows four critical elastic numbers that classify particle rotation
modes. In contrast to the earlier studies on the viscoelastic shear flow system within the
Stokesian regime, there are two additional critical elastic numbers given in the present
flow system. Consequently, a newly observed rotation mode (asymmetric-kayaking mode)
induced by the competition among the fluid elasticity, fluid inertia and particle inertia,
occurs in the present particle-laden viscoelastic flow system with finite fluid inertia
(Rep = 10.0).
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In a summary, figure 22 clearly reveals that the neutrally buoyant non-spherical
particles exhibit multi-rotation modes in viscoelastic–inertial shear flows. These peculiar
orientational characteristics have not been found in the flow systems governed by a single
effect. The present results could be potentially used to design the rheology-based control
strategy for guiding particles to realize specific orientations in complex fluids.

4. Conclusions

In this work, we numerically investigate the rotational and orientational dynamics of a
neutrally buoyant spheroid immersed in viscoelastic shear flow with finite fluid inertia.
The fluid viscoelasticity is described by the Giesekus model. The interplay between
particle and viscoelastic fluid is realized by the IBM. With weak fluid inertia (Rep = 0.1),
the influence of fluid rheology on the particle rotational dynamics in the shear plane is
analysed in detail. For moderate fluid inertia (Rep = 10.0), we focus on the modulations
of the particle 3-D orbit for different fluid elasticities. The main conclusions are:

(i) With weak fluid inertia, the particle rotation rate is remarkably reduced by fluid
elasticity. The particles with large eccentricity (AR = 4.0) reach a non-rotational
state in viscoelastic shear flow (Wi = 2.0). This observation reveals that, within
the range of Wi considered in the present study (Wi = 0.0 ∼ 5.0), fluid elasticity
stabilizes the particle rotation in a viscoelastic fluid. Additionally, the fluid elasticity
brings asymmetry into the particle rotation process where the particle deceleration
takes a longer time than acceleration.

(ii) The rotational dynamics of particles are affected by the solvent viscosity ratio and
the mobility factor in different ways: the period of the particle rotation decreases
monotonically with the solvent viscosity ratio. In contrast, the particle rotation
period changes non-monotonically with the mobility factor. The results indicate that
there exists a critical mobility factor for a viscoelastic fluid to minimize the reduction
of the particle rotation rate in viscoelastic shear flows.

(iii) With moderate fluid inertia, when fluid elasticity is weak, the particle spirals toward
the shear plane and eventually exhibits a tumbling mode, which is caused by the
particle inertia. The fluid elasticity slows down the drift rate of the particle orbit.
With increasing fluid elasticity, the competition among fluid elasticity, fluid inertia
and particle inertia cause the particle to be attracted to a stable limit cycle between
the shear plane and vorticity direction. This stable limit cycle results in a new particle
rotation mode, i.e. asymmetric-kayaking mode.

(iv) The neutrally buoyant prolate particles exhibit multi-rotation modes in viscoelastic–
inertial shear flows. Compared with the orientation behaviour of inertia-free
particles in the Stokesian viscoelastic shear flows, four critical elastic numbers and
one new orientation mode (asymmetric-kayaking mode) are observed in the present
particle-laden viscoelastic flow system with finite fluid inertia.

In summary, the main contributions of the present work are: (i) comprehensively
elaborating on the effects of rheological factors of viscoelastic fluid on the particle
rotational dynamics; and (ii) a first attempt to give the overall picture of rotation modes
induced by the elasto-inertial effect for a neutrally buoyant spheroid in viscoelastic shear
flow at a finite Reynolds number. The results of the present work might enrich our
understanding of the peculiar rotation and orientation dynamics of non-spherical particles
in viscoelastic–inertial flows. Furthermore, from the applied perspective, the present
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results could also potentially be used to design a rheology-based controlling strategy for
guiding particles to realize specific orientations in complex fluids.

Finally, it is worthwhile noting that the present computational framework of
particle-laden viscoelastic flow is convenient to tackle the rotation of complex particles.
A possible extension of the present research is to explore the elasto-inertial rotation of
spheroids with a non-smooth or non-analytical closed surface, which may give additional
insights into the dynamics of complex particles in viscoelastic fluids.
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Appendix A. Validation of numerical approach

The present study aims at investigating the rotation of particles in viscoelastic shear flows.
Thus, we validate the numerical methods from two aspects: (i) particle rotation and (ii)
fluid elastic effect.

A.1. Spheroid rotation in a Newtonian shear flow with zero fluid inertia
Jeffery orbit (Jeffery 1922) is a canonical benchmark problem used to check the accuracy
of a particle solver (Rosén et al. 2014, 2015a). We used it here to validate the performance
of the present particle solver when resolving the particle rotational dynamics. In this
validation case, the particle aspect ratio is set as AR = 2.0, and the particle Reynolds
number and Stokes number are consistent, i.e. Rep = St = 0.1. Thus, both the fluid and
particle inertial effects are weak. The comparisons of numerical and theoretical results
(Jeffery 1922) are shown in figure 23, in which the calculated particle orientation and
angular velocity agree well with the theoretical results. The comparison of results indicates
that the present numerical method could accurately predict particle rotation in linear shear
flow.

A.2. Spheroid rotation in a viscoelastic shear flow with zero fluid inertia
The particle rotation in the viscoelastic shear flow within the Stokesian regime is used to
check the capability of the present method to capture the fluid elastic effect on particle
rotation. In this test case, the particle Reynolds number is Rep = 0.1. The Weissenberg
number ranges from 0 to 4.0. We first validate the dependence of average angular velocity,
ω̄, of particles with different aspect ratios on the Weissenberg number. The comparison of
results is shown in figure 24, in which the calculated average angular velocity of particles
is generally consistent with the reference results from D’Avino et al. (2014), although a
little deviation exists when the fluid elastic effect becomes significant (Wi > 1.0). Such
little deviation might be caused by two reasons: (i) the momentum equation used is
different, in the present study, the Navier–Stokes equation is utilized to resolve the flow
field, while the Stokes equation is used in the reference; (ii) the solution method of the
constitutive equation is different. In the present study, the constitutive equation is solved
by the standard-conformation tensor formulation, whereas the log-representation formula
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Figure 23. Comparisons of calculated results of a prolate spheroid (AR = 2.0) with theoretical solutions of
Jeffery (1922): (a) azimuthal angle; (b) angle velocity.
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Figure 24. Comparisons of calculated average angular velocity of particle with the results from D’Avino
et al. (2014).

is used by D’Avino et al. (2014) to stabilize the simulation of viscoelastic flow with strong
fluid elasticity. There may be a little difference in resolving the viscoelastic fluid–solid
interaction by these two methods under the highly elastic effect (Castillo & Codina 2015).

From figure 24, we can see that the rotational dynamics of the particle with large
eccentricity is more easily affected by fluid elasticity. Specifically, the particles with
large aspect ratios (AR = 4.0) can remain stationary in highly viscoelastic shear flow
(Wi > 1.5). Overall, the comparison of results shows that the present numerical method
could readily estimate the reduction of the particle rotation rate by fluid elasticity.

To further validate the performance of the present method for predicting the orientation
of non-spherical particles in viscoelastic shear flows, we also contrast the particle
orientation modes calculated with those from previous results (D’Avino et al. 2014).
Figure 25 illustrates the orientation modes of a prolate particle (AR = 4.0) under different
fluid elasticities. From figure 25, it is found that the present method can capture the
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Figure 25. Orientation modes of a neutrally prolate particle (AR = 4.0) in viscoelastic shear flows with
different elasticities. (a) Wi = 1.0, (b) Wi = 2.7, (c) Wi = 3.0, (d) Wi = 4.5, (e) Wi = 1.0, (f ) Wi = 2.7,
(g) Wi = 3.0, (h) Wi = 4.5.

transitions of orientation modes of a prolate particle. There exist four different orientation
modes in the present simulations: kayaking mode, orientation between the flow and
vorticity direction, bi-stable orientation mode and flow-alignment mode. Different from
the elasticity-induced orientation modes of inertia-free particles reported by D’Avino et al.
(2014), the particle rotates as a ‘kayaking’ mode in the present simulation (figure 25a,e),
rather than the ‘log-rolling’ mode in the weakly viscoelastic shear flows with zero inertial
effect. However, the present ‘kayaking’ rotation mode is also found in the simulation by
Wang et al. (2019).

The final rotational state of particles could reveal the dominant effect in the
particle-laden flow system. If the final rotation mode is a time-periodic mode for particle
and fluid flow, the dominant effect generally is particle inertia (Rosén et al. 2014). From
this point, the particle inertia might result in the present kayaking mode in figures 25(a)
and 25(e). Considering this, we additionally perform another case, where the particle
density is less than that of the fluid, i.e. density ratio ρr = 0.5, to validate the effect of
particle inertia on the present kayaking mode.

Figure 26 shows that, when decreasing particle inertia, the lighter particles with different
initial orientations all spirally approach the vorticity direction, and finally behave in the
‘log-rolling’ mode as reported by D’Avino et al. (2014) for an inertia-free particle in
weakly viscoelastic shear flows. Therefore, we might conclude that the present ‘kayaking’
mode might be due to particle inertia. Furthermore, the above test results indicate that the
competition among fluid inertia (Rep), particle inertia (St) and fluid elasticity (Wi) can lead
to the peculiar particle rotation behaviours which could not be observed in the previous
studies governed by a single effect. This motivates the present research in § 3.

A.3. Spheroid rotation in a Newtonian shear flow with fluid inertia
The present study focuses on the effect of fluid inertia on the rotational dynamics of
spheroids in viscoelastic flows. Thus, we first examine the capability of the present
numerical approach to capture the effect of fluid inertia on particle rotation in a Newtonian
shear flow. In this test case, a spheroid with different aspect ratios (AR = 2.0 and 0.5)
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Figure 26. Effect of particle inertia on the orientation modes of a prolate particle (AR = 4.0) in viscoelastic
shear flow with Wi = 1.0, Rep = 0.1: panels (a i,b i) show the 3-D trajectory of the tip of particle with the
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is immersed in a Newtonian shear flow at Rep = 5.0, 12.8 and 64.0. The simulation
parameters are consistent with those in earlier studies (Ding & Aidun 2000; Yu et al. 2007).
The comparison of results is shown in figure 27, where the present spheroid rotation rate
(dφ/dt) at different azimuthal angles (φ) agrees well with that reported by Yu et al. (2007),
as shown in figures 27(a) and 27(b). The angular velocity of the spheroid with AR = 0.5 is
also in good agreement with that from Ding & Aidun (2000), as shown in figure 27(c). The
comparison of results shows that the present numerical approach can capture the effect of
fluid inertia on the spheroid rotation.
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Figure 28. Comparison of calculated spheroid rotation rate with the experiments (Snijkers et al. 2009) and
simulation results (Snijkers et al. 2011; Krishnan, Shaqfeh & Iaccarino 2017).

A.4. Sphere rotation in a sheared viscoelastic flow resolved within Navier-Stokes
framework

To explore the coupled effect of fluid elasticity and fluid inertia on particle rotation, we
further verify the present numerical approach by computing the rotation of a single sphere
immersed in a viscoelastic shear flow. The validation results are shown in figure 28,
where the present angular velocity of the sphere agrees well with experiments (Snijkers
et al. 2009) and with the numerical results obtained within the Navier–Stokes framework
(Krishnan et al. 2017). This validation indicates that the present numerical methods within
the Navier–Stokes framework are reliable in resolving the coupled effect of fluid elasticity
and fluid inertia on particle rotation.

Moreover, the accuracy of the present numerical solver is systematically validated by
several canonical benchmark examples of viscoelastic fluid flows in our recent study (Li
et al. 2022).

In summary, the accuracy and capability of the present numerical approach are verified
by four benchmark examples of particle rotation in Newtonian and viscoelastic shear flows.
All validation results reveal that the present methods can accurately simulate the particle
dynamics in viscoelastic shear flows.

A.5. Grid resolution effect
To check the effect of grid resolution on the particle rotation, we simulated the rotation of
a prolate particle (AR = 2.0) in a viscoelastic shear flow on three meshes with different
spatial resolutions; the results are shown in figure 29. The angular velocities at different
orientations calculated on different meshes agree well with each other (figure 29a). This
agreement indicates that the present grid resolution (Δ = 1/32Dp) is capable of giving
the grid-independence solution of particle angular velocity at different orientations.

To further evaluate the grid resolution effect on the 3-D orientation mode of the
particle, we also calculated the 3-D trajectory of the particle tip (AR = 4.0) in viscoelastic
shear flow with finite fluid inertia (Rep = 10.0, Wi = 5.0). Figure 29(b) shows that
the equilibrium orientation modes of the particle are not changed with increasing grid
resolution. Note that a small domain size of L × H × W = 2 × 2 × 2 is chosen in this test
case to save the computational cost.
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Figure 29. Effect of grid resolution on the particle rotation: (a) angular velocity vs particle orientation in
the polar coordinate system, AR = 2.0,Rep = 0.1, Wi = 2.0; (b) orientation modes of a prolate spheroid with
AR = 4.0,Rep = 10.0, Wi = 5.0.

Moreover, in earlier studies on the single effect (fluid inertia or fluid elasticity), the
grid resolutions used for calculating the rotation of the spheroid are approximately Δ =
1/32Dp for prolate spheroids in a Newtonian shear flow (Yu et al. 2007) and Δ = 1/16 ∼
1/42Dp for spheroids (AR = 1.0 and 4.0) in a viscoelastic shear flow (Krishnan et al. 2017;
Wang et al. 2019; Rosti & Brandt 2020). Therefore, both the present convergence test and
the previous studies indicate that the particle rotation modes obtained using the mesh with
the present mesh resolution (Δ = 1/32Dp) are reliable.
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