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In the present work, the tangential (swirl) velocity component is superimposed at the
intake of a narrow fluidic cylindrical pipe to achieve the desired mixing of inelastic
non-Newtonian fluids/solutes at the outlet. We discuss an analytical method for obtaining
the swirl velocity profile, considering the nonlinear viscous effects for both shear-thinning
and shear-thickening fluids, represented by the power-law model. We numerically solve
the species transport equation, coupled with the analytically derived swirl velocity,
using our in-house developed code for the concentration distribution in the flow field.
The results show that the inlet swirl and an increase in the shear-thinning fluid
property improve advection-dominated mixing. Additionally, higher Reynolds numbers
significantly enhance advection’s dominance, as more rotation leads to the generation
of vortices, resulting in an engulfment flow (chaotic convection) based mixing. We
demonstrate that considering the increase in the shear-thinning fluid property with swirl
intake reduces the amount of mixing time required in the convective regime.

Key words: laminar mixing, rheology, mixing enhancement

1. Introduction

The state-of-the-art development of microfluidic devices has gained attention from
both academia and industry because of its widespread applications in biomedicine
and biochemistry (Verpoorte & De Rooij 2003; Stone, Stroock & Ajdari 2004). It is
worth mentioning that, unlike conventional procedures followed in the biochemical and
biomedical industries, miniaturization techniques provide critical advantages such as
reduced sample volumes, rapid processes, portability and a high surface-area-to-volume
ratio (Djenidi & Moghtaderi 2006; Das et al. 2015). It is quite common for biofluids
such as blood, synovial fluid, serum, saliva, nasal fluid, DNA solution, etc., which
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typically exhibit non-Newtonian behaviour, to experience laminar flow within such small
fluidic channels. Notably, effective mixing, quick transportation, rapid testing and efficient
diagnostics of samples/solutes with non-Newtonian fluid rheology are necessary for many
biochemical processes and pathological diagnostics (Cosentino et al. 2015; Huang et al.
2016; Gaikwad, Mondal & Wongwises 2018; Herreman et al. 2021). As reported in
the literature, researchers have employed both elastic and inelastic models to mimic
the rheological and transport characteristics of such biofluids (Vagner & Patlazhan
2019; Nwani et al. 2022). It is important to add here that significant efforts have been
made towards developing effective micromixers through geometrical modulation of flow
configurations and the applications of external fields (Alekseenko et al. 1999; Krishnaveni
et al. 2017; Mehta, Pati & Mondal 2021; Shyam, Mondal & Mehta 2021). In order to
achieve proper mixing in on-chip microfluidic devices, simultaneously ensuring effective
fluidic transport operations therein, researchers have developed numerous methodologies
consistent with either passive methods or active techniques; all while articulating the
underlying processes (Cetegen & Mohamad 1993; Djenidi & Moghtaderi 2006; Hadigol
et al. 2011; Rezk et al. 2012; Chen et al. 2022).

To achieve effective and efficient advective mixing through passive methods, it is
necessary to generate vorticial flow in the mixing process (Afzal & Kim 2014; Matsunaga
& Nishino 2014; Madana & Ashraf Ali 2020). However, such vortices tend to dissipate
unless they are continuously sustained by the flow configuration/geometry. The dissipation
of vortex or swirl has captivated researchers over the past century. Establishing swirl
flow in the fluidic pathway requires implementation of a conducive flow configuration
to instigate a swirling motion in the fluid. It may be mentioned here that a swirl flow
environment can be developed through either a twisted tape set-up or by utilizing a swirl
generator. In the much-celebrated experimental study by Taylor (1950), it was shown that
the employment of a swirl generator at the inlet of the chosen fluidic pathway facilitates
tangential fluid injection into the channel, which, in turn, leads to the generation of a
primary vortex with a characteristic shape, known as the Rankine vortex (Reader-Harris
1994). Important to mention is that this swirling flow indicates the presence of a tangential
velocity along the axial flow direction (Parchen & Steenbergen 1998).

Early works in this domain primarily focused on investigating the decay of swirl in pipes,
both through theoretical and experimental approaches (Stokes et al. 2001a,b; Binagia et al.
2020). In the early 1950s, Talbot (1954) conducted theoretical and experimental studies
on laminar swirling flows and revealed that the experimental swirl decay rates closely
matched the theoretical predictions. Additionally, an unsteady theoretical flow analysis by
Sibulkin (1962) was conducted for the vortex tube, and it was observed that the radial
distributions of velocity and temperature at different axial locations qualitatively agreed
with experimental results reported by Lay (1959). Subsequently, researchers examined
the decay of swirl (Kreith & Sonju 1965; Steenbergen & Voskamp 1998) in fully
developed turbulent flow environments through their analytical solution and identified the
dependence of swirl velocity on Reynolds number (Re) and axial location. The decay in
swirl, specified by swirl intensity, was found to follow an exponential trend, attributed
to changes in parameters such as the wall friction factor, Reynolds number, transition
radius and inlet swirl number (Morton 1969; Kitoh 1991; Yao & Fang 2012; Kumar,
Shakya & Kaushik 2020; Kumar et al. 2023). Numerical simulations, as demonstrated by
Kiya, Fukusako & Arif (1971), also assumed a Rankine vortex as the inlet swirl velocity
profile. This assumption was based on experimental studies (Alekseenko et al. 1999) which
showed that the swirl velocity in tubes is essentially a combination of the forced and free
vortex components (Reader-Harris 1994). More recently, the decay of swirl intensity in
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laminar flow of a non-Newtonian fluid was found to be influenced by the rheological nature
of the fluid (Kathail, Pranav & Kaushik 2019).

However, recent developments in micro/mini fluidic applications within the medical
industries have sparked a growing interest in the enhancement of transport and mixing of
non-Newtonian fluids. We believe that harnessing the swirl velocity as a passive mixing
technique for non-Newtonian fluids holds promise, particularly in laminar flow conditions.
Therefore, in this current study, we aim to investigate the fundamental physics of decaying
swirl and its influence on the mixing biofluids. Specifically, we seek to analyse how fluid
rheology, imposed by vorticial (swirl) flow within a narrow cylindrical tube, affects the
complete mixing process between two similar inelastic non-Newtonian fluids. To achieve
this, we first present an analytical solution for swirl velocity profiles and swirl decay, laying
the groundwork for our investigation. Then, we utilize the analytical swirl velocity solution
to numerically solve the species transport equation using an in-house finite volume-based
code. With the results in hand, we discuss both the qualitative and quantitative aspects of
mixing between two fluids in the context of decaying swirl flow in laminar regime.

2. Problem formulation and mathematical model

In this study, we execute a theoretical analysis to obtain the analytical expression
for velocity fields of a non-Newtonian fluid, whose rheology is represented by the
Ostwald–de-Waele power-law model. We consider the underlying flow through a narrow
fluidic cylindrical pipe, driven by the inlet swirl (Taylor 1950). On using the analytically
obtained velocity fields, we solve the species transport equation essentially for the
concentration distribution in the chosen fluidic pathway.

2.1. Flow configuration: geometry and description
We consider the transport of non-Newtonian fluids through a cylindrical microfluidic pipe
of radius R and length L, as shown in figure 1. The coordinate system describing the flow
with coordinates r, θ and z, corresponding to velocity fields ur, uθ and uz respectively, is
attached to the inlet (left centre) of the channel. The inlet cross-sections of the entrances of
fluids A and B are designated by θ = [0, π] and [π, 2π], respectively. It may be mentioned
here that the chosen configuration seems to mimic an application of blood flow getting
infused with other biological species/reagents or the case of a DNA carrier fluid being
mixed with the chemical reagents or fluorescent tracer particles (Cosentino et al. 2015).
The concentrations of these fluids, such as blood or DNA carrier fluids, are identified
by zero concentration (C0 = 0), whereas the concentration of tracer particles or chemical
reagents is identified by higher concentration (C0 = 1) (see figure 1). The selection of such
similar kinds of fluids also justifies the assumption of considering constant thermophysical
properties, as well as non-Newtonian fluid behaviour in the underlying analysis.

Note that the fluids are considered to have same thermophysical properties and,
therefore, one set of governing equations is solved for the flow field. Also, the characteristic
length scale of the fluidic configurations, typical for a biomicrofluidic set-up, places the
underlying flow in the fully developed laminar regime (Re ∼ 1 to 100) (Matsunaga &
Nishino 2014; Kaushik, Shyam & Mondal 2022).

2.2. Momentum transport: description of flow field
The governing equations (Deen 2016) describing the steady, incompressible and laminar
flow of non-Newtonian fluid(s) through the chosen fluidic configuration, as shown
schematically in figure 1, are the mass, momentum and species transport equations in
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Figure 1. Schematic diagram describing the flow of non-Newtonian fluids with initial concentrations 1 and
0 in the upper and lower domains at the inlet of a pipe. A swirl motion consistent with the Rankine vortex is
imposed at the pipe inlet. The coordinate system (r − θ − z) is attached at the centre of the pipe inlet.

a cylindrical coordinate system. It is worth mentioning here that we do not consider any
body force in the present analysis. Below, we write the continuity and momentum transport
equations for describing the underlying flow in the vectorial form

∇ · u = 0, (2.1)

ρ(u · ∇)u = −∇p + ∇ · τ . (2.2)

Note that, in the above (2.1)–(2.2), ρ is the fluid density, p is the fluid pressure, the velocity
vector u(r, θ, z) = urir + uθ iθ + uziz and ∇ = (∂/∂r)ir + (∂/r∂θ)iθ + (∂/∂z)iz.

The components of the deviatoric stress tensor (τ ) in a cylindrical coordinate system
for an incompressible power-law fluid are given as (Bird, Stewart & Lightfoot 2006; Deen
2016)

τrr = μe

(
2
∂ur

∂r

)
, τθθ = μe

2
r

(
∂uθ

∂θ
+ ur

)
,

τzz = μe

(
2
∂uz

∂z

)
, τrθ = τθr = μe

(
r

∂

∂r

(uθ

r

)
+ 1

r
∂ur

∂θ

)
,

τθz = τzθ = μe

(
∂uθ

∂z
+ 1

r
∂uz

∂θ

)
, τzr = τrz = μe

(
∂uz

∂r
+ ∂ur

∂z

)
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.3)

Here, μe is the effective viscosity for the power-law fluid and it is given as
μe = μ0(

√
0.5(D : D))n−1, where μ0 is the flow consistency index, n is the power-law

index and D stands for the deformation tensor defined as D := ∇u + (∇u)T.
To solve (2.1)–(2.2) analytically, we consider that the flow is axisymmetric with

negligible body force and becomes fully developed along the axial direction i.e. uz = uz(r)
(Kumar et al. 2020). Considering the aforementioned assumptions, the component of
the flow velocity in the radial direction is calculated to be constant using the continuity
(2.1) and proven to be zero (ur = 0), consistent with the no-slip condition at the wall.
Proceeding further with this condition and using (2.3), the momentum transport equation
in the radial direction reduces to ρ(u2

θ /r) = ∂p/∂r, yielding the relation between the radial
pressure gradient and the tangential velocity component. It shows that the radial variation
of pressure simply supplies the force necessary to keep the fluid elements moving through
a circular path within the channel.
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Consequently, to solve the momentum transport equation (2.2), the physically justified
boundary conditions, based on the aforementioned discussion and assumptions, in
compact form are given as: ur = 0; ∂uz/∂r|r=0 = 0, uz(r)|r=R = 0; uθ (r, z)|r=0 = 0,
uθ (r, z)|r=R = 0. At the inlet (z = 0) of the considered fluidic configuration, a Rankine
vortex (Yao & Fang 2012; Kumar et al. 2020) is imposed to create the swirl, i.e.
uθ (r, z)|z=0 = {(uθ,i,max)(r/rt), r ≤ rt and (uθ,i,max)(rt(R − r)/r(R − rt)), r ≥ rt. Here,
uθ,i,max and rt represent the maximum inlet swirl velocity and transition radius,
respectively. The dimensional transition radius, denoted as rt, signifies the point where
the transition from a forced to a free vortex occurs at the channel inlet. Now, in order
to solve the flow velocity component in the azimuthal direction, first, we solve the axial
momentum, which will then be superimposed to find the tangential velocity component.

2.2.1. Analytical solution
We write the reduced form of the momentum transport equation (2.2) in the axial direction
as follows:

0 = −∂p
∂z

+
[

1
r

∂

∂r
(rτrz)

]
= −∂p

∂z
+
[

1
r

∂

∂r

(
rμe

(
∂uz

∂r

))]
. (2.4)

To obtain (2.4), we refer to the components of the deviatoric stress tensor through (2.3) and
use axisymmetric (∂/∂θ = 0) as well as fully developed flow (uz = uz(r)) assumptions.

In addition, with the order of magnitude analysis, the effective viscosity is derived
as μe = μ0|∂uz/∂r|n−1 (Sarma, Gaikwad & Mondal 2017). Substituting the value of
μe and employing the boundary conditions, i.e. ∂uz/∂r|r=0 = 0 and uz(r/R = 1) = 0,
respectively, we solve (2.4) for the expression of axial velocity, which reads as

uz =
(

n
n + 1

)(
Rn+1|�p|

2μ0L

)1/n [
1 −

( r
R

)(n+1)/n
]

=
(

3n + 1
n + 1

)
uav

[
1 −

( r
R

)(n+1)/n
]

. (2.5)

In (2.5), uav = ∫
uz dA/

∫
dA = (n/(3n + 1))((Rn+1|�p|)/(2μ0L))1/n represents the

average axial flow velocity.
We write the simplified form of (2.2) using the aforementioned assumptions to obtain

the tangential momentum equation as follows:

uz
∂uθ

∂z
= 1

ρ

[
1
r2

∂

∂r
(r2τrθ ) + ∂

∂z
(τθz)

]

= 1
ρ

[
1
r2

∂

∂r

(
r2μe

(
r

∂

∂r

(uθ

r

)))
+ ∂

∂z

(
μe

(
∂uθ

∂z

))]
. (2.6)

Employing the assumptions discussed before and using the deviatoric stress components
as delineated in (2.3), we make an effort to write (2.6) in the reduced form. Note that (2.6)
is the reduced form of the tangential momentum equation and is obtained by employing a
few assumptions, i.e. axisymmetric flow (∂/∂θ = 0) and fully developed flow (uz = uz(r))
together with the consideration of the continuity equation (ur = 0), as discussed in § 2.2.
As is apparent from (2.6), we have discarded the axial diffusion term i.e. ∂2uθ /∂z2. We
perform an order of magnitude analysis to justify the omission of the axial diffusion term
from (2.6) as follows. In this analysis, we have imposed swirl motion on the constituent
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Figure 2. Validation of present analytical swirl velocity profile (a) with Yao & Fang (2012) at Re = 10 and
100 for Newtonian fluid (n = 1.0) and (b) with the three-dimensional numerical simulation (ANSYS) results
for non-Newtonian fluid at power-law index, n = 0.8, 1.0, 1.2. The other parameters considered for validation
are Re = 100, axial location, z = 1 and transition radius, rt = 0.9. Panel (c) represents the validation of existing
experimental results of the axial velocity profile and present numerical model at Re = 26 with limiting case for
a Newtonian fluid, n = 1.

fluids at the inlet to obtain enhanced mixing. Now, even in the presence of an imposed
swirl motion, we see that the magnitude of the tangential velocity (uθ ) is less than the axial
velocity (uz) even in the regime very close to the pipe inlet (here, uθ,max/uavg|Re=10,100 ∼
0.2, 0.7; uz,max/uavg = 2; cf. figure 2a). Certainly, at further downstream locations of the
pipe, the tangential velocity will be even smaller because of the swirl decay compared with
the fully developed axial flow velocity. Important to mention is that we have considered
L = 120R in this analysis, signifying that R � L. Thus, a relatively smaller magnitude of
tangential velocity together with larger axial length allow us to discard the axial diffusion
term, which is ∂2uθ /∂z2 ∼ uθ /L2 � 1. As such, the magnitude of the axial diffusion
term is an order less than the diffusion in the radial direction. Consistent with this order
of magnitude analysis, we have discarded the axial diffusion term in (2.6). Substituting
the effective viscosity μe = μ0|∂uz/∂r|n−1 (Sarma et al. 2017) in (2.6), we obtain the
dimensionless form of (2.6) in the following form:

K0Ur2 ∂W
∂Z

=
[

∂

∂r
(r(3n−1)/n)

(
∂W
∂r

− W
r

)]
. (2.7)
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In (2.7), the term K0 = Re(−1)n−1(n/(3n + 1))n−1, where the Reynolds number,
Re = ρu2−n

av Rn/μ0. Here, K0 is analysed under the consideration of real values while
varying the power-law index, n. The dimensionless variables appearing in (2.7) are
U(r) = uz/uav; W(z, r) = uθ /uav; r ∼ r∗ = r/R; z ∼ z∗ = z/R, rt ∼ r∗

t =rt/R; where r∗
t

represents the non-dimensional transition radius between a forced and a free vortex. It is
worth mentioning here that the chosen scales (velocity and length) in this endeavour are
consistent with those used in the seminal works reported in the literature (Kreith & Sonju
1965; Ingham et al. 1990; Tumin 1996; Rouquier, Pothérat & Pringle 2019; Kim 2024).

To solve (2.7), which is a nonlinear partial differential equation, we apply axisymmetric
and no-slip boundary conditions with W(z, r = 0) = 0 and W(z, r = 1) = 0, respectively.
Note that a Rankine vortex is imposed at the inlet (z = 0) to create the swirl motion therein.
The dimensionless form of the Rankine vortex (Yao & Fang 2012; Kumar et al. 2020) is
given by

W(z = 0, r) =
{

uθ,i,max

uav

r
rt

, r ≤ rt and
uθ,i,max

uav

rt(1 − r)
r(1 − rt)

, r ≥ rt. (2.8)

In this endeavour, we look for the analytical solution of the tangential velocity
component. Employing a technique consistent with the separation of variables method
and defining W(z, r) = F(z)G(r), we solve the nonlinear partial differential equation (2.7)
by reducing it to two ordinary differential equations (ODEs) essentially to obtain the
tangential velocity component. Below, we write the ODEs with the consideration of λ
as positive constant

K0
dF
dz

+ λ2F = 0, (2.9)

(r(3n−1)/n)
d2G
dr2 + (2n − 1/n)

dG
dr

+ (λ2Ur2 − (2n − 1/n)rn−1)G = 0. (2.10)

Further, to obtain the analytical series solution, we consider λ as constant positive real
eigenvalue and make use of the axisymmetric boundary condition (i.e. W(z, 0) = 0). We
obtain the swirl flow velocity W(z, r) in terms of eigenvalues (λm; where m = 1, 2, . . . ∞)
and by using symbolic notation for function WhittakerM as

WhitMm,n = WhittakerM

[
nλm

√
3n + 1

(2(n + 1)3/2)
,

3n − 1
(2n + 2)

,
(2nλm)r((n+1)/n)

√
3n + 1

(n + 1)3/2

]
.

(2.11)

The swirl velocity is obtained by combining the solutions of the aforementioned ODEs
(2.9) and (2.10). Below, we present the swirl velocity profile by utilizing the above notation
for the Whittaker function (WhittakerM) as ‘WhitMm,n’ as follows:

W(z, r) =
∞∑

m=1

Cm exp(−λ2
mz/K0)(WhitMm,n/r). (2.12)

Here, WhittakerM(a, b, r) is the special function for the solution of Whittaker’s
equation. Note that WhittakerM(a, b, r) is the modified form of the confluent
hypergeometric equation and it is defined as (Whittaker 1903; Abramowitz &
Stegun 1970) WhittakerM(a, b, r) = (exp(−0.5r))(rb+0.5)M(b − a + 0.5, 1 + 2b, r),
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where M(a, b, r) = ∑∞
k=0 (ak)(k)/(bk)(k!) is Kummer’s confluent hypergeometric

function.
Substituting the value of the power-law index n = 1, representing a special case of a

Newtonian fluid, the solution can be written as

W(z, r) =
∞∑

m=1

Cm exp(−λ2
mz/Re)

(
WhittakerM

[
λm

2
√

2
,

1
2
,
√

2λmr2
])

/r. (2.13)

We consider the first 30 eigenvalues of (2.12), obtained using the no-slip boundary
condition, i.e. W(z, r = 1) = 0, to get a convergence of the order 10−12 for different values
of the power-law index (n = 0.8, 1.0, 1.2). Employing this specified boundary condition,
i.e. W(z, r = 1) = 0

∞∑
m=1

WhittakerM

[
nλm

√
3n + 1

(2(n + 1)3/2)
,

3n − 1
(2n + 2)

,
(2nλm)

√
3n + 1

(n + 1)3/2

]
= 0. (2.14)

We derived the above expression to obtain the eigenvalues. We consider a numerical
method, consistent with the iterative approach, to determine the eigenvalues of the function

f =
∞∑

m=1

WhittakerM

[
nλm

√
3n + 1

(2(n + 1)3/2 ,
3n − 1

(2n + 2)
,

(2nλm)
√

3n + 1

(n + 1)3/2

]
= 0. (2.15)

The method is applied for different values of n, assuming that f is a continuous function.
The characteristic function f is considered to possess m real roots, as denoted by λ1, λ2,
. . . and λm. The roots of the real-valued function f = 0 are determined using the bisection
method (Henderson & Aldridge 1992; Grassia 2020). In this method, the interval limits
[a, b] for first iteration are initially set to the lower bound a = 1 and upper bound b = 4.
The subsequent finite eigenvalues (λi, where i = 1,2,. . . 30) are calculated by ensuring that
the condition ( f (a) × f (b)) < 0 is satisfied, indicating that the roots are located within
the specified interval. Here, the bisection method is chosen for its simplicity, reliability
and effectiveness in finding isolated single roots in a fixed range. In table 1, we present
only the first ten (10) eigenvalues for different values of the power-law index (n = 0.8,
1.2), including n = 1.0 (Newtonian fluid). It may be added here that we undertake an effort
to cross-verify our solution methodology, and in doing so, we compare the calculated
eigenvalues for n = 1 with the reported results of Yao & Fang (2012), included in table 1
as well. Important to mention is that the calculated eigenvalues for n = 1.0 conform to
those reported by Yao & Fang (2012). We, however, will make all 30 eigenvalues available
to the readers upon request. By appealing to Sturm–Liouville theorem (Kaplan 1981), we
calculate the value of Cm, a coefficient appearing in (2.12), by applying the orthogonality
condition of the eigenfunctions. We establish orthogonality conditions by considering
distinct eigenvalues, denoted as λm and λm1. Specifically, when λm /= λm1, we rely on
the Sturm–Liouville theorem (Kaplan 1981), employing a weight function defined as
r(1 − r((n+1)/n)), within the interval [0,1]. This weight function ensures orthogonality of
the eigenfunctions. The orthogonality condition is expressed as follows:

∫ r=1

r=0

WhittakerM

[
nλm

√
3n + 1

(2(n + 1)3/2)
,

3n − 1
(2n + 2)

,
(2nλm)r((n+1)/n)

√
3n + 1

(n + 1)3/2

]

r
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Mixing of inelastic non-Newtonian fluids with inlet swirl

m n = 0.8, λm n = 1.0, λm n = 1.2, λm

1 3.43962 3.26973 3.14988
2 6.72326 6.11470 5.70642
3 10.00036 8.94845 8.24912
4 13.27591 11.77938 10.78820
5 16.55087 14.60923 13.32586
6 19.82557 17.43855 15.86282
7 23.10011 20.26760 18.39940
8 26.37457 23.09647 20.93575
9 29.64897 25.92523 23.47194
10 32.92333 28.75392 26.00804

Table 1. The first ten eigenvalues for the generalized Whittaker function having values of power-law index,
n = 0.8, 1.0 and 1.2.

×
WhittakerM

[
nλm1

√
3n + 1

(2(n + 1)3/2)
,

3n − 1
(2n + 2)

,
(2nλm1)r((n+1)/n)

√
3n + 1

(n + 1)3/2

]

r

× r(1 − r((n+1)/n)) dr = 0. (2.16)

Utilizing the Sturm–Liouville theorem and the orthogonality of eigenfunctions at
λm = λm1, with the inlet condition (2.8), the coefficient Cm mentioned in (2.12) can be
obtained as

Cm =
∫ r=1

r=0
W(0, r)

(
(WhitMm,n)

r

)
r(1 − r((n+1)/n)) dr/

(∫ r=1

r=0

[
(WhitMm,n)

r

]2

r(1 − r((n+1)/n)) dr

)
. (2.17)

In order to quantify the intensity of swirl along the channel, we define below in (2.18)
a dimensionless swirl number S(z) as the ratio of the axial flux of angular momentum
to the axial flux of axial momentum at a particular cross-section (Reader-Harris 1994;
Alekseenko et al. 1999; Maddahian et al. 2011)

S(z) =
∫ R

0
u∗

z u∗
θ r∗2 dr∗/

(
R
∫ R

0
u∗2

z r∗ dr∗
)

=
∫ r=1

r=0
UWr2 dr/

(∫ r=1

r=0
U2r dr

)
. (2.18)

Using (2.8) and (2.12) in (2.18), the ratio S(z)/S(0), i.e. the ratio of the swirl number
S(z) at any axial location to the that at the inlet, can be obtained as

S(z)
S(0)

=

∞∑
m=1

Cm exp(−λ2
mz/K0)

∫ r=1
r=0 (WhitMm,n)r(1 − r((n+1)/n)) dr

∫ r=1
r=0 W(0, r)r2(1 − r((n+1)/n)) dr

. (2.19)

Having established the analytical expression of both the axial and tangential velocity
profiles, we quantify mixing of two fluids/solutes as elaborated in the next sub-section.
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For this part, we first obtain the spatial distribution of the species concentration in the
chosen fluidic pathway and then calculate the underlying mixing efficiency for different
values of the power-law index.

2.2.2. Benchmarking of analytical method and selection of parameters
To substantiate the efficacy of the proposed theoretical framework, we consider the triple
benchmarking strategy as graphically presented in figure 2(a–c). In figure 2(a), we plot
the swirl velocity profile obtained from the present theoretical framework in the limiting
case of a Newtonian fluid, i.e. n = 1, for two different values of Re (= 10, 100) and
compare the same with the reported profile of Yao & Fang (2012). The other parameters
considered for this plot are z = 1, rt = 0.9. It is noteworthy that, to obtain the analytical
solution of the swirl velocity using (2.10), the values of λm, crucial in satisfying the no-slip
boundary condition i.e. W(z, r = 1) = 0, are independent of the Reynolds number – a
point emphasized by Kumar et al. (2020) and Yao & Fang (2012). It may be mentioned
here that analytical solutions for both no-slip and slip cases have been established in
the literature as well (Kumar et al. 2020). To verify the convergence of our results, we
performed a validation analysis in figure 2(a) by comparing the eigenvalues obtained from
our calculation with those reported by Yao & Fang (2012) for Re = 10 and 100. This
benchmarking endeavour ensures the accuracy and consistency of our results. A closer
match between the present and published results, as witnessed in figure 2(a), vouches for
the efficacy of the proposed analytical model.

Effort has been taken in figure 2(b) to compare our analytical solutions of the flow
velocity for different non-Newtonian fluids, including both shear-thinning (n = 0.8) and
shear-thickening (n = 1.2) fluids with the corresponding full-scale simulated results. For
this validation, we performed three-dimensional simulations employing the finite volume
framework of ANSYS Fluent and considered an identical flow configuration as chosen
in this endeavour. For the plots depicted in figure 2(b), the other parameters are z = 1,
rt = 0.9 at Re = 100. To ascertain the credibility of the theoretical framework developed
in our analysis, or more precisely, to ascertain the correctness of the analytical solutions,
obtained considering a few assumptions, we performed another validation to compare
the analytically obtained flow velocity for non-Newtonian fluids (shear-thinning and
shear-thickening fluids) with the full-scale simulated results. We wish to emphasize that
the finite volume method framework of ANSYS Fluent is employed in this study to
obtain simulated results and subsequently to validate them with the analytical results as
presented in figure 2(b). We used the Semi-Implicit Method for Pressure-Linked Equations
(SIMPLE) algorithm of the ANSYS Fluent solver for pressure–velocity coupling and
employed a second-order upwind scheme to discretize the momentum transport equations
(Patankar 1980). We obtain a closer match between analytical swirl velocity profiles and
the corresponding numerical results for three different values of n of 0.8, 1.0 and 1.2, as
shown in figure 2(b). The comparison analysis presented in figure 2(b) underscores that
our analytical solutions, obtained by considering a few physically justified assumptions,
faithfully capture the full-scale (three-dimensional) simulated results. It is imperative to
note that the validation of the analytical results through a comparison with full-scale
numerical simulations using ANSYS Fluent underlines the credibility of the proposed
analytical framework. For the sake of completeness, we mention here that the simulations
were performed considering a total 12081477 control volumes and assigning a residual
criterion of 10−7 for all the transport variables. As evident from figure 2(b), analytical
calculations obtained for all the values of n (= 0.8, 1.0, 1.2) match in a fairly accurate
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manner with the simulated results. Furthermore, we undertake an effort in figure 2(c) to
compare the simulated axial velocity profile with the experimental results available in
this paradigm (Stokes et al. 2001b). It is worth mentioning here that the experimental
validation is limited to a Newtonian fluid (n = 1.0), while the parameters considered
are as follows: Re = 26 and rt = 0.5. Consistent with the experimental configuration as
considered by the authors in their study (Stokes et al. 2001b), we consider only the Rankine
vortex with an angular velocity of 13.04 rad s−1 at the inlet. Important to mention is
that the swirl specified at the inlet has two different configurations over the domain as
follows: force vortex structure up to transition radius and free vortex regime afterwards.
Depicted variations in figure 2(c) vouch for a closer as well as consistent match between
the experimental and full-scale simulated results without considering the axisymmetric
and fully developed flow.

We observe that, for the considered values of Re, our analytical framework developed
to solve for the swirl momentum transport can predict the swirl velocity profile reported
by Yao & Fang (2012). Quite notably, the present analytical solutions closely match with
full-scale three-dimensional simulated results as well. Notably, this model benchmarking
endeavour justifies the accurateness of our modelling framework, which in turn, ascertains
the credibility of the analytical solutions as well. As endorsed by the benchmarking
analyses, as presented above, we consider the analytically derived velocity profile to obtain
the concentration field in the fluidic pathway essentially to save computational time and
effort.

For the present analysis, we consider the ranges of Re ∼ 1–102 and n ∼ 0.6–1.4
(Matsunaga & Nishino 2014; Cortes-Quiroz, Azarbadegan Zangeneh 2017; Majhi, Nayak
& Weigand 2023). It may be mentioned here that, to analyse the mixing performance in
this endeavour, we vary the transition radius ratio from 0.7 to 0.9 by keeping the Péclet
number, Pe(= 2600) constant (Rezk et al. 2012).

2.2.3. Description of flow field
Researchers have concluded that the generation of a vortex leads to the chaotic nature
between fluid layers and helps to attain efficient mixing of two fluids/solutes in a shorter
length. To understand the vortex-assisted mixing of non-Newtonian fluids in a narrow
fluidic channel, which is the prime focus of this endeavour, we develop a mathematical
model. Our modelling framework employs a semi-analytical technique for solving the
momentum transport equation, coupled with the finite volume-based numerical method
for the species transport equation, as discussed in § 2.2. In the present analysis, we focus
on the rate of change of Rankine vortex strength and its influence on the underlying mixing
of two constituent non-Newtonian fluids, investigated for a window of pertinent parameters
such as Reynolds number, power-law index and transition radius. We consider an inlet swirl
number equal to one throughout this investigation in order to avoid disparaging statements
regarding the supremacy of angular momentum and axial momentum in the field. We
begin with the description of the swirl velocity profile as demonstrated in figure 2(a,b). As
seen in figure 2(a,b), the swirl velocity profile starts to decrease in the outer region along
the outward radial direction after it reaches its maximum value.

Figure 3 shows the variation of the swirl velocity and swirl decay profile with a change
in the power-law index. For fluids with higher n values, as shown in figure 3, more time
is needed for the viscous force to impede the swirl velocity. The magnitude of peak swirl
velocity decreases more strongly for fluids with increasing n due to the stronger viscous
effect (caused by larger effective viscosity), as shown in figure 3(a). Also, the variation of
the swirl velocity profile for different values of transition radius (rt = 0.7, 0.9), obtained
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Figure 3. Plot showing the analytical swirl velocity profiles for different values of power-law index
n = 0.8, 1.0, 1.2 and at an axial location z = 1. (a) Variation with pipe radius for two different values of
transition radii (rt) of 0.7 and 0.9. (b)Variation of maximum swirl velocity with Reynolds number (1 to 100)
with transition radius rt = 0.7. (c) Axial variation of maximum swirl velocity for Re = 100, rt = 0.7. (d) Plots
depicting the axial variation of swirl intensity for n = 0.8 and 1.2, considering other parameters as rt = 0.7,
0.9 and Re = 100. (e) Qualitative prediction of swirl velocity decay, as shown by the path lines obtained
from numerical (ANSYS Fluent) solutions at axial planes (z = 20 and 35) for n = 0.8 and 1.2, while the other
parameters considered are Re = 100, rt = 0.7 and 0.9.

at Re = 100, z = 1, is shown in figure 3(a). For the shear-thickening fluids with larger
n value, a relatively higher effective viscosity promotes the transmission of the zero
momentum at the wall deeper into the pipe, as witnessed by the offset of the point of the
peak velocity radially inward towards the axis of the channel. This phenomenon further
lowers the magnitude of the swirl velocity peak, as confirmed in figure 3(a). Figure 3(a)
illustrates how the swirl velocity profile deviates significantly for larger values of rt with
the change in power-law index close to the inlet of the channel (z = 1). This is directly
caused by the fact that the higher velocity gradients lead to an increase in the effective
viscosity of a shear-thickening fluid. Additionally, given the Rankine vortex is imposed
at the inlet, which is evident from the presence of a radial pressure gradient from core
to annuls, the transition occurs at r = rt is a function of swirl velocity and radius of the
channel. The formation of boundary layer ensures that there is a velocity gradient in the
flow field. It may be added here that the shear effect predominates closer to the wall and
gradually diminishes along the radial direction towards the axis of the channel, which
affects the free vortex flow. Although there is a smooth transition from a forced to a free
vortex, it is established that, closer to the inlet, the peak value always occurs at radii less
than the transition radius. This is due to the frictional effects of the wall on the free vortex
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region. With decreasing transition radius, the magnitude of the swirl velocity increases in
order to retain the momentum in the radial direction for a fixed value of Re.

Figure 3(b) plots the variation of swirl velocity versus Re in the range 1 ≤ Re ≤ 100.
As seen from figure 3(b), the magnitude of the swirl velocity increases substantially on
increasing the value of Re, while for a given Re, the swirl velocity becomes higher for
shear-thinning fluids. The primary flow parameter that plays crucial role in swirl-driven
flows is the Re, typically calculated based on the average axial velocity. The higher Re
accelerates the swirl’s motion into the channel. Consequently, as shown in figure 3(b),
the maximum magnitude of the swirl velocity, represented by Wmax, increases with an
increase in Re from 1 to 100 for rt = 0.7, calculated at an axial location z = 1. The highest
magnitude of swirl tends to remain in its radial location following the interaction between
swirl modulated advective effects and fluid viscous effects. As a result, the influence of
the channel surface on the wall viscosity causes the swirl velocity to travel as closely
as possible along the pipe axis. Also, a more viscous nature of the constituent fluids, as
realized by an increasing the shear-thickening effect, results in a reduction of Wmax with
an increase in Re.

We show, in figure 3(c), the decay of the maximum swirl velocity (Wmax) along the
axial direction for three different values of n (= 0.8, 1.0 and 1.2), the other parameters
being Re = 100 and rt = 0.7. The decay of Wmax is slower for the shear-thinning fluids
compared with the shear-thickening fluids. It is important to observe from figure 3(c) that,
for the shear-thinning fluids, the swirl velocity travels much deeper into the channel inside
before dissipation. This happens due to the larger velocity gradient near the channel wall
that tends to increase the shear stress therein for shear-thickening fluids, which in turn,
accelerates the swirl velocity decay compared with shear-thinning fluids.

Figure 3(d) demonstrates the intensity of swirl decay along the axial direction for both
the shear-thinning (n = 0.8) and shear-thickening, (n = 1.2) fluids. The plots are depicted
for two different values of transition radii rt = 0.7, 0.9 and obtained at Re = 100. It is
apparent from the description made in the preceding section(s) that, for a given value of
Re, the magnitude of the swirl becomes higher and at smaller transition radius. This finding
is consistent with the observation we established in our earlier discussion pertaining to the
relationship between the swirl velocity and Reynolds number. This can be explained by the
fact that, as the transition radius increases, the swirl velocity gradient increases close to the
channel wall. A larger velocity gradient near the channel wall tends to increase the shear
stress therein and speed up the swirl velocity’s decay. Furthermore, irrespective of the
magnitude of Re, the increased viscous effect at higher transition radii tends to speed up
the swirl decay for higher values of the power-law index. As can be seen from figure 3(d),
the effect of the transition radius is more prominent on the swirl momentum transport
of shear-thinning fluids (n < 1) compared with shear-thickening fluids (n > 1). Also,
figure 3(d) witnesses that the swirl velocity decay is somewhat higher for larger transition
radii. We attribute this observation to the increased shear stress developed at higher
transition radii owing to the larger velocity gradients. It can be inferred from the foregoing
discussion as follows: fluids that thin out under shear would have an enhanced transport
capability at smaller transition radii than fluids that thicken under shear. Shear-thickening
(dilatant) fluids should not be used in applications that demand an extended swirl effect
since this special class of fluids promotes swirl to decay more quickly than shear-thinning
(pseudoplastic) fluids.

In figure 3(e), we show a qualitative description of swirl transport and its decay for
different fluids to facilitate a better understanding of the results at hand. The other
parameters considered for this plot are Re = 100, rt = 0.7 and 0.9. The streamlines
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emerging from the channel entry are portrayed in figure 3(e) to provide greater insights
into the swirl decay. Note that the plots depicted are obtained from simulations. Figure 3(e)
witnesses (see supplementary movies 1–4 available at https://doi.org/10.1017/jfm.2024.
792 for a clear insight) that swirl decay occurs nearly at an axial location z = 35 and
20 for shear-thinning fluids (n = 0.8) and shear-thickening fluids (n = 1.2), respectively,
from the inlet of the chosen fluidic configuration. We would like to discuss two important
aspects, as observed from figure 3(e). First, for the shear-thinning fluids (n = 0.8), the
swirl momentum penetrates a greater distance along the channel length for a given
strength of inlet swirl, Re (= 100) and rt. This observation on complying with our
earlier explanation signifies the impact of rheology modulated fluid viscosity on the swirl
transport. Second, the inlet swirl induces an azimuthal motion within the fluid layers,
enhancing the contact area and chaotic interaction between the participating fluids. This
enhancement in convective-based mixing is particularly significant irrespective of the fluid
rheology, emphasizing the enduring impact of the inlet swirl in promoting efficient mixing
within the system. This qualitative representation of swirl transport in figure 3(e), derived
from full-scale simulations, harmonizes closely with the quantitative analysis of swirl
decay presented in figure 3(d). The coherence observed between our analytical solutions
and full-scale simulated results once more underlines the credibility of the analytical
technique proposed in this analysis.

2.3. Species transport: description of concentration field
Consistent with the assumptions considered in this analysis, except for the axisymmetric
one (as the constituent two fluids occupy either half of the pipe inlet cross-section), the
simplified species transport equation for zero radial flow velocity can be written in the
form as given below

uθ

1
r

∂C∗

∂θ
+ uz

∂C∗

∂z
= D0

[
1
r

∂

∂r

(
r
∂C∗

∂r

)
+ 1

r2
∂2C∗

∂θ2 + ∂2C∗

∂z2

]
. (2.20)

Here, C∗ is solute concentration and D0 is the diffusion coefficient of non-Newtonian
fluids. To distinguish the species concentration of constituent fluids/solutes in the flow
domain, we assign C∗ = 1 for stream A (red colour) and C∗ = 0 for stream B (blue colour),
as shown in figure 1.

To non-dimensionalize equation (2.20), we use the velocity and length scales already
defined in § 2.2.1, while we define dimensionless concentration C = C∗/C0. Here, C0 is
the initial concentration of stream A. It is worth mentioning here that, considering a few
factors, typically used by the researchers in this paradigm (Matsunaga & Nishino 2014;
Cortes-Quiroz et al. 2017; Majhi et al. 2023), we select the aforementioned initial species
concentration of the candidate fluids. For the sake of the completeness of our ongoing
discussion, we here mention a few of those factors as follows: maintaining the desired
level of homogeneity or stratification in a laminar flow regime, controlling swirl intensity
and direction for fluids with comparable effective viscosities and enabling a sufficiently
reduced time to achieve the desired level of convective-based efficient mixing (Matsunaga
& Nishino 2014; Cortes-Quiroz et al. 2017; Majhi et al. 2023). The non-dimensional form
of species transport equation is given as

W
r

∂C
∂θ

+ U
∂C
∂z

= 1
Pe

[
1
r

∂

∂r

(
r
∂C
∂r

)
+ 1

r2
∂2C
∂θ2 + ∂2C

∂z2

]
. (2.21)
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In (2.21), the Péclet number Pe(= uavR/D0) is defined as the ratio of the convection
strength to the diffusion strength.

To obtain the mixing performance of the constituent fluids in the chosen fluidic device
under the modulation of vortical flows, we solve (2.21) using our in-house developed
finite volume-based code (Patankar 1980). The analytically derived flow velocity profiles
(both tangential and axial velocities) are used to solve the species transport (2.21). The
non-dimensional boundary conditions for the species transport (2.21) are outlined next in
(2.22a–c)

Along the radial direction:
∂C
∂r

∣∣∣∣
r=0

= 0;
∂C
∂r

∣∣∣∣
r=1

= 0, (2.22a)

Along the azimuthal direction: C(θ=0) = C(θ=2π); ∂C
∂θ

∣∣∣∣
θ=0

= ∂C
∂θ

∣∣∣∣
θ=2π

, (2.22b)

Along the axial direction: C(z = 0) =
{

1, 0 ≤ θ < π
0, π ≤ θ < 2π

; ∂C
∂z

∣∣∣∣
z=L

= 0. (2.22c)

We briefly discuss the numerical framework employed in this study to solve (2.21) using
the aforementioned boundary conditions (2.22a–c) in the forthcoming section.

2.3.1. Numerical analysis
As mentioned before, we solve the species transport (2.21) numerically by employing our
in-house developed finite volume code. We use a power-law scheme for the discretization
of (2.21) to obtain converged solutions for a higher value of the Péclet number (Pe) using
the boundary conditions given in (2.22a–c).

The mixing performance is typically assessed by analysing the variation of mixing
efficiency with respect to the mixing methods (active or passive) and by varying the
involved parameters such as Péclet number, characteristic length scale of the device
etc., within their permissible range. In the present endeavour, to elucidate the mixing
performance, we calculate mixing efficiency ηm by using the expression given below
(Wang et al. 2015; Gaikwad, Kumar & Mondal 2020; Shyam et al. 2021; Kaushik et al.
2022)

ηm(z) =
[

1 −
(∫

A
|Ci(r, θ, z) − C∞| dr dθ/

(∫
A

|C0(r, θ) − C∞| dr dθ

))]
× 100 %.

(2.23)

In (2.23), C∞ represents the dimensionless concentration of species at a perfectly mixed
state, which is usually taken as 0.5.

As evident from (2.23), ηm gives the efficiency at each axial location of the channel.
Therefore, we can estimate the mixing length from this expression, which, in turn, will
allow us to predict the required size of the proposed mixing assay. We mention here that,
at the channel inlet, C0 = 1, 0 in the upper half and lower half, respectively, as shown
in figure 1. Note that ηm ∈ (0, 1) in (2.23) can take any value between zero and one.
Important to mention here is that the zero value implies no mixing of the constituent
components, while a value of unity indicates a completely mixed state of the participating
components.
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Figure 4. (a) Plot showing the GCI for three different grid refinements, defined with a dummy variable for
Δ = 1.20, 1.21, 1.22. (b) The mixing efficiency at the pipe outlet is plotted for three distinct grid refinements
in all directions as considered for GCI analysis. The other parameters considered for these plots (a,b) are
Reynolds number (Re = 100), transition radius (rt = 0.9), Péclet number (Pe = 2600) and power-law index
(n = 0.8). (c) Typical grid structure and distribution are shown for the fluidic configuration considered here
with an axial distance of 120 times the radius (z = 120R).

2.3.2. Grid performance analysis
Just to ascertain that the mixing efficiency, estimated numerically in the present analysis,
does not have any grid resolution bias, we perform a grid performance test for a set of
other parameters as n = 0.8 at Pe = 2600, rt = 0.9 and Re = 100, as shown in figure 4. In
doing so, we calculate the grid convergence index (GCI), as shown in figure 4(a).

To conduct this analysis, we considered a grid number with a dummy variable �,
proportional to the dimension of the chosen model, in three mutually perpendicular
directions. Here, we vary � with a spacing ratio of 1.2 in three mutually perpendicular
directions having finer grid distributions for the Δ = 1.21 and Δ = 1.22 cases than that of
the case Δ = 1.20. Note that a typical grid structure corresponding to Δ = 1.20 pertaining
to the chosen fluidic configuration with an axial distance of 120 times the pipe radius
(L = 120R) is shown in figure 4(c). From the depicted results of GCI for two sets of
grid refinements in figure 4(a), we find that GCI23/1.2PGCI12 ≈ 1 with an order
of convergence P = 1.129, where GCI12 = 4.98 % and GCI23 = 6.12 %. This calculation
of GCI suggests that the solutions indeed lie comfortably within the asymptotic range of
convergence, affirming the reliability of the results of this endeavour.

Following this GCI plot, we show in figure 4(b) the axial variation of mixing efficiency
for three distinct grid refinements in all directions, as considered for GCI analysis.
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The parameters considered for this plot are n = 0.8, Pe = 2600, rt = 0.9 and Re = 100.
Remarkably, with a change in grid refinement from 62.40 × 106 to 107.83 × 106 elements,
we observe an insignificant variation in the mixing efficiency, with a percentage change
below 1% at a specific axial location, z = 100. Based on these observations from
figure 4(a,b), we consider Δ = 1.21, equivalently 100 × 260 × 2400 (= 62.4 × 106) grids
for the subsequent analysis, as discussed in the upcoming sections.

2.3.3. Solute mixing: prediction, transition and efficiency
From the discussion above in § 2.2.3, it is apparent that the shear-thinning fluids have
a significant influence on the swirl velocity. Also, we understand from the foregoing
discussion that, for the shear-thinning fluids (n < 1), convection has a dominant influence
over molecular diffusion on the underlying mixing for higher values of Re, as discussed
next.

The variation of mixing efficiency along the axial direction for different values of
power-law index is depicted in figure 5. The other parameters considered for this plot
are Pe = 2600, Re = 100 and rt = 0.7. We can see from figure 5(a) that, with a decreasing
value of the power-law index, the mixing efficiency increases along the axial direction. It
may be mentioned here that, for the shear-thinning fluids (n < 1), the effect of convection
on the underling mixing is better realized for a decreasing value of the transition radius
and increasing magnitude of Re. The higher strength of rotational inertia for Re = 100 and
more shear-thinning behaviour of the participating fluids for n = 0.8 lead to an increase of
the tangential flow velocity at a given strength of inlet swirl. The higher tangential velocity
is responsible for the augmented chaotic nature of the candidate fluids due to an increase
in the contact area between them, which, in turn, promotes convective mixing along the
axial direction. It is because of this reason that the mixing efficiency of shear-thinning
fluids becomes higher, as witnessed in figure 5(a). We show, in figure 5(b), the influence
of transition radii on the axial variation of mixing efficiency. The inference obtained from
the depicted variation of the swirl velocity profile versus transition radius (see figure 3a)
suggests that the swirl intensity is higher for a smaller transition radius, i.e. rt = 0.7.
As can be seen from figure 5(b), for the smaller value of rt, the mixing efficiency at
the channel outlet becomes higher, attributed primarily to a higher intensity of swirl.
Notably, for a given rt, the mixing efficiency at any axial location becomes higher for the
shear-thinning fluids (n < 1) compared with the shear-thickening fluids (n > 1), as seen
in figure 5(b). For a specified strength of inlet swirl, the rate of swirl decay is slower for
shear-thinning fluids (see figure 3d), which renders better mixing efficiency for this class
of fluids at any axial location.

As the prime focus of this endeavour is to investigate the mixing performance of
non-Newtonian fluids/solutes, we make an attempt in figure 6 to plot the variation of
mixing efficiency (ηm) with flow behaviour index (n), characterizing the rheological
behaviour of the inelastic non-Newtonian fluids considered in this analysis. We may
mention here that the mixing transition is a consequence of the appearance and
development of small-scale three-dimensional swirl structures in the flow field. The
large excursions corresponding to large vortex structures typically depend on Re, and are
responsible for convective-based mixing in shorter length (Breidenthal 1981). Precisely by
depicting figure 6, we would like to demonstrate how the transition in mixing occurs in a
swirl-driven flow environment as modulated by the fluid rheology. The other parameters
are Re = 100, Pe = 2600 and rt = 0.7.
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Figure 5. The plot of mixing efficiency along the axial direction: (a) with change in value of the power-law
index (n = 0.8, 1.0, 1.2), where the other parameters considered for the plot are Re = 100, Pe = 2600 and rt =
0.7; and (b) at two different transition radii (rt = 0.7, 0.9) for shear-thinning (n = 0.8) and shear-thickening
fluids (n = 1.2), where the other parameters considered for the plot are Re = 100, Pe = 2600.
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Figure 6. The plot shows qualitative aspect of mixing efficiency using concentration contour with change
in the power-law index (n = 0.6, 0.8, 1.0, 1.2, and 1.4) at two different axial locations, z = 30 and 120. The
indicated concentration contours are used to show the qualitative aspect of advective mixing for a shear-thinning
fluid at n = 0.6 compared with diffusive mixing for a shear-thickening fluid at n = 1.4. It is based on the
complete rotation of fluid at n = 0.6 compared with n = 1.4. The other parameters considered for this analysis
are Re = 100, Pe = 2600 and rt = 0.7.

The higher internal convection of the constituent fluids, which follows a nonlinear
trend with increasing n, as demonstrated by the concentration contours in figure 6,
leads to better mixing being achieved in swirl-driven flow environments. It may be
mentioned here that the concentration contours give a good indication of the impact
of swirl on vortex formation. At an axial location z = 30, the concentration contour for
n = 0.6 (see concentration contour of figure 6) exhibits a complete bulk fluid rotation
compared with the reference vortex formed for n = 1.4 (see supplementary movies 5–7
for a clear insight). This observation indicates that convection-based mixing dominates
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over molecular diffusion for n = 0.6. Depicted contours in figure 6 suggest that, for more
shear-thickening behaviour of the candidate fluids (n = 1.4), mixing based on molecular
diffusion is clearly visible to the naked eye at an axial location of z = 30 compared with
z = 120. As can be verified from figure 6, with increase of the shear-thinning nature of
the constituent components, the underlying mixing is seen to become more pronounced
regardless of the magnitude of Re, transition radius and Pe. A lesser apparent viscosity of
constituent fluids having a more shear-thinning nature for a given deformation rate (here,
strength of inlet swirl) inhibits faster attenuation of swirl for its given strength, which, in
turn, ensures better mixing performance at any axial location, as witnessed in figure 6.

It may be mentioned here that the transmission of a given strength of the inlet swirl
through the participating fluids largely relies on the momentum transport, which, in turn,
depends on the Reynolds number. Thus, in a swirl-driven flow environment, underlying
mixing of constituent fluids will be governed by both the inevitable molecular diffusion
and chaotic advection. Considering this aspect, we plot in figure 7(a) the variation of
mixing efficiency with Re for three different values of n (= 0.8, 1.0 and 1.2). The following
parameters are considered for this plot as Pe = 2600, z = 100 and rt = 0.7. We discuss two
important observations as follows. First, the mixing efficiency is seen to be higher for
shear-thinning fluids (n < 1) compared with shear-thickening fluids (n > 1). We attribute
this observation to the lesser apparent viscosity of shear-thinning fluids, which prevents
faster swirl decay. Second, a higher inertial effect for higher Reynolds number accelerates
the swirl motion penetrating much deeper into the channel before attenuation. However, at
lower Re, impeding viscous resistance leads to swirl decay over shorter distances from the
inlet. This observation is justifiable qualitatively from the mixing concentration contours
depicted in figure 7(b). It is because of the diminishing effect of inlet swirl at low Re
that we observe a linear trend of mixing in regime-I of figure 7(a), attributed primarily
to the diffusion-based mixing. The contours depicted in figure 7(b) suggest that, for the
smaller values of Re (= 1, 10), the effect of inlet swirl is not translated into the downstream
locations of the fluidic configuration. This observation is attributed to the weaker rotational
fluid motion developed at the pipe inlet for smaller values of Re. It is because of this reason
that we obtain diffusion-based mixing for smaller Re even at a further downstream location
of the pipe, as witnessed in figure 7. The role of convention-based mixing is shown in
regime-II, which follows the nonlinear trend. For Re greater than 10, bulk fluids rotate
more than 90◦. This flow structure helps to increase the contact surface area between the
fluid layers and enhances convection-based mixing, as supported by the contours shown in
figure 7(b).

The contours illustrating the mixing efficiency in figures 6 and 7 establish the
dependency of the underlying mixing on the power-law index (n ∈ 0.6–1.4) and Reynolds
number (Re ∈ 100–102). The discussion made above in the context of figures 6 and
7 underscores that convection-dominated mixing becomes prominent for shear-thinning
fluids with higher Re. To substantiate this observation, we next make an effort to establish a
correlation among the mixing efficiency (ηm), power-law index and Reynolds number. The
developed correlation, represented by a second-order polynomial, exhibits a high degree
of fit with a coefficient of determination value of 0.9935. The developed explicit, quadratic
form of ηm in terms of the independent variables, i.e. power-law index and Reynolds
number at the pipe outlet (z = 120) can be expressed as follows:

ηm = a1 + a2n + a3Re − a4n2 − a5nRe + a6Re2. (2.24)
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Figure 7. (a) The plot shows mixing efficiency (left side) as a function of Reynolds number (1 to 100), as
well as shear thinning and thickening (n = 0.8 and 1.2, respectively), in addition to Newtonian fluid (n = 1.0)
at an axial location, z = 100. (b) The qualitative aspect of mixing efficiency (right side) using concentration
contours with change in the same n at Re = 1, 10, 40, 80 and 100 is shown. On increasing the Reynolds number,
advective mixing (regime II) is obtained at Re = 100 compared with diffusive (regime I) at Re = 1 and 10 based
on complete rotation of fluid compared with only twist, respectively. The other parameters considered for this
analysis are Pe = 2600 and rt = 0.7.

Here, the constants a1, a2, a3, a4, a5 and a6 are 23.31, 15.92, 0.8756, 10.9, 0.3503 and
0.0002416, respectively. Note that the proposed correlation in (2.24) corresponds to the
data set obtained for rt = 0.7 and Pe = 2600.

On using (2.24), we obtain the following insights, as discussed next. The mixing
efficiency at the channel outlet (z = 120) becomes higher with increasing magnitude of
Re and for an enhanced shear-thinning nature of the fluid. This inference effectively
supports the findings depicted in figures 6 and 7. Hence, it becomes evident that the
convective-based mixing efficiency is significantly influenced by both the rheology of the
constituent fluids and the flow Reynolds number.

3. Summary, perspective and outlook

In the present analysis, we investigate the effect of swirl flow (vorticial flow) on the mixing
of non-Newtonian fluids in a narrow cylindrical pipe under laminar flow conditions. We
analytically derive the expression for the swirl velocity profile by superimposing the
fully developed flow and applying the Rankine vortex condition at the channel inlet.
We incorporate analytically obtained flow velocities (both swirl (tangential) and axial
velocities) into the species transport equation to obtain the concentration distribution of the
constituent fluids/solutes along the cross-section of the chosen fluidic configuration. We
examine the influence of inlet swirl by varying pertinent parameters such as flow behaviour
(power-law) index (n = 0.6–1.4), Reynolds number (Re = 100–102) and transition radius
(rt = 0.7–0.9).

Our findings reveal that an increase in the value of the power-law index, signifying
the change in behaviour of the constituent fluids from shear thinning to shear thickening,
results in an increase in the fluids’ apparent viscosity for a given inlet swirl. We observe
that the decay of swirl is critically dependent on the magnitude of the power-law index
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or flow behaviour index. We unveil through this analysis that both the power-law index
and the Reynolds number significantly impact the length of swirl decay. This increased
apparent viscosity of the constituent fluids with higher values of power-law index leads to
a reduction in the magnitude of both axial and tangential velocities. It is demonstrated that
decreasing the value of the transition radius and increasing the magnitude of the Reynolds
number leads to an enhancement of swirl intensity to act over a greater extent of the flow
configuration, attributed primarily to the combined effects of a higher value of the radial
pressure gradient and a reduced wall shear stress. Based on the findings obtained from
our simulations, we elucidate how swirl alters the flow structure, inducing rotation and
enhancing the contact surface area of the participating fluids. Our study demonstrates
that chaotic convection, or the swirl-driven rotation of the fluid, plays a significant
role in enhancing mixing efficiency at a higher Reynolds number. We believe that the
insights gained from this study may strengthen the fundamental idea of vortex-assisted
mixing for non-Newtonian fluids in a narrow fluidic confinement. The current work
may be particularly valuable for researchers aiming to enhance transport capabilities and
convective mixing through the use of swirl flow, especially by altering the rheological
properties of base fluids, like water through a polymer dilution, to change their rheological
behaviour.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.792.
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