
17

1.1 Introduction

Since the early days of computers and programming, humankind has been fasci-
nated by the question whether machines can be intelligent. This is the domain of
artificial intelligence (AI),1 a term first coined by John McCarthy when he orga-
nized the now legendary first summer project in Dartmouth in 1956. The field of AI
seeks to answer this question by developing actual machines (robots or computers)
that exhibit some kind of intelligent behavior.

Because intelligence encompasses many distinct aspects, one more complicated
than the other, research toward AI is typically focused on one or only a few of these
aspects. There exist many opinions and lengthy debates about how (artificial) intel-
ligence should be defined. However, a reoccurring insight is that the capabilities of
learning and reasoning are essential to achieve intelligence. While most practical AI
systems rely on both learning and reasoning techniques, each of these techniques
developed rather independently. One of the grand challenges of AI is achieving a
truly integrated learning and reasoning mechanism.2 The difference between both
can be thought of in terms of “System I” and “System II” thinking, as coined in cog-
nitive psychology.3 System I thinking concerns our instincts, reflexes, or fast think-
ing. In AI we can relate this to the subdomain of machine learning, which aims to
develop machines that learn patterns from data (e.g., do I see a traffic light). System
II thinking concerns our more deliberate, multistep, logical, slow thinking. It relates
to the subdomain of reasoning and focuses on knowledge and (logical or probabilis-
tic) inference (e.g., do I need to stop in this traffic situation). In this chapter, we dive

1 Luc De Raedt, “Over machines die leren” in Pieter d’Hoine and Bart Pattyn (eds), Wetenschap in
een veranderende wereld, Lessen voor de eenentwintigste eeuw (Leuven University Press, 2020); Stuart
Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 4th ed (Pearson, 2020).

2 Luc De Raedt, Robin Manhaeve, Sebastijan Dumancic, Thomas Demeester, and Angelika Kimmig,
“Neuro-symbolic = neural + logical + probabilistic” (2019) Proceedings of the International Workshop
on Neural-Symbolic Learning and Reasoning at IJCAI.

3 Daniel Kahneman, Thinking, Fast and Slow (Farrar, Straus and Giroux, 2013).

1

Artificial Intelligence

A Perspective from the Field

Wannes Meert, Tinne De Laet, and Luc De Raedt

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

18 Wannes Meert, Tinne De Laet, and Luc De Raedt

deeper into both machine learning and machine reasoning and describe why they
matter and how they function.

1.2 What Is Machine Learning?

To answer the question whether machines can learn and reason, we first need to
define what is meant by a “machine” that can “learn” and “reason.” For “machine
learning” we go to the, within the domain generally accepted, definition of
machine learning by Tom Mitchell. A machine is said to learn if its performance
at the specific task improves with experience.4 The term machine herein refers to a
robot, a computer, or even a computer program. The machine needs to perform a
given task, which is typically a task with a narrow scope such that the performance
can be measured numerically. The more the machine performs the task and gets
feedback on its performance, the more it is exposed to experiences and the better
its performance. A more informal definition by Arthur Samuel, an American com-
puter scientist, is5 “computers that have the ability to learn without being explicitly
programmed.”6

One of the original, but still fascinating, examples of machine learning is a com-
puter program (the machine) developed by Arthur Samuel to play checkers (the
task). After playing multiple games (the experience), the program became a stronger
player. This was measured by counting the number of games won or the ranking
the program achieved in tournaments (the performance). This computer program
was developed in the 1950s and 1960s and was one of the first demonstrations of
AI. Already then, the program succeeded in winning against one of the best US
checkers players. By the early 1990s, the checkers program Chinook, developed at
the University of Alberta, outperformed all human players.7 Nowadays, checkers is
a “solved” game. This means that a computer program can play optimally, and the
best result an opponent, human or machine, can achieve is to draw. Since then,
we have observed AI conquer increasingly complicated games. Playing chess at a
human level was reached when Deep Blue won against world chess champion Gary
Kasparov in 1997. The game of Go, for which playing strategies were considered
too difficult to be even represented in computer memory, was conquered when the
program AlphaGo won against Lee Sedol in 2016.8 And recently also games where
not all information is available to a player can be played by AI at the same level as

4 Tom Mitchell, Machine Learning (McGraw Hill, 1997).
5 Arthur Samuel, “Some studies in machine learning using the game of checkers” (1959) IBM Journal

of Research and Development, 3(3): 210–229.
6 Note that the “machine” requires programming to be created. The “without programming” refers to

the machine adapting to a task it has not seen before and is thus not explicitly programmed for.
7 Schaeffer Jonathan, One Jump Ahead: Challenging Human Supremacy in Checkers (Springer, 1997).
8 David Silver et al., “Mastering the game of Go with deep neural networks and tree search” (2016)

Nature, 589: 224.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

 Artificial Intelligence: A Perspective from the Field 19

top human players, such as the game of Stratego where DeepNash reached human
expert level in 2022.9

Another ubiquitous example of learning machines are mail filters (the machine)
that automatically remove unwanted emails, categorize mails into folders, or
automatically forward the mail to the relevant person within an organization (the
task). Since email is customized to individuals and dependent on one’s context,
mail handling should also be different from person to person and organization to
 organization. Therefore, mail filters ought to be adaptive, so that they can adapt to
the needs and contexts of individual users. A user can correct undesired behavior or
confirm desired behavior by moving and sorting emails manually, hereby indicat-
ing (lack) of performance. This feedback (the experiences) is used as examples from
which the computer program can learn. Based on certain properties of those emails,
such as sender, style, or word choice, the mail filter can learn to predict whether a
new email is spam, needs to be deleted, moved, forwarded, or kept as is. Moreover,
by analyzing the text and recognizing a question and intention, the mail filter can
also learn to forward the mail to the person that previously answered a similar ques-
tion successfully. The more examples or demonstrations are provided to the system,
the more its performance improves.

A third example is a recommender system (the machine), which is used by shops
to recommend certain products to their customers (the task). If, for example, it is
observed that many of the customers who have watched Pulp Fiction by Quentin
Tarantino also liked Kill Bill, this information can be used to recommend Kill Bill
to customers that have watched Pulp Fiction. The experience is here the list of mov-
ies that customers have viewed (or rated), and the performance is measured by the
revenue or customer retention, or customer satisfaction of the company.

These examples illustrate how machines need to process (digital) data to learn
and thus perform machine learning. By analyzing previous experiences (e.g.,
games played, emails moved, and movies purchased), the system can extract rel-
evant patterns and build models to improve the execution of their task according
to the performance metric used. This also illustrates the inherent statistical nature
of machine learning: It analyzes large datasets to identify patterns and then makes
predictions, recommendations, or decisions based on those patterns. In that way,
machine learning is also closely related to data science. Data science is a form of
intelligent data analysis that allows us to reformat and merge data in order to extract
novel and useful knowledge from large and possibly complex collections of data.
Machine learning hence provides tools to conduct this analysis in a more intelli-
gent and autonomous way. Machine learning allows machines to learn complicated
tasks based on (large) datasets. While high performance is often achieved, it is not
always easy to understand how the machine learning algorithm actually works and

9 Julien Perolat et al., “Mastering the game of Stratego with model-free multiagent reinforcement
learning” (2022) Science, 378(6623): 990–996.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

20 Wannes Meert, Tinne De Laet, and Luc De Raedt

to provide explanations for the output of the algorithm. This is what is referred to as
a “black box.”

1.3 What Is Machine Reasoning?

Machine learning has powered systems to identify spam emails, play advanced
games, provide personalized recommendations, and chat like a human; the ques-
tion remains whether these systems truly understand the concepts and the domain
they are operating in. AI chatbots for instance generate dialogues that are human-
like, but at the same time have been reported to invent facts and lack “reasoning”
and “understanding.” ChatGPT10 will, when asked to provide a route description
between two addresses, confidently construct a route that includes a turn from
street A to street B without these streets even being connected in reality or propose
a route that is far from being the fastest or safest. The model underlying current
versions of ChatGPT does not “understand” the concept of streets and connections
between streets, and it is not fast and safe. Similarly, a recommender engine could
recommend a book on Ethics in AI based on the books that friends in my social net-
work have bought without “understanding” the concept of Ethics and AI and how
they are related to my interests. The statistical patterns exploited in machine learn-
ing can be perceived as showing some form of reasoning because these patterns
originate from (human) reasoning processes. Sentences generated with ChatGPT
look realistic because the underlying large language models are learned from a
huge dataset of real sentences, or driving directions can be correct because guide-
books used as training data contain these directions. A slightly different question
may however cause ChatGPT to provide a wrong answer because directions for a
changed or previously unseen situation cannot always be constructed only from
linguistic patterns.

This is where reasoning comes into the picture. Léon Bottou put forward a plau-
sible definition of reasoning in 2011: “[the] algebraic manipulation of previously
acquired knowledge in order to answer a new question.”11 Just like in Mitchell’s
definition, we can distinguish three elements. There is knowledge about the world
that is represented, that knowledge can be used to answer (multiple) questions, and
answering questions requires the manipulation of the available knowledge, a pro-
cess that is often termed inference. A further characteristic of reasoning is that Bottou
argues that his definition covers both logical and probabilistic reasoning, the two
main paradigms in AI for representing and reasoning about knowledge.

Logical knowledge of a specific domain can be represented symbolically using
rules, constraints, and facts. Subsequently, an inference engine can use deductive,

10 https://chat.openai.com
11 Léon Bottou. “From machine learning to machine reasoning: An essay” (2014) Machine learning, 94:

133–149.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

https://chat.openai.com
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

 Artificial Intelligence: A Perspective from the Field 21

abductive, or inductive inference to derive answers to questions about that domain.
The logical approach to machine reasoning is well suited for solving complex prob-
lems that require a thorough understanding of multistep reasoning on the knowl-
edge base. It is of particular interest for domains where understanding is crucial
and the stakes are high, as deductive reasoning will lead to sound conclusions, thus
conclusions that logically follow from the knowledge base. For example, to explore
and predict optimal payroll policies, one needs to reason over the clauses or rules
present in the tax legislation.12

Probabilistic knowledge is often represented in graphical models.13 These are
graphical representations that represent not only the variables of interest but also
the (in)dependencies between these variables. The variables are the nodes in the
graphs and direct dependencies are specified using the edges (or arcs), and graph-
ical models can be used to query the probability of some variables given that one
knows the value of other variables.

Numerous contemporary expert systems are represented as graphical models.
Expert systems are computer programs that mimic the decision-making ability of a
human expert in a specific domain. Consider, for example, diagnosis in a medical
domain such as predicting the preterm birth risk of pregnant women14 or the impact
of combining medication (see Figure 1.1).15 The variables would then include the
symptoms, the possible tests that can be carried out, and the diseases that the patient
could suffer from. Probabilistic inference then corresponds to computing the
answers to questions such as what is the probability that the patient has pneumonia,
given a positive X-ray and coughing. Probabilistic inference can reason from causes

12 Sebastijan Dumancic, Wannes Meert, Stijn Goethals, Tim Stuyckens, Jelle Huygen, and Koen
Denies. “Automated reasoning and learning for automated payroll management” (2021) In Proceedings
of the AAAI Conference on Artificial Intelligence, 35(17): 15107–15116.

13 Daphne Koller and Nir Friedman, Probabilistic Graphical Models: Principles and Techniques (The
MIT Press, 2009).

14 Linda Woolery and Jerzy Grzymala-Busse, “Machine learning for an expert system to predict preterm
birth risk” (1994) Journal of the American Medical Informatics Association, 1(6): 439–446.

15 Steven Woudenberg, Linda van der Gaag, and Carin Rademaker, “An intercausal cancellation model
for Bayesian-network engineering” (2015) International Journal of Approximate Reasoning, 63: 32–47.

Figure 1.1 A (simple) Bayesian network to reason over the (joint) effects of two
different medications that are commonly administered to patients suffering from
epigastric pains because of pyrosis.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

22 Wannes Meert, Tinne De Laet, and Luc De Raedt

to effects (here: diseases to symptoms) and from effects to causes (diagnostic reason-
ing) or, in general, draw conclusions about the probability of variables given that the
outcome of other variables is known. Furthermore, one can use the (in)dependen-
cies modeled in the graphical model to infer which tests are relevant in the light of
what is already known about the patient. Or in the domain of robotics, machine rea-
soning is used to determine the optimal sequence of actions to complete a manip-
ulation or manufacturing task. An example is CRAM (Cognitive Robot Abstract
Machine), equipping autonomous robots performing everyday manipulation with
lightweight reasoning mechanisms that can automatically infer control decisions
rather than requiring the decisions to be preprogrammed.16

Logical and probabilistic knowledge can be created by knowledge experts
encoding the domain knowledge elicited from domain experts, textbooks, and so
on but can also be learned from data, hereby connecting the domain of reason-
ing to machine learning. Machine reasoning is, in contrast to machine learning,
considered to be knowledge driven rather than data driven. It is also important to
remark that logical and probabilistic inference naturally provides explanations for
the answers to the questions it provides; therefore, machine reasoning is inherently
explainable AI.

1.4 Why Machine Learning and Reasoning?

The interest in machine learning and reasoning can be explained from different
perspectives. First, the domain of AI has a general interest in developing intelligent
systems, and it is this interest that spurred the development of machine learning
and reasoning. Second, it is hoped that a better understanding of machine learning
and reasoning can provide novel insights into human behavior and intelligence
more generally. Third, from a computer science point of view, it is very useful to
have machines that learn and reason autonomously as not everything can be explic-
itly programmed or as the task may require answering questions that are hard to
anticipate.

In this chapter, we focus on the third perspective. Our world is rapidly digitizing
and programming machines manually is in the best case a tedious task, and in the
worst case a nearly impossible endeavor. Data analysis requires a lot of laborious
effort, as it is nowadays far easier to generate data than it is to interpret data, as also
reflected by the popular phrase: “We are drowning in data but starving for knowl-
edge.” As a result, machine learning and data mining are by now elementary tools
in domains that deal with large amounts of data such as bio- and chem-informatics,
medicine, computer linguistics, or prognostics. Increasingly, they are also finding

16 Michael Beetz, Lorenz Mösenlechner, and Moritz Tenorth, “CRAM – A Cognitive Robot Abstract
Machine for everyday manipulation in human environments,” (2010) In Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

 Artificial Intelligence: A Perspective from the Field 23

their way into the analysis of data from social and economic sciences. Machine
learning is also very useful to develop complex software that cannot be implemented
manually. The mail filter mentioned earlier is a good example of this. It is impos-
sible to write a custom computer program for each user or to write a new program
every time a new type of message appears. We thus need computer programs that
adapt automatically to their environment or user. Likewise, for complex control sys-
tems, such as autonomous cars or industrial machines, machine learning is essen-
tial. Whether it is to translate pixels into objects or a route into steering actions, it
is not feasible to program all the subtleties that are required to successfully achieve
this task. However, it is easy to provide ample examples of how this task can be car-
ried out by gathering data while driving a car, or by annotating parts of the data.

In 2005, it was the first time that five teams succeeded in developing a car that
could autonomously drive an entire predefined route over dust roads.17 Translating
all the measurements gathered from cameras, lasers, and sensors to steering would
not have been possible if developers had to write down all computer code explicitly
themselves. While there is still a significant work ahead to achieve a fully autono-
mous vehicle that safely operates in all possible environments and conditions, assis-
ted driving and autonomous vehicles in constrained environments are nowadays
operated daily thanks to advances in machine learning.

Machine reasoning is increasingly needed to support reasoning in complex
domains, especially when the stakes are high, such as in health and robotics. When
there is knowledge available about a particular domain and that knowledge can be
used to flexibly answer multiple types of questions, it is much easier to infer the
answer using a general-purpose reasoning technique than having to write programs
for every type of question. So, machine reasoning allows us to reuse the same knowl-
edge for multiple tasks. At the same time, when knowledge is already available, it
does not make sense to still try to learn it from data. Consider applying the taxation
rules in a particular country, we could directly encode this knowledge and it there-
fore does not make sense to try to learn these rules from tax declarations.

1.5 How Do Machine Learning and Reasoning Work?

The examples in the introduction illustrate that the goal of machine learning is
to make machines more intelligent, thus allowing them to achieve a higher per-
formance in executing their tasks by learning from experiences. To this end, they
typically use input data (e.g., pixels, measurements, and descriptions) and produce
an output (e.g., a move, a classification, and a prediction). Translating the input to
the output is typically achieved by learning a mathematical function, also referred
to as the machine learning model. For the game of checkers, this is a function that

17 Sebastian Thrun et al. “Stanley: The Robot That Won the DARPA Grand Challenge” (2007) Springer
Tracts in Advanced Robotics, vol 36. Springer.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

24 Wannes Meert, Tinne De Laet, and Luc De Raedt

connects every possible game situation to a move. For mail filters, this is a function
that takes an email and its metadata to output the categorization (spam or not). For
recommender systems, the function links purchases of costumers to other products.

Within the domain of machine learning, we can distinguish different learning
problems along two dimensions: (1) the type of function that needs to be learned
and (2) the type of feedback or experiences that are available. While machine learn-
ing techniques typically cover multiple aspects of these dimensions, no technique
covers all possible types of functions and feedback. Different methods exploit and
sacrifice different properties or make different assumptions, resulting in a wide
variety of machine learning techniques. Mapping the right technique to the right
 problem is already a challenge in itself.18

1.5.1 Type of Function

Before explaining how different types of functions used in machine learning differ,
it is useful to first point out what they all have in common. As indicated earlier,
machine learning requires the machine learning function, or model, to improve
when given feedback, often in the form of examples or experiences. This requires a
mechanism that can adapt our model based on the performance of the model out-
put for a new example or experience. If, for instance, the prediction of an algorithm
differs from what is observed by the human (e.g., the prediction is a cat, while the
picture shows a dog), the predictive model should be corrected. Correcting the
model means that we need to be able to compute how we should change the func-
tion to better map the input to the output for the available examples, thus, to better
fit the available observations. Computing an output such as a prediction from an
input is referred to as forward inference, while computing how our function should
be changed is referred to as backward inference. All types of functions have in com-
mon that a technique exists that allows us to perform backward inference. We can
relate this to human intelligence by means of philosopher Søren Kierkegaard’s
quote that says: “Life must be lived forward but can only be understood backwards.”

We will provide more details for three commonly used types of functions:
Symbolic functions, Bayesian functions, and Deep functions. For each of these
functions, the domain of machine learning studies how to efficiently learn the func-
tion (e.g., how much data is required), which classes of functions can be learned
tractably (thus in a reasonable time), whether the function can represent the prob-
lem domain sufficiently accurate (e.g., a linear function cannot represent an ellipse),
and whether the learned function can be interpreted or adheres to certain properties
(e.g., feature importance and fairness constraints). We explain these types based on

18 When one tries to solve a machine learning problem using machine learning, this is referred to
as meta-learning. See Luc De Raedt et al., “Elements of an automatic data scientist” (2018) In
Proceedings of Advances in Intelligent Data Analysis XVII, Springer.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

 Artificial Intelligence: A Perspective from the Field 25

the supervised learning setting that will be introduced later. For now, it suffices to
know that our feedback consists of observations that include a (target) label or an
expected outcome (e.g., pictures with the label “cat” or “dog”).

1.5.1.1 Deep Functions

With deep functions we refer to neural network architectures which, in their sim-
plest form, are combinations of many small (nonlinear or piecewise linear) func-
tions. We can represent this combination of small functions as a graph where each
node is one function that takes as input the output of previous nodes. The nodes
are organized in layers where nodes in one layer use the outputs of the nodes in the
previous layer as input and send their outputs to the nodes in the next layer. The
term “deep” refers to the use of many consecutive layers. Individually, these small
functions cannot accurately represent the desired function. However, together these
small functions can represent any continuous function. The resulting function can
fit the data very closely. This is depicted in Figure 1.2 where two simple functions
can only linearly separate two halves of a flat plane, while the combination of two
such functions already provides a more complicated separation.

One way to think about this architecture is that nodes and layers introduce
additional dimensions to look at the data and express chains of continuous trans-
formations. Suppose we have a sheet of paper with two sets of points as depicted in
Figure 1.3, and we want to learn a function that separates these two sets of points.
We can now lift this piece of paper and introduce further dimensions in which
we can rotate, stretch or twist the piece of paper.19 This allows us to represent the
data differently and ideally such that the points of the same group are close to
each other and far away from the other group of points such that they are easier
to distinguish (e.g., by a simple straight line). The analogy with a piece of paper
does not hold completely when dealing with many layers, but we can intuitively
still view it as stretching and twisting this paper until we find a combination of

19 Note that all methods allow only a certain set of operations to allow for backward inference and thus
not all possible operations. In the case of neural nets, for example, ripping the paper is an operation
that is not supported.

Figure 1.2 Each simple sigmoid function expresses a linear separation; together they
form a more complicated function of two hyperbolas.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

26 Wannes Meert, Tinne De Laet, and Luc De Raedt

transformations for which the points of each class or close to each other but far
apart from the other class. If we find such a set of transformations, we have learned
a function that can now be used to classify any point that we would draw on this
piece of paper. In Figure 1.3, one can observe that all points close to the (dark
gray) circles would be labeled as a circle (like the question mark) and similarly for
the (light gray) squares.

Computing the outcome of this function from the inputs is called forward infer-
ence. To update the parameters that define what functions we will combine and
how (e.g., amount of rotation, stretching or folding of the paper, and which com-
binations of transformations), we need to perform backward inference to decide in
what direction we should slightly alter the parameters based on the observed perfor-
mance (e.g., a wrong prediction). This algorithm is often a variation of what is called
the backpropagation algorithm. This refers to the propagation of results backward
through the functions and adapting the parameters slightly to compensate for errors
and reinforce correct results in order to improve the performance of the task. In our
example of the classification of squares and circles (Figure 1.3), the observed wrong
classification of a point as a square instead of a circle will require us to adapt the
parameters of the neural network.

1.5.1.2 Symbolic Functions

Symbolic functions that are used in machine learning are in line with logic-based
reasoning. The advantage is that the learned symbolic functions are typically trac-
table and that rigorous proof techniques can be used to learn and analyze the
function. The disadvantage is that they cannot easily cope with uncertainty or fit
numerical data. While classical logic is based on deductive inference, machine
learning uses inductive inference. For deductive inference, one starts from a set of
premises from which conclusions are derived. If the premises are true, then this
guarantees that the conclusions are also true. For example, IF we know that all
swans are white, and we know there is a swan, THEN we know this swan will also
be white. For inductive reasoning, we start from specific observations, and derive
generic rules. For example, if we see two white swans, then we can derive a rule
that all swans are white. Inductive inference does not guarantee, in contrast to
classical deductive inference, that all conclusions are true if the premises are true.
It is possible that the next swan we observe, in contrast to the two observed ear-
lier and our deductively inferred symbolic rule, is a black swan. This means that

Figure 1.3 A geometric interpretation of adding layers and nodes to a neural network.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

 Artificial Intelligence: A Perspective from the Field 27

inductive inference does not necessarily return universally true rules. Therefore,
inductively inferred rules are often combined with statistical interpretations. In
our example, the rule that all swans are white would only be true with a certain
probability.

Another form of inference that is sometimes used is abductive reasoning. In this
case, possible explanations for observations (or experiments) are generated. For
example, if we know the following rule: “IF stung by mosquito AND mosquito car-
ries malaria THEN malaria is transferred” and we know that someone has malaria,
then there is a possible explanation, which states that the person is stung by a mos-
quito with malaria. There might be also other explanations. For example, that the
person has received a blood transfusion with infected blood. Thus, also abductive
inference does not offer guarantees about the correctness of the conclusion. But
we can again associate probabilities with the possible explanations. This form of
inference is important when building tests of theories and has been used by sys-
tems such as the Robot Scientist to select the most relevant experiments.20 The
goal of the Robot Scientist is to automate parts of the scientific method, notable
the incremental design of a theory and to test hypotheses to (dis)prove this theory
based on experiments. In the case of the Robot Scientist, an actual robot was built
that operates in a microbiology laboratory. The robot starts from known theories
about biological pathways for yeast. These known theories are altered on purpose
to be incorrect, and the experiment was to verify whether the robot could retrieve
the correct theories by autonomously designing experiments and executing these
experiments in practice. When machine learning is not only learning from obser-
vations but also suggesting novel observations and asking for labels, this is called
active learning.

1.5.1.3 Bayesian Functions

Some behaviors cannot be captured by logical if-then statements or by fitting a func-
tion because they are stochastic (e.g., rolling dice), thus the output or behavior of
the system is uncertain. When learning the behavior of such systems, we need a
function that can express and quantify stochasticity (e.g., the probability to get each
side of a dice after a throw is 1/6). This can be expressed by a function using prob-
ability distributions. When dealing with multiple distributions that influence each
other, one often uses Bayesian networks that model how different variables relate
to each other probabilistically (Figure 1.1 shows a Bayesian network). These func-
tions have as additional advantage that they allow us to easily incorporate domain
knowledge and allow for insightful models (e.g., which variables influence or have a
causal effect on another variable). For this type of function, we also need to perform

20 Ross D. King, Jem Rowland, Wayne Aubrey, Maria Liakata, Magdalena Markham, Larisa N.
Soldatova, Ken E. Whelan et al. “The robot scientist Adam.” (2009) Computer, 42(8): 46–54.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

28 Wannes Meert, Tinne De Laet, and Luc De Raedt

forward and backward inference. In the forward direction these are conditional
probabilities. In the spam example, forward inference entails calculating the prob-
ability that a mail spells your name correctly (correct) given that it is a spam email
(spam): P correct spam|� �. For the backward direction we can use the rule of Bayes –
therefore the name Bayesian networks – that tells us how to invert the reasoning:
P spam correct P correct spam P spam P correct| | /� � � � � � � �� . For the example, if we
know P correct spam|� �, that is, the probability that a spam email spells your name
correctly, we can use Bayes rule to calculate P spam correct|� �, that is, the probability
that a new mail with your name spelled correctly is a spam email.

Bayesian functions are most closely related to traditional statistics where one
assumes that the type of distribution from which data is generated is known (e.g.,
a Gaussian or normal distribution) and then tries to identify the parameters of the
distribution to fit the data. In machine learning, one can also start from the data
and assume nothing is known about the distribution and thus needs to be learn
as part of the machine learning. Furthermore, machine learning also does not
require a generative view of the model – the model does not need to explain every-
thing we observe. It suffices if it generates accurate predictions for our variable(s)
of interest. However, finding this function is in both cases achieved by applying
the laws of probability. Bayesian functions additionally suffer from limited expres-
sional power: not all interactions between variables can be modeled with probabil-
ity distributions alone.

1.5.2 Type of Feedback

The second dimension on which machine learning settings can be distinguished
is based on the type of feedback that is available and is used in machine learning.
The type of feedback is related to what kind of experience, examples, or obser-
vations we have access to. If the observation includes the complete feedback we
are interested in directly, we refer to this as supervised learning. For example,
supervised learning can take place if we have a set of pictures where each pic-
ture is already labeled as either “cat” or “dog,” which is the information we ulti-
mately want to retrieve when examining new unclassified pictures. For the spam
example, it means we have a set of emails already classified as spam or not spam
supplemented with the information regarding the correct spelling of our name
in these emails. This is also the case when data exists about checkers or chess
game situations that are labeled by grandmasters to indicate which next moves
are good and bad. A second type of feedback is to learn from (delayed) rewards,
also called reinforcement learning. This is the case, for example, when we want to
learn which moves are good or bad in a game of checkers by actually playing the
game. We only know at the end of a game whether it was won or lost and need
to derive from that information which moves throughout the game were good or
bad moves. A third type of feedback concerns the situation when we do not have

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

 Artificial Intelligence: A Perspective from the Field 29

direct feedback available, which is also referred to as unsupervised learning. For
example, when we are seeking to identify good recommendations for movies, no
direct labels of good or bad recommendations are available. Instead, we try to
find patterns in the observations themselves. In this case, it concerns observations
about which people watch which combinations of movies, based on which we can
then identify sound recommendations for the future.

1.6 Supervised Learning

As an example of a supervised learning technique, we discuss how decision trees
can be derived from examples. Decision trees are useful for classification problems,
which appear in numerous applications. The goal is to learn, in case of supervised
learning, a function from a dataset with examples that are already categorized (or
labeled) such that we can apply this function to predict the class of new, not yet
classified examples. A good example concerns the classification of emails as spam
or not spam.

Closely related with classification problems are regression problems where we
want to predict a numerical value instead of a class. This is, for example, the case
when the system is learning how to drive a car, and we want to predict the angle of
the steering wheel and the desired speed that the car should maintain.

There is vast literature on supervised classification and regression tasks as it is
the most studied problem in machine learning. The techniques cover all possible
types of functions we have introduced before and combinations thereof. Here we
use a simple but popular technique for classification that uses decision trees. In this
example, we start from a table of examples, where each row is an example, and each
column is an attribute (or feature) of an example. The class of each example can
be found in a special column in that table. Take for example the table in Figure 1.4
containing (simplified) data about comic books. Each example expresses the prop-
erties of a comic book series: language, length, genre, and historical. The goal is to
predict whether this customer would buy an album from a particular series. A deci-
sion tree is a tree-shaped structure where each node in the tree represents a decision

Figure 1.4 Table representing the dataset and the resulting decision tree

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

30 Wannes Meert, Tinne De Laet, and Luc De Raedt

made based on the value of a particular attribute. The branches emerging from a
node represent the possible outcomes based on the values of that attribute. The
leaves of this tree represent the predicted classification, in this example buy or not
buy. When a new example is given, we traverse the tree following the branch that
corresponds to the value that the attribute has in the example. Suppose there exists
a series that the customer has not yet bought, with attribute values (NL/FR, Strip,
Humor, Historical). When we traverse the tree, we follow the left branch (Strip) for
the top node that splits on length. The next node selects based on language and we
follow the left branch (NL/FR) ending in the prediction that the customer will buy
this new series.

The algorithm to learn a decision tree works as follows: we start with a single node
and all available examples. Next, we estimate by means of a heuristic which attrib-
ute differentiates best between the different classes. A simple heuristic would be to
choose the attribute where, if we split the examples based on the possible values for
this attribute, this split is most similar to when we would have split the examples
based on their class values (buy or not buy). Once the attribute is decided, we create
a branch and a new node per value of that attribute. The examples are split over the
branches according to their value for that attribute. In each node we check if this
new node contains (almost) only once class. If this is the case, we stop and make the
node a leaf with as class the majority class. If not, we repeat the procedure on this
smaller set of examples.

An advantage of decision trees is that they are easy and fast to learn and that
they often deliver accurate predictions, especially if multiple trees are learned
in an ensemble where each tree of the ensemble “votes” for a particular clas-
sification outcome. The accuracy of the predictions can be estimated from the
data and is crucial for a user to decide whether the model is good enough to be
used. Furthermore, decision trees are interpretable by users, which increases the
user’s trust in the model. In general, their accuracy increases when more data is
available and when the quality of this data increases. Defining what are good attri-
butes for an observation, and being able to measure these, is one of the practical
challenges that does not only apply for decision trees but for machine learning
in general. Also, the heuristic that is used to decide which attribute to use first is
central to the success of the method. Ideally, trees are compact by using the most
informative attributes. Trying to achieve the most compact or simple tree aligns
with the principle of parsimony from thirteenth-century philosopher William
of Ockham. This is known as Ockham’s Razor and states that when multiple,
alternative theories all explain a given set of observations, then the best theory is
the simplest theory that makes the smallest number of assumptions. Empirical
research in machine learning has shown that applying this principle often leads
to more accurate decision trees that generalize better to unseen data. This princi-
ple has also led to concrete mathematical theories such as minimum description
length used in machine learning.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

 Artificial Intelligence: A Perspective from the Field 31

1.7 Reinforcement Learning

Learning from rewards is used to decide which actions a system best takes given
a certain situation. This technique was developed first by Arthur Samuel and has
been further perfectioned since. We illustrate this technique using the Menace pro-
gram developed by Donald Michie in 1961 to play the Tic-Tac-Toe game. While
we illustrate this technique to learn from rewards using a game, these techniques
are widely applied in industrial and scientific contexts (e.g., control strategies for
elevators, robots, complex industrial processes, autonomous driving). Advances in
this field are often showcased in games (e.g., checkers, chess, Go, Stratego) because
these are controlled environments where performance is easily and objectively mea-
sured. Furthermore, it is a setting where human and machine performance are
 easily compared.

Tic-Tac-Toe is played on a board with three-by-three squares (see Figure 1.5:
The Menace program playing Tic-Tac-Toe). There are two players, X and O, that
play in turns. Player X can only put an X in an open square, and player O an O.
The player that first succeeds in making a row, column, or diagonal that contains
three identical letters wins the game. The task of the learning system is to decide
which move to perform in any given situation on the board. The only feedback
that is available is whether the game is eventually won or lost, not if a particu-
lar move is good or bad. For other strategy games such as checkers or chess, we
can also devise rewards or penalties for winning or losing pieces on the board.
Learning from rewards differs significantly from supervised learning for classifica-
tion and regression problems because for every example, here a move, the category
is not known. When learning from rewards, deriving whether an example (thus an
individual move) is good or bad is part of the learning problem, as it must first be
understood how credit is best assigned. This explains why learning from rewards is
more difficult than supervised learning.

Donald Michie has developed Menace from the observation that there are only
287 relevant positions for the game of Tic-Tac-Toe if one considers symmetry of the
board. Because Donald Michie did not have access to computers as we have now,
he developed the “hardware” himself. This consisted of 287 match boxes, one for

Figure 1.5 The Menace program playing Tic-Tac-Toe

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

32 Wannes Meert, Tinne De Laet, and Luc De Raedt

each possible situation on the board. To represent each of the nine possible moves
of player X – one for each open position on the board – he had many marbles in
nine different colors. Each color represents one of the nine possible squares. These
marbles were then divided equally over the match boxes, only excluding colors in
those boxes representing a board situation where the move is not possible. Menace
then decided on the move as follows:

 a. Take the match box that represents the current situation on the board.
 b. Randomly take a marble from the match box.
 c. Play the move that corresponds to the color of the marble.

The Menace program thus represents a function that for every board situation and
possible next moves returns a probability that this move should be played from this
position. The probabilities are given by the relative number of marbles of a certain
color in the corresponding match box. The learning then happens as follows. If the
game is won by X, then for every match box from which one marble was taken, two
marbles of that color are again added to these match boxes. If X loses the game, then
no marbles are returned. The consequence of these actions is that the probability
of winning moves in the relevant boxes (and thus board situations) is increased and
that of losing moves is decreased. The more games that are played, the better the
probabilities represent a good policy to follow to win a game. The rewards from
which Menace learns are thus the won and lost games, where lost games are nega-
tive rewards or penalties.

When learning from rewards, it is important to find a good balance between
exploration and exploitation. Exploration is important to explore the space of all
possible strategies thoroughly, while exploitation is responsible for using the gained
knowledge to improve performance. In the case of Menace, a stochastic strategy is
used where a move is decided by randomly selecting a marble. Initially, the proba-
bility for any possible move in a particular situation is completely at random, which
is important for exploration, as there are about an equal number of marbles for each
(possible) color in each box. But after a while, the game converges to a good strategy
when there are more marbles of colors that represent good moves, which is impor-
tant for exploitation.

Today, learning from rewards does not use matchboxes anymore but still fol-
lows the same mathematical principles. These principles have been formalized as
Markov Decision Processes and often a so-called Q-function Q s a(), is learned. Here
Q s a(), represents the reward that is expected when an action a is taken in a state s.
In the Tic-Tac-Toe example, the action is the next move a player takes and the
state s is the current situation on the board. The Q-function is learned by using
the famous Belmann equation, Q s a R s a Q s aa, , ,� � � � � �� � � ��� max , where R s a,� � is
the immediate reward received after taking action a in situation s, γ is a number
between 0 and 1 that indicates how future rewards relate to the immediate reward

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

 Artificial Intelligence: A Perspective from the Field 33

(rewards obtained in the future are less valuable than an equal immediate reward),
and s′ the state that is reached after taking action a in situation s. The Q-function
is also used to select the actions. The best action in a situation s is the action a for
which Q s a,� � is maximal. To illustrate Q-learning, consider again the Menace pro-
gram. Each box can be considered as a state, and each color as an action that can
be executed in that state. The Q-function then contains the probability of selecting
a marble from that color in that box, and the best action is the one is that with the
maximum probability (i.e., the color that occurs most in that box).

1.8 Unsupervised Learning

For the third type of feedback, we look at learning associations. Here we have no
labels or direct feedback available. This technique became popular as part of recom-
mender systems used by online shops such as Amazon and streaming platforms such
as Netflix. Such companies sell products such as books or movies and advise their
customers by recommending products they might like. These recommendations are
often based on their previous consuming behavior (e.g., products bought or movies
watched). Such associations can be expressed as rules like:

 IF and are being consumed THEN will also be consumedX Y Z, ..

X, Y, and Z represent specific items such as books or movies. For example, X = Pulp
Fiction, Y = Kill Bill, and Z = Django Unchained. Such associations are derived
from transaction data gathered about customers. From this data frequently occur-
ring subsets of items are derived. This is expressed as a frequency of the number of
times this combination of items occurs together. A collection of items is considered
frequent if their frequency is at least x%, thus that it occurs in at least x% of all
purchases. From these frequent collections, the associations are derived. Take for
example a collection of items X Y Z, ,� � that is frequent since it appears in 15% of all
purchases. In that case, we know that the collection X Y,� � is also frequent and has a
frequency of at least 15%. Say that the frequency of X Y,� � is 20%, then we can assign
some form of probability and build an association rule. The probability that Z will
be consumed, if we know that X and Y have been consumed then:

 Frequency frequency{ } { }, , / , . / . %X Y Z X Y� � � � � �0 15 0 20 75

The information on frequent collections and associations allows us to recommend
products (e.g., books or movies). If we want to suggest products that fit with product
X and Y, we can simply look at all frequent collections X Y Z, ,� � and recommend
products Z based on increasing frequency of the collections X Y Z, ,� �.

Learning associations are useful in various situations, for instance, when analyz-
ing customer information in a grocery store. When the products X and Y are often
bought together, then we can strategically position product Z in the store. The store

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

34 Wannes Meert, Tinne De Laet, and Luc De Raedt

owner can put the products close to each other to make it easy for customers to buy
this combination or to be reminded of also buying this product. Or the owner can
put them far apart and hope the customer picks up some additional products when
traversing from one end of the store to the other end.

Another form of unsupervised learning is clustering. For clustering, one inspects
the properties of the given set of items and tries to group them such that similar
items are in the same group and dissimilar items are in other groups. Once a set of
clusters is found, one can recommend items based on the most nearby group. For
example, in a database of legal documents, clustering of related documents can be
used to simplify locating similar or more relevant documents.

1.9 Reasoning

When considering reasoning, we often refer to knowledge as input to the system, as
opposed to data for machine learning. Knowledge can be expressed in many ways,
but logic and constraints are popular choices. We have already seen how logic can
be used to express a function that is learned, but more deliberate, multi-step types
of inference can be used when considering reasoning. As an example, consider a
satisfiability problem, also known as a SAT problem. The goal of a SAT problem is
to find, given a set of constraints, a solution that satisfies all these constraints. This
type of problem is one of the most fundamental ones of computer science and AI.
It is the prototypical hard computational problem and many other problems can
be reduced to it. You also encounter SAT problems daily (e.g., suggesting a route
to drive, which packages to pick up and when to deliver them, configuring a car).
Say, we want to choose a restaurant with a group of people, and we know that Ann
prefers Asian or Indian and is Vegan; Bob likes Italian or Asian, and if it is Vegan
then he prefers Indian. Carry likes vegan or Indian but does not like Italian. We
also know that Asian food includes Indian. We can express this knowledge using
logic constraints:

() () (Asian Indian Vegan Italian Asian Vegan Indian Vegan� � � � � � �� � �� �� � �� �Indian Italian Indian Asian)

Observe that ∨ stands for OR (disjunction), and ∧ for AND (conjunction).
Furthermore, A → B stands for IF A THEN B (implication).

When feeding these constraints to a solver, the computer will tell you the
solution is to choose Vegan.21 Actually, the solution that the solver would find
is Vegan, Indian, not Italian, and Asian. It is easy that starting from the solution
Vegan, then we can also derive Indian, and from Indian, we can derive Asian.
Furthermore, the conjunction also specifies that not Italian should be true. With

21 A game based on SAT that illustrates the hardness of the problem can be found online: www.cril
.univ-artois.fr/~roussel/satgame/satgame.php?level=3&lang=eng

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

http://www.cril%E2%80%8B.univ-artois.fr/%7Eroussel/satgame/satgame.php?level=3&lang=eng
http://www.cril%E2%80%8B.univ-artois.fr/%7Eroussel/satgame/satgame.php?level=3&lang=eng
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

 Artificial Intelligence: A Perspective from the Field 35

these, all elements of the conjunction are satisfied, and thus this provides a solu-
tion to the SAT problem.

While we presented an example that required pure reasoning, the integration of
learning and reasoning is required in practice. For the previous example, this is the
case when we also want to learn preferences. Similarly, when choosing a route to
drive, we want to consider learned patterns of traffic jams; or when supplying stores,
we want to consider learned customer buying patterns.

1.10 Trustworthy AI

Models learned by machine learning techniques are typically evaluated based on
their predictive performance (e.g., accuracy, f1-score, AUC, squared error) on a test
set – a held-aside portion of the data that was not used for learning the model. A
good value on these performance metrics indicates that the learned model can also
predict other unseen (i.e., not used for learning) examples accurately. While such
an evaluation is crucial, in practice it is not sufficient. We illustrate this with three
examples. (1) If a model achieves 99% accuracy, what do we know about the 1%
that is not predicted accurately? If our training data is biased, the mistakes might
not be distributed equally over our population. A well-known example is facial rec-
ognition where the training data contained less data about people of color causing
more mistakes to be made on this subpopulation.22 (2) If groups of examples in our
population are not covered by our training data, will the model still predict accu-
rately? If you train a medical prediction model on adults – because consent is eas-
ier to obtain – the model cannot be trusted for children because their physiology
is different.23 Instead of incorrect predictions, more subtly this might lead to bias.
If part of the population is not covered, say buildings in poor areas that are not yet
digitized, should we then ignore such buildings in policies based on AI models? (3)
Does our model conform to a set of given requirements? These can be legal require-
ments such as the prohibition to drive on the sidewalk, or ethical requirements such
as fairness constraints.24

These questions are being tackled in the domain of trustworthy AI.25 AI researchers
have been trying to answer questions about the trustworthiness and interpretability
of their models since the early days of AI. Especially when systems were deployed

22 Joy Buolamwini and Timnit Gebru, “Gender shades: Intersectional accuracy disparities in commer-
cial gender classification.” (2018) Machine Learning Research, 81: 1–15.

23 Dries Van der Plas et al., “A reject option for automated sleep stage scoring.” (2021) In Proceedings
of the Workshop on Interpretable ML in Healthcare at the International Conference on Machine
Learning (ICML).

24 Laurens Devos, Wannes Meert, and Jesse Davis, “Versatile verification of tree ensembles” (2021) In
the Proceedings of the 38th International Conference on Machine Learning (ICML).

25 The TAILOR Handbook of Trustworthy AI, https://tailor-network.eu/handbook/

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

https://tailor-network.eu/handbook
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

36 Wannes Meert, Tinne De Laet, and Luc De Raedt

in production like in the expert systems of the 1980s. But the recent explosion of
deployed machine learning and reasoning systems together with the introduction
of legislation such as the General Data Protection Regulation (GDPR) and the
upcoming AI-act of the European Union has led to a renewed and much larger
interest in all aspects related to trustworthy AI. Unfortunately, it is technically much
more challenging to answer these questions as only forward and backward inference
does not suffice. The field of trustworthy AI encompasses a few different questions
that we will now discuss.

1.11 Explainable AI (XAI)

When an AI model, that is, a function, translates input information into an output
(e.g., a prediction or recommendation), knowing only the output may not be accept-
able for all persons or in all situations. When making a decision based on machine
learning output, it is important to understand at least the crucial parts that led to
the output. his is important to achieve appropriate trust in the model when these
decisions impact humans or for instance the yield or efficiency of a production pro-
cess. This is also reflected in the motivation behind legislation such as the GDPR.26
Often the need for explainability is driven by the realization that machine learning
and reasoning models are prone to errors or bias. The training data might contain
errors or bias that are replicated by the model, the model itself might have limita-
tions in what it can express and induce errors or bias, inaccurate or even incorrect
assumptions might have been made when modeling the problem, or there might
simply be a programming error. On top of the mere output of a machine learning or
reasoning algorithm, we thus need techniques to explain these outputs.

One can approach explaining AI models in two ways: only allowing white box
models that can be inspected by looking at the model (e.g., a decision tree) or using
and developing mechanisms to inspect black box models (e.g., neural networks).
While the former is easier, there is also a trade-off with respect to accuracy.27 We
thus need to be able to obtain explainability of black box models. However, full
interpretability of the internal mechanisms of the algorithms or up to the sensory
inputs might not be required. We also do not need to explain how our eyes and
brain exactly translate light beams into objects and shapes such as a traffic light
to explain that we stopped because the traffic light is red. Explainability could in

26 While explanations are mentioned in legislation such as GDPR, it is not a legal norm.
Therefore, it is not clear to what level an explanation is required and opinions differ. See
Andrew D. Selbst and Julia Powles, “Meaningful information and the right to explanation”
(2017) International Data Privacy Law, 7(4); Sandra Wachter, Brent Mittelstadt, and Luciano
Floridi, “Why a right to explanation of automated decision-making does not exist in the general
data protection regulation” (2017) International Data Privacy Law, 7(2): https://iapp.org/news/a/
is-there-a-right-to-explanation-for-machine-learning-in-the-gdpr/

27 Note that this trade-off is not always accurately portrayed and (mis)used as an excuse to avoid respon-
sibility. See https://hdsr.mitpress.mit.edu/pub/f9kuryi8/release/8

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

https://iapp.org/news/a/is-there-a-right-to-explanation-for-machine-learning-in-the-gdpr
https://iapp.org/news/a/is-there-a-right-to-explanation-for-machine-learning-in-the-gdpr
https://hdsr.mitpress.mit.edu/pub/f9kuryi8/release/8
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

 Artificial Intelligence: A Perspective from the Field 37

these cases focus on generating a global understanding of how outputs follow from
particular inputs (e.g., in the most relevant or most prominent cases that occur).
For particular cases though, full explainability or a white box model might be a
requirement. For example, when applying legislation to a situation where we need
to explain which clauses are used where and why.

There have been great advances in explaining black box models. Model-specific
explainers are explainers that work only on a particular type of black box mod-
els, such as explainers for neural networks. As these explainers are developed for
particular models, the known underlying function can be reverse-engineered to
explain model outputs for individual examples. Model-agnostic explainers (e.g.,
LIME28 and SHAP29) on the other hand can be applied to any black box model
and therefore cannot rely on the internal structure of the model. Their broad
applicability often comes at the cost of precision: they can only rely on the black
box model’s behavior between input and output and in contrast to the model-
specific explainers cannot inspect the underlying function. Local explainers try to
approximate the black box function around a given example and hereby generate
the so-called “local explanations,” thus explanations of the behavior of the black
box model in the neighborhood of the given example. One possibility is to use
feature importance as explanations as it indicates which features are most impor-
tant to explain the output (e.g., to decide whether a loan gets approved or not the
model based its decision for similar clients most importantly on the family income
and secondly on the health of the family). Another way to explain decisions is to
search for counterfactual examples30 that give us, for example, the most similar
example that would have received a different categorization (e.g., what should
I minimally change to get my loan approved?). Besides local explanations one
could ideally also provide global explanations that hold for all instances, also those
not yet covered by the training data. Global explanations are in general more dif-
ficult to obtain.

1.12 Robustness

Robustness is an assessment of whether our learned function meets the expected
specifications. Its scope is broader than explanations in that it also requires cer-
tain guarantees to be met. A first aspect of robustness is to verify whether an

28 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should I trust you?”: Explaining the
predictions of any classifier (2016). In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD ’16). Association for Computing Machinery, New
York, NY, USA, 1135–1144. https://doi.org/10.1145/2939672.2939778

29 Scott M. Lundberg and Su-In Lee. “A unified approach to interpreting model predictions.” (2017) In
Advances in Neural Information Processing Systems.

30 Riccardo Guidotti. “Counterfactual explanations and how to find them: Literature review and bench-
marking. (2022) In Data Mining and Knowledge Discovery. https://doi.org/10.1007/s10618-022-00831-6

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1007/s10618-022-00831-6
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

38 Wannes Meert, Tinne De Laet, and Luc De Raedt

adversarial example exists. An adversarial example is like a counterfactual example
that flips the category, but one that is designed to deceive the model as a human
would not observe a difference between the normal and the adversarial example
(see Figure 1.6). For example, if by changing a few pixels in an image, changes that
are meaningless to a human observer, the learned function can be convinced to
change the predicted category (e.g., a picture that is clearly a stop sign for a human
observer but deceives the model to be classified as a speed limit sign). A second pop-
ular analysis is about data privacy: does the learned function leak information about
individual data examples (e.g., a patient)? A final aspect is that of fairness, some-
times also considered separately from robustness. It is vaguer by nature as it can dif-
fer for cultural or generational reasons. In general, it is an unjust advantage for one
side. Remember the facial recognition example where the algorithm’s goal to opti-
mize accuracy disadvantages people of color because they are a minority group in
the data. Another example of fairness can be found in reinforcement learning where
actions should not block something or somebody. A traffic light that never allows
one to pass or an elevator that never stops on the third floor (because in our train-
ing data nobody was ever on the third floor) is considered unfair and to be avoided.

Robustness thus entails testing strategies to verify whether the AI system does
what is expected under stress, when being deceived, and when confronted with
anomalous or rare situations. This is also mentioned in the White Paper on Artificial
Intelligence: A European approach to excellence and trust.32 Offering such guaran-
tees, however, is also the topic of many research projects since proving that the func-
tion adheres to certain statements or constraints is in many cases computationally
intractable and only possible by approximation.

1.13 Conclusions

Machine learning and machine reasoning are domains within the larger field of AI
and computer sciences that are still growing and evolving rapidly. AI studies how
one can develop a machine that can learn from observations and what fundamental
laws guide this process. There is consensus about the nature of machine learning,

32 European Commission, “White Paper on Artificial Intelligence: A European approach to excellence
and trust” (2020), https://ec.europa.eu/info/publications/white-paper-artificial-intelligence- european-
approach-excellence-and-trust_en.

Figure 1.6 Adversarial examples for digits.31

Digit 9 is robust:
Always correctly predicted

Correctly predicted
examples:

Adversarial examples
predicted as 9:

 31 Laurens Devos, Wannes Meert, and Jesse Davis, “Versatile verification of tree ensembles.” (2021)
International Conference on Machine Learning (ICML).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

https://ec.europa.eu/info/publications/white-paper-artificial-intelligence-european-approach-excellence-and-trust_en
https://ec.europa.eu/info/publications/white-paper-artificial-intelligence-european-approach-excellence-and-trust_en
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

 Artificial Intelligence: A Perspective from the Field 39

in that it can be formalized as learning of functions. There is also consensus that
machine reasoning enables the exploitation of knowledge to infer answers to a wide
range of queries. However, for now, there is neither a known set of universal laws
that govern all AI and machine learning and reasoning, nor do we understand how
machine learning and reasoning can be fully integrated. Therefore, many differ-
ent approaches and techniques exist that push forward our insights and available
technology. Despite the work ahead there are already many practical learning and
reasoning systems and exciting applications that are being deployed and influence
our daily life.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009367783.003
Downloaded from https://www.cambridge.org/core. IP address: 3.144.108.147, on 08 Feb 2025 at 06:23:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009367783.003
https://www.cambridge.org/core

