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Abstract. The late-time effect of primordial non-Gaussianity offers a window into the physics of
inflation and the very early Universe. In this work we study the consequences of a particular class
of primordial non-Gaussianity that is fully characterized by initial density fluctuations drawn
from a non-Gaussian probability density function, rather than by construction of a particular
form for the primordial bispectrum. We numerically generate multiple realisations of cosmolog-
ical structure and use the late-time matter polyspectra to determine the effect of these modified
initial conditions. In this non-Gaussianity has only a small imprint on the first polyspectra,
when compared to a standard Gaussian cosmology. Furthermore, some of our models present an
interesting scale-dependent deviation from the Gaussian case in the bispectrum and trispectrum,
although the signal is at most at the percent level.
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1. Introduction

One of the current challenges in cosmology is to understand the physical processes that
gave rise to the primordial inhomogeneities of the Universe. These inhomogeneities are
generated during cosmic inflation in the standard model of cosmology. There is a wide
variety of inflationary models that spontaneously give rise to the initial conditions of the
Universe. While the simplest models, assuming a single inflationary scalar field, lead to
a nearly Gaussian distribution of primordial perturbations, more complex models with
larger numbers of degrees of freedom can produce measureable levels of non-Gaussianity
(here a comprehnsive review: Celoria & Matarrese (2018)).

If primordial perturbations are the seeds that gave rise to the structures of the Universe,
we can assume that there is an underlying signal corresponding to the primordial non-
Gaussianities. In this work we consider a simple approach to test this signal on the
formation of large-scale structure. We use a recently-proposed characterization of this
primordial non-Gaussianity in terms of a non-Gaussian PDF describing the primordial
curvature perturbations Chen et al. (2018a,b)). Using this approach will allow us to gen-
erate initial conditions for our simulations by simply changing the PDF from which we
draw our initial sample of density perturbations. A significant difference of this approach
compared to previous approaches to studying non-Gaussianity in cosmological simula-
tions is that we do not limit ourselves to specifying a particular form of the primordial
bispectrum, as we have the full PDF available to us.

In this work we aim to perform a preliminary exploration of the parameter space
of this novel characterization of the primordial non-Gaussianity. In order to extract the
signal from that induced through the non-linear process of gravitational collapse we must
average over several realisations of cosmological evolutions. Thus we would, in principle,
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Figure 1. The non-Gaussian probability density distributions for the primordial curvature
perturbations considered in this work (see Eq. (108) in Chen et al. (2018a)). The thick blue
dashed line is the fiducial Gaussian distribution. All of our PDF's have unit variance. The PDF
cut in the horizontal range between (min = —4, and (maez = 4.

require multiple N-body simulations where we vary the initial sample of random numbers
as well as the parameters of the PDF. To facilitate the generation of these realisations
we have used the L-PICOLA code (Howlett et al. (2015)), which has been verified to be
sufficiently accurate for our purposes by comparing with a smaller number of full N-body
simulations run using the RAMSES code (Teyssier (2002)).

2. Simulations
2.1. Initial conditions

The inflationary scenario that gives rise to the generation of the non-Gaussian initial
conditions comprises perturbations in an axion-like isocurvature field (with sinusoidal
potential) which are coupled to the primordial curvature field. From this scenario rise
non-Gaussian initial conditions characterized by the probability density distribution of
the primordial curvature perturbation (see Eq. (104) of Chen et al. (2018a,b)). As PDF is
characterized by an oscillatory modulation, we generate 4 different amplitudes (referred
to as non-Gaussianity levels), and 3 different frequencies, as shown in Fig. 1. The thick
blue dashed line indicates a Gaussian PDF with a standard deviation of unity. The orange,
green, red, and purple lines correspond to the four levels of non-Gaussianity we consider.
The dashed lines correspond to Gaussian envelopes that touch the upper peaks of the
oscillations, and each panel represents a different modulated frequency. Note that we are
considering large deviations from the amplitude of Gaussianity to explore the feasibility
of detecting this type of NG in n-point late-time statistics; observational constraints such
as those of the CMB could probably exclude our non-Gaussian primordial PDF.

We generate a sample of each of our non-Gaussian PDFs by using a simple accept-reject
technique, whereby we generate uniformly distributed random values within a bounding
box that includes the highest peak of the oscillatory PDF and is cut in the horizontal
range between (i, = —4, and (e = 4. This technique consists in accepting the values
that belong to the distribution while rejecting those points that do not. The procedure
ends when we generate N values for all distributions, where NN is the total number of
particles in our simulations, chosen to be equal to the number of points used in our
discretized density field mesh. The final step is to sort the non-Gaussian distributions
according to the ordering of the Gaussian one. In other words, we generate a “white noise
field” using the PDF's at all points.

This procedure was repeated for all 4 levels of non-Gaussianity, all 3 frequencies, and 5
different values of the initial seed of the uniform random number generator, to generate
5 different statistical realizations. Therefore, in total, we produced initial conditions for
65 models, 5 of them being fiducial Gaussian models. To provide clarity when indicating
a model, we have adopted the following naming;:
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e Initial condition type: G for Gaussian, NG for non-Gaussian.

e Level of non-Gaussianity: 1, 2, 3, or 4. This only applies for NG models. The meaning
of these levels will be clarified shortly.

e Frequency of non-Gaussianity: f1, 2, or 3. This only applies for NG models. The
meaning of these levels will be clarified shortly.

e Random realisations: rl, r2, r3, r4 or r5. This will only be necessary when we refer
to one specific realization. For most results, we average over all realizations.

For our simulations, we have used the N-body code, RAMSES, and the mock catalog,
L-PICOLA. To generate the initial conditions for RAMSES we have passed the white
noise to MUSIC (Hahn & Abel (2011)), where it is rearranged in a discretized grid.
Then it is transformed to Fourier space and multiplied with a k-space transfer function
generated by CAMB:

S(k) = ck™/*T (k) u(k), (2.1)
where p(k) is the Fourier-transformed set of white noise, the transfer function T'(k)
corresponds to a standard LCDM cosmology, and ¢ is a normlisation constant. The real
space over-density field §(r) is then obtained by inverse Fourier transformation. Finally
the 2LPT method is applied to generate the initial conditions.

In the case of L-PICOLA, we have modified the initial condition generation to read and
use our random numbers, where the 2LPT method is also used. Therefore, the generation
of the initial conditions of L-PICOLA is the same as MUSIC. We use RAMSES for
just one realization with frequency f1 (5 models). All other models are generated with
L-PICOLA.

For all our simulations, we have assumed a standard ACDM cosmology with the fol-
lowing parameters: €, = 0.3, , =0.04, Q) =0.7, 05 =0.88, and n, = 0.96. In addition,
for all realisations we have used a 500 Mpc box, and a particle number of 2563. In the
case of RAMSES, which employs the AMR method, we have set a coarser grid resolution
of 2562 points, with 6 levels of refinement. In the case of L-PICOLA we have a fixed grid
resolution of 256 points.

2.2. Polyspectra Analysis

An important feature of the nature of the non-Gaussian PDF is that only the even n-
point functions are non-zero, while the odd n-point functions are zero just like a Gaussian
PDF'. On the other hand, possible evidence of primordial non-Gaussianities is mixed with
non-Gaussianities coming from the gravitational collapse of the large-scale structure at
all orders of the n-point function making it difficult to decode its signature. Therefore,
as preliminary work, we decided to focus on the search for the possible signature of this
primordial Gaussianity by considering the power spectrum, bispectrum, and trispectrum.
As we did not find a major significance in the power spectrum, in this paper we only
report the results for the bispectra and trispectra.

As a first step, we focused our analyses on symmetric configurations. For the bispec-
trum we choose ki = ko = k3, and for the trispectrum we choose ki = ko = k3 = k4. For
the latter case, we have considered all (possibly folded) quadrilaterals with equal side
lengths.

We calculated the polyspectra using the Pylians code (Villaescusa-Navarro 2018). We
have modified the code and added the trispectrum calculation for our purposes. We use 35
linearly-spaced bins in the range 2.2kp < k < kpNy /3, where the fundamental frequency
is kp =27/L, with L =500 Mpc (box length), and Ny is the number of points used in
our discretised Fourier space in each dimension, i.e, N = 256. We avoided small values
of k corresponding to scales close to the box size as they are highly affected by the
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sample variance due to the small number of & configurations. At the other extreme we
set the upper limit on k to kp N /3 to avoid very high values of k where the estimator is
expected to perform poorly (Sefusatti et al. (2016)). This also ensures that we are below
the fundamental limit set by the Nyquist frequency knyq = krNi/2.

3. Results
3.1. Variance due to differing realizations

This section shows only our main results. We performed a normalized polyspectra
analysis of variance on the results of the L-PICOLA simulations. We chose to work
mainly with L-PICOLA because of its accuracy and speed. Our comparative analysis
with RAMSES showed an excellent agreement of less than 1% at all scales. Therefore, we
can have high confidence that the non-Gaussian polyspectra normalized by the Gaussian
polyspectra are very well represented by L-PICOLA.

To remove the variance arising from differing realizations of the large-scale structure,
we determine the average normalized polyspectra by averaging over all 5 realizations
for each model. As discussed earlier, we consider only symmetrical configurations of the
wavenumbers in this work, so we may treat all polyspectra as depending upon a single
value of k. In this way, we can attempt to cancel out the contribution to these polyspectra
arising from the non-linear structure formation, which will vary in each realization. We
then use the various realizations to estimate the minimum and maximum values for
the normalized polyspectra, which we will refer to as the variance around our averaged
normalized polyspectra.

In the following plots (Fig. 2 and Fig. 3) of this section, we show the results of the
analysis of variance in the polyspectra for models NG2 (left column), and NG4 (right
column) for our frequencies f1, 2, and f3 (first, second and third row, respectively) at
z=0. In all plots, the red solid line represents the NG2 model, and the blue solid line
represents the NG4 model, while the light grey strip will show the level of variance around
these lines.

3.1.1. Bispectra

The results for the averaged normalized bispectra, at z=0, are given in Fig. 2. The
clearest thing to be seen in these results is that the variance increases as amplitude and
frequency increase (see Fig. 1). The larger variance is given by the NG4f3 model, which
shows a variance of ~16% (without considering the larger scales), and the rest of the
models are below ~ 10%. On the other hand, we can see a little scale dependence in the
NG4f2 model, with a larger deviation from the equality line (black dashed line in the
figure). We also can see a similar scale dependence, but smaller, in the NG2f2 model.
These models presents a feature that we refer to as a “dip” between k ~ 0.2 h/Mpc and
k ~ 0.8 h/Mpc. Apart from the presence of this “dip” in the models using frequency {2,
there is little evidence of deviation from the Gaussian case in the other models.

This leads to an interesting conclusion regarding the sensitivity of the bispectrum to
this form of non-Gaussianity, which is by construction a symmetric oscillatory correction
to an underlying Gaussian. This does not violate the property of Gaussian distributions
that the odd-n moments are identically zero. Thus the 3-point correlation function (whose
k-space analog is the bispectrum under consideration here) in perfect Gaussian conditions
would vanish. Normally the presence of non-linear structure induces non-Gaussianities
such that the bispectrum is not zero. What we apparently find, however, is that structure
formation driven from this primordial non-Gaussianity imprints a marginally statistically
significant signal in the bispectrum at the limit of detectability above the “noise” resulting
from non-linearities, at least for this choice of parameters.
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Figure 2. Non-Gaussian bispectra normalised with respect to the Gaussian bispectra, at z = 0.
Left column: NG2 models, right column: NG4 models. Top row: frequency fl, middle row:
frequency 2, bottom row: frequency f3. The red and blue lines indicate the average normalized
bispectra (for the NG2 and NG4 models respectively) while the light grey strip shows the degree
of variance around this average arising from the individual realizations.

3.1.2. Trispectra

In the case of the trispectrum, we have considered working with quadrilaterals in
equilateral configurations, which are generally folded in 3-dimensional space. Then we
take ki = ko = k3 = k4, where we have not set a restriction on the other two additional
degrees of freedom. On the other hand, it is worth remembering that the trispectrum
is the analog in Fourier space of the connected 4-point correlation function, where the
disconnected parts are given by-products of the power spectra, which correspond to the
disconnected 2-point correlation functions (Verde & Heavens (2001)). Thus, including for
the equilateral configuration considered here, the trispectrum is an independent statistical
measure that goes beyond the power spectrum.

The results for the averaged normalized trispectra, at z =0, are shown in Fig. 3. Here,
we must take into consideration that we have a smaller range of values shown on the
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Figure 3. Non-Gaussian trispectra normalised with respect to the Gaussian trispectra, at
2z =0. The panels are as for Fig. 2.

vertical axes of the bispectra of Fig. 2. Then, we see a lower sensitivity in all models if
we compare it to the bispectra.

For models of frequency {2, interestingly, we have again a “dip” in a similar range (0.3 <
k <0.9 h/Mpc) to that shown in the bispectra of frequency f2. In the case of the other
frequencies, there is very little obvious scale dependence, as seen for the bispectra. The
f3 models show some indications of suppression of the trispectrum across all accessible
scales, with the smaller scales more suppressed in the NG4f3 model. It is also worth
pointing out that the variance over realizations in the trispectra is lower than seen for
the bispectra, being at most 4% for the NG4f3 model. However, this level of variance
implies that these results are not statistically significant.

4. Conclusions

Our study has focussed on analyzing the low-n correlation functions (specifically their
Fourier space analogs: the bispectrum and trispectrum) to search for possible signatures
of this type of primordial non-Gaussianity at low redshift. We have found that using
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the averaged normalized polyspectra, there are some scale-dependent deviations from
the Gaussian model, which may be at the limit of detectability. Interestingly, the most
significant signal is seen in the bispectrum for the models with frequency f2. For all
other models, even the most extreme case NG4f3 we see only sub-percent deviations from
Gaussianity, well within the sample variance of differing non-linear realizations. Thus our
best-case scenario, given by the model NG4f2 shows deviations from Gaussianity in the
bispectrum at the level of 2%. The statistical significance of this deviation by considering
sample variance is rather marginal but may be detectable if sufficient precision can be
obtained.

It is also noteworthy that the signal present in the frequency f2 models is a scale-
dependent suppression of the symmetric bispectrum and the symmetric trispectrum.
Consideration of non-symmetric configurations in k-space may well lead to further
insights, and a more extensive exploration of the parameter space may uncover models
whose late-time n-point correlation functions show more significant deviations of a sim-
ilar form. Such an exploration may help to disentangle the precise relationship between
the non-Gaussian frequency and the scale dependence of the deviations from Gaussianity.
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of the Universidad de Valparaiso for funding.

References

Celoria M., & Matarrese S. 2018, J. Cosmology Astropart. Phus., 039

Chen X., Palma G. A., Scheihing H. B., & Sypsas S. 2018a, Phys. Rev. D., 98, 083528

Chen X., Palma G. A., Scheihing H. B., & Sypsas S. 2018, Phys. Rev. Lett., 121, 161302

Hahn, O. & Abel, T. 2011, MNRAS, 415, 3

Howlett C., Manera M., & Percival W. J. 2015, Astronomy and Computing, 12, 109

Sefusatti E., Crocce M., Scoccimarro R., & Couchman H. M. P. 2016, MNRAS, 460, 3624

Teyssier R. 2002, A¢A, 382, 412

Verde L., & Heavens A. F. 2001, ApJ, 553, 14

Villaescusa-Navarro F. 2018, Pylians: Python libraries for the analysis of numerical simulations
(ascl:1811.008)

Discussion

ANONYMOUS: The use of L-PICOLA seems to be quite useful in the field of cosmological
simulation, can you tell us a little more about it?

GRECO: L-PICOLA is a is a dark matter halo catalog generator known as mocks cata-
logues. The main advantage of using such codes is that they can evolve a dark matter
distribution from early times to the present day much faster than a full non-linear N-body
simulation.
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