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Singular Integrals

10.1 A Few Words in General

The classical Calderón–Zygmund theory of singular integrals deals with the
Lebesgue measure on Rm and operators TK :

TK f (x) =
∫

K(y − x) f (y) dy. (10.1)

Here K usually is smooth except that it has a singularity of order |x|−m at the
origin. Because of this the integral in (10.1) often does not exist. But K is
also assumed to possess cancellation, being odd or something less. Then the
principal values

TK f (x) = lim
ε→0

∫

|y−x|>ε
K(y − x) f (y) dy (10.2)

exist if f is sufficiently nice; usually Lipschitz is enough. This is easily checked,
for instance, for the Riesz kernel |x|−m−1x.

The core of the theory is the L2-boundedness; when is TK : L2 → L2

bounded? Very general regularity assumptions on K, saying that the singu-
larity at 0 is not too bad, suffice. For instance, the condition that |x|m+ j|∇ jK(x)|
is bounded for j = 0, 1, 2, . . . , which will appear later, is much more than
enough. The L2-boundedness implies, and often is equivalent to, many other
fundamental properties (Lp, 1 < p < ∞, BMO, weak L1, T (b), etc.). In par-
ticular, it implies that the convergence of (10.2) takes place for all f ∈ L1 for
almost all x ∈ Rm. This is because nice functions are dense in L1.

Our interest is in the case where the Lebesgue measure is replaced by an
in some sense m-dimensional measure on Rn. To define the L2-boundedness
without having the pointwise formula (10.2), we define the truncated operators
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90 Singular Integrals

TK,μ,ε, ε > 0:

TK,μ,εg(x) =
∫

|x−y|>ε
K(y − x)g(y) dμy.

We say that TK,μ is bounded in L2(μ) if the TK,μ,ε, ε > 0, are uniformly bounded
in L2(μ). Often this is equivalent to saying that the maximal transform T ∗K,μ,

T ∗K,μg(x) = sup
ε>0
|
∫

|y−x|>ε
K(y − x)g(y) dμy|,

is bounded in L2(μ). In case μ = Hm E, we say that TK,E is bounded in
L2(E).

Coifman and Weiss extended in [116] most of the basic theory from the
Lebesgue measure in Rm to doubling measures μ in metric spaces E, in par-
ticular to AD-m-regular sets in Rn. Again a basic question is: when is TK :
L2(μ) → L2(μ) bounded? But now it is not only about the kernel but also,
and usually mainly, about E and μ. Still L2-boundedness implies a lot of other
things, but not any more automatically the existence of principal values. The
cancellation properties of the kernel do not help, even for constant functions, if
the measure does not have symmetry properties. But we showed with Verdera
in [331] that under very general conditions L2-boundedness implies weak con-
vergence of the truncated operators.

Is the doubling condition necessary for the general theory? It seems that
this question was seriously considered only when it was needed in connection
with the Cauchy integral and analytic capacity, recall the T (b)-theorems of
David and of Nazarov, Treil and Volberg from Chapter 9. In addition
to T (b), Nazarov, Treil and Volberg, and later also Tolsa, developed the non-
homogeneous (that is, non-doubling) Calderón–Zygmund theory with surpris-
ing success in many papers.

10.2 L2-Boundedness and Uniform Rectifiability

This topic has its origins in David’s work in the 1980s, see [133,134]. Most of
the basics were developed by David and Semmes in [146,147]. The main prob-
lem related to rectifiability is the following conjecture of David and Semmes:

Conjecture 10.1 Let 0 < m < n be integers and let E ⊂ Rn be AD-m-regular.
Then the Riesz transform Rm

E is bounded in L2(E) if and only if E is uniformly
m-rectifiable.

The kernel of Rm
E is the Riesz kernel Rm(x) = |x|−m−1x, x ∈ Rn \ {0}, so
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10.2 L2-Boundedness and Uniform Rectifiability 91

Rm
E = TRm,E according to the above notation. For a measure μ we shall also

set Rm
μ = TRm,μ. The L2-boundedness again means that the truncated operators

Rm
E,ε, ε > 0,

Rm
E,εg(x) =

∫

{y∈E : |y−x|>ε}
Rm(y − x)g(y) dHmy,

are uniformly bounded in L2(E).
The boundedness of much more general singular integral operators on uni-

formly rectifiable sets was proved in [146]. We shall return to this soon. The
problem is the converse. It is known for m = 1, n − 1, and only then:

Theorem 10.2 Let m = 1 or m = n − 1 and let E ⊂ Rn be AD-m-regular.
Then the Riesz transform Rm

E is bounded in L2(E) if and only if E is uniformly
m-rectifiable.

For m = 1 the proof of Theorem 9.5 gives this too. So it is based on
symmetrization as in (9.2). For m > 1, this method does not work because
the corresponding sum takes both positive and negative values as was shown,
more generally, by Farag in [191, 193].

The case m = n − 1 is due to Nazarov, Tolsa and Volberg in [363]. Their
proof is very long and complicated and contains many brilliant ideas. Before
saying a few words about it, let us look at a much weaker and simpler result
which holds for all m, see [323]:

Proposition 10.3 Let 0 < m < n and let μ ∈ M(Rn) be AD-m-regular. If the
Riesz transform Rm

μ is bounded in L2(μ), then for μ almost all a ∈ Rn, μ has
some m-flat tangent measures at a.

The proof is easy. A duality argument, recall the discussion around (9.1),
gives a bounded function g such that the maximal function Rm∗

μ g is bounded.
Then we can find an AD-m-regular tangent measure ν such that

∣
∣
∣
∣
∣
∣

∫

r<|y−x|<R
|y − x|−m−1(y − x) dνy

∣
∣
∣
∣
∣
∣
≤ C for x ∈ spt ν, 0 < r < R. (10.3)

Since spt ν cannot be the whole space, we can find an open ball U disjoint
from spt ν such that there is x ∈ spt ν ∩ ∂U. Any tangent measure π of ν at x is
again AD-m-regular and satisfies (10.3). It has support in a half-space H with
0 ∈ spt π ∩ ∂H, so due to (10.3) spt π must be tangential to ∂H at 0. The next
tangent measure will have support in ∂H, perhaps with a non-constant density,
but the last tangent measure will be flat, and it is also a tangent measure of
μ by Preiss’s ‘tangent measures to tangent measures are tangent measures’
principle, see [321, Theorem 14.16].
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92 Singular Integrals

Proposition 10.3 gives approximation by planes at some arbitrarily small
scales, but even for ordinary rectifiability we would need it at all arbitrarily
small scales. As such it is useless for the proof of Theorem 10.2, but in [363]
Nazarov, Tolsa and Volberg used tangent measures to prove a quantitative form
of this: sufficiently good pointwise boundedness of the Riesz transform at a
range of scales gives a good approximation at some cube in the same range.
Then the counter-assumption that the set in Theorem 5.8 is not Carleson allows
us to build a Cantor structure based on the generalized dyadic cubes, mentioned
in Section 5.5, where the cubes of nearly flatness of spt μ (or rather of μ) and
cubes of non-flatness are alternating. The proof ends with clever applications
of an extremal problem and a maximum principle. These have their origins
in [186]. The maximum principle requires harmonicity of the kernel, and this
is the main reason (or maybe the only reason) why the proof does not extend
to m < n− 1. The end result is that the L2-boundedness implies the property of
approximation with unions of planes as in Theorem 5.8 and hence uniform rec-
tifiability. This is not a sketch of the proof, only a few tiles from a magnificent
structure.

For sets of finite measure, we have the analogue of Theorem 9.2:

Theorem 10.4 Let E ⊂ Rn be Hn−1 measurable with Hn−1(E) < ∞. If Rn−1
E

is bounded in L2(E), then E is (n − 1)-rectifiable.

This was proved by Nazarov, Tolsa and Volberg in [364]. They used a re-
sult of Eiderman, Nazarov and Volberg from [186] according to which Rn−1

E is
unbounded in L2(E) if E has zero lower density. Thus they could assume that
Θn−1
∗ (E, x) > 0 forHn−1 almost all x ∈ E. Then they used an argument of Pajot

from [376] to find AD-(n − 1)-regular measures μ j such that Rn−1
μ j

is bounded
in L2(μ j) and Hn−1 E ≤ ∑

j μ j. This allowed them to conclude the proof by
Theorem 10.2.

As in Theorem 9.6 for m = 1, there is a generalization of Theorem 10.2:

Theorem 10.5 Let μ ∈ M(Rn) with μ(B(x, r)) ≤ rn−1 for x ∈ Rn, r > 0. Then

‖Rn−1
μ ‖2L2(μ) + μ(Rn) ∼

∫ ∞

0

∫

βn−1,2
μ (x, r)2 μ(B(x, r))

rn−1
dμx

1
r

dr + μ(Rn). (10.4)

The estimate ′ �′ was proved by Girela-Sarrión [225] for general m and
general kernels. The converse was proved by Tolsa [420] based on his paper
with Dabrowski [128].

The validity of ′ �′ in Theorem 10.5 for 1 < m < n−1 is an open question, as
it should be, since the David–Semmes conjecture is then open. However, Jaye,
Nazarov and Tolsa proved in [259] that the L2-boundedness for all radial-type
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10.2 L2-Boundedness and Uniform Rectifiability 93

kernels K ∈ Km(Rn), see below, implies that the right-hand side of (10.4) is
finite.

Prat, Puliatti and Tolsa [381] extended Theorems 10.2 and 10.4 to kernels
that are gradients of the fundamental solutions of more general elliptic equa-
tions; cRn−1 is the gradient of the fundamental solution of the Laplace equation.
Let A(x), x ∈ Rn, be an n × n matrix with Hölder continuous entries satisfying
the ellipticity conditions

|ξ|2 � A(x)ξ · ξ for all ξ, x ∈ Rn, (10.5)

A(x)ξ · η � |ξ||η| for all ξ, η, x ∈ Rn. (10.6)

The equation
LAu(x) := −div(A∇u)(x) = 0 (10.7)

has a fundamental solution ΓA(x, y). The kernel then is its gradient, KA(x, y) =
∇xΓA(x, y). Technically the situation now is more complicated than for the
Riesz kernel, but the authors of [381] managed with several modifications to
follow the same strategy to prove the analogues of Theorems 10.2 and 10.4.
In [348] Molero, Mourgoglou, Puliatti and Tolsa proved generalizations to pos-
sibly discontinuous coefficients satisfying Dini-type conditions.

Mas and Tolsa proved in [314] a characterization of uniform rectifiability in
terms of the L2-boundedness of variations of the Riesz transform. They are de-
fined by maximizing

∑

m∈Z |Rm
μ,εm+1

f (x)−Rm
μ,εm

f (x)|2 over decreasing sequences
of positive numbers εm.

Except for the Riesz kernels and some other particular cases, recall the dis-
cussion in Section 9.5, the question for which kernels Theorem 10.2 holds is
pretty much open. However, if we consider a large class of kernels, the char-
acterization of uniform rectifiability in all dimensions was already obtained
by David and Semmes in [146]. Let us denote by Km(Rn) the set of smooth
real-valued odd functions K on Rn \ {0} such that |x|m+ j|∇ jK(x)| is bounded for
j = 0, 1, 2, . . . .

Theorem 10.6 Let E be AD-m-regular. Then E is uniformly rectifiable if and
only if TK,E is bounded in L2(E) for all kernels K ∈ Km(Rn).

Already the boundedness with the kernels K ∈ Km(Rn) which are of the
form K(x) = x jk(x), j = 1, . . . , n, where k is radial, is enough for uniform
rectifiability, see [147, Theorem I.2.59]; for rectifiability this was proved in
[329]. Related results are in [413].

Jaye and Nazarov studied reflectionless measures in several papers. They
have some resemblance to the symmetric measures of Section 9.3. A mea-
sure μ is reflectionless with respect to a kernel K if TK,μ1 vanishes, in a weak
sense, on the support of μ. In [258], they showed that if K is a kernel with
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94 Singular Integrals

respect to which the AD-m-regular reflectionless measures are flat, then the
L2-boundedness on any AD-m-regular set E implies the uniform rectifiability
of E. This condition is known to hold for the Cauchy kernel and R1 in the plane
but it is unknown for higher-dimensional Riesz kernels. With this property of
the Cauchy kernel, Jaye and Nazarov gave in [256] the earlier mentioned new
proof of Theorem 9.5. The example of [257] mentioned near the end of Sec-
tion 9.5 relies on the fact that the Lebesgue measure on C is reflectionless with
respect to the kernel z̄/z2.

10.3 Principal Values

We have the analogue of Theorem 9.7 for the Riesz kernels:

Theorem 10.7 Let E ⊂ Rn be Hm measurable with Hm(E) < ∞. Then E is
m-rectifiable if and only if the finite limit

lim
ε→0

∫

{y∈E : |y−x|>ε}
Rm(y − x) dHmy

exists forHm almost all x ∈ E.

Verdera’s Hahn–Banach proof [425] for the Cauchy transform generalizes
to give that the principal values exist for rectifiable sets. The converse was
proved by Tolsa in [412]. His proof for Theorem 9.7 does not work now, as
he used Menger curvature for that. It is replaced by L2 estimates on Lips-
chitz graphs. That is, Tolsa showed that the L2 norm of the Riesz transform on
Lipschitz graphs is quantitatively bounded by the L2 norm of the gradient of
the function, not only from above but also from below. These estimates are
then used to construct Lipschitz graphs containing a positive measure of E.
Very roughly, the existence of principal values implies some approximation
with a graph of a Lipschitz function, whose gradient cannot have too big L2

norm by the bounds on the Riesz transform. Arguments similar to those of
Legér in the proof of Theorem 3.18 are essential.

The analogue of Theorem 9.8 was proved in [329], but in addition to positive
lower density we had to assume that it also is finite:

Theorem 10.8 Let μ ∈ M(Rn). If 0 < Θm
∗ (μ, x) < ∞ and the finite limit

limε→0

∫

{|y−x|>ε} Rm(y − x) dμy exists for μ almost all x ∈ Rn, then μ is m-
rectifiable.
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10.4 Lipschitz Harmonic Functions 95

Again, we showed that tangent measures ν are symmetric:
∫

B(x,r)
(y − x) dνy = 0 for x ∈ spt ν, r > 0.

We could not say very much about them, except that the AD-m-regular sym-
metric measures are flat. But we could show that if almost everywhere μ has
positive lower density and the tangent measures are symmetric, then they are
flat.

Combining Theorems 10.4 and 10.7, we see that if m = 1 or m = n − 1, E ⊂
R

n is Hm measurable with Hm(E) < ∞ and the Riesz transform is bounded
in L2(E), then the principal values exist Hm almost everywhere in E. But we
only know this going through rectifiability. It would be interesting to have a
direct proof, or any proof when 1 < m < n−1. Combining with Theorem 10.7,
this would give a proof that the L2-boundedness implies rectifiability.

The more general question for which kernels L2-boundedness implies al-
most everywhere convergence is open, even for AD-regular sets. We know
from Section 9.5 that there are reasonable kernels for which this fails, but the
Jaye–Nazarov example is not AD-regular. In [331], we proved with Verdera
under very general conditions that the L2-boundedness together with zero
density implies the existence of principal values. Jaye and Merchán [253]
strengthened this by replacing zero density with the condition that modifica-
tions of Tolsa’s α’s (recall Section 6.4) tend to zero. See also [254] for related
results and recall the discussion in 9.5 on [255].

LetΩ ⊂ Rn be a domain with compact AD-(n −1)-regular (and a little more)
boundary. D. and M. Mitrea and Verdera [347] proved that thenΩ is a C1+α, 0 <
α < 1, domain if and only if the Riesz transform Rn−1

∂Ω
maps Cα(∂Ω) into

itself. The second half actually means several equivalent conditions, some of
them involving uniform rectifiability, corresponding to different definitions of
the Riesz transform, for example, principal value and distributional definitions.
The proof uses Clifford algebras and an interesting formula expressing the unit
normal in terms of the Riesz transform and the Cauchy–Clifford transform.

10.4 Lipschitz Harmonic Functions

The kernel Rn−1 is a constant multiple of the gradient of the fundamental so-
lution of the Laplacian in Rn, which is cn|x|2−n for n ≥ 3, c2 log |x| for n = 2.
Hence the codimension 1 Riesz transform is related to the removability of Lip-
schitz harmonic functions in the same way as the Cauchy transform is related
to the removable sets of bounded analytic functions.
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96 Singular Integrals

Let us say that a compact set E ⊂ Rn is removable for Lipschitz harmonic
functions, abbreviated RLH, if whenever U is an open set containing E, every
Lipschitz function u : U → R which is harmonic in U \ E is harmonic in U.
Since Lipschitz functions always have Lipschitz extensions, we can start with
u defined in all of U.

Theorem 10.9 Let E ⊂ Rn be compact withHn−1(E) < ∞. Then E is RLH if
and only if E is purely (n − 1)-unrectifiable.

The non-removability of rectifiable sets was proved in [328] by methods
similar to those used for the analytic functions and discussed in Chapter 9. The
converse was proved for n = 2 in [143] based on Menger curvature (recall the
discussion after Theorem 9.2) and the David–Léger Theorem 3.18. The case of
general n is due to Nazarov, Tolsa and Volberg in [364]. The proof is reduced
to Theorem 10.2 via a T (b)-theorem from [433] in a similar manner as was
argued for analytic functions.

In the plane Tolsa’s characterization, Theorem 9.3, is valid also for Lipschitz
harmonic functions. Hence

Theorem 10.10 Let E ⊂ C be compact. Then the following are equivalent:

(1) E is removable for bounded analytic functions.

(2) E is removable for Lipschitz harmonic functions.

(3) If μ ∈ M(E) is such that μ(B(z, r)) ≤ r for z ∈ C and r > 0, then c2(μ) = ∞.

The equivalence of (1) and (2) is only known passing through (3), and hence
by a very complicated proof. It is easy to see that (1) implies (2): if u is Lip-
schitz harmonic, then ∂z∂zu = Δu = 0, so f = ∂zu is bounded analytic. The
converse, to get u from f , would require some kind of integration, which is
possible in some special cases but maybe not always.

Tolsa [420] characterized also the removable sets for Lipschitz harmonic
functions in all dimensions:

Theorem 10.11 Let E ⊂ Rn be compact. Then E is not removable for Lip-
schitz harmonic functions if and only if there exists μ ∈ M(E) such that
μ(B(x, r)) ≤ rn−1 for x ∈ Rn and r > 0 and

∫ ∞

0

∫

βn−1,2
μ (x, r)2 μ(B(x, r))

rn−1
dμx

1
r

dr < ∞.

This is a consequence of Theorem 10.5.
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10.5 Parabolic Singular Integrals

In [75,77], it is shown that a large class of parabolic singular integral operators
are L2-bounded on parabolic uniformly rectifiable sets. Recall Section 5.6; as
mentioned there the motivation for this theory comes from the heat equation
Δxu(x, t) = ∂tu(x, t). Its fundamental solution W is given for x ∈ Rn, t > 0, by

W(x, t) = ct−n/2e−|x|
2/(4t).

The kernel K, which now replaces the Riesz kernel Rn−1, is the heat kernel

K(x, t) = ∇xW(x, t) = −(c/2)t−n/2−1xe−|x|
2/(4t),

with K(x, t) = 0, when t ≤ 0. Notice that it is antisymmetric only in the x
variable, but this is good enough for the L2-boundedness on uniformly rectifi-
able sets by [75]. The converse, the analogues of Theorems 10.2 and 10.4, is
unknown. These would be needed to get a removability result such as Theorem
10.9 for parabolic regular Lipschitz (again BMO in t variable, recall Section
5.6) solutions of the heat equation. Mateu, Prat and Tolsa have done in [317]
some preliminary work in this direction. For instance, they showed that posi-
tive measure subsets of parabolic regular Lipschitz graphs are not removable.
They also constructed Cantor sets with positive measure that are removable.

We shall discuss harmonic measure, induced by the Laplace equation, in
Chapter 11. In the same way, the heat equation leads to the caloric measure.
To get something like Theorem 11.2 in the parabolic case would also seem to
require information about the consequences of the L2-boundedness of TK .

10.6 Heisenberg Groups

As compared to the Euclidean theories, rather little is known about the singular
integrals

TK f (p) =
∫

K(p−1 · q) f (q) dμq

on lower than full-dimensional subsets of the Heisenberg groups. As was seen
in Chapter 8, rectifiability is much better understood than uniform rectifiability.
Anyway, intrinsic Lipschitz graphs are good candidates for basic uniformly
rectifiable sets. So it makes sense to ask the following questions. For what
kernels are the singular integral operators L2-bounded on intrinsic Lipschitz
graphs? When does L2-boundedness or existence of principal values imply
rectifiability?

What kernels should replace the Riesz kernels? If we just look at the ex-
pression and the scaling property of Rm in Rn, a similar kernel in Hn is Rm =
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(Rm,1,Rm,2), where for p = (z, t) ∈ Hn and ‖p‖ = (|z|4 + t2)1/4,

Rm,1(p) = ‖p‖−m−1z and Rm,2(p) = ‖p‖−m−2t.

In [106], an analogue of Proposition 10.3 was proved for these kernels. How-
ever, if we want a connection to harmonicity, we should start from a Lapla-
cian. Let Xi,Yi, i = 1, . . . , n be the vector fields as in Section 8.2. The sub-
Riemannian or Kohn Laplacian in Hn is defined by

ΔH =

n∑

i=1

(X2
i + Y2

i ).

For the potential theory related to it, see [71]. The fundamental solution of
ΔHu = 0 is Γ(p) = c‖p‖−2n. Note that 2n = dimHn − 2, so it has the same
form as in Rn. The kernel related to the Lipschitz harmonic functions is K =
∇HΓ : Hn → R2n. It looks a bit complicated, since its coordinate functions are
for i = 1, . . . , n, and z = (x, y) ∈ R2n,

Ki(z, t) =
xi|z|2 + yit
‖p‖2n+4

, Ki+n(z, t) =
yi|z|2 − xit
‖p‖2n+4

.

However, it is a reasonable Calderón–Zygmund kernel. It is not odd, but it
is horizontally antisymmetric: K(z, t) = −K(−z, t). Due to this, Chousionis,
Fässler and Orponen [98] were able to prove in H1 that TK , and more general
singular integrals, are L2-bounded on C1,α intrinsic graphs, see also [195] for
related results.

Orponen [372] proved that for AD-3-regular subsets of H1 the L2-bounded-
ness of the three-dimensional singular integrals with horizontally antisymmet-
ric kernels implies local symmetry of the type in Theorem 5.9 and that this
implies weak geometric lemma.

In [107], a class of self-similar purely (2n + 1,H)-unrectifiable subsets of
H

n with positiveH2n+1 measure was introduced on which TK is L2-unbounded
and which are removable for Lipschitz harmonic functions. Further results in
this direction were proven by Chousionis and Urbanski in [109].

Chousionis and Li [100] introduced a class of non-negative 1-homogeneous
kernels in H1 which vanish on the vertical axis {z = 0}. For some of them, the
operator is L2-bounded on regular curves and for some the L2-boundedness on
an AD-1-regular set implies that it is contained in a regular curve. An extension
of the first statement to general Carnot groups is given by Chousionis, Li and
Zimmerman [103].

Fässler and Orponen [197] proved in H1 the L2-boundedness of many sin-
gular integral operators on AD-regular curves and on a class of vertical graphs
called Lipschitz flags.
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