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Abstract

Given a property of representations satisfying a basic stability condition, Ramakrishna developed a
variant of Mazur’s Galois deformation theory for representations with that property. We introduce
an axiomatic definition of pseudorepresentations with such a property. Among other things, we
show that pseudorepresentations with a property enjoy a good deformation theory, generalizing
Ramakrishna’s theory to pseudorepresentations.
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1. Introduction

The deformation theory of Galois representations has been used extensively
to realize and study the proposed Langlands correspondence between Galois
representations and automorphic representations. Depending on the setting in
which the correspondence is being studied, one wants to set up the deformation
theory so that it parameterizes exactly the Galois representations with certain
properties. A collection of such properties is known as a ‘deformation condition’
or ‘deformation datum’. Ramakrishna [Ram93] proved that for any deformation
condition C satisfying a basic stability property, the deformation problem for C is
representable relative to the unrestricted deformation problem.

In applications, and especially when working with residually reducible
Galois representations, Galois pseudorepresentations are often more accessible
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than Galois representations. A Galois pseudorepresentation is the data of a
characteristic polynomial for each element of the Galois group, satisfying
appropriate compatibility conditions. However, it has not been clear how
to apply deformation conditions—which apply to Galois modules—to
pseudorepresentations.

The point of this paper is to solve this problem by axiomatically translating
deformation conditions for representations into deformation conditions for
pseudorepresentations. In particular, we construct universal deformation rings
for pseudorepresentations satisfying such a condition. Also, it follows from our
techniques that a deformation condition cuts out a closed locus in any family
of Galois representations, generalizing the case of local families considered
in [Ram93]. We expect that the various constructions we make, especially
the universal Cayley–Hamilton algebra defined by a condition, will find many
applications.

We were stimulated to develop this theory for application in the companion
paper [WWE17b] (see also [WWE18b]). After this work was complete, the
second-named author identified Galois cohomological data that controls the
deformation theory of these pseudodeformation rings: see [WE18b], especially
[WE18b, Theorem 3.4.1].

1.1. Background. To give a more thorough explanation of our results, we
define our scope. Fix a prime p and a profinite group G. We assume that
G satisfies the finiteness condition Φp (see Section 1.4). We are interested
in studying the categories RepG of representations of G and PsRG of
pseudorepresentations of G, and the related moduli spaces RepG and PsRG .

Let C be a condition on finite-cardinality Zp[G]-modules such that C is closed
under isomorphisms, subquotients, and finite direct sums (we call such a condition
stable). Ramakrishna [Ram93] showed that the formal deformation functor of
representations with C is representable.

The goal of this paper is to sensibly extend the condition C so that it applies to
pseudorepresentations. One difficulty in doing this is that pseudorepresentations
are defined as collections of functions; they need not come in any obvious way
from a Zp[G]-module.

The main tool we use to bridge the gap between G-pseudorepresentations
and G-modules is the category CHG of Cayley–Hamilton representations of G,
which was introduced by Chenevier [Che14], building on work of Bellaı̈che–
Chenevier [BC09], and further developed by second-named author [WE18a]. The
data of a Cayley–Hamilton representation of G includes a Zp[G]-module, so it is
possible to relate these objects to condition C. Moreover, CHG is closely related
to both RepG and PsRG ; the key properties can be summarized as follows:
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• CHG broadens the category of representations of G, in the sense that there
is an inclusion RepG ↪→ CHG and an induced-pseudorepresentation functor
ψ : CHG → PsRG extending the usual functor RepG → PsRG .
• ψ is essentially surjective, which is not true for ψ |RepG

.
• CHG has a universal object, the ‘universal Cayley–Hamilton representation’ of

G, which we denote by EG .
• EG is finitely generated as a module over its base ring.

The first two conditions say that Cayley–Hamilton representations generalize the
notation of representations to an extent sufficient to see all pseudorepresentations.
The last two conditions mean that CHG is still manageable in size; in particular,
it reduces constructions to finite-cardinality Zp[G]-modules, so one can apply
the condition C. We review the theory of Cayley–Hamilton representations in
Section 2.2.

1.2. Results. We use the above properties of CHG to give the definition of
a Cayley–Hamilton representation of G with condition C (Definition 2.5.2). The
Cayley–Hamilton representations of G with condition C form a full subcategory
CHC

G ⊂ CHG . We say that a pseudorepresentation has condition C if there is
a Cayley–Hamilton representation that induces it. More precisely, we define the
category of pseudorepresentations satisfying condition C, denoted by PsRC

G , as the
essential image PsRC

G ⊂ PsRG of ψ restricted to CHC
G ⊂ CHG (Definition 2.5.4).

We view these new definitions as being the heart of our paper. Our main
results are meant to justify why we think this notion is a useful generalization
of Ramakrishna’s theory. We show that it has the same geometric and universality
properties as Ramakrishna’s, and that it specializes to his definition in cases
where both definitions apply. Importantly, we also give tools for checking whether
certain pseudorepresentations (including many of the ones that come up naturally)
have this property. In some cases, we are also able to give tools for computing
these objects in terms of natural Selmer-type groups.

Our main general results are as follows.

(1) The category CHC
G has a universal object EC

G , which is a quotient of the
universal object EG in CHG (Theorem 2.5.3).

(2) We define the notion of a faithful Cayley–Hamilton G-module M (it is a G-
module with extra structures giving rise to a Cayley–Hamilton representation
EM of G). We prove that M satisfies C if and only if EM satisfies C
(Theorem 2.6.4).

(3) Property C is a Zariski-closed condition on both RepG and PsRG (Corollary
2.7.1). In particular, for a fixed residual pseudorepresentation, there
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is a pseudodeformation-with-C ring that is a quotient of the universal
pseudodeformation ring (Theorem 2.5.5).

Many of the pseudorepresentations that arise naturally in the study of modularity
lifting come from faithful Cayley–Hamilton G-modules (see Example 2.6.3),
and result (2) is very useful for showing that such a pseudorepresentation
has C. Result (3) is a generalization of a theorem of Ramakrishna [Ram93,
Proposition 1.2] for residually irreducible representations, and, in that case, we
prove that our construction agrees with his (Corollary 3.3.5).

In Sections 3–4, we restrict our attention to the subcategories of CHG , RepG ,
and PsRG that are residually multiplicity-free (see Definition 3.2.1). For the sake
of this introduction, we abuse notation and use the same letters for the residually
multiplicity-free versions. With this restriction, it is known that EG admits the
extra structure of a generalized matrix algebra, a theory developed by Bellaı̈che–
Chenevier (see [BC09, Section 1.5] and [WWE17a, Section 4.1]). Using this
extra structure, we prove the following results in Sections 3 and 4, respectively:

(4) The quotient EC
G of EG is uniquely characterized in terms of RepC

G
(Theorem 3.3.1).

(5) The structure of EC
G is related to extension groups with condition C

(Theorem 4.3.5).

We view this last result as especially important, as it allows one to compute with
some of our constructions. In particular, it allows one to give a kind of upper
bound on the size of the pseudodeformation ring in terms of Selmer-type groups,
and this is useful in proving modularity-lifting theorems (see Remark 4.0.1). This
method is used in our papers [WWE17b, WWE18b].

REMARK 1.2.1. In the body of the paper, we mostly discuss variants of
these results for the versions of the categories that have a fixed residual
pseudorepresentation D̄. To translate into the form stated in this introduction, one
can apply the results of Section 2.2, particularly Theorem 2.2.5.

1.3. Context. We are motivated by the case that G is a quotient of an absolute
Galois group of a global field and C = {Cv} is a condition on the restrictions of
representations of G to its decomposition groups Gv, especially those conditions
Cv that arise from p-adic Hodge theory when v | p. We discuss the examples we
have in mind in Section 5.

The unavailability of a notion of pseudorepresentations satisfying said
conditions has been an obstacle to generalizing the use of the deformation
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theory of Galois representations to the residually reducible case. In particular, in
the papers [WWE17b, WWE18b], we require the particular condition Cv that a
Zp[Gv]-module arises as the generic fiber of a finite-flat group scheme over the
ring of integers of a p-adic local field. (This is the same condition that especially
motivated [Ram93].)

In our previous work [WWE18a, WWE17a], we considered the ordinary
condition on two-dimensional global Galois representations (see also [CS19] and
[WE18a, Section 7]). However, the ordinary condition is of a rather different
flavor, as it does not apply readily to a finite-cardinality Zp[G]-module without
extra structure.

1.4. Notation and conventions. Rings R are commutative and Noetherian,
unless otherwise noted. Algebras are associative but not necessarily commutative,
and are usually finitely generated. For an algebra E , the term ‘E-module’ is used
to mean ‘left E-module’, unless otherwise stated, and we let ModE denote the
category of left E-modules.

When A is a local ring, to say that B is commutative local A-algebra means
that B is a local ring equipped with a morphism of local rings A→ B.

We study integral p-adic representations and pseudorepresentations of a
profinite group G, which is assumed to satisfy the Φp finiteness condition of
Mazur [Maz89]: the maximal pro-p quotient of every finite index subgroup of G
is topologically finitely generated.

We work with categories of topological rings R discussed in Section 2.2, giving
finitely generated R-modules a natural topology. Algebras E over R are also
understood to have their natural topology, either being finitely generated as R-
modules or of the form R[G]. Actions of G and homomorphisms G → E× are
understood to be continuous. Pseudorepresentations D : E → R (respectively
D : G → R) are also understood to be continuous, which means that the
characteristic polynomial coefficient functions E → R (respectively G → R)
defined in Definition 2.1.1(8) are continuous.

1.4.1. A note on attribution We wish to make it clear that the notions of
pseudorepresentation, Cayley–Hamilton algebra, and generalized matrix algebra,
which are used in an essential way in this paper, are due to Chenevier [Che14]
and Bellaı̈che–Chenevier [BC09, Ch. 1], building on works of others including
Wiles [Wil88], Procesi [Pro87], Taylor [Tay91], Nyssen [Nys96], and
Rouquier [Rou96].

Where possible, we have attempted to cite the original sources directly. In some
cases, we also cite [WE18a] for background on these objects because the category
of profinite-topological Cayley–Hamilton representations of a profinite group was
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developed there, adapting the nontopological version of [Che14, Section 1.22].
In contrast, we note that Chenevier developed the profinite-topological notion of
pseudorepresentation [Che14, Section 3], which we rely on without making any
additional contributions.

2. Deformation conditions for Cayley–Hamilton representations

In this section, we develop the theory of Cayley–Hamilton representations
with a deformation condition C. The first three subsections are mainly review.
In Section 2.1, we begin by recalling from [Che14] and [WE18a, Section 2] the
nontopological theory of pseudorepresentations and Cayley–Hamilton algebras,
their compatible representations, and moduli spaces of these (see also [WWE18a]
for further background and examples). In Section 2.2, we review the modifications
of this theory for topological groups. In Section 2.3, we discuss the stable
conditions of Ramakrishna [Ram93], and show that there is a well-defined
‘maximal quotient with C of a finite-cardinality Zp[G]-module.

The main new constructions are given in Section 2.4. There, we show that
the ‘maximal quotient with C’ of the universal Cayley–Hamilton algebra retains
its algebra structure. We also show that, for an algebra quotient of a Cayley–
Hamilton algebra, there is a maximal further quotient that is Cayley–Hamilton.
Combining these constructions, we obtain a ‘maximal Cayley–Hamilton quotient
with C’ of the universal Cayley–Hamilton algebra.

The main results and definitions of the section are stated and proven in
Section 2.5. We define the category of Cayley–Hamilton representations with
C, and show that the object constructed in Section 2.4 is a universal object in
this category. We define a pseudorepresentation with C as a pseudorepresentation
that comes from a Cayley–Hamilton representations with C, and prove that the
corresponding deformation functor is prorepresentable.

In Section 2.6, we introduce the notion of Cayley–Hamilton G-module.
Many pseudorepresentations that arise from modular forms (and more
generally, automorphic forms) come from Cayley–Hamilton G-modules (see
Example 2.6.3). We prove a criterion for when such pseudorepresentations have C.
In Section 2.7, we apply this criterion to prove a generalization of Ramakrishna’s
theorem from formal families of representations to more general families.

2.1. Pseudorepresentations, compatible representations, and Cayley–
Hamilton algebras. Our starting point is following definition, due to Chenevier
[Che14].

DEFINITIONS 2.1.1. Let R be a ring, let E be an R-algebra, and let G a group.
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(1) A polynomial law is a natural transformation D : E ⊗R (−) → (−) of
set-valued functors on commutative R-algebras, where (−) is the forgetful
functor from R-algebras to sets. It is multiplicative if, for each commutative
R-algebra A, the function DA : E⊗R A→ A satisfies DA(1) = 1, DA(xy) =
DA(x)DA(y) for all x, y ∈ E ⊗R A. It has degree d if, for each commutative
R-algebra A, we have DA(bx) = bd DA(x) for all x ∈ E ⊗R A and all b ∈ A.

(2) A pseudorepresentation, denoted D : E → R or (E, D), is a multiplicative
polynomial law of degree d from E to R, for some d > 1. We call d the
dimension of D, and R the scalar ring of (E, D). The data of D consists
of a function E ⊗R A → A for each commutative R-algebra A, which we
denote by DA.

(3) A pseudorepresentation of G with coefficients in R, denoted D : G → R, is
a pseudorepresentation of R[G].

(4) If D : E → R is a pseudorepresentation, and x ∈ E , we define the
characteristic polynomial χD(x, t) ∈ R[t] by χD(x, t) = DR[t](t − x). It is
monic of degree equal to the dimension d of D. We define the trace TrD(x)
to be the additive inverse of the coefficient of td−1 in χD(x, t).

REMARK 2.1.2. This notion of pseudorepresentation is called a ‘determinant’
by Chenevier. The notion of ‘pseudorepresentation’ of a group was first
considered by Wiles [Wil88, Lemma 2.2.3] in the case d = 2, and by Taylor
[Tay91, Section 1] in general. Taylor’s definition was also considered by
Rouquier [Rou96], who considered R-algebras (not just groups), and called
the resulting objects ‘pseudo-caractères’ (or ‘pseudocharacters’, in English). By
[Che14, Lemma 1.12], TrD : E → R is a ‘pseudocharacter’ in the sense of Taylor
and Rouquier. By [Che14, Proposition 1.29], the map D 7→ TrD is a bijection if
(2d)! ∈ R×.

EXAMPLE 2.1.3. There is a d-dimensional pseudorepresentation det : Md(R)→
R defined by letting detA : Md(A)→ A be the determinant for all commutative
R-algebras A. More generally, if E is an Azumaya R-algebra of degree d , for
example V is a projective R-module of rank d and E = EndR(V ), then there is
a d-dimensional pseudorepresentation det : E → R given by the reduced norm
on E .

EXAMPLE 2.1.4. If V is a projective R-module of rank d and ρ : R[G] →
EndR(V ) is a representation of G, then there is an associated pseudorepresentation
ψ(ρ) : G → R. It is defined, for a commutative R-algebra A and x ∈ A[G], by

ψ(ρ)A(x) = detA((ρ ⊗R A)(x)),

where det is as in the previous example.
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Informally, ψ(ρ) is the composition of ρ and det. In the following definition,
we make this ‘composition’ construction explicit, and introduce notation for some
other standard ways to produce new pseudorepresentations from old ones.

DEFINITIONS 2.1.5. Let f : R → R′ be a ring homomorphism, let E and E ′

be an R-algebra and an R′-algebra, respectively, and let g : E ⊗R R′ → E ′ be a
morphism of R′-algebras. Let G be a group.

(1) Let D : E → R be a pseudorepresentation. The base change of D by f ,
denoted f ◦ D : E ⊗R R′ → R′, is the pseudorepresentation of E ⊗R R′

defined by ( f ◦ D)A(x) = DA(x), where A is a commutative R′-algebra, and
x ∈ E ⊗R A = (E ⊗R R′)⊗R′ A.

When f is understood, we write D ⊗R R′ instead of f ◦ D.

(2) Let D′ : E ′ → R′ be a pseudorepresentation. The composition of D′ and g,
denoted D′ ◦ g : E ⊗R R′ → R′, is the pseudorepresentation of E ⊗R R′

defined by (D′ ◦ g)A(x) = D′A((g ⊗R′ A)(x)), where A is a commutative
R′-algebra and x ∈ E ⊗R′ A.

(3) A morphism of pseudorepresentations ρ : (E, D)→ (E ′, D′) is the data of
a pair ( f, g), such that f ◦ D = D′ ◦ g. We define ψ(ρ) = f ◦ D = D′ ◦ g.

A morphism of pseudorepresentations of G is a morphism of pseudo-
representations (R[G], D) → (R′[G], D ⊗R R′) where the homomorphism
R′[G] → R′[G] is the identity.

(4) If D : E → R is a pseudorepresentation and ρ : G → E× is a homo-
morphism, there is an induced homomorphism ρ̃ : R[G] → E , which defines
a morphism of pseudorepresentations (R[G], D ◦ ρ̃) → (E, D). We abuse
notation and denote this morphism by ρ, and write ψ(ρ) : G → R for the
resulting pseudorepresentation of G.

It is not, in general, true that any pseudorepresentation D : G → R is of the
form ψ(ρ) for some representation ρ of G as in Example 2.1.4. It is, of course,
true that D = ψ(ρ) for some morphism ρ of pseudorepresentations (R[G],
D ◦ ρ̃) → (E, D) as in Definition 2.1.5(4) (we could take E = R[G] and ρ̃
to be the identity). However, it is a surprising fact that the analogous statement is
true if we restrict (E, D) to be in the more restrictive class of Cayley–Hamilton
pseudorepresentations [Che14, Section 1.17]: see Corollary 2.2.12.

DEFINITION 2.1.6. We call a pseudorepresentation D : E → R Cayley–
Hamilton when E is finitely generated as an R-algebra, and, for every
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commutative R-algebra A and every x ∈ E ⊗R A, the element x satisfies
the characteristic polynomial χD(x, t) ∈ A[t] associated to it by D. That is, D is
Cayley–Hamilton when χD(x, x) = 0 for all x ∈ E ⊗R A. When D : E → R is
Cayley–Hamilton, we call the pair (E, D) a Cayley–Hamilton R-algebra.

An important property of Cayley–Hamilton algebras is the following finiteness
result.

PROPOSITION 2.1.7. If (E, D) is a Cayley–Hamilton R-algebra, then E is
finitely generated as an R-module.

Proof. This follows from [WE18a, Proposition 2.13], which uses the theory of PI-
algebras. Indeed, E is finitely generated as an R-algebra (by definition of Cayley–
Hamilton algebra) and R is Noetherian by convention.

Of course, the pseudorepresentation (Md(R), det) of Example 2.1.3 is a
Cayley–Hamilton algebra (by the Cayley–Hamilton Theorem), and we think
of Cayley–Hamilton representations as generalizations of this example. Just as
algebra homomorphisms E → Md(R) are given the special name representation,
we follow Chenevier and give certain morphisms of pseudorepresentations the
special name Cayley–Hamilton representation.

DEFINITIONS 2.1.8. Let G be a group.

(1) A Cayley–Hamilton representation of a pseudorepresentation (E, D) is a
morphism of pseudorepresentations ρ : (E, D) → (E ′, D′) with (E ′, D′)
a Cayley–Hamilton algebra.

(2) A Cayley–Hamilton representation of G, denoted (E ′, ρ, D′), is a morphism
of pseudorepresentations (R[G], D)→ (E ′, D′) such that the map R[G] →
E ′ comes from a homomorphism ρ : G → E ′×.

(3) If (E, D) is also Cayley–Hamilton, we also refer to a Cayley–Hamilton
representation (E, D) → (E ′, D′) as a morphism of Cayley–Hamilton
algebras.

(4) A morphism of Cayley–Hamilton representations of G, written (E, ρ, D)→
(E ′, ρ ′, D′), is a morphism of Cayley–Hamilton algebras (E, D)→ (E ′, D′)
such that ρ ′ = (E → E ′) ◦ ρ.

We let CHG denote the category of Cayley–Hamilton representations of G, with
morphisms as defined in (3).
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EXAMPLE 2.1.9. Let (E, D) be a pseudorepresentation over R, and let V be a
projective A-module of rank d for a commutative R-algebra A. Let (EndA(V ),
det) be the pseudorepresentation defined in Example 2.1.3, which is a Cayley–
Hamilton algebra. A Cayley–Hamilton representation (E, D)→ (EndA(V ), det)
is the data of a representation ρ : E → EndA(V ) of E that is compatible with the
pseudorepresentation, that is, it satisfies D = det ◦ ρ.

This example motivates the following (perhaps more familiar) definition.

DEFINITION 2.1.10. Let D : E → R be a d-dimensional pseudorepresentation.
Let A be a commutative R-algebra.

(1) A framed compatible representation of (E, D) over A is an R-algebra
homomorphism ρA : E → Md(A) such that D ⊗R A = det ◦ ρA. We denote
by Rep�E,D the set-valued functor which assigns to a commutative R-algebra
A the set of all framed compatible representations of (E, D) over A.

(2) A compatible representation of (E, D) over A is a pair (VA, ρA), where VA

is a projective rank d A-module and ρA : E → EndA(V ) is an R-algebra
homomorphism such that D ⊗R A = det ◦ ρA. We denote by RepE,D the
Spec R-groupoid (indeed, a stack) which assigns to a commutative R-algebra
A a category whose objects are the compatible representations of (E, D) over
A and whose morphisms are isomorphisms of such data.

REMARK 2.1.11. The functor Rep�E,D and the groupoid RepE,D are representable
over Spec R; see for example Theorem 2.2.11. In particular, the natural
adjoint action of GLd on the affine Spec R-scheme Rep�E,D provides a smooth
presentation for RepE,D as a Spec R-algebraic stack.

Note that, by Example 2.1.9, compatible representations are a special kind of
Cayley–Hamilton representation. We view Cayley–Hamilton representations as a
natural generalization of compatible representations.

2.2. Representations of a profinite group. For the remainder of the section,
we fix a profinite group G that satisfies the Φp condition. Recall the conventions
from Section 1.4 regarding continuity.

Let AdmZp denote the category of admissible topological (not necessarily
Noetherian) rings where p is topologically nilpotent (see [Gro60, Definition
0.7.1.2, page 60] for the definition of admissible). We let TfgZp

⊂ AdmZp be
the full subcategory of topologically finitely generated objects (those A ∈ AdmZp

for which there exists a (nontopological) homomorphism Zp[x1, . . . , xn] → A
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with dense image), which are Noetherian rings. For R ∈ TfgZp
, we define TfgR as

the slice category of TfgZp
over R. We often use the following fact.

LEMMA 2.2.1. Let R ∈ TfgZp
and let A ∈ TfgR . For any x ∈ A nonzero, there

exists an commutative local R-algebra of finite cardinality and an R-algebra
homomorphism f : A → B such that f (x) 6= 0. In particular, a surjection g :
A→ A′ in TfgR is determined by the natural transformation HomR−alg(A′,−)→
HomR−alg(A,−) of functors on commutative local R-algebras of finite cardinality.

Proof. We leave this as an exercise. The main point is that, for any ideal
of definition I for A, the ring A/I n is a finitely generated Z-algebra, and
consequently a Noetherian Jacobson ring.

DEFINITION 2.2.2. For A ∈ TfgZp
, a representation of G with coefficients in A is

a finitely generated projective A-module VA of constant rank with an A-linear
G-action ρA. We write RepG for the category of representations, fibered in
groupoids over TfgZp

via the forgetful functor (VA, ρA) 7→ A. We write Rep�G
for the category defined just as RepG , but with the additional data of an A-basis
for VA.

Write PsRG for the category of pseudorepresentations of G, fibered in
groupoids over TfgZp

.
We write ψ for the functor ψ : RepG → PsRG over TfgZp

that sends a
representation ρA to its induced pseudorepresentation ψ(ρA).

We decompose each of these categories by dimension d > 1, writing Repd
G ⊂

RepG , and so forth.

To understand PsRd
G , we introduce deformations. Given a finite field F/Fp, we

let ĈW (F) ⊂ TfgZp
be the category of complete Noetherian commutative local

W (F)-algebras (A,mA) with residue field F.

DEFINITION 2.2.3. Let D̄ : G → F be a pseudorepresentation. Its deformation
functor PsDefD̄ : ĈW (F)→ Sets is

A 7→ {D : A[G] → A such that D ⊗A F ' D̄} (2.2.4)

and elements of PsDefD̄(A) are called deformations of D̄ or pseudodeformations.

Remarkably, when one varies D̄ over a certain set of finite field-valued
pseudorepresentations known as residual pseudorepresentations (see [WE18a,
Definition 3.4] for the definition), PsDefD̄ captures all of PsRd

G , in the following
sense.
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THEOREM 2.2.5 (Chenevier). Assume G satisfies Φp.

(1) Given a finite field F and a pseudorepresentation D̄ : G → F, the functor
PsDefD̄ is represented by an object (RD̄,mD̄) ∈ ĈW (F).

(2) There is an isomorphism

PsRd
G
∼=

∐
D̄

Spf RD̄, (2.2.6)

where D̄ varies over d-dimensional residual pseudorepresentations.

Proof. See [Che14, Propositions 3.3, 3.7 and Corollary 3.14].

Let RepD̄ (respectively Rep�D̄ ) denote the fiber in RepG (respectively Rep�G ) of
ψ over Spf RD̄, where D̄ is a residual pseudorepresentation, so that we have

Repd
G
∼=

∐
D̄

RepD̄, Rep�,dG
∼=

∐
D̄

Rep�D̄ , (2.2.7)

where D̄ varies over d-dimensional residual pseudorepresentations.
Now, and for the rest of this section, we fix a finite field F/Fp and a

pseudorepresentation D̄ : G → F. In light of the decompositions (2.2.6) and
(2.2.7), we lose no scope in our study of p-adic families by fixing this choice.

DEFINITION 2.2.8. Let A ∈ TfgZp
. We say that a pseudorepresentation D : G→

A has residual pseudorepresentation D̄ when Spf A→ PsRd
G is concentrated over

Spf RD̄. We write Du
D̄ : G → RD̄ for the universal pseudodeformation of D̄.

A Cayley–Hamilton representation (E, ρ : G → E×, D : E → A)
of G over A ∈ TfgZp

has residual pseudorepresentation D̄ if its induced
pseudorepresentation ψ(ρ) : G → A has residual pseudorepresentation D̄. In
particular, a representation (VA, ρA) ∈ Repd

G(A) has residual pseudorepresentation
D̄ when ψ(ρA) does.

We let CHG,D̄ denote the full subcategory of CHG (introduced in Section 1.1)
whose objects have residual pseudorepresentation D̄. The natural transformation

RepD̄ → CHG,D̄ (2.2.9)

arises from the Cayley–Hamilton representation structure on a representation
of Example 2.1.4. This natural transformation commutes with the induced-
pseudorepresentation functor ψ .
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We observe that RepD̄ parameterizes representations of G with residual
pseudorepresentation D̄. From [WE18a, Theorem 3.8] we know that RepD̄ and
Rep�D̄ admit natural algebraic models over Spec RD̄. By this we mean that there
exists a finite type affine scheme (respectively algebraic stack) over Spec RD̄

whose mD̄-adic completion is Rep�D̄ (respectively RepD̄). This implies that Rep�D̄
is an affine formal scheme and RepD̄ is a formal algebraic stack, both formally of
finite type over Spf RD̄.

This algebraic model arises from a canonical universal Cayley–Hamilton
representation of G with residual pseudorepresentation D̄, which we now define.

THEOREM 2.2.10. The category CHG,D̄ has a universal object (E D̄, ρ
u
: G →

E×D̄, Du
E D̄
: E D̄ → RD̄). In particular, E D̄ is a finitely generated RD̄-module. The

map ρu
: RD̄[G] → E D̄ is surjective and Du

E D̄
: E D̄ → RD̄ is a factorization of

the universal pseudodeformation Du
D̄ : G → RD̄ through E D̄.

Proof. See [WE18a, Proposition 3.6].

Another way of stating the final sentence of Theorem 2.2.10 is that the induced
pseudorepresentation ψ(ρu) := Du

E D̄
◦ ρu
: G → RD̄ of the universal Cayley–

Hamilton representation ρu (with residual pseudorepresentation D̄) is equal to
the universal deformation Du

D̄ : G → RD̄ of D̄.
The following theorem is proved using (2.2.9) and the universal property of ρu .

THEOREM 2.2.11 [WE18a, Theorem 3.7]. There is an isomorphism of
topologically finite type formal algebraic stacks (respectively formal schemes) on
TfgZp

,

RepD̄
∼

−→ RepE D̄ ,D
u
ED̄
, Rep�D̄

∼

−→ Rep�E D̄ ,D
u
ED̄
.

COROLLARY 2.2.12. Let A ∈ TfgZp
. Let D : G → A be a pseudorepresentation.

Then there exists a Cayley–Hamilton algebra over A that induces it.

Proof. By Theorem 2.2.5, we reduce to the case that D has a fixed residual
pseudorepresentation and deduce that there exists a homomorphism RD̄ → A.
Then the Cayley–Hamilton representation

(E D̄ ⊗RD̄
A, ρu

⊗RD̄
A : G → E D̄ ⊗RD̄

A, Du
E D̄
⊗RD̄

A)

of G over A induces D.
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2.3. Stability. Let Modfin
Zp[G] ⊂ModZp[G] be the full subcategory whose objects

have finite cardinality.

DEFINITION 2.3.1. A condition on Modfin
Zp[G] is a full subcategory C ⊂ Modfin

Zp[G].
We say an object of Modfin

Zp[G] satisfies condition C or has C if the object is in C.
A condition C is stable if it is preserved under isomorphisms, subquotients, and

finite direct sums in Modfin
Zp[G]. In other words, C is stable if

(1) for every object A in C and all isomorphisms f : A → B in Modfin
Zp[G], the

object B is also in C, and

(2) for every object A in C and all morphisms f : A → B and g : C → A in
Modfin

Zp[G], the kernel of f and cokernel of g are in C, and

(3) for every finite collection of objects A1, . . . , An of C, the direct sum A1 ⊕

· · · ⊕ An in Modfin
Zp[G] is an object of C.

EXAMPLE 2.3.2. Let H ⊂ G be a normal subgroup. Let C ⊂ Modfin
Zp[G] be the

full subcategory of objects where the G action factors through the quotient G →
G/H . Then C is stable (as C ∼= Modfin

Zp[G/H ]).

EXAMPLE 2.3.3. Let H1, . . . , Hn ⊂ G be subgroups, and, for i = 1, . . . , n, let
Ci ⊂ Modfin

Zp[Hi ]
be a condition. Then there is a condition C ⊂ Modfin

Zp[G] defined
by the Cartesian square

C //

��

∏n
i=1 Ci

��
Modfin

Zp[G]
// ∏n

i=1 Modfin
Zp[Hi ]

.

In other words, an object M ∈Modfin
Zp[G] has C if and only if the restriction M |Hi ∈

Modfin
Zp[Hi ]

has Ci for all i = 1, . . . , r . If all Ci are stable, then this C is stable.

For examples of conditions C that are of use in arithmetic, see Section 5. For
the rest of this section, we fix a stable condition C.

THEOREM 2.3.4 (Ramakrishna). Let A be a complete commutative Noetherian
local Zp-algebra and let VA be a finitely generated free A-module with an A-
linear G-action. Then there exists a maximal quotient A � AC such that for an
commutative local A-algebra B of finite cardinality, the Zp[G]-module VA ⊗A B
satisfies C if and only if A→ B factors through AC .

https://doi.org/10.1017/fms.2019.19 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.19


Deformation conditions for pseudorepresentations 15

Proof. This follows immediately from [Ram93, Theorem 1.1].

LEMMA 2.3.5. The inclusion functor C → Modfin
Zp[G] has a left adjoint (−)C :

Modfin
Zp[G] → C. For V ∈ Modfin

Zp[G], the functor V 7→ V C has the following
additional properties:

(1) there is a quotient map fV : V � V C of Zp[G]-modules.

(2) for W ∈ C, the adjunction isomorphism

HomC(V C,W ) ∼= HomModfin
Zp [G]

(V,W )

is given by g 7→ g ◦ fV .

(3) if A is a commutative Zp-algebra and V ∈ ModA[G] as well, then V C
∈

ModA[G].

Proof. Let V ∈ Modfin
Zp[G]. First we construct the quotient map fV : V → V C .

Since V has finite cardinality, there are a finite number of quotients of V . Let {V1,

. . . , Vn} be the (possibly empty) set all of quotients of V that have property C.
Define fV : V → V C to be the quotient by the kernel of V →

⊕n
i=1 Vi . Then V C

is isomorphic to a submodule of
⊕n

i=1 Vi . Since C is closed under isomorphisms,
subobjects, and finite direct sums, we see that V C satisfies C. By definition, any
of the quotients V � Vi factor through fV , and this factoring is unique since fV

is an epimorphism.
We now let W ∈ C and show that the map given in (2) is an isomorphism.

Let W ∈ C and let f : V → W be a homomorphism of Zp[G]-modules. Let
W ′
= V/ ker( f ), let f ′ : V → W ′ be the quotient map, and let f ′′ : W ′

→ W
be the injection induced by f . Since W ′ is isomorphic to a submodule of W , we
have W ′

∈ C. Then f ′ : V → W ′ must be one of the quotient maps V → Vi , so
f ′ factors uniquely through fV , that is, there is a unique morphism g′ : V C

→ W ′

such that f ′ = g′◦ fV . Now let g : V C
→ W be g = f ′′◦g′; a simple computation

shows that this assignment f 7→ g is inverse to the map given in (2).
Now we show that V 7→ V C is a functor. Let h : V → V ′ be a Zp[G]-module

homomorphism. Then fV ′ ◦h ∈ HomModfin
Zp [G]

(V, (V ′)C), so by (2) there is a unique

map hC
: V C
→ (V ′)C such that fV ′ ◦ h = hC

◦ fV . This shows that V 7→ V C is a
functor, and, together with (2), this implies that it is left adjoint to the inclusion.

Finally, (3) follows from the functoriality. Indeed, let a 7→ ma denote the
structure map A→ End(V ). Then there is a unique map mC

·
: A→ End(V C) such

that mC
a ◦ fV = fV ◦ ma for all a ∈ A. The fact that mC

·
is a ring homomorphism

follows from the fact that fV is an epimorphism; for example, if a, a′ ∈ A,
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we have
mC

aa′ ◦ fV = fV ◦ maa′ = fV ◦ ma ◦ ma′

and
mC

a ◦ mC
a′ ◦ fV = mC

a ◦ fV ◦ ma′ = fV ◦ ma ◦ ma′,

from which we conclude mC
aa′ = mC

a ◦ mC
a′ .

2.4. Constructions. In what follows, we treat finite-cardinality left E D̄-
modules as objects of Modfin

Zp[G] via the map Zp[G] → E D̄. By Proposition 2.1.7,
E D̄ is finite as a RD̄-module. In particular, for any i > 1, the Zp[G]-module
E D̄/m

i
D̄ E D̄ has finite cardinality, and thus is an object of Modfin

Zp[G].

LEMMA 2.4.1. For any i > 1, there is a unique E D̄-module quotient
E D̄/m

i
D̄ E D̄ � EC

D̄(i) such that EC
D̄(i) has C and such that any E D̄-

module quotient E D̄/m
i
D̄ E D̄ � W where W has C factors uniquely through

E D̄/m
i
D̄ E D̄ � EC

D̄(i).

Proof. By Theorem 2.2.10, RD̄[G] → E D̄ is surjective, so the lattice of E D̄-
quotients and RD̄[G]-quotients of E D̄/m

i
D̄ E D̄ are identical. By Lemma 2.3.5, we

can take EC
D̄(i) = (E D̄/m

i
D̄ E D̄)

C .

LEMMA 2.4.2. For any i > 1, there is a canonical isomorphism EC
D̄(i + 1)⊗RD̄

RD̄/m
i
D̄

∼

→ EC
D̄(i).

Proof. Let E ′ = EC
D̄(i + 1)⊗RD̄

RD̄/m
i
D̄. We show that E ′ satisfies the universal

property of Lemma 2.4.1. The composite

E D̄/m
i+i
D̄ E D̄ � EC

D̄(i + 1)� E ′

factors through E D̄/m
i
D̄ E D̄, so E ′ is a quotient of E D̄/m

i
D̄ E D̄. Since EC

D̄(i + 1)
has C and E ′ is a quotient of it, we see that E ′ has C.

Now suppose that E D̄/m
i
D̄ E D̄ � W where W has C. By the universal property

of EC
D̄(i + 1), the composite

E D̄/m
i+1
D̄ E D̄ � E D̄/m

i
D̄ E D̄ � W

factors uniquely through a map EC
D̄(i + 1) � W . Since W is a R/mi

D̄-module,
this factors uniquely through E ′ � W .

LEMMA 2.4.3. For any i > 1, the module quotient E D̄/m
i
D̄ E D̄ � EC

D̄(i) has the
following properties.
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(1) Let N be a left E D̄/m
i
D̄ E D̄-module that has finite cardinality. Then N satisfies

condition C as a Zp[G]-module if and only if every map of left E D̄/m
i
D̄ E D̄-

modules E D̄/m
i
D̄ E D̄ → N factors through EC

D̄(i).

(2) There is a natural right action of E D̄/m
i
D̄ E D̄ on EC

D̄(i), making EC
D̄(i) a

quotient RD̄-algebra of E D̄.

(3) An E D̄/m
i
D̄ E D̄-module N that has finite cardinality satisfies condition C if

and only if its E D̄-action factors through EC
D̄(i).

Proof. (1) If N satisfies C, then so does the image of any E D̄/m
i
D̄ E D̄ → N , so

this arrow factors through EC
D̄(i) by Lemma 2.4.1. Conversely, if every such arrow

factors through EC
D̄(i), then because of the finiteness assumption on N there exists

some m ∈ Z>1 and a surjective map (EC
D̄(i))

⊕m � N . Consequently N satisfies C.
(2) Choose z ∈ E D̄ and consider the composite morphism of left E D̄-modules

(they are also in Modfin
Zp[G])

E D̄/m
i
D̄ E D̄

( )·z
−→ E D̄/m

i
D̄ E D̄ −→ EC

D̄(i),

where the leftmost arrow is right multiplication by z. The composite must factor
through EC

D̄(i) by (1). The resulting map EC
D̄(i)→ EC

D̄(i) gives the desired right
action of z on EC

D̄(i) and shows that EC
D̄(i) is an RD̄-algebra.

(3) This follows directly from (1) and (2) in light of the following general fact:
for an algebra E and a left E-module M , the E-action on M factors through a
quotient algebra E � Q if and only if every morphism of left E-modules E→ M
factors through Q. This follows from the fact that any such E → M is of the form
x 7→ x · m for some m ∈ M .

By Lemmas 2.4.2 and 2.4.3(2), we have an inverse system {EC
D̄(i)} of RD̄-

algebra quotients of E D̄. In particular, we have the RD̄-algebra quotient

E D̄ � lim
←−

i

EC
D̄(i). (2.4.4)

This quotient almost gives the algebra we are looking for. However, we need to
produce, from this algebra quotient, a Cayley–Hamilton algebra. The following
lemma gives the general procedure for doing this. A special case of this lemma
was employed in [WWE18a, WWE17a].

LEMMA 2.4.5. Let (E, D : E → R) be a Cayley–Hamilton R-algebra. Let I ⊂
E be a two-sided ideal. Let J ⊂ R be the ideal generated by the nonconstant

https://doi.org/10.1017/fms.2019.19 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.19


P. Wake and C. Wang-Erickson 18

coefficients of the polynomials in the set

{DR[t](1− xt) | x ∈ I } ⊂ R[t].

Let E ′ := E/(I, J ) and R′ := R/J , and let f : R → R′ and g : E → E ′ be the
quotient maps.

(1) There exists a unique Cayley–Hamilton pseudorepresentation D′ : E ′ → R′

such that the pair ( f, g) gives a morphism (E, D) → (E ′, D′) of Cayley–
Hamilton algebras.

(2) For any Cayley–Hamilton representation ρ : (E, D)→ (E A, DA : E A→ A),
the map E → E A sends I to 0 if and only if ρ factors through (E, D) →
(E ′, D′).

Proof. (1) The uniqueness follows from (2). To show existence, we start with the
pseudorepresentation D̃ := ( f ◦ D) : E ⊗R R′ → R′. To construct D′, we use
Chenevier’s notion of kernel of a pseudorepresentation [Che14, Section 1.17].
It is defined by the following universal property: there is an R′-algebra quotient
h : E ⊗R R′ → (E ⊗R R′)/ ker(D̃) and a pseudorepresentation D̃′ : (E ⊗R

R′)/ ker(D̃)→ R′ such that D̃ = D̃′ ◦ h, and ker(D̃) is the maximal ideal with
this property.

There is an equality

ker(D̃) = {x ∈ E ⊗R R′ | D̃R′[t](1− xyt) = 1 ∀y ∈ E ⊗R R′}. (2.4.6)

This is proven in [CS16, Lemma 2.1.2]. (This lemma was removed from the
final version [CS19], having become unnecessary.) Their proof uses Amitsur’s
formula [Ami80] for pseudorepresentations [Che14, (1.5)], together with the fact
that, for any x, y ∈ E , DR[t](1− xyt) = DR[t](1− yxt), which can be proven in
the same way as for usual determinants in linear algebra.

By the definition of J , we have D̃R′[t](1−(x⊗1)t) = 1 for all x ∈ I , and hence
D̃R′[t](1 − (x ⊗ 1)yt) = 1 for all x ∈ I and y ∈ E ⊗R R′, since I is a two-sided
ideal. This implies that I ⊗R R′ ⊂ ker(D̃). By the property of ker(D̃), we have
D′ : E ′→ R′ such that f ◦ D = D′ ◦ g.

(2) If ρ factors through (E, D) → (E ′, D′), then the map E → E A factors
through E → E ′ → E A, so E → E A sends I to 0. Conversely, let ρ : (E,
D) → (E A, DA) be given by f A : R → A and gA : E → E A, and assume that
gA(I ) = 0. To show that ρ factors through (E, D)→ (E ′, D′), it suffices to show
that f A(J ) = 0. For any x ∈ E , the naturality of D implies that the image of
DR[t](1 − xt) in A[t] under f A is given by DA[t](1 − xt) = ( f A ◦ D)A[t](1 − xt).
Hence it is enough to show that, for x ∈ I , we have ( f A ◦ D)A[t](1 − xt) = 1.

https://doi.org/10.1017/fms.2019.19 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.19


Deformation conditions for pseudorepresentations 19

However, since ρ is a morphism of Cayley–Hamilton algebras, we have

( f A ◦ D)A[t](1− xt) = (DA ◦ gA)A[t](1− xt) = (DA)A[t](gA(1− xt))
= (DA)A[t](1) = 1,

where we use the fact that gA(x) = 0.

EXAMPLE 2.4.7. Let (E, D) be a Cayley–Hamilton R-algebra and let I = J E
with J ⊂ R being an ideal. Then the Cayley–Hamilton quotient (E ′, D′) of (E,
D) by I has E ′ = E/J E and scalar ring R′ = R/J . In other words, (E ′, D′) =
(E/J E, D ⊗R R/J : E/J E → R/J ).

DEFINITION 2.4.8. With the notation of the lemma, we call (E ′, D′) the Cayley–
Hamilton quotient of (E, D) by I .

DEFINITION 2.4.9. Let K C
⊂ E D̄ be the kernel of the algebra homomorphism

(2.4.4). Let (EC
D̄, DEC

D̄
) denote the Cayley–Hamilton quotient of (E D̄, Du

E D̄
) by

K C , and let RC
D̄ denote the scalar ring of EC

D̄.

2.5. Extending condition C to pseudorepresentations and Cayley–Hamilton
representations. We extend C to A[G]-modules that may not have finite
cardinality in the following way.

DEFINITION 2.5.1. Let C be a stable condition on objects of Modfin
Zp[G]. Let

(A,mA) be a complete commutative Noetherian local Zp-algebra. For an A[G]-
module M that is finitely generated as an A-module, we say that M satisfies
condition C when M/mi

A M satisfies C for all i > 1.

Note that, for (A,mA) and M as in the definition, the canonical map M →
lim
←−i

M/mi
A M is an isomorphism. Using this, one can check that this extension of

C is stable in the same sense as Definition 2.3.1. We use this extension of condition
C without further comment.

Now we give the definition of condition C for Cayley–Hamilton
representations.

DEFINITION 2.5.2. Let (A,mA) be a complete commutative Noetherian local
Zp-algebra and let (E, ρ, D) be a Cayley–Hamilton representation of G with
scalar ring A and residual pseudorepresentation D̄. We say that (E, ρ, D) satisfies
condition C if E satisfies condition C as an A[G]-module. (Note that E is finitely
generated as an A-module by Proposition 2.1.7.)
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We let CHC
G,D̄ denote the full subcategory of CHG,D̄ whose objects satisfy

condition C.

We can be confident that this notion behaves well by finding a universal object.

THEOREM 2.5.3. The Cayley–Hamilton representation (EC
D̄, DEC

D̄
: EC

D̄ → RC
D̄)

of Definition 2.4.9 is the universal object in CHC
G,D̄.

Proof. By the definition of (EC
D̄, DEC

D̄
: EC

D̄ → RC
D̄), we see that the map E D̄ →

EC
D̄ sends K C to 0. By Lemma 2.4.3, we see that (EC

D̄, DEC
D̄
: EC

D̄ → RC
D̄) satisfies

condition C. We now show that it has the universal property.
Let A be a complete commutative Noetherian local Zp-algebra, and let

(E, ρ, D) be a Cayley–Hamilton representation with scalar ring A and residual
pseudorepresentation D̄. We have to show that (E, ρ, D) satisfies condition C if
and only if the map of Cayley–Hamilton algebras (E D̄, Du

E D̄
)→ (E, D) induced

by the universal property of (E D̄, ρ
u, Du

E D̄
) factors through (EC

D̄, DEC
D̄
).

For any i > 1, E D̄ → E/mi
A E factors through E D̄/m

i
D̄ E D̄. (Recall that a local

homomorphism of scalar rings RD̄ → A is implicit in (E D̄, Du
E D̄
)→ (E, D).)

By Lemma 2.4.3, (E, ρ, D) satisfies C if and only if E D̄/m
i
D̄ E D̄ → E/mi

A E
factors through EC

D̄(i) for every i > 1. Equivalently, (E, ρ, D) satisfies C if and
only if E D̄ → E maps K C to 0. By Lemma 2.4.5, K C maps to 0 in E D̄ → E if
and only if (E D̄, Du

E D̄
)→ (E, D) factors through (EC

D̄, DEC
D̄
).

Following the pattern of [WWE18a, Definition 5.9.1], we define condition C
on pseudorepresentations.

DEFINITION 2.5.4. Let A be an complete commutative Noetherian local
Zp-algebra. Let D : G → A be a pseudorepresentation with residual
pseudorepresentation D̄. Then D satisfies condition C provided that there
exists a Cayley–Hamilton representation (E, ρ, D′) satisfying condition C such
that D = ψ(ρ) := D′ ◦ ρ.

We define the C-pseudodeformation functor PsDefCD̄ : ĈW (F)→ Sets by

PsDefCD̄(A) = {pseudodeformations D : G → A of D̄ satisfying C}.

THEOREM 2.5.5. The functor PsDefCD̄ is represented by RC
D̄.

Proof. Let A ∈ ĈW (F), and let D ∈ PsDefD̄(A). By Theorem 2.2.5, there is unique
RD̄ → A such that D ∼= Du

D̄ ⊗RD̄
A. We have to show that D ∈ PsDefCD̄(A) if and

only if RD̄ → A factors through RD̄ � RC
D̄.
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If RD̄ → A factors through RD̄ � RC
D̄, then the Cayley–Hamilton

representation

(EC
D̄ ⊗RC

D̄
A, ρC

⊗RD̄
A : G → (EC

D̄ ⊗RC
D̄

A)×, DEC
D̄
⊗RC

D̄
A)

induces D via D = (RC
D̄ → A) ◦ DEC

D̄
and satisfies condition C by Theorem 2.5.3.

Consequently D satisfies C.
Now assume D satisfies condition C, that is, there exists a Cayley–Hamilton

representation (E, ρ, D′) satisfying C such that D = D′ ◦ ρ. By Theorem 2.5.3,
there exists a morphism of Cayley–Hamilton algebras (EC

D̄, DEC
D̄
) → (E, D)

inducing ρ. In particular, the implicit morphism of scalar rings RC
D̄ → A factors

RD̄ → A.

2.6. Modules with Cayley–Hamilton structure. We introduce the notion of
Cayley–Hamilton G-module.

DEFINITION 2.6.1. Let A ∈ ĈW (F). A Cayley–Hamilton G-module over A is the
data of a Cayley–Hamilton representation (E, ρ, D) of G with scalar ring A, and
an E-module N . We consider N as a A[G]-module via the map ρ : A[G] → E .
We often refer to a Cayley–Hamilton G-module simply by the letter N , and call
(E, D) the Cayley–Hamilton algebra of N . We say N is faithful if it is faithful as
E-module.

EXAMPLE 2.6.2. If N is an A[G]-module and there is a Cayley–Hamilton
pseudorepresentation D : EndA(N )→ A, then the canonical action of EndA(N )
on N makes N a faithful Cayley–Hamilton G-module with Cayley–Hamilton
algebra (EndA(N ), ρ, D), where ρ : G → EndA(N ) is the action map.

EXAMPLE 2.6.3. As a special case of the previous example, suppose N = N1 ⊕

N2 as A-modules such that EndA(Ni) = A (that is, the only endomorphisms are
scalars). Note that N1 and N2 need not be free A-modules (for instance, they could
be dualizing A-modules with A non-Gorenstein; or, if A = Zp[[T ]], they could be
the maximal ideal). Then EndA(N ) has the structure of A-GMA (B,C,m) as in
Example 3.1.7, where B = HomA(N1, N2) and C = HomA(N2, N1), and m( f,
g) = f ◦ g (see Section 3, below, for a discussion of GMAs). In particular, there
is a natural Cayley–Hamilton pseudorepresentation D : EndA(N )→ A.

This example appears frequently in the study of pseudorepresentations
associated to ordinary modular forms, where one takes A to be a Hecke algebra,
and N to be the p-adic Tate module of a modular Jacobian, in which case N
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is a direct sum of a free A-module of rank 1 and a dualizing A-module (see
[Maz77, WWE18a, WWE17a, WWE17b]).

THEOREM 2.6.4. Let N be a faithful Cayley–Hamilton G-module with Cayley–
Hamilton A-algebra (E, D). Then N satisfies condition C as an A[G]-module if
and only if (E, ρ, D) satisfies condition C as a Cayley–Hamilton representation.

Proof. By Definition 2.5.1, it suffices to prove the theorem in the case that A is
Artinian and local. Choose i > 1 such that mi

D̄ · A = 0. Let D̄ : G → F be the
residual pseudorepresentation of D ◦ ρ : G → A.

By Theorem 2.2.10, there is a distinguished morphism of Cayley–Hamilton
algebras (E D̄, Du

E D̄
)→ (E, D). Then the action map Zp[G] → EndA(N ) factors

as
Zp[G] → E D̄ → E D̄/m

i
D̄ E D̄ → E → EndA(N ). (2.6.5)

We claim that the following are equivalent:

(1) The Zp[G]-module N satisfies C;

(2) the map E D̄/m
i
D̄ E D̄ → EndA(N ) factors through EC

D̄(i);

(3) the map E D̄ → EndA(N ) sends K C to 0;

(4) the map E D̄ → E sends K C to 0;

(5) the morphism of Cayley–Hamilton algebras (E D̄, Du
E D̄
) → (E, D) factors

through (EC
D̄, DEC

D̄
);

(6) the Cayley–Hamilton representation (E, D) satisfies condition C.

(Recall that K C was defined in Definition 2.4.9.) The equivalences are proven as
follows:

(1)⇐⇒ (2): Lemma 2.4.3(3).

(2)⇐⇒ (3): From the definition of K C and (2.6.5).

(3)⇐⇒ (4): Since N is faithful, the map E → EndA(N ) is injective.

(4)⇐⇒ (5): Lemma 2.4.5.

(5)⇐⇒ (6): Theorem 2.5.3.
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2.7. Formal moduli of representations with C. We generalize
Ramakrishna’s result (Theorem 2.3.4) to any family of integral p-adic
representations of G.

THEOREM 2.7.1. There exists a unique closed formal substack (respectively
closed formal subscheme)

RepC,d
G ⊂ Repd

G, (respectively Rep�,C,dG ⊂ Rep�,dG )

characterized by the following property. For any commutative local Zp-algebra
B of finite cardinality and free rank d B-module VB with a B-linear G-action
(respectively and fixed basis), the corresponding B-point of Repd

G lies in RepC,d
G

(respectively of Rep�,dG lies in Rep�,C,dG ) if and only if VB has C.

Proof. It suffices to consider the case of Rep�,dG . Indeed, since condition C does
not depend on the choice of basis, the closed subscheme Rep�,C,dG ⊂ Rep�,dG
descends to a closed locus in Repd

G .
By Theorem 2.2.5, we may consider a fixed residual pseudorepresentation D̄

and produce Rep�,CD̄ ⊂ Rep�D̄ . We define Rep�,CD̄ via the pullback diagram

Rep�,CD̄
//

��

Rep�D̄

o

��
Rep�EC

D̄
,DEC

D̄

// Rep�E D̄ ,D
u
ED̄

where the right vertical arrow is the isomorphism in Theorem 2.2.11.
Let B be an local Zp-algebra of finite cardinality. By definition, a point

VB ∈ Rep�D̄(B) lies in Rep�,CD̄ (B) if and only if the map (E D̄, Du
E D̄
) →

(EndB(VB), det) factors through (EC
D̄, DEC

D̄
). By Theorem 2.5.3, this occurs if

and only if the Cayley–Hamilton representation (EndB(VB), det) has C, which,
by Theorem 2.6.4, is if and only if VB has C. By Lemma 2.2.1, this characterizes
Rep�,CD̄ .

COROLLARY 2.7.2. Let A ∈ TfgZp
and (VA, ρA) ∈ Repd

G(A). There exists a
unique quotient morphism A� AC in TfgZp

such that, for any local A-algebra B
of finite cardinality, the object VA ⊗A B of Modfin

Zp[G] satisfies C if and only if the
homomorphism A→ B factors through AC .
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Proof. The quotient A→ AC is defined by the pullback square

Spec(AC) //

��

RepC,d
G

��
Spec(A) // Repd

G .

The characterizing property follows from the characterizing property of RepC,d
G .

3. Deformation conditions for generalized matrix algebras

For the remainder of the paper, we assume that the pseudorepresentation D̄ is
multiplicity-free (see Definition 3.2.1). Under this assumption, as was first noticed
by Chenevier [Che14], the universal Cayley–Hamilton algebra with residual
pseudorepresentation D̄ admits the additional structure of a generalized matrix
algebra (GMA). Generalized matrix algebras, which were first introduced by
Bellaı̈che and Chenevier [BC09], are a particularly concrete and explicit type of
Cayley–Hamilton algebra.

In this section, we recall in Section 3.1 the theory of generalized matrix
algebras and in Section 3.2 why the universal Cayley–Hamilton algebra admits
this structure. In Section 3.3, we exploit this extra structure to prove that the
universal Cayley–Hamilton algebra with property C, constructed in Section 2,
is characterized by representations. This is the main new result of the section.
Explicitly, in the multiplicity-free case, we show that, if every representation
with C factors through a quotient of universal Cayley–Hamilton algebra, then that
quotient must be universal Cayley–Hamilton algebra with property C.

The results of Sections 3.1 and 3.2 will also be used in Section 4, where we
exploit the GMA structure to compute the Cayley–Hamilton algebra with property
C in terms of group cohomology.

3.1. Generalized matrix algebras and their adapted representations. A
generalized matrix algebra is a particular kind of Cayley–Hamilton algebra with
extra data. We learned this notion from Bellaı̈che–Chenevier [BC09].

DEFINITION 3.1.1 [BC09, Section 1.3]. Let R be a ring. A generalized matrix
algebra over R (or an R-GMA) is the data of:

(1) an R-algebra E that is finitely generated as an R-module;

(2) a set of orthogonal idempotents e1, . . . , er ∈ E such that
∑

i ei = 1; and
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(3) a set of isomorphisms of R-algebras φi : ei Eei
∼

→ Mdi (R) for i = 1, . . . , r .

We call E = ({ei}, {φi}) the data of idempotents or GMA structure of E , and write
the R-GMA as (E, E). We call the list of integers (d1, . . . , dr ) the type of (E, E).
These data are required to satisfy the condition that the function TrE : E → A
defined by

TrE(x) :=
r∑

i=1

tr(φi(ei xei))

is a central function, that is, TrE(xy) = TrE(yx) for all x, y ∈ E .
Given an R-GMA (E, E) and an R′-GMA (E ′, E ′), a morphism of GMAs ρ :

(E, E)→ (E ′, E ′) is the data of a ring homomorphism f : R→ R′ and morphism
of R-algebras ρ : E → E ′ such that E and E ′ are of the same type (d1, . . . , dr ),
we have g(ei) = e′i and f ◦ φi = φ

′

i ◦ g for i = 1, . . . , r .

EXAMPLE 3.1.2. The matrix algebra Md(R) comes with a natural R-GMA
structure E = (1, id : Md(R)

∼

→ Md(R)) of type (d). More generally, given any
ordered partition of d = d1 + · · · + dr of d , there is a natural R-GMA structure
Eblock on Md(R) of type (d1, . . . , dr ). Namely, the natural R-algebra map with
block-diagonal image

ν1 × · · · × νr : Md1(R)× · · · × Mdr (R) ↪→ Md(R)

induces Eblock = (ei = νi(1i), φi), where 1i ∈ Mdi (R) is the identity matrix, and
φi is the inverse to νi on its image ei Md(R)ei .

LEMMA 3.1.3. Given an R-GMA (E, E), there is a canonical Cayley–Hamilton
pseudorepresentation DE : E → R, such that TrDE = TrE . A morphism of R-
GMAs (E, E)→ (E ′, E ′) induces a morphism of Cayley–Hamilton algebras (E,
DE)→ (E ′, DE ′).

Proof. See [WE18a, Proposition 2.23]; its statement includes the first claim. The
second claim follows from examining the formula for DE given in [WE18a],
noting that a morphism of GMAs preserves the idempotents that are used to
specify DE .

This lemma gives a faithful embedding of the category of R-GMAs into the
category of R-Cayley–Hamilton algebras. We consider this embedding as an
inclusion. We extend the definition of Cayley–Hamilton representation to GMAs
as follows.
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DEFINITION 3.1.4. If (E ′, E ′) is a GMA, we refer to a morphism of
pseudorepresentations (E, D) → (E ′, DE ′) as a GMA representation of (E, D).
If (E, E) is another GMA, we call a GMA representation (E, DE)→ (E ′, DE ′)

adapted if the same data give a morphism of GMAs (E, E)→ (E ′, E ′).

LEMMA 3.1.5. Given an R-GMA (E, E) of type (d1, . . . , dr ), we can associate
to it the data of

(1) R-modules Ai, j for 1 6 i, j 6 r ,

(2) canonical isomorphisms Ai,i
∼

−→ R for 1 6 i 6 r , and

(3) R-module homomorphisms ϕi, j,k : Ai, j ⊗R A j,k → Ai,k for 1 6 i, j, k 6 r ,

such that (Ai, j , ϕi, j,k) completely determine (E, E) and there is an isomorphism
of R-modules

E
∼

−→


Md1(A1,1) Md1×d2(A1,2) · · · Md1×dr (A1,r )

Md2×d1(A2,1) Md2(A2,2) · · · Md2×dr (A2,r )

...
...

...
...

Mdr×d1(Ar,1) Md2(Ar,2) · · · Mdr (Ar,r )

 , (3.1.6)

Moreover, the collection of maps ϕi, j,k satisfies properties (UNIT), (COM), and
(ASSO) given in [BC09, Section 1.3.2], and there is a bijection between R-GMAs
of type (d1, . . . , dr ) and data (Ai, j , ϕi, j,k) satisfying (UNIT), (COM), and (ASSO).

Proof. This is explained in [BC09, Sections 1.3.1–1.3.6]. The association is given
as follows. Let Ei := φ

−1
i (δ1,1), where δ1,1 denotes the elementary matrix with 1

as (1, 1)th entry, and 0 otherwise. Define Ai, j := E j E Ei . The maps ϕi, j,k are
induced by the multiplication in E . In particular, note that φi induces a canonical
isomorphism Ai,i

∼

−→ R.

We will not spell out the bijection or the properties (UNIT), (COM), and
(ASSO) in general. Instead, we explain the content of the lemma in the case of
type (1, 1).

EXAMPLE 3.1.7. There is a bijection between R-GMAs (E, E) of type (1, 1) and
triples (B,C,m)where B,C are finitely generated R-modules and m : B⊗R C→
R is an R-module homomorphism, such that the squares
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B ⊗R C ⊗R B
1⊗(m◦ι)//

m⊗1
��

B ⊗R R

��

C ⊗R B ⊗R C 1⊗m //

(m◦ι)⊗1
��

C ⊗R R

��
R ⊗R B // B R ⊗R C // C

commute. Here ι : C⊗R B
∼

−→ B⊗R C is the isomorphism given by b⊗c 7→ c⊗b,
and the unlabeled maps are the R-action maps.

The R-GMA associated to a triple (B,C,m) is

E =

(
R B
C R

)
. (3.1.8)

This means that E = R⊕B⊕C⊕R as an R-module, and the multiplication on E
is given by 2× 2-matrix multiplication, but where the action maps R⊗R B → B,
R ⊗R C → C and the map m are used in place of the scalar multiplication. The
idempotents e1, e2 are given in this notation by e1 =

(
1 0
0 0

)
and e2 =

(
0 0
0 1

)
, and the

isomorphisms φi are given by the identifications
(

R 0
0 0

) ∼
−→ R and

(
0 0
0 R

) ∼
−→ R.

In the notation of the lemma, A1,2 = B and A2,1 = C , and the maps ϕi, j,k are
the action maps, except ϕ1,2,1 = m and ϕ2,1,2 = m ◦ ι. Indeed, the (UNIT) property
requires that the maps ϕi, j,k equal the action maps, unless (i, j, k) ∈ {(1, 2, 1), (2,
1, 2)}. The (ASSO) property is expressed by the commutative squares above, and
the (COM) property is that ϕ2,1,2 = ϕ1,2,1 ◦ ι.

EXAMPLE 3.1.9. In the foregoing example, setting m to be the zero map is always
a valid choice.

DEFINITION 3.1.10 [BC09, Definition 1.3.6]. Let A be a commutative R-algebra
and let (E, E) be an R-GMA of type (d1, . . . , dr ). Let d =

∑r
i=1 di and let

(Md(A), Eblock) be the A-GMA of type (d1, . . . , dr ) constructed in Example 3.1.2.
An adapted representation of (E, E), denoted ρ : (E, E) → Md(A) is a

morphism of GMAs ρ : (E, E) → (Md(A), Eblock). A pseudorepresentation
D : E⊗R A→ A is adapted to E if D = DE⊗R A. When the data of idempotents
E is understood, we say D is adapted instead of adapted to E .

Now fix (E, E) = (E, ({ei}, {φi})), an R-GMA of type (d1, . . . , dr ), and let
(Ai, j , ϕi, j,k) be the data associated to it by Lemma 3.1.5. We define a set-valued
functor on commutative R-algebras by

Rep�(E,E),GMA : A 7→ {Adapted representations ρ : (E, E)→ Md(A)}.
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There is an explicit presentation for Rep�(E,E),GMA as an affine Spec R-scheme as
follows.

THEOREM 3.1.11. The functor Rep�(E,E),GMA is represented by Spec S, where S is
an R-algebra quotient

Sym∗R

( ⊕
16i 6= j6r

Ai, j

)
� S

by the ideal generated by the set of all ϕ(b⊗c)−b⊗c, with b ∈Ai, j , c ∈A j,k and
ϕ = ϕi, j,k for all 1 6 i, j, k 6 r . In particular, S is a finitely generated R-algebra.

Moreover, for 1 6 i, j 6 r , the natural R-module maps Ai, j → S are split
injections of R-modules, inclusive of the case R

∼

→ Ai,i ↪→ S, which is the R-
algebra structure map of S. The universal adapted representation ρGMA : (E,
E)→ Md(S) is given by the isomorphism of (3.1.6) along with these R-module
injections. In particular, the R-algebra homomorphism E → Md(S) is injective.

Proof. See [BC09, Proposition 1.3.9] and its proof, as well as [BC09, Proposition
1.3.13] for the split injectivity.

By [WE18a, Proposition 2.23], any adapted representation of (E, E) is
compatible with DE . This determines a monomorphism Rep�(E,E),GMA ↪→ Rep�E,DE

,
which can easily be observed to be a closed immersion.

Let ρ� denote the universal object of Rep�E,DE
. Let Z(E) ⊂ GLd denote the

subgroup that stabilizes ρ�(ei Eei), for all i = 1, . . . , r , under the adjoint action
of GLd on Rep�E,DE

. This Z(E) is a torus of rank r .

PROPOSITION 3.1.12 [WE18a, Theorem 2.27]. For any R-GMA (E, E), the map
Rep�(E,E),GMA ↪→ Rep�E,DE

induces an isomorphism

[Rep�(E,E),GMA/Z(E)] ∼

−→ RepE,DE
(3.1.13)

of Spec R-algebraic stacks.

3.2. Residually multiplicity-free representations of profinite groups. Let
G be a profinite group satisfying the Φp finiteness condition, and let F be a finite
field of characteristic p with algebraic closure F.

By [WE18a, Corollary 2.9(2)], which is a mild strengthening of [Che14,
Theorem 2.16], for any pseudorepresentation D̄ : G → F, there is a unique
semisimple representation ρss

D̄ : G → GLd(F) such that D̄ = det ◦ρss
D̄ .
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DEFINITION 3.2.1. A residual pseudorepresentation D̄ : G → F is multiplicity-
free if ρss

D̄ ⊗F F has pairwise nonisomorphic simple factors, and each of
these factors is defined over F. Equivalently, ρss

D̄ is a direct sum of pairwise
nonisomorphic absolutely irreducible representations. A representation (VA,

A) ∈ Repd
G(A) is residually multiplicity-free if (VA, A) ∈ RepD̄(A) with D̄

multiplicity-free.

Note that when ρss
D̄ ⊗FF has distinct simple factors, then ρss

D̄ is multiplicity-free
after replacing F with a finite extension.

THEOREM 3.2.2. Let D̄ : G → F be multiplicity-free, and let (d1, . . . , dr ) be the
dimensions of the simple factors of ρss

D̄ . Let A be a Noetherian Henselian local
ring with residue field F, and let (E, ρ, D) Cayley–Hamilton representation over
A with residual pseudorepresentation D̄. Then there is an A-GMA structure E of
type (d1, . . . , dr ) on E such that D = DE .

Moreover, given a morphism (E, ρ, D) → (E ′, ρ ′, D′) of such objects, the
structures E and E ′ may be chosen so that the map (E, E) → (E ′, E ′) is a
morphism of GMAs.

Proof. The structure E is constructed in [Che14, Theorem 2.22(ii)], and it follows
from this construction that D = DE (see [WE18a, Theorem 2.27]). Moreover, the
construction only depends on the choice certain lifts of idempotents. If we first
choose the structure E = ({ei}, {φi}) on E , then the images of ei in E ′ will give a
choice of lifts of idempotents in E ′, and for the resulting GMA structure E ′, the
map (E, E)→ (E ′, E ′) is a morphism of GMAs.

For the rest of this section, we fix a pseudorepresentation D̄ : G → F that
is multiplicity-free. By Theorem 2.2.5, the ring RD̄ is Noetherian and complete
(and hence Henselian). By Theorem 3.2.2, we can and do fix a choice of A-GMA
structure ED̄ of type (d1, . . . , dr ) on E D̄ such that Du

E D̄
= DED̄

.

COROLLARY 3.2.3. Assume that D̄ is multiplicity-free, and let ED̄ be choice of
RD̄-GMA structure on E D̄ as in Theorem 3.2.2.

(1) There are isomorphisms

[Rep�(E D̄ ,ED̄),GMA/Z(ED̄)]
∼

−→ RepE D̄ ,D
u
ED̄

∼

−→ RepD̄

of stacks on TfgZp
.
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(2) Let B be a commutative Noetherian local Zp-algebra. Given an adapted
representation (E D̄, ED̄)→ Md(B), the map E D̄ → Md(B) is a compatible
representation of (E D̄, Du

E D̄
).

(3) Let (E, ρ, D) be a Cayley–Hamilton representation of G with residual
pseudorepresentation D̄. Then there is an A-GMA structure E on E A such
that DE = D and such that the map (E D̄, DED̄

)→ (E, DE) is adapted.

REMARK 3.2.4. Let (E, E) be an R-GMA where R ∈ TfgZp
is local. Let S be

the R-algebra from Theorem 3.1.11 so that Rep�(E,E),GMA = Spec(S). Restricting
the functor Rep�(E,E),GMA to the subcategory TfgR of the category of R-algebras,
we obtain an affine formal scheme Spf(Ŝ), where Ŝ is the mR S-adic completion
of S. We also denote Spf(Ŝ) by Rep�(E,E),GMA, abusing notation. This is how we
consider [Rep�(E D̄ ,ED̄),GMA/Z(ED̄)] as a formal stack on TfgZp

.

Proof. Statement (1) follows from Proposition 3.1.12 and Theorem 2.2.11, while
(2) follows from the statement of Theorem 3.2.2 that Du

E D̄
= DED̄

. Statement (3)
follows from the second part of Theorem 3.2.2.

LEMMA 3.2.5. Assume that D̄ is multiplicity-free. Let (E D̄, Du
E D̄
)→ (E, D) be

a morphism of Cayley–Hamilton algebras, where E is an R-algebra.

(1) For any nonzero x ∈ E, there is a commutative local R-algebra B of finite
cardinality and a compatible representation ρB : E → Md(B) such that
ρB(x) 6= 0.

(2) Let (E D̄, Du
E D̄
) → (E ′, D′) be another morphism of Cayley–Hamilton

algebras, and assume that E D̄ → E and E D̄ → E ′ are surjective. If, for
all B as in (1) and all compatible representations ρB : E D̄ → Md(B), the
map ρB factors through E if and only if it factors through E ′, then there is a
canonical isomorphism (E, D)

∼

−→ (E ′, D′) of Cayley–Hamilton algebras.

Proof. Since D̄ is multiplicity-free, we may fix a GMA structure ED̄ on E D̄ as
in Theorem 3.2.2. By Corollary 3.2.3(3), this gives a GMA structure E on E
such that (E D̄, Du

E D̄
)→ (E, D) induces a morphisms of GMAs (E D̄, ED̄)→ (E,

E), and similarly for (E ′, D′). By Corollary 3.2.3(3) we may work with adapted
representations of these GMAs in the place of compatible representations of the
Cayley–Hamilton algebras. We do this for the remainder of the proof.

(1) By Theorem 3.1.11 and Remark 3.2.4, there is Ŝ ∈ TfgR such that
Rep�(E,E),GMA = Spf(Ŝ) and, moreover, E ↪→ Md(S) splits as an R-module map.
Therefore, ρGMA : E → Md(Ŝ) remains injective.
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Let x ∈ E be a nonzero element, so ρGMA(x) 6= 0. Let y ∈ Ŝ be a nonzero
entry in the matrix ρGMA(x). By Lemma 2.2.1, there is a commutative local R-
algebra B of finite cardinality and an R-algebra homomorphism f : Ŝ → B
such that f (y) 6= 0. Then the composite f ◦ ρGMA : E → Md(B) is an adapted
representation such that ( f ◦ ρGMA)(x) 6= 0.

(2) Since the maps (E D̄, Du
E D̄
) → (E, D) and (E D̄, Du

E D̄
) → (E ′, D′) are

morphisms of pseudorepresentations and the maps g : E D̄→ E and g′ : E D̄→ E ′

are surjective, it suffices to show ker(g) = ker(g′). Assume for a contradiction
that there exists x ∈ ker(g) with x 6∈ ker(g′). Since g′(x) 6= 0, part (1)
implies that there is a commutative local R-algebra B of finite cardinality and
a compatible representation ρ ′B : E ′ → Md(B) such that ρ ′B(g

′(x)) 6= 0. The
adapted representation ρ̃B = ρ ′B ◦ g′ : E D̄ → Md(B) factors through E ′, so it
must factor through E by assumption. This implies that ρ̃B = ρB ◦ g for some
adapted representation ρB of E . But then

0 = ρB(g(x)) = ρ̃B(x) = ρ ′B(g
′(x)) 6= 0

a contradiction.

3.3. Condition C in the residually multiplicity-free case. Let G be a
profinite group satisfying the Φp finiteness condition. Fix a stable condition C ⊂
Modfin

Zp[G] as in Definition 2.3.1 and a residual pseudorepresentation D̄ : G → F.
By Theorem 2.5.3, there is a universal Cayley–Hamilton algebra with condition C,
denoted (EC

D̄, DEC
D̄
). In the case that D̄ is multiplicity-free, the following theorem

gives an alternate characterization of (EC
D̄, DEC

D̄
).

THEOREM 3.3.1. Assume that D̄ is multiplicity-free.

(1) Let B be a commutative local RD̄-algebra of finite cardinality. Let ρB : (E D̄,

Du
E D̄
) → Md(B) be a compatible representation, and let VB

∼= Bd denote
the corresponding object of Modfin

Zp[G]. Then VB satisfies C if and only if ρB

factors through EC
D̄.

(2) The property of (1) characterizes the quotient E D̄ → EC
D̄.

Proof. Part (1) follows from Theorems 2.6.4 and 2.5.3. Part (2) is immediate from
Lemma 3.2.5(2).

When D̄ is not multiplicity-free, we only know how to characterize EC
D̄ by

Theorem 2.5.3; compare [BC09, Section 1.3.4].
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This theorem furnishes a convenient way to prove that, in certain cases
where a pseudorepresentation comes from a representation, property C for the
pseudorepresentation is related to property C for a representation inducing it.

COROLLARY 3.3.2. Let D̄ be multiplicity-free with ρ̄ss
D̄ = ρ̄1 ⊕ · · · ρ̄r over F,

where the ρ̄i are absolutely irreducible and pairwise nonisomorphic of dimension
di . For i = 1, . . . , r , let ρi : G → Mdi (A) be a deformation of ρ̄i , and let D =
ψ(ρ1⊕· · ·⊕ρr ). Then D has C if and only if there are deformations ρ ′i of ρ̄i with
C for i = 1, . . . , r such that D = ψ(ρ ′1 ⊕ · · · ⊕ ρ

′

r ).

Proof. If D = ψ(ρ ′1 ⊕ · · · ⊕ ρ
′

r ) for such ρ ′i , then its clear that D has C. Now
assume D has C, so, by definition, there is a Cayley–Hamilton representation (E,
ρ, D′) of G that has C such that D = D′ ◦ρ. Since D̄ is multiplicity-free, we may
assume that D′ = DE for some GMA structure E = ({ei}, {φi}) on E such that
ρ ′i = eiρei : G → Mdi (A) is a deformation of ρ̄i . Replacing E by the image of
A[G] → E if necessary, we may assume that the maps ρi, j given by the GMA
structure are surjective.

Now, the fact that D = ψ(ρ1 ⊕ · · · ⊕ ρr ) implies that φi, j,k = 0 for all triples
i, j, k of distinct integers with 1 6 i, j, k 6 r (see [BC09, Section 1.5.1]). Then
the sum of projection maps

E →
r⊕

i=1

ei Eei =

r⊕
i=1

Mdi (A)

is an A-algebra homomorphism. The resulting map

G → E → Md(A)

is ρ ′ :=
⊕r

i=1 ρ
′

i . Since (E, D′) has C, the map E D̄ → E factors through EC
D̄. This

implies that ρ ′ has C by Theorem 3.3.1(1), and hence each ρ ′i has C by stability.

REMARK 3.3.3. The preceding corollary can be useful in proving automorphy
lifting theorems. Indeed, it is a general version of an argument used in the proof
of [ACC+18, Proposition 4.4.6].

WARNING 3.3.4. When applying these results to the situation of Section 5.3
below (deformations of global Galois representations, where C is a condition on
the local representation), the preceding corollary only applies to deformations D
that are globally reducible. For example, take C to be the condition ‘de Rham
at p’ and D̄ = ψ(Fp(1) ⊕ Fp) : GQ → Fp. Suppose D = ψ(ρ) where
ρ : GQ→ GL2(Zp) is irreducible, but ρ|G p is a nonsplit extension of Zp(1) by Zp
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(and hence not de Rham). Then D|G p = ψ(ρ|G p) = ψ(Zp(1) ⊕ Zp) is a sum of
two de Rham characters, and hence de Rham, but D is not (globally) de Rham.

If ρ̄ is absolutely irreducible, let RC
ρ̄ be the deformation-with-C ring defined

by Ramakrishna (denoted RC(ρ̄) in [Ram93, Proposition 1.2]) and let ρC
ρ̄ be the

universal deformation.

COROLLARY 3.3.5. Suppose that ρ̄ss
D̄ = ρ̄ is absolutely irreducible. Then there is

canonical isomorphism RC
D̄ → RC

ρ̄ determined by the pseudodeformation ψ(ρC
ρ̄ )

of D̄.

Proof. It is well known that RD̄ = Rρ̄—that is, every deformation D of D̄ is of
the form D = ψ(ρ) for a unique deformation ρ of ρ̄. (Using pseudocharacters,
this is due to Carayol and Mazur. For pseudorepresentations, this is proved by
Chenevier [Che14, Theorem 2.22(i)]; it also follows from Theorem 3.2.2.) In this
situation, by the previous corollary, D has C if and only if ρ has C, so the two
quotients RC

D̄ and RC
ρ̄ of RD̄ = Rρ̄ coincide.

This corollary shows that our RC
D̄ is really a generalization of Ramakrishna’s

theory.

4. Deformation conditions and extensions

In [BC09], Bellaı̈che and Chenevier used the explicit nature of the generalized
matrix algebras discussed in the previous section to partially compute
the universal pseudodeformation ring in terms of extension groups, in the
category ModZp[G], of the constituent irreducible representations of the residual
representation. This calculation is a generalization of the description of the
tangent space of the deformation ring of an irreducible representation in terms of
adjoint cohomology.

In this section, we show that pseudodeformations-with-C may be controlled by
similar calculations, but where the extension groups are taken in the category C.
Whereas Bellaı̈che and Chenevier work with arbitrary multiplicity-free D̄, we, for
reasons of simplicity and clarity, have chosen only to consider the case where D̄
is a sum of two characters (but see Remark 4.3.6).

In this situation, where D̄ = ψ(χ̄1 ⊕ χ̄2) for distinct characters χ̄1 and χ̄2,
we now outline what we can compute about RC

D̄. First, we consider a simpler
deformation ring Rred,C

D̄ where we only consider deformations D that remain
reducible (that is, they have the form D = ψ(χ1⊕χ2)). This ring can be computed
in terms of deformation rings of the characters χ̄1 and χ̄2. Next, we wish to
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compute the kernel JC
= ker(RC

D̄ → Rred,C
D̄ ), which is called the reducibility

ideal. By the work of Bellaı̈che and Chenevier, this ideal can be described as
a quotient of BC

⊗RC
D̄

CC , where these modules come from the GMA structure
on EC

D̄. Finally, BC/JC BC and CC/JCCC can be described in terms of extension
groups in the category C of the universal deformations χ1 and χ2. In total, this
gives an upper bound for the size of JC/(JC)2 in terms of extension groups of χ1

and χ2 in the category C, where RC
D̄/JC is a quotient of RC

D̄ that is fairly simple.

REMARK 4.0.1. When proving modularity-lifting theorems, this is often the kind
of upper bound one needs. In that situation, one has a surjection RC

D̄→ T, where T
is the quotient of ‘modular deformations’. To prove modularity, one needs to show
that RC

D̄ is not ‘too big’, giving an upper bound on the size of RC
D̄. In this case, the

extension groups in C are given as certain Selmer groups in Galois cohomology
(see Example 4.3.3). Often, the size of these Selmer groups can be bounded in
terms of modular invariants (for example, zeta values), and the resulting upper
bound on JC/(JC)2 can be enough to show that RC

D̄ → T is injective. This is the
strategy of [WWE17b, WWE18b].

REMARK 4.0.2. In fact, our results allow a similar computation about I/I 2

for any ideal I containing JC . In particular, taking I to be the maximal ideal
of RC

D̄, we get a description of the (co)tangent space of RC
D̄. This computation

about JC/(JC)2 is giving information about the ‘relative tangent space’ over the
reducible deformation ring, and is, in practice, often more useful.

We now outline the contents of this section. In Section 4.2, we review the
results of Bellaı̈che–Chenevier. In Section 4.3, we prove our generalization to
deformations-with-C.

4.1. Conventions. Throughout this section, we fix G, a profinite group
satisfying the Φp finiteness condition, and two distinct characters χ̄1,

χ̄2 : G → F×. We let D̄ = ψ(χ̄1 ⊕ χ̄2).
By Theorem 3.2.2, we can and do fix a RD̄-GMA structure ED̄ = ({e1, e2}, {φ1,

φ2}) on E D̄. We write (E D̄, ED̄) and ρu
: G → E×D̄ as

E D̄
∼=

(
RD̄ Bu

Cu RD̄

)
, ρu(σ ) =

(
ρu

1,1(σ ) ρ
u
1,2(σ )

ρu
2,1(σ ) ρ

u
2,2(σ )

)
(4.1.1)

and write m : Bu
⊗RD̄

Cu
→ RD̄ for the induced map, as in Example 3.1.7. For

b ∈ Bu and c ∈ Cu , we define b · c = m(b⊗ c) ∈ RD̄. We can and do assume that
the idempotents are ordered so that the image of ρi,i(σ ) under RD̄ → F is χ̄i(σ ).
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By Corollary 3.2.3(3), a Cayley–Hamilton representation (E, ρ, D) of G with
residual pseudorepresentation D̄ inherits a GMA structure from the data above.
We use matrix notation for E and ρ according to this structure, as in (4.1.1) (for
example, writing the coordinates of ρ as ρi, j ).

4.2. Review of reducibility, extensions, and GMAs. In this subsection, we
review known results of [BC09, Section 1.5] relating the structure of GMAs to
Ext-groups.

DEFINITION 4.2.1. Let A ∈ ĈW (F). We call a pseudodeformation D : G → A
of D̄ reducible if D = ψ(χ1 ⊕ χ2) for characters χi : G → A× deforming χ̄i .
Otherwise, we call D irreducible.

A GMA representation (E, ρ : G → E×, DE) of G with residual
pseudorepresentation D̄ is called reducible (respectively irreducible) provided
that pseudodeformation DE ◦ ρ : G → A is reducible (respectively irreducible).

PROPOSITION 4.2.2. Let A be a commutative Noetherian local Zp-algebra. Let
D : G → A pseudorepresentation with residual pseudorepresentation D̄.

(1) D is reducible if and only if D = ψ(ρ) for some GMA representation ρ with
scalar ring A such that ρ1,2(G) · ρ2,1(G) is zero.

(2) Let J = Bu
· Cu
⊂ RD̄ be the image ideal of Bu

⊗RD̄
Cu in RD̄ under m :

Bu
⊗RD̄

Cu
→ RD̄. Then D is reducible if and only if the corresponding local

homomorphism RD̄ → A kills J .

Proof. See [BC09, Section 1.5.1].

In light of Proposition 4.2.2, we establish the following terminology.

DEFINITION 4.2.3. The ideal J ⊂ RD̄ of Proposition 4.2.2(2) is called the
reducibility ideal of RD̄. The image of J under the map RD̄ → A corresponding
to a pseudodeformation D : G → A of D̄ is called the reducibility ideal of D.

We define E red
D̄ to be the Cayley–Hamilton quotient of E D̄ by J E D̄, which as

in Example 2.4.7 is the usual algebra quotient E red
D̄ = E D̄/J E D̄. Its scalar ring is

Rred
D̄ = RD̄/J and is called the universal reducible pseudodeformation ring for D̄.

We let (E red
D̄ , ρ

red, E red
D̄ ) denote the corresponding GMA representation of G, and

write the decomposition arising from (4.1.1) as

E red
D̄ =

(
Rred

D̄ Bred

C red Rred
D̄

)
. (4.2.4)
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WARNING 4.2.5. Being reducible implies that the map m : Bred
⊗ C red

→ Rred
D̄

is zero, but it does not imply that either Bred or C red is zero. In fact, for a fixed
g ∈ G, it is possible that both ρred

1,2(g) ∈ Bred and ρred
2,1(g) ∈ C red are nonzero.

Let for i = 1, 2, let Rχ̄i denote the universal deformation ring of χ̄i and let
χ u

i : G → R×χ̄i
denote the universal deformation.

PROPOSITION 4.2.6.

(1) If ρ : G → (E, D) is a GMA representation of G with scalar ring A and
residual pseudorepresentation D̄, then the resulting GMA map (E D̄, ED̄)→

(E, E) factors through (E red
D̄ , E

red
D̄ ) if and only if ρ is reducible.

(2) There is a canonical isomorphism Rred
D̄
∼= Rχ̄1⊗̂W (F)Rχ̄2 . Letting χi = χ

u
i ⊗Rχ̄i

Rred
D̄ , the universal reducible pseudodeformation of D̄ is ψ(χ1 ⊕ χ2).

(3) In terms of the decomposition (4.2.4), we have ρred
i,i = χi .

Proof. (1) By Lemma 2.4.5, the GMA map (E D̄, ED̄)→ (E, E) factors through
(E red

D̄ , E
red
D̄ ) if and only if E D̄→ E sends J E D̄ to zero. Because R→ E is injective

whenever there is a pseudorepresentation D : E → R [WWE18a, Lemma 5.2.5],
J E D̄ maps to zero in E if and only if RD̄ → A factors through Rred

D̄ , which, by
Proposition 4.2.2(2), is equivalent to D ◦ ρ being reducible.

(2) By Yoneda’s lemma, it suffices to construct a canonical functorial
isomorphism

Hom(Rred
D̄ , A) ∼= Hom(Rχ̄1⊗̂W (F)Rχ̄2, A)

for A ∈ ĈW (F). Given Rχ̄1⊗̂W (F)Rχ̄2 → A, we define a reducible deformation D of
D̄ by D = ψ(χ u

1 ⊗ A⊕ χ u
2 ⊗ A), which determines an element of Hom(Rred

D̄ , A)
by Proposition 4.2.2(2) and the universal property of RD̄.

Conversely, given Rred
D̄ → A, consider the GMA representation ρred

⊗Rred
D̄

A.
Since Bred

· C red
= 0, we have that ρred

i,i ⊗Rred
D̄

A : G → A× (for i = 1, 2) is a
character that, by the conventions of Section 4.1, is a deformation of χ̄i . This pair
of characters determines an element of Hom(Rχ̄1⊗̂W (F)Rχ̄2, A).

We have defined maps between Hom(Rred
D̄ , A) and Hom(Rχ̄1⊗̂W (F)Rχ̄2, A). The

reader can check these are mutually inverse and functorial in A.
(3) It follows from the construction of the isomorphism in (2).

The following key result relates Rred
D̄ [G]-module extensions to the structure of

E red
D̄ . For ease of notation, we write χi for the base change from Rχ̄i to Rred

D̄ of the
universal deformation χ u

i of χ̄i .
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PROPOSITION 4.2.7. Let A ∈ ĈW (F) and let M be a finitely generated A-module.
For i = 1, 2, let χi,A : G→ A× be characters deforming χ̄i . By Proposition 4.2.6,
this induces a unique local homomorphism Rred

D̄ → A. There is a natural
isomorphism

HomA(Bred
⊗Rred

D̄
A,M)

∼

−→ Ext1
A[G](χ2,A, χ1,A ⊗A M)

as well as a similar isomorphism in the C-coordinate.

Proof. The details may be found in [WWE17a, Lemma 4.1.5, proof of (4.1.7)],
see also [BC09, Theorem 1.5.6]. We reproduce the construction of the map here
with notation that will be convenient in Section 4.3.

Let EM =
(

A M
0 A

)
, with GMA structure as in Example 3.1.9. Given a

homomorphism f : Bred
⊗Rred

D̄
A → M , we have morphism of GMAs

E red
D̄ ⊗Rred

D̄
A→ EM as the composition

E red
D̄ ⊗Rred

D̄
A

(
id id
0 id

)
−−−→

(
A Bred

⊗Rred
D̄

A
0 A

) (
id f
0 id

)
−−−→

(
A M
0 A

)
. (4.2.8)

Using the fact that Bred
· C red

= 0, we see that e1 EM e2 =
(

0 M
0 0

)
is a left

E D̄-submodule of EM e2 =
(

0 M
0 A

)
. Noting that e1 EM e2

∼= χ1,A ⊗A M and
EM e2/e1 EM e2

∼= χ2,A as A[G]-modules, we obtain an exact sequence

0 −→ χ1,A ⊗A M → EM e2 −→ χ2,A −→ 0, (4.2.9)

which determines the corresponding element of Ext1
A[G](χ2,A, χ1,A ⊗A M).

Conversely, any such extension can be realized in the form EM e2.

4.3. GMA structures corresponding to extensions with an abstract property.
Let C ⊂ Modfin

Zp[G] be a stable property, as in Definition 2.3.1. The following
lemma is a well-known consequence of stability, and we leave the proof to the
reader. To state the lemma clearly, we introduce some notation for extension
classes. If E is an algebra and V1, V2 are E-modules, given an extension class
c ∈ Ext1

E(V1, V2), and an exact sequence

0→ V2 → V → V1 → 0 (4.3.1)

representing c, we call V an extension module for c.
Let V1, V2 ∈ C, and assume that V1, V2 ∈ ModR[G] as well for commutative Zp-

algebra R. Define Ext1
R[G],C(V1, V2) as the subset of Ext1

R[G](V1, V2) consisting of
extension classes c such that, for every extension module V for c, we have V ∈ C.
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LEMMA 4.3.2. With V1, V2 as above, we have the following.

(1) For a class c ∈ Ext1
R[G](V1, V2), if some extension module V for c has V ∈ C,

then c ∈ Ext1
R[G],C(V1, V2).

(2) The subset Ext1
R[G],C(V1, V2) ⊂ Ext1

R[G](V1, V2) is a sub-R-module.

EXAMPLE 4.3.3. Let H1, . . . , Hn ⊂ G be subgroups, and, for i = 1, . . . , n, let
Ci ⊂ Modfin

Zp[Hi ]
be a stable condition. Assume that the condition C ⊂ Modfin

Zp[G]

arises from the Ci as in Example 2.3.3. Then Ext1
R[G],C(V1, V2) is the kernel of the

map

Ext1
R[G](V1, V2)→

n⊕
i=1

Ext1
R[Hi ]

(V1, V2)

Ext1
R[Hi ],Ci

(V1, V2)

given by the restrictions Ext1
R[G](V1, V2) → Ext1

R[Hi ]
(V1, V2) followed by the

quotients. (This is sometimes referred to as a Selmer group.)

Let EC
D̄ be as in Theorem 3.3.1, and let EC,red

D̄ = EC
D̄/J EC

D̄ where J ⊂ RD̄ is the
reducibility ideal. Following the notation of (4.1.1), we write them as

EC
D̄ =

(
RC

D̄ BC

CC RC
D̄

)
, EC,red

D̄ =

(
RC,red

D̄ BC,red

CC,red RC,red
D̄

)
.

We denote the Cayley–Hamilton representations by ρC
: G → (EC

D̄)
× and ρC,red

:

G → (EC,red
D̄ )×.

By Ramakrishna’s result [Ram93, Proposition 1.2], for i = 1, 2, there is a
quotient Rχ̄i � RC

χ̄i
that represents the functor of deformations of χ̄i having

property C and χ u,C
i = χ u

i ⊗Rχ̄i
RC
χ̄i

is the universal deformation with property C.

PROPOSITION 4.3.4. There is a canonical commutative diagram

RC,red
D̄

∼ // RC
χ̄1
⊗̂W (F)RC

χ̄2

Rred
D̄

OOOO

∼ // Rχ̄1 ⊗W (F) Rχ̄2

OOOO

where the vertical maps are the quotients and the lower horizontal map is the
isomorphism of Proposition 4.2.6(2).
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Proof. For simplicity of notation, let R = RC
χ̄1
⊗̂W (F)RC

χ̄2
and, for i = 1, 2, let

χC
i = χ

u,C
i ⊗RC

χ̄i
R.

By Proposition 4.2.6(2), the composite map Rred
D̄ → R corresponds to the

reducible pseudodeformation D = ψ(χC
1 ⊕χ

C
2 ). The G-module N = χC

1 ⊕χ
C
2 is a

faithful Cayley–Hamilton G-module with Cayley–Hamilton algebra (E =
(

R 0
0 R

)
,

DE). By Theorem 2.6.4, the map (E D̄, Du
E D̄
) → (E, DE) factors through EC

D̄.
Since D is reducible, Proposition 4.2.2 implies that it further factors through
EC,red

D̄ . This implies that Rred
D̄ → R factors through RC,red

D̄ .
On the other hand, the composite map Rχ̄1 ⊗W (F) Rχ̄2 → RC,red

D̄ corresponds to
the pair of characters e1ρ

red,Ce1, e2ρ
red,Ce2 : G → RC,red

D̄ . Since these characters
are quotient Rred

D̄ [G]-modules of the Rred
D̄ [G]-module EC,red

D̄ , which has C, we see
that they both have C as well. This implies that the map Rχ̄1 ⊗W (F) Rχ̄2 → RC,red

D̄
factors through R, completing the proof.

We write χC
i for the base change from RC

χ̄i
to RC,red

D̄ of the universal deformation
of χ̄i satisfying C.

THEOREM 4.3.5. Let A ∈ ĈW (F) and let M be a finitely generated A-module. For
i = 1, 2, let χi,A : G→ A× be characters deforming χ̄i and having property C. By
Proposition 4.3.4, this induces a unique local homomorphism Rred,C

D̄ → A. There
is a natural isomorphism

HomA(BC,red
⊗Rred,C

D̄
A,M)

∼

−→ Ext1
A[G],C(χ2,A, χ1,A ⊗A M),

as well as a similar isomorphism in the C-coordinate.

REMARK 4.3.6. Throughout this section, we have restricted our attention to two-
dimensional pseudorepresentations and GMAs of type (1,1). However, in [BC09,
Theorem 1.5.6], Bellaı̈che and Chenevier prove a version of Proposition 4.2.7 for
GMAs of any dimension d and any type (d1, . . . , dr ).

We have made this choice strictly for clarity of exposition. We fully expect
a version of Theorem 4.3.5 to be true for GMAs of any dimension d and any
type (d1, . . . , dr ), and that a proof can be given by applying the methods of
this section to the general setup of [BC09, Theorem 1.5.6]. For example, when
A = F, such a statement can be deduced directly from [WE18b, Theorems 11.2.1
and 12.3.1].

In fact, a version for types (d1, d2) can be deduced from Theorem 4.3.5 by
Morita equivalence, as in [BC09, Section 1.3.2].
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Proof. We set B = Bred
⊗Rred

D̄
A and BC

= BC,red
⊗RC,red

D̄
A to simplify notation.

We consider the diagram

HomA(BC,M)� _

��

∼ //___ Ext1
A[G],C(χ2,A, χ1,A ⊗A M)

� _

��
HomA(B,M)

∼

Ψ // Ext1
A[G](χ2,A, χ1,A ⊗A M),

where Ψ isomorphism of Proposition 4.2.7, and where the dotted arrow is the
isomorphism we wish to construct. Since this diagram is canonically isomorphic
to the one obtained by replacing A by the image of A→ EndA(M), we can and do
assume that M is a faithful A-module. Given a class c ∈ Ext1

A[G](χ2,A, χ1,A⊗A M),
we have to show that the map fc = Ψ

−1(c) : B → M factors through BC if and
only if c ∈ Ext1

A[G],C(χ2,A, χ1,A ⊗A M).
Following the proof of Proposition 4.2.7, we see that the class c has an

extension module EM e2 where EM =
(

A M
0 A

)
is a GMA and fc induces a morphism

of GMAs E red
D̄ ⊗Rred

D̄
A→ EM by

E red
D̄ ⊗Rred

D̄
A

(
id id
0 id

)
−−−→

(
A B
0 A

) (
id fc
0 id

)
−−−→

(
A M
0 A

)
. (4.3.7)

Since M is a faithful A-module, we see that EM e2 is a faithful Cayley–Hamilton
G-module with Cayley–Hamilton algebra (EM , DEM ). By Theorem 2.6.4, EM e2

has C if and only if (EM , DEM ) has C as a Cayley–Hamilton representation of G.
By Lemmas 4.3.2, 2.4.5, and Theorem 2.5.3, we are reduced to showing that fc

factors through BC if and only if the map E D̄ � E red
D̄ ⊗Rred

D̄
A → EM given by

(4.3.7) factors through EC
D̄.

If fc factors through BC , then we see that the map E red
D̄ ⊗Rred

D̄
A→ EM of (4.3.7)

agrees with the map

E red
D̄ ⊗Rred

D̄
A� EC,red

D̄ ⊗RC,red
D̄

A

(
id id
0 id

)
−−−→

(
A BC

0 A

) (
id fc
0 id

)
−−−→

(
A M
0 A

)
.

Hence the map E D̄ → EM factors though EC,red
D̄ , which is a quotient of EC

D̄.
Conversely, suppose that (E D̄, Du

E D̄
)→ (EM , DEM ) factors through (EC

D̄, DEC
D̄
).

Since (EM , DEM ) is reducible, this implies that the map E D̄→ EM factors through
a map g : EC,red

D̄ ⊗RC,red
D̄

A → EM . By (4.3.7), we see that fc factors through

e1ge2 : BC
→ M .
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5. Examples

The follow examples of conditions C could be useful in arithmetic applications.

5.1. Unramified local condition. Let ` be a prime number and let K be a
finite field extension of Q`. Let G = Gal(K/K ), which satisfies the Φp finiteness
condition because it is topologically finitely generated. Let H = I` ⊂ G be the
inertia subgroup. The condition Modfin

Zp[G/H ] ⊂ Modfin
Zp[G], as in Example 2.3.2, is

called unramified.

5.2. Local conditions at ` = p. Retain the same notation as the previous
subsection, but now assume ` = p. Let OK ⊂ K denote the ring of integers. In
this case, there are many conditions on representations of G in Qp-vector spaces,
coming from p-adic Hodge theory. Some of these conditions descend to Modfin

Zp[G]
as follows.

DEFINITIONS 5.2.1. Let V be an object of Modfin
Zp[G] and let a 6 b be integers.

(1) We call V finite flat if there is a finite-flat group scheme G over OK such that
V ∼= G(K ) as Zp[G]-modules.

(2) We call an object V ∈ Modfin
Zp[G] torsion crystalline (respectively semistable)

with Hodge–Tate weights in [a, b] if there is a crystalline (respectively
semistable) representation ρ : G → GL(W ) with Hodge–Tate weights in
[a, b] and a G-stable Zp-lattice T ⊂ W such that V is isomorphic to a
subquotient of T .

Let Cflat ⊂ Modfin
Zp[G] denote the full subcategory of finite-flat objects.

Ramakrishna has proven that Cflat is stable [Ram93, Section 2].
Let Ccrys,[a,b], Cst,[a,b] ⊂ Modfin

Zp[G] denote the full subcategories that are torsion
crystalline (respectively semistable) with Hodge–Tate weights in [a, b]. Since the
category of crystalline (respectively semistable) representations with Hodge–Tate
weights in [a, b] is closed under finite direct sums, we see that Ccrys,[a,b] and Cst,[a,b]

are closed under finite direct sums. They are also closed under isomorphisms and
subquotients by definition, so we see that they are stable.

REMARK 5.2.2. It is known that, for a Zp[G]-module M that is finitely generated
and free as a Zp-module, M ⊗Zp Qp is crystalline (respectively semistable) with
Hodge–Tate weights in [a, b] if and only if M ⊗Zp Z/pnZ is torsion crystalline
(respectively semistable) with Hodge–Tate weights in [a, b] for all n > 1. This
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was conjectured by Fontaine, and proven by Liu using results of Kisin, following
partial results of Ramakrishna, Berger, and Breuil. It is also known that there
is an equivalence of categories Cflat

∼= Ccrys,[0,1] for p > 2. See [Liu07] and the
references given there.

REMARK 5.2.3. If D̄ is residually multiplicity-free and C is one of the conditions
about, then a Zariski-closed substack R̃ep

C
D̄ ⊂ RepD̄ and a quotient RD̄ � R̃C

D̄
were constructed in [WE18a, Section 7.1]. The two constructions will have the
same generic fiber (over Zp), as this is where the construction of crystalline loci is
done in [WE18a]. That is, R̃C

D̄[1/p] ∼= RC
D̄[1/p], and similarly for R̃ep

C
D̄ and RepC

D̄.
In particular, the geometric properties of the generic fibers proved in [WE18a,
Proposition 6.4.4 and Corollary 7.1.5] apply to the generic fibers of the RepC

D̄ and
RC

D̄ constructed in this paper.
When the Zp-integral structures differ, we believe that the constructions in this

paper will be better behaved: here, we make natively integral constructions, while
the integral model of [WE18a] is made by flat closure relative to Zp.

5.3. Global conditions. Let F be a number field with algebraic closure F and
let S be a finite set of places of F . Let G = Gal(FS/F), where FS ⊂ F is the
maximal extension of F unramified outside S. Then G satisfies Φp by class field
theory.

For each v ∈ S, choose a decomposition group Gv ⊂ G (so Gv is of the type
considered in the previous subsections) and a stable condition Cv ⊂ Modfin

Zp[Gv ]
.

Then there is a corresponding stable condition C ⊂Modfin
Zp[G], as in Example 2.3.3.

The Selmer groups of Example 4.3.3 correspond to such a C.
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